[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3945980B2 - Cu-based sintered alloy bearing for motor fuel pump - Google Patents

Cu-based sintered alloy bearing for motor fuel pump Download PDF

Info

Publication number
JP3945980B2
JP3945980B2 JP2000383455A JP2000383455A JP3945980B2 JP 3945980 B2 JP3945980 B2 JP 3945980B2 JP 2000383455 A JP2000383455 A JP 2000383455A JP 2000383455 A JP2000383455 A JP 2000383455A JP 3945980 B2 JP3945980 B2 JP 3945980B2
Authority
JP
Japan
Prior art keywords
bearing
fuel pump
sintered alloy
based sintered
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000383455A
Other languages
Japanese (ja)
Other versions
JP2002180163A (en
Inventor
昇 兼崎
恒夫 丸山
Original Assignee
三菱マテリアルPmg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアルPmg株式会社 filed Critical 三菱マテリアルPmg株式会社
Priority to JP2000383455A priority Critical patent/JP3945980B2/en
Publication of JP2002180163A publication Critical patent/JP2002180163A/en
Application granted granted Critical
Publication of JP3945980B2 publication Critical patent/JP3945980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に小型化され、かつ高駆動操業されるモータ式燃料ポンプに適用した場合にすぐれた耐摩耗性を発揮するCu基焼結合金製軸受に関するものである。
【0002】
【従来の技術】
従来、一般に燃料としてガソリンや軽油などの液体燃料を用いるエンジンにはモータ式燃料ポンプが備えられており、例えばガソリンエンジン用モータ式燃料ポンプとして図1に概略横断面図で示される構造のものが知られている。
すなわち、図示される通り上記モータ式燃料ポンプは、ケーシング内において、モータの両端部に固設した回転軸が軸受に支持され、前記回転軸の一方端部にはインペラが挿入され、かつ前記インペラ、モータ(アーマチュア)の外周面、および軸受と回転軸との間の図示しない隙間にそって狭い間隙のガソリン流通路が形成された構造を有し、前記モータの回転でインペラが回転し、このインペラの回転でガソリンがケーシング内に取り込まれ、取り込まれたガソリンはインペラ、モータの外周面、および軸受と回転軸との間の図示しない隙間にそって形成された前記ガソリン流通路を通って送り出され、別設のガソリンエンジンに送り込まれるように作動するものである。なお、図1では両軸受の外周部を微量の燃料が通過し、インペラで昇圧されたガソリンは図示しないケーシングの燃料通路を通してアーマチュア外周面のところまで到達する。
また、上記のモータ式燃料ポンプの構造部材である上記軸受として各種のCu基焼結合金が用いられている。
【0003】
【発明が解決しようとする課題】
一方、近年の例えば自動車などのエンジンの軽量化、並びに高性能化はめざましく、これに伴って、これに用いられるモータ式燃料ポンプにも小型化が強く求められているが、上記のモータ式燃料ポンプの場合、吐出性能を確保しつつこれを小型化するには、高駆動すなわち回転数を高くすることが必要であり、そうすると、燃料ポンプ内に取り込まれたガソリンなどの液体燃料は一段と狭くなった間隙の流通路を高圧で、かつ速い流速で通り抜けることになり、このような条件下では特に燃料ポンプの構造部材である軸受には一段の高強度と耐摩耗性が要求されることになるが、上記のモータ式燃料ポンプに用いられている従来のCu基焼結合金製軸受においては、いずれも十分な強度および耐摩耗性を具備するものでないため、摩耗進行が速く、さらにこの摩耗進行は前記液体燃料が硫黄やその化合物などを不純物として含有する場合には、一層促進されるようになり、この結果比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者らは、上述のような観点から、小型化されて、高駆動操業されるモータ式燃料ポンプに用いるのに適した軸受を開発すべく研究を行った結果、
モータ式燃料ポンプの軸受を、質量%(以下、%は質量%を示す)で、
Ni:20〜40%、
P :0.1〜0.9%、
二硫化モリブデン(以下、MoS2で示す):0.5〜5%、
を含有し、残りがCuと不可避不純物からなる組成、並びにCu−Ni系合金の固溶体相からなる素地に、硬質のCu−P化合物と、高潤滑性を有するMoS2が分散分布した組織を有し、さらに5〜25%の気孔率を有するCu基焼結合金で構成すると、液体燃料の高圧高速流を生起せしめるモータの高速回転により軸受が受ける摩擦抵抗が、軸受内に存在する気孔を介して軸受外周面から軸受内周面に供給される液体燃料によって形成される流体潤滑膜の作用で緩和され、一方前記気孔を形成した分だけ耐摩耗性が低下するようになるが、この耐摩耗性の低下はCu−Ni系合金の固溶体相からなる素地に分散分布した硬質のCu−P化合物と同じく素地に分散分布した高潤滑性MoS2によって補われることから、この結果のCu基焼結合金製軸受は、これの素地を形成するCu−Ni系合金のもつすぐれた強度および耐食性と相俟って、液体燃料の高圧高速流に曝された環境下ですぐれた耐摩耗性を発揮するようになり、また、このCu基焼結合金製軸受は硫黄やその化合物などを不純物として含有する液体燃料に対してもすぐれた耐食性を示す、という研究結果を得たのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、
Ni:20〜40%、
P :0.1〜0.9%、
MoS2:0.5〜5%、
を含有し、残りがCuと不可避不純物からなる組成、並びにCu−Ni系合金の固溶体相からなる素地に、硬質のCu−P化合物と、高潤滑性を有するMoS2が分散分布した組織を有し、さらに5〜25%の気孔率を有するCu基焼結合金で構成してなる、液体燃料の高圧高速流通下ですぐれた耐摩耗性を発揮するモータ式燃料ポンプのCu基焼結合金製軸受に特徴を有するものである。
【0006】
つぎに、この発明の軸受において、これを構成するCu基焼結合金の成分組成および気孔率を上記の通りに限定した理由を説明する。
(1)成分組成
(a)Ni
Ni成分には、上記の通りCuに固溶して、Cu−Ni系合金の固溶体相からなる素地を形成し、軸受の強度および耐食性を向上させる作用があるが、その含有量が20%未満では、所望の高強度および高耐食性を確保することができず、一方がその含有量が40%を越えると強度が低下するようになることから、その含有量をNi:20〜40%、望ましくは21〜30%と定めた。
【0007】
(b)P
P成分には、焼結性を向上させて軸受強度の向上に寄与すると共に、素地に分散分布する硬質のCu−P合金を形成して耐摩耗性を向上させる作用があるが、その含有量が0.1%未満では前記作用に所望の向上効果が得られず、一方その含有量が0.9%を越えると強度に低下傾向が現われるようになり、所望の高強度を安定的に確保するのが難しくなることから、その含有量を0.1〜0.9%、望ましくは0.3〜0.6%と定めた。
【0008】
(c)MoS2
MoS2成分は、MoS2相として素地に分散分布し、軸受にすぐれた潤滑性を付与し、もって軸受の耐摩耗性向上に寄与する作用があるが、その含有量が0.5%未満では所望のすぐれた潤滑性を確保することができず、一方その含有量が5%を越えると強度が急激に低下するようになることから、その含有量を0.5〜5%、望ましくはそれぞれ1〜3%と定めた。
【0009】
(2)気孔率
Cu−Ni系合金の素地に分散する気孔には、上記の通り液体燃料の高圧高速流通下で軸受が受ける強い摩擦および高い面圧を緩和し、もって軸受の摩耗を著しく抑制する作用があるが、その気孔率が5%未満では、素地中に分布する気孔の割合が少なくなり過ぎて前記作用を十分満足に発揮することができず、一方その気孔率が25%を越えると、軸受の強度が急激に低下するようになることから、その気孔率を5〜25%、望ましくは10〜20%と定めた。
【0010】
【発明の実施の態様】
この発明のCu基焼結合金製軸受を実施例により具体的に説明する。
原料粉末として、水アトマイズ法により形成され、かついずれも45μmの平均粒径を有するが、Ni含有量の異なる各種のCu−Ni合金粉末、同じく45μmの平均粒径を有する水アトマイズCu−P合金(P:33%含有)粉末、さらに75μmの平均粒径を有するMoS2粉末を用意し、これら原料粉末を所定の配合組成に配合し,ボールミルで40分間混合した後、150〜300MPaの範囲内の所定の圧力で圧粉体にプレス成形し、この圧粉体をアンモニア分解ガス雰囲気中、750〜900℃の範囲内の所定の温度に40分間保持の条件で焼結することにより、それぞれ表1に示される組成並びに気孔率を有するCu基焼結合金で構成され、かついずれも外形:9mm×内径:5mm×高さ:6mmの寸法をもった本発明焼結軸受1〜20をそれぞれ製造した。
この結果得られた本発明焼結軸受1〜20の任意断面を光学顕微鏡(200倍)を用いて観察したところ、いずれもCu−Ni系合金の固溶体相からなる素地に微細なCu−P合金とMoS2が分散分布し、かつ気孔も存在する組織を示した。
また、比較の目的で、表1に示される通りの組成とする以外は同一の条件でCu基焼結合金で構成された軸受(以下、比較焼結軸受という)1〜8をそれぞれ調製した。
なお、上記の比較焼結軸受1〜8は、いずれも合金成分含有量および気孔率のうちのいずれかがこの発明の範囲から外れたCu基焼結合金で構成されたものである。
【0011】
ついで、上記の本発明焼結軸受1〜20および比較焼結軸受1〜8を外形寸法が長さ:110mm×直径:40mmの燃料ポンプに組み込み、この燃料ポンプをガソリンタンク内に設置し、
インペラの回転数:3000(最小回転数)〜8000(最大回転数)r.p.m.、
ガソリンの流量:45リットル/時(最小流量)〜120リットル/時(最大流量)、
軸受が高速回転軸より受ける圧力:最大300KPa、
試験時間:250時間、
の条件、すなわちガソリンが狭い間隙を高速で流通し、これを生起せしめるモータの高速回転軸によって軸受が高圧を受け、かつ速い流速のガソリンに曝される条件で実機試験を行い、試験後の軸受面における最大摩耗深さを測定した。この測定結果を同じく表1に示した。
また、表1には強度を評価する目的で、それぞれの焼結軸受の圧壊強度を示した。
【0012】
【表1】

Figure 0003945980
【0013】
【発明の効果】
表1に示される結果から、本発明焼結軸受1〜20は、いずれもこれを構成するCu基焼結合金が高強度を有し、かつCu−Ni系合金の固溶体相のもつすぐれた耐食性、並びにこれの素地に分散分布する気孔および硬質のCu−P合金、さらに高潤滑性を有するMoS2の作用で、特にモータ式燃料ポンプの軸受として、ガソリンの高圧高速流通下で、一段とすぐれた耐摩耗性を発揮するのに対して、比較焼結軸受1〜8に見られる通り、これを構成するCu基焼結合金の成分含有量および気孔率のうちのいずれかがこの発明の範囲から外れると強度および耐摩耗性のうちの少なくともいずれかの低下は避けられないことが明らかである。
上述のように、この発明のCu基焼結合金製軸受は、通常の液体燃料を用いるエンジンのモータ式燃料ポンプ用としては勿論のこと、特にモータ式燃料ポンプの小型化および高駆動化に伴って回転軸から高面圧を受け、かつ液体燃料の高速流に曝される液体燃料の高速流に曝される環境下で用いた場合でも、さらに液体燃料が不純物として硫黄やその化合物などを含有する場合にも、すぐれた耐摩耗性を発揮するものであるから、液体燃料を用いるエンジンの軽量化、並びに高性能化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】ガソリンエンジン用モータ式燃料ポンプの概略横断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing made of a Cu-based sintered alloy that exhibits excellent wear resistance when applied to a motor-type fuel pump that is particularly downsized and operated at high drive.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an engine using liquid fuel such as gasoline or light oil as a fuel is generally provided with a motor type fuel pump. For example, a motor type fuel pump for a gasoline engine has a structure shown in a schematic cross-sectional view in FIG. Are known.
That is, as shown in the drawing, the motor type fuel pump has a casing in which a rotating shaft fixed to both ends of the motor is supported by a bearing, an impeller is inserted into one end of the rotating shaft, and the impeller A gasoline flow passage having a narrow gap is formed along the outer peripheral surface of the motor (armature) and a gap (not shown) between the bearing and the rotary shaft, and the impeller is rotated by the rotation of the motor. Gasoline is taken into the casing by the rotation of the impeller, and the taken-in gasoline is sent out through the gasoline flow path formed along the impeller, the outer peripheral surface of the motor, and a gap (not shown) between the bearing and the rotating shaft. It operates to be sent to a separate gasoline engine. In FIG. 1, a small amount of fuel passes through the outer peripheral portions of both bearings, and the gasoline pressurized by the impeller reaches the outer peripheral surface of the armature through a fuel passage of a casing (not shown).
Various Cu-based sintered alloys are used as the bearings that are structural members of the motor-type fuel pump.
[0003]
[Problems to be solved by the invention]
On the other hand, in recent years, for example, engines such as automobiles have been reduced in weight and performance, and along with this, motor type fuel pumps used therefor have been strongly demanded to be downsized. In the case of a pump, in order to reduce the size of the pump while ensuring the discharge performance, it is necessary to increase the driving speed, that is, to increase the rotation speed. Then, the liquid fuel such as gasoline taken into the fuel pump becomes more narrow. In such a condition, the bearing, which is a structural member of the fuel pump, is required to have a higher level of strength and wear resistance. However, none of the conventional Cu-based sintered alloy bearings used in the motor type fuel pump has sufficient strength and wear resistance. Faster, further the wear progresses in the case where the liquid fuel contains sulfur, etc. and their compounds as impurities, will be further promoted, the reach this result relatively short time service life at present.
[0004]
[Means for Solving the Problems]
Therefore, the present inventors have conducted research to develop a bearing suitable for use in a motor-type fuel pump that is miniaturized and operated at a high drive, from the above viewpoint.
Motor type fuel pump bearings in mass% (hereinafter% indicates mass%)
Ni: 20 to 40%,
P: 0.1-0.9%
Molybdenum disulfide (hereinafter referred to as MoS 2 ): 0.5 to 5%,
In which the balance is composed of Cu and inevitable impurities, and the substrate is composed of a solid solution phase of a Cu-Ni-based alloy and has a structure in which a hard Cu-P compound and highly lubricated MoS 2 are dispersed and distributed. Further, when it is made of a Cu-based sintered alloy having a porosity of 5 to 25%, the frictional resistance that the bearing receives due to the high-speed rotation of the motor that causes the high-pressure and high-speed flow of the liquid fuel passes through the pores existing in the bearing. The fluid lubrication film formed by the liquid fuel supplied from the outer peripheral surface of the bearing to the inner peripheral surface of the bearing is relaxed. On the other hand, the wear resistance is reduced by the amount of the pores formed. The decrease in the property is compensated by the highly lubricated MoS 2 dispersed and distributed in the base as well as the hard Cu-P compound dispersed and distributed in the base composed of the solid solution phase of the Cu—Ni-based alloy. Alloy bearings, together with the excellent strength and corrosion resistance of the Cu-Ni alloys that form the substrate, exhibit excellent wear resistance in environments exposed to high pressure and high velocity flows of liquid fuel. In addition, this Cu-based sintered alloy bearing has obtained research results that show excellent corrosion resistance against liquid fuels containing sulfur and its compounds as impurities.
[0005]
This invention was made based on the above research results,
Ni: 20 to 40%,
P: 0.1-0.9%
MoS 2 : 0.5-5%
In which the balance is composed of Cu and inevitable impurities, and the substrate is composed of a solid solution phase of a Cu-Ni-based alloy and has a structure in which a hard Cu-P compound and highly lubricated MoS 2 are dispersed and distributed. Furthermore, it is made of a Cu-based sintered alloy of a motor type fuel pump that is composed of a Cu-based sintered alloy having a porosity of 5 to 25% and that exhibits excellent wear resistance under high-pressure and high-speed circulation of liquid fuel. The bearing has a feature.
[0006]
Next, the reason why the component composition and the porosity of the Cu-based sintered alloy constituting the bearing of the present invention are limited as described above will be described.
(1) Component composition (a) Ni
The Ni component has the effect of being dissolved in Cu as described above to form a base made of a solid solution phase of a Cu—Ni-based alloy and improving the strength and corrosion resistance of the bearing, but its content is less than 20%. In this case, the desired high strength and high corrosion resistance cannot be ensured. On the other hand, if the content exceeds 40%, the strength decreases. Therefore, the content is preferably Ni: 20 to 40%, preferably Was determined to be 21-30%.
[0007]
(B) P
The P component contributes to improving the bearing strength by improving the sinterability, and also has the effect of improving the wear resistance by forming a hard Cu-P alloy dispersed and distributed in the substrate. If the content is less than 0.1%, a desired improvement effect cannot be obtained in the above action. On the other hand, if the content exceeds 0.9%, the strength tends to decrease, and the desired high strength can be stably secured. Therefore, the content is determined to be 0.1 to 0.9%, preferably 0.3 to 0.6%.
[0008]
(C) MoS 2
The MoS 2 component is dispersed and distributed in the base as the MoS 2 phase, and gives the bearing excellent lubricity, thereby contributing to the improvement of the wear resistance of the bearing. However, if its content is less than 0.5% The desired excellent lubricity cannot be ensured, while when the content exceeds 5%, the strength suddenly decreases. Therefore, the content is preferably 0.5 to 5%, preferably each It was set to 1 to 3%.
[0009]
(2) Porosity The pores dispersed in the base of the Cu-Ni alloy relieve the strong friction and high surface pressure that the bearing receives under high-pressure and high-speed flow of liquid fuel, as described above, thereby significantly suppressing bearing wear. However, if the porosity is less than 5%, the ratio of the pores distributed in the substrate becomes too small to sufficiently exhibit the above-mentioned effect, while the porosity exceeds 25%. Then, since the strength of the bearing suddenly decreases, the porosity is set to 5 to 25%, preferably 10 to 20%.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The Cu-based sintered alloy bearing of the present invention will be specifically described with reference to examples.
As a raw material powder, various Cu-Ni alloy powders which are formed by a water atomization method and all have an average particle diameter of 45 μm but differ in Ni content, and a water atomized Cu-P alloy which also has an average particle diameter of 45 μm (P: containing 33%) Powder, and further, MoS 2 powder having an average particle diameter of 75 μm is prepared, these raw material powders are blended in a predetermined blending composition, mixed for 40 minutes by a ball mill, and within a range of 150 to 300 MPa. The green compact is pressed into a green compact at a predetermined pressure and sintered in a ammonia decomposition gas atmosphere at a predetermined temperature within a range of 750 to 900 ° C. for 40 minutes. 1. The sintered bearing of the present invention, which is composed of a Cu-based sintered alloy having the composition and porosity shown in FIG. 1 and has dimensions of outer dimensions: 9 mm × inner diameter: 5 mm × height: 6 mm 20 was prepared, respectively.
When the arbitrary cross sections of the sintered bearings 1 to 20 of the present invention obtained as a result were observed using an optical microscope (200 times), all of them were fine Cu-P alloys on a substrate made of a solid solution phase of a Cu-Ni alloy. And a structure in which MoS 2 is distributed and pores are also present.
For comparison purposes, bearings (hereinafter referred to as comparative sintered bearings) 1 to 8 made of a Cu-based sintered alloy were prepared under the same conditions except that the compositions shown in Table 1 were used.
Each of the above-mentioned comparative sintered bearings 1 to 8 is composed of a Cu-based sintered alloy in which any one of the alloy component content and the porosity is out of the scope of the present invention.
[0011]
Next, the sintered bearings 1 to 20 and the comparative sintered bearings 1 to 8 of the present invention described above are incorporated into a fuel pump having an outer dimension of length: 110 mm × diameter: 40 mm, and the fuel pump is installed in a gasoline tank.
Impeller rotational speed: 3000 (minimum rotational speed) to 8000 (maximum rotational speed) r. p. m. ,
Gasoline flow rate: 45 liters / hour (minimum flow rate) to 120 liters / hour (maximum flow rate),
Pressure that the bearing receives from the high-speed rotating shaft: maximum 300 KPa,
Test time: 250 hours
The actual bearing test was performed under the conditions of the above, that is, under the condition that the bearing is subjected to high pressure by the high-speed rotating shaft of the motor that causes gasoline to flow at high speed through a narrow gap and is exposed to high-speed gasoline. The maximum wear depth on the surface was measured. The measurement results are also shown in Table 1.
Table 1 shows the crushing strength of each sintered bearing for the purpose of evaluating the strength.
[0012]
[Table 1]
Figure 0003945980
[0013]
【The invention's effect】
From the results shown in Table 1, the sintered bearings 1 to 20 of the present invention all have high strength of the Cu-based sintered alloy constituting this, and excellent corrosion resistance of the solid solution phase of the Cu-Ni alloy. , As well as pores and hard Cu-P alloys distributed and distributed in the substrate, and MoS 2 having high lubricity, especially as a motor fuel pump bearing, even under high pressure and high speed circulation of gasoline. While exhibiting wear resistance, as seen in comparative sintered bearings 1-8, any of the component content and porosity of the Cu-based sintered alloy constituting this is within the scope of the present invention. Obviously, at least one of strength and wear resistance is unavoidably reduced.
As described above, the bearing made of a Cu-based sintered alloy according to the present invention is used not only for a motor type fuel pump of an engine that uses a normal liquid fuel, but particularly with the miniaturization and high drive of the motor type fuel pump. Even when used in an environment where high surface pressure is received from the rotating shaft and exposed to a high-speed flow of liquid fuel, the liquid fuel further contains sulfur or its compounds as impurities. In this case, since it exhibits excellent wear resistance, it is possible to satisfactorily cope with the reduction in weight and performance of engines using liquid fuel.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a motor-type fuel pump for a gasoline engine.

Claims (1)

質量%で、
Ni:20〜40%、
P :0.1〜0.9%、
二硫化モリブデン:0.5〜5%、
を含有し、残りがCuと不可避不純物からなる組成、並びにCu−Ni系合金の固溶体相からなる素地に、硬質のCu−P化合物と、高潤滑性を有する二硫化モリブデンが分散分布した組織を有し、さらに5〜25%の気孔率を有するCu基焼結合金で構成したことを特徴とする、液体燃料の高圧高速流通下ですぐれた耐摩耗性を発揮するモータ式燃料ポンプのCu基焼結合金製軸受。
% By mass
Ni: 20 to 40%,
P: 0.1-0.9%
Molybdenum disulfide: 0.5-5%
And a composition in which the remainder is composed of Cu and inevitable impurities, and a structure in which a hard Cu-P compound and molybdenum disulfide having high lubricity are dispersed and distributed on a substrate composed of a solid solution phase of a Cu-Ni alloy. And a Cu-based motor-type fuel pump that exhibits excellent wear resistance under high-pressure and high-speed flow of liquid fuel, characterized in that it is composed of a Cu-based sintered alloy having a porosity of 5 to 25%. Sintered alloy bearing.
JP2000383455A 2000-12-18 2000-12-18 Cu-based sintered alloy bearing for motor fuel pump Expired - Lifetime JP3945980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000383455A JP3945980B2 (en) 2000-12-18 2000-12-18 Cu-based sintered alloy bearing for motor fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000383455A JP3945980B2 (en) 2000-12-18 2000-12-18 Cu-based sintered alloy bearing for motor fuel pump

Publications (2)

Publication Number Publication Date
JP2002180163A JP2002180163A (en) 2002-06-26
JP3945980B2 true JP3945980B2 (en) 2007-07-18

Family

ID=18851107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000383455A Expired - Lifetime JP3945980B2 (en) 2000-12-18 2000-12-18 Cu-based sintered alloy bearing for motor fuel pump

Country Status (1)

Country Link
JP (1) JP3945980B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918693B1 (en) 2012-02-29 2018-08-01 Diamet Corporation Sintered alloy superior in wear resistance

Also Published As

Publication number Publication date
JP2002180163A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
KR101242887B1 (en) Bearing of motor driven fuel pump
JP5755599B2 (en) Sintered bearing for motor-type fuel pump with excellent corrosion resistance, wear resistance and conformability
JP4410612B2 (en) Pb-free bearing for fuel injection pump
KR100867905B1 (en) Copper-based sintered alloy bearing and motor fuel pump
JP2006063398A (en) BEARING MADE OF SINTERED Cu ALLOY FOR RECIRCULATION EXHAUST GAS FLOW RATE CONTROL VALVE OF EGR TYPE INTERNAL COMBUSTION ENGINE EXHIBITING HIGH STRENGTH AND EXHIBITING EXCELLENT WEAR RESISTANCE IN HIGH TEMPERATURE ENVIRONMENT
JP2015187307A (en) Sintered bearing for motor type fuel pump excellent in corrosion resistance, wear resistance and fitness
JP4743565B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor-type fuel pump that exhibits excellent wear resistance under high-pressure and high-speed circulation of gasoline, and motor-type fuel pump using the same
JP3945979B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor fuel pump
JP6523682B2 (en) Sintered bearing
EP1617091B1 (en) Abrasion-resistant bearing of motor type fuel pump
JP3945980B2 (en) Cu-based sintered alloy bearing for motor fuel pump
JP4743569B2 (en) Cu-based sintered alloy bearing for motor-type fuel pump and motor-type fuel pump incorporating the bearing
US6793393B2 (en) Copper-based sintered alloy bearing for motor fuel pump
JP3945981B2 (en) Cu-based sintered alloy bearing for motor fuel pump
JP4743568B2 (en) Cu-based sintered alloy bearing for motor-type fuel pump and motor-type fuel pump incorporating the bearing
JP2505632B2 (en) Sliding material
JP2019173970A (en) Sintered bearing
JP2005240159A (en) BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3945980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term