JP3944354B2 - Motor control device - Google Patents
Motor control device Download PDFInfo
- Publication number
- JP3944354B2 JP3944354B2 JP2000401766A JP2000401766A JP3944354B2 JP 3944354 B2 JP3944354 B2 JP 3944354B2 JP 2000401766 A JP2000401766 A JP 2000401766A JP 2000401766 A JP2000401766 A JP 2000401766A JP 3944354 B2 JP3944354 B2 JP 3944354B2
- Authority
- JP
- Japan
- Prior art keywords
- excitation
- signal
- motor
- resolver
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Control Of Electric Motors In General (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は工作機械の主軸駆動モータなどに利用され、主軸駆動モータの速度および位置検出に位相変調型レゾルバを用いたモータ制御装置に関するものである。
【0002】
【従来の技術】
モータの速度検出および位置検出のために位相変調型レゾルバを用いた従来のモータ制御装置について図面を用いて説明する。周知のように、例えばレゾルバの直交する一組の固定子巻線に90度位相のずれた二相の交流信号を励磁信号として印加すると、レゾルバの回転子巻線には、その回転角に等しい位相変化をする交流の帰還信号を得ることができる。
【0003】
第1の従来例として、モータの制御中には励磁信号の周波数を一定とする場合の、モータ制御装置ブロック図を図2に示す。図2において、固定子巻線9および回転子巻線10により構成されるものがレゾルバ11である。励磁信号発生器3は、カウンタ手段1が出力する一定の周期基準信号を入力とし、相互に90度位相のずれた2相の正弦波励磁信号を生成し、バッファ5,6を介して前記レゾルバの固定子巻線9に出力する励磁信号生成手段である。矩形波変換回路8は前記レゾルバの回転子巻線10が出力する帰還信号を差動増幅器7で処理したのち矩形波化する手段である。ラッチ回路4は、前記矩形波化した帰還信号の立ち上がりエッジにより前記カウンタ手段1の出力値をラッチする手段である。ラッチしたカウント値は、CPU12によって処理され位相差が算出される。
【0004】
位相差の算出は以下のようにされる。図2において、レゾルバの励磁信号の周期Tは、カウンタ手段の基準クロックの周期をTclkとすると、数式(1)の様に表すことができる。
【数1】
T=2^n × Tclk ・・・・・(1)
数式(1)で、2^nは2のn乗を示し、nはカウンタの有効ビットを示す。
【0005】
次に前記励磁信号および前記帰還信号、前記矩形波化された帰還信号を図3に示す。図3(a)は、前記カウンタ手段1の出力値を示し、(b)は励磁信号を示す。また、(c)は前記帰還信号を示し、(d)は、前記帰還信号(c)を矩形化した信号を示す。ここで前記矩形波化した帰還信号(d)の立ち上がりエッジで前記カウンタ手段1の出力値(a)をラッチする。ラッチしたカウント値Nから、図2のCPU12が、数式(2)に従い前記励磁信号と前記帰還信号との位相差θを算出する。
【数2】
θ=360°×N/2^n ・・・・・(2)
ここで数式(2)より、nが位相分解能を示し、nが大きいほど分解能が上がるが、同時に数式(1)より励磁周期が長くなることが分かる。
【0006】
次に第2の従来例として、前記励磁信号の周波数をモータの速度検出値に応じて可変する場合の、モータ制御装置ブロック図を図5に示す。図2に示すものと同じ構成要素は同一符号で示してあり、その説明は重複するので省略する。図5において、励磁信号発生器3は、速度検出器13が出力する速度検出信号に基づいて励磁信号の周波数を可変する励磁信号生成手段である。また、前記励磁信号生成手段3は、励磁信号周波数を表すref信号を角度検出器14に出力する。例えば数式(1)における2^nをref信号として出力する。前記角度検出器14は、前記励磁信号生成回路3からのref信号に基づいて数式(2)に従い、前記励磁信号と前記帰還信号との位相差θを算出する。
【0007】
【発明が解決しようとする課題】
これら前述した従来のモータ制御装置では位相変調型レゾルバを用いてモータの回転子の位相検出ができ、これによりモータの速度検出および位置検出が可能である。しかし、上述した第1の従来例のモータ制御装置では、前記カウンタ手段1の基準クロックTclkが一定であり、また励磁信号の周波数1/Tが一定であるので、検出周波数即ちモータの位相検出可能回転速度の上限と検出分解能が固定化されるという問題点があった。すなわち、モータの位相を高速回転領域まで検出するためには、励磁信号の周波数1/Tを上げる必要がある。即ち数式(1)でnを小さくする必要があるが、nを小さくすると、位相差を算出する際のカウンタ手段のフルカウント値である数式(2)の2^nが少なくなるため検出分解能が下がる。また、低速回転領域での検出分解能を上げるためには、nを大きくする必要があるが、nを大きくするには励磁信号の周波数1/Tを下げる必要があり、励磁信号の周波数を下げると高速回転領域での位相検出範囲が狭くなる。
【0008】
アプリケーション例として、旋盤等の工作機械に用いられる主軸用モータにおいて、モータの位相検出に前記第1の従来例のモータ制御装置を用いる場合が多々ある。このとき、主軸を高速で制御する場合と、極低速で制御する即ちモータの位置を制御し低速で主軸角度を可変させる場合の2通りを使い分ける場合においては、高速回転領域で主軸モータの位相検出をしつつ、低速回転領域での位相検出分解能を上げたいという課題があった。
【0009】
また、上述した第2の従来例のモータ制御装置で、図5に示す励磁周波数をモータの速度検出値に応じて可変する方法をとるときは、前記の課題は解決できるかに思えるが、以下の問題が生ずる。すなわち、励磁信号の周波数を可変する場合、可変時において励磁信号に歪が生じる。また、励磁信号と帰還信号の位相が同位相でないため励磁周波数の可変時において、励磁信号と帰還信号の位相差における連続性が失われる。そのためモータの制御中に励磁周波数を可変する場合、励磁周波数の可変時に位相検出値の誤差が大きくなるという問題がある。また、励磁周波数をモータの速度検出値に応じて可変する方式は、励磁周波数を可変しない方式に対して高価であり、モータ制御システムを構築する上でコスト的に問題となる。
【0010】
本発明の目的は、上述した課題および問題を解決し、低速回転領域でモータを制御する場合には位相検出分解能を高く、高速回転領域でモータを制御する場合には励磁周波数を高くすることが可能で、安価なモータ制御装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために本発明に係るモータ制御装置は、モータの速度及び位置を検出する位相変調型のレゾルバを用いたモータ制御装置において、前記レゾルバを励磁する励磁信号の周期基準信号を複数生成し出力するカウンタ手段と、前記モータへの速度指令に応じ、速度指令が低い場合は励磁周波数の低い基準周期信号を選択し、速度指令が高い場合は励磁周波数の高い周期基準信号を前記複数の周期基準信号の中より選択し励磁周期基準信号として出力する励磁周期選択手段と、前記励磁周期選択手段の出力信号を入力とし、前記レゾルバの励磁信号を生成する励磁信号生成手段と、レゾルバの帰還信号により前記カウンタのカウント値をラッチするラッチ手段と、を備えたことを特徴とする。
また、本発明に係るモータ制御装置は、モータの速度及び位置を検出する位相変調型のレゾルバを用いたモータ制御装置において、前記レゾルバを励磁する励磁信号の周期基準信号を複数生成し出力するカウンタ手段と、モータの巻線指令に応じて前記レゾルバを励磁する周期基準信号を前記複数の周期基準信号の中より選択し励磁周期基準信号として出力する励磁周期選択手段と、前記励磁周期選択手段の出力信号を入力とし、前記レゾルバの励磁信号を生成する励磁信号生成手段と、前記レゾルバの帰還信号により前記カウンタのカウント値をラッチするラッチ手段と、を備えたことを特徴とする。
【0012】
このように本発明に係るモータ制御装置においては、カウンタ手段は、複数の周期基準信号を出力し、励磁周期選択手段は前記複数の周期基準信号より1つの周期基準信号を選択し励磁周期基準信号を出力できる構成としたので、速度指令またはモータの巻線指令に応じて、レゾルバの励磁周波数を切り替え、低速回転領域でモータを制御する場合には位相検出分解能を高く、高速回転領域でモータを制御する場合には励磁周波数を高くすることにより、モータの制御範囲に応じてモータの位相分解能を高くしかつモータの位相検出範囲を広げることが可能となる。
【0013】
また、速度指令またはモータの制御モードまたは巻線指令等に応じてモータ制御の事前に励磁周波数を切り替えるので、モータ速度の制御中に励磁周波数を可変することがなく、励磁周波数可変時における位相検出誤差は制御に影響しない。
【0014】
【発明の実施の形態】
以下、図面を用いて、本発明を実施するための形態を説明する。図1は、本発明に係るモータ制御装置の一実施形態のブロック図である。図2に示す従来のモータ制御装置と同じ構成要素は同一符号で示してあり、その説明は重複するので省略する。図1において、前記カウンタ手段1が複数の周期基準信号を出力する。励磁周期選択手段2は、制御対象であるモータの速度指令に応じて制御前に前記複数の周期基準信号より1つの周期基準信号を選択し、励磁周期基準信号を出力する。速度指令ω*が低い場合は、励磁周波数を低くし励磁信号1周期当りのカウント値2^nが多くなる様に周期基準信号を選択する。また、速度指令ω*が高い場合は、励磁周波数が高くし励磁信号1周期当りのカウント値2^nが小さくなる様に周期基準信号を選択する。速度指令ω*に応じて前記励磁周期選択手段2が選択した周期基準信号に基づいて出力する励磁周期基準信号に従い、前記励磁信号生成手段3は、レゾルバ11の励磁信号を生成する。前記励磁信号により励磁されたレゾルバ11は、モータの位相に応じた帰還信号を出力する。前記帰還信号は、矩形波変換回路9により矩形波化され、前記矩形波化された帰還信号の立ち上がりエッジによりカウンタ1の出力をラッチ回路4でラッチする。これにより、CPU12を介してモータの速度および位置を検出して、モータの制御がなされる。
【0015】
図4に前記励磁周期選択手段2の動作例を示す。前記速度指令ω*が0〜ω1の領域の場合、前記励磁周期選択手段2は励磁周波数がf1となる前記励磁周期基準信号を出力する。また、前記速度指令がω1〜ω2の領域およびω2以上の領域では、前記励磁周期選択手段2は励磁周波数がf2およびf3となる前記励磁周期基準信号を出力する。
【0016】
また、速度指令ω*の代わりに制御モード信号に応じて、前記励磁周期基準信号を出力する。すなわち図4に示す様に、高精度制御モードでは前記励磁周期選択手段2は励磁周波数がf1となる前記励磁周期基準信号を出力し、高速制御モードでは前記励磁周期選択手段2は励磁周波数がf3となる前記励磁周期基準信号を出力する。
【0017】
さらに、巻線切り替えモータを使用し巻線の選択指令に応じて励磁周波数を選択する場合において、低速巻線を選択する巻線指令がされた場合は、前記励磁周期選択手段2は励磁周波数がf1となる前記励磁周期基準信号を出力する。高速巻線を選択する巻線指令がされた場合は、前記励磁周期選択手段2は励磁周波数がf2となる前記励磁周期基準信号を出力する。
【0018】
【発明の効果】
このように本発明に係るモータのモータ制御装置においては、カウンタ手段は、複数の周期基準信号を出力し、励磁周期選択手段は、速度指令またはモータの制御モードまたはモータの巻線指令に応じて前記複数の周期基準信号より1つの周期基準信号を選択し励磁周期基準信号を出力し、それにより励磁信号生成手段が前記レゾルバを励磁する励磁信号を生成するようにしたので、モータの制御範囲によりレゾルバの励磁周波数を切り替え、低速回転領域でモータを制御する場合には位相検出分解能を高く、高速回転領域でモータを制御する場合には励磁周波数を高くすることにより、モータの制御範囲に応じてモータの位相分解能を高くしかつモータの位相検出範囲を広げることができる。
【0019】
また、速度指令またはモータの制御モードまたは巻線指令等に応じてモータ制御の事前に励磁周波数を切り替えるので、モータ速度の制御中に励磁周波数を可変することがなく、励磁周波数可変時における位相検出誤差は制御に影響しない。
【0020】
本発明のモータ制御装置によれば、モータの速度指令または制御モードまたはモータの巻線指令に応じて励磁信号の周波数を可変としているため、従来両立が不可能であった低速域の分解能の向上と、位相検出範囲の高速化が可能となるシステムを安価に構築できる。
【図面の簡単な説明】
【図1】 本発明によるモータ制御装置の一実施形態のブロック図である。
【図2】 第1従来例のモータ制御装置のブロック図である。
【図3】 図1、図2に示すモータ制御装置の各信号の波形図である。
【図4】 本発明によるモータ制御装置の1実施形態における励磁周波数の選択動作の例である。
【図5】 第2従来例のモータ制御装置のブロック図である。
【符号の説明】
2^n カウント値、θ 位相差、Tclk 基準クロック、T 周期、ω 速度指令、1 カウンタ手段、2 励磁周期選択手段、3 励磁信号生成手段、4 ラッチ手段、5,6 バッファ、7 差動増幅器、8 矩形波変換回路、9固定子巻線、10 回転子巻線、11 レゾルバ、12 CPU、13 速度検出器、14 角度検出器。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a motor control device that is used in a spindle drive motor of a machine tool and the like and uses a phase modulation resolver for detecting the speed and position of the spindle drive motor.
[0002]
[Prior art]
A conventional motor control apparatus using a phase modulation resolver for motor speed detection and position detection will be described with reference to the drawings. As is well known, for example, when a two-phase AC signal that is 90 degrees out of phase is applied as an excitation signal to a set of orthogonal stator windings of a resolver, the resolver rotor winding has a rotation angle equal to the rotation angle. An AC feedback signal that changes phase can be obtained.
[0003]
As a first conventional example, FIG. 2 shows a block diagram of a motor control device when the frequency of the excitation signal is kept constant during motor control. In FIG. 2, a
[0004]
The phase difference is calculated as follows. In FIG. 2, the period T of the excitation signal of the resolver can be expressed as Equation (1), where Tclk is the period of the reference clock of the counter means.
[Expression 1]
T = 2 ^ n × Tclk (1)
In Equation (1), 2 ^ n represents 2 to the nth power, and n represents a valid bit of the counter.
[0005]
Next, FIG. 3 shows the excitation signal, the feedback signal, and the rectangular feedback signal. 3A shows the output value of the counter means 1, and FIG. 3B shows the excitation signal. (C) shows the feedback signal, and (d) shows a signal obtained by making the feedback signal (c) rectangular. Here, the output value (a) of the counter means 1 is latched at the rising edge of the feedback signal (d) converted into the rectangular wave. From the latched count value N, the
[Expression 2]
θ = 360 ° × N / 2 ^ n (2)
Here, it can be seen from Equation (2) that n indicates the phase resolution, and the resolution increases as n increases, but at the same time, the excitation period becomes longer than in Equation (1).
[0006]
Next, as a second conventional example, FIG. 5 shows a block diagram of a motor control device when the frequency of the excitation signal is varied in accordance with the detected speed value of the motor. The same components as those shown in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted because it is redundant. In FIG. 5, an
[0007]
[Problems to be solved by the invention]
In these conventional motor control devices described above, the phase of the rotor of the motor can be detected using a phase modulation type resolver, whereby the speed and position of the motor can be detected. However, in the motor controller of the first conventional example described above, the reference clock Tclk of the counter means 1 is constant and the
[0008]
As an application example, in a spindle motor used in a machine tool such as a lathe, the motor control device of the first conventional example is often used for motor phase detection. At this time, when the spindle is controlled at a high speed and at a very low speed, that is, when the motor position is controlled and the spindle angle is varied at a low speed, the phase of the spindle motor is detected in the high-speed rotation region. However, there is a problem of increasing the phase detection resolution in the low-speed rotation region.
[0009]
Further, when the motor control device of the second conventional example described above adopts a method of varying the excitation frequency shown in FIG. 5 according to the detected motor speed, the above problem seems to be solved. Problem arises. That is, when the frequency of the excitation signal is varied, the excitation signal is distorted when the frequency is varied. Further, since the phases of the excitation signal and the feedback signal are not the same phase, continuity in the phase difference between the excitation signal and the feedback signal is lost when the excitation frequency is varied. Therefore, when the excitation frequency is varied during the control of the motor, there is a problem that an error in the phase detection value becomes large when the excitation frequency is varied. Further, the method of varying the excitation frequency according to the detected motor speed is more expensive than the method of not varying the excitation frequency, and causes a problem in terms of cost in constructing the motor control system.
[0010]
The object of the present invention is to solve the above-mentioned problems and problems, and to increase the phase detection resolution when controlling the motor in the low-speed rotation region, and to increase the excitation frequency when controlling the motor in the high-speed rotation region. An object of the present invention is to provide an inexpensive and inexpensive motor control device.
[0011]
[Means for Solving the Problems]
The motor control apparatus according to the present invention in order to achieve the above object, the motor control device using a phase modulation type resolver for detecting the speed and position of the motor, a plurality of periodic reference signal of the excitation signal for exciting the resolver a counter means for generating and outputting, in response to the speed command to the motor, when the speed command is lower selects a low excitation frequency reference periodic signal when the speed command is higher the more the high excitation frequency periodic reference signal An excitation cycle selection means for selecting from among the cycle reference signals , and outputting as an excitation cycle reference signal , an excitation signal generation means for generating an excitation signal for the resolver by receiving an output signal of the excitation cycle selection means, and a resolver characterized by comprising a latch means for latching a count value of said counter by a feedback signal.
The motor control device according to the present invention is a counter that generates and outputs a plurality of period reference signals of excitation signals for exciting the resolver in a motor control device using a phase modulation resolver that detects the speed and position of the motor. Means for selecting a period reference signal for exciting the resolver from the plurality of period reference signals according to a motor winding command, and outputting the selected period reference signal as an excitation period reference signal. An excitation signal generating unit that receives an output signal and generates an excitation signal of the resolver, and a latch unit that latches a count value of the counter by a feedback signal of the resolver.
[0012]
In this way engagement makes the chromophore at the distal end over motor controller of the present invention, the counter means outputs a plurality of periodic reference signals, the excitation period selection means selects one of the periodic reference signal from the plurality of periodic reference signal excitation since a configuration capable of outputting a periodic reference signal, the speed command also depending on the winding command motors, switches the excitation frequency of the resolver, a high phase detection resolution when controlling the motor in the low speed region, When the motor is controlled in the high-speed rotation region, by increasing the excitation frequency, it becomes possible to increase the phase resolution of the motor and expand the phase detection range of the motor according to the control range of the motor.
[0013]
In addition, since the excitation frequency is switched in advance of motor control in accordance with the speed command, motor control mode, winding command, etc., phase detection without changing the excitation frequency during motor speed control is possible. The error does not affect the control.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of a motor control device according to the present invention. The same components as those of the conventional motor control device shown in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted because it is redundant. In FIG. 1, the counter means 1 outputs a plurality of period reference signals. The excitation cycle selection means 2 selects one cycle reference signal from the plurality of cycle reference signals before control in accordance with the speed command of the motor to be controlled, and outputs the excitation cycle reference signal. If the speed command ω * is low, the excitation frequency is lowered and the period reference signal is selected so that the
[0015]
FIG. 4 shows an operation example of the excitation cycle selection means 2. When the speed command ω * is in the range of 0 to ω1, the excitation cycle selection means 2 outputs the excitation cycle reference signal whose excitation frequency is f1. Further, in the region where the speed command is ω1 to ω2 and the region where ω2 is greater than or equal to ω2, the excitation cycle selection means 2 outputs the excitation cycle reference signal whose excitation frequencies are f2 and f3.
[0016]
Further, the excitation cycle reference signal is output according to the control mode signal instead of the speed command ω *. That is, as shown in FIG. 4, in the high precision control mode, the excitation cycle selection means 2 outputs the excitation cycle reference signal with the excitation frequency f1, and in the high speed control mode, the excitation cycle selection means 2 has the excitation frequency f3. The excitation cycle reference signal is output.
[0017]
Further, in the case of selecting the excitation frequency according to the winding selection command using the winding switching motor, when the winding command for selecting the low-speed winding is given, the excitation cycle selection means 2 has the excitation frequency selected. The excitation cycle reference signal f1 is output. When a winding command for selecting a high-speed winding is given, the excitation cycle selection means 2 outputs the excitation cycle reference signal with an excitation frequency of f2.
[0018]
【The invention's effect】
Thus, in the motor control apparatus for a motor according to the present invention, the counter means outputs a plurality of cycle reference signals, and the excitation cycle selection means responds to the speed command, the motor control mode, or the motor winding command. Since one cycle reference signal is selected from the plurality of cycle reference signals and an excitation cycle reference signal is output, the excitation signal generating means generates an excitation signal for exciting the resolver. When the excitation frequency of the resolver is switched and the motor is controlled in the low-speed rotation region, the phase detection resolution is high, and when the motor is controlled in the high-speed rotation region, the excitation frequency is increased so that The phase resolution of the motor can be increased and the phase detection range of the motor can be expanded.
[0019]
In addition, since the excitation frequency is switched in advance of motor control in accordance with the speed command, motor control mode, winding command, etc., phase detection without changing the excitation frequency during motor speed control is possible. The error does not affect the control.
[0020]
According to the motor control device of the present invention, since the frequency of the excitation signal is made variable in accordance with the motor speed command or control mode or the motor winding command, the resolution in the low speed range, which has been impossible in the past, is improved. Thus, a system capable of speeding up the phase detection range can be constructed at low cost.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of a motor control device according to the present invention.
FIG. 2 is a block diagram of a motor controller of a first conventional example.
FIG. 3 is a waveform diagram of each signal of the motor control device shown in FIGS. 1 and 2;
FIG. 4 is an example of an excitation frequency selection operation in an embodiment of the motor control device according to the present invention.
FIG. 5 is a block diagram of a motor controller of a second conventional example.
[Explanation of symbols]
2 ^ n count value, θ phase difference, Tclk reference clock, T cycle, ω speed command, 1 counter means, 2 excitation cycle selection means, 3 excitation signal generation means, 4 latch means, 5, 6 buffer, 7 differential amplifier , 8 Rectangular wave conversion circuit, 9 stator winding, 10 rotor winding, 11 resolver, 12 CPU, 13 speed detector, 14 angle detector.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000401766A JP3944354B2 (en) | 2000-12-28 | 2000-12-28 | Motor control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000401766A JP3944354B2 (en) | 2000-12-28 | 2000-12-28 | Motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002202154A JP2002202154A (en) | 2002-07-19 |
JP3944354B2 true JP3944354B2 (en) | 2007-07-11 |
Family
ID=18866155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000401766A Expired - Fee Related JP3944354B2 (en) | 2000-12-28 | 2000-12-28 | Motor control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3944354B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7635922B2 (en) * | 2006-04-03 | 2009-12-22 | C.E. Niehoff & Co. | Power control system and method |
US10317245B2 (en) | 2014-01-27 | 2019-06-11 | Ford Global Technologies, Llc | Resolver excitation frequency scheduling for noise immunity |
JP6809707B2 (en) * | 2017-01-06 | 2021-01-06 | 多摩川精機株式会社 | How to convert an analog signal to a digital signal |
-
2000
- 2000-12-28 JP JP2000401766A patent/JP3944354B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002202154A (en) | 2002-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7166975B2 (en) | Apparatus and method for driving the multiphase motor using the magnetic pole position detector | |
JP3944354B2 (en) | Motor control device | |
JP4542797B2 (en) | Control device for synchronous machine | |
JP2002272175A (en) | Initial phase detection system and method of motor, and controller thereof | |
JP2017205017A (en) | Motor control device of air conditioner, and air conditioner | |
JP4026427B2 (en) | Motor control device | |
JPH09103096A (en) | Driving apparatus for stepping motor | |
JP4027721B2 (en) | Speed control device for brushless motor | |
KR102557231B1 (en) | Apparatus for controlling motor and method thereof | |
JP4771126B2 (en) | Synchronous motor drive | |
JP3053121B2 (en) | Control method of induction motor | |
JP4127000B2 (en) | Motor control device | |
JP3706556B2 (en) | Control device for permanent magnet motor | |
JP6810421B2 (en) | Rotational position estimation device for synchronous motor and rotation position estimation method for synchronous motor | |
JP4138051B2 (en) | Motor drive control device | |
JP2000092883A (en) | Control device of 3-phase commutator-less motor | |
JP2738110B2 (en) | Driving device for brushless motor | |
JPH06153580A (en) | Method and apparatus for sensorless drive of three-phase brushless synchronous motor | |
JPH06225580A (en) | Controller for motor | |
JP4756464B2 (en) | AC motor drive inverter device and operation method thereof | |
JP3135251B2 (en) | Driving method of brushless motor | |
JPH0919199A (en) | Adaptive slip frequency type vector control method and adaptive slip frequency type vector controller of induction motor | |
KR20230142256A (en) | Apparatus for controlling motor, system for controlling motor and method for controlling motor | |
JPH06121583A (en) | Driver for sensorless brushless motor | |
JP3259614B2 (en) | Motor control device and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060928 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070409 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160413 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |