[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3944262B2 - Surgical microscope - Google Patents

Surgical microscope Download PDF

Info

Publication number
JP3944262B2
JP3944262B2 JP16204096A JP16204096A JP3944262B2 JP 3944262 B2 JP3944262 B2 JP 3944262B2 JP 16204096 A JP16204096 A JP 16204096A JP 16204096 A JP16204096 A JP 16204096A JP 3944262 B2 JP3944262 B2 JP 3944262B2
Authority
JP
Japan
Prior art keywords
prism
light
housing
optical system
outgoing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16204096A
Other languages
Japanese (ja)
Other versions
JPH105244A (en
Inventor
孝 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP16204096A priority Critical patent/JP3944262B2/en
Publication of JPH105244A publication Critical patent/JPH105244A/en
Application granted granted Critical
Publication of JP3944262B2 publication Critical patent/JP3944262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物体の左右眼像を作る結像光学系および前記左右眼像をそれぞれ観察者の左右眼に入射せしめる接眼光学系を備えた手術用顕微鏡に関する。
【0002】
【従来の技術】
今日、手術用顕微鏡を用いる手術、いわゆるマイクロサージャリは、高度かつ精密化し、特に手術用顕微鏡を2人で観察しながら手術をしたり、あるいは様々な方向から術部にアプローチするようになってきた。従来の手術用顕微鏡が、特公平6−22502号公報、特公昭47−41473号公報または実公昭55−39364号公報において知られている。
【0003】
【発明が解決しようとする課題】
ところが、従来の手術用顕微鏡には以下のような問題があった。まず、特公平6−22502号公報で知られる手術用顕微鏡は2つの接眼鏡筒の位置関係が180゜に固定され、しかも、顕微鏡先端部分に多くの光学部材を集中的に配置する構成であるため、その対物レンズ付近が大型化し、手術作業の邪魔になるという問題があった。さらに、90°反射型のビームスプリッタにより対物レンズに入射する光束を分割しているので、手術用顕微鏡の下面から接眼レンズに到る距離が長くなり、作業空間が狭められてしまう問題もあった。
【0004】
一方、特公昭47−41473号公報および実公昭55−39364号公報の手術用顕微鏡においては、2人の観察者の手術用顕微鏡を覗き込む角度が180°や90°に限定されており、術部へのアプローチ方向によっては1人の観察者しか観察できないという問題があった。
【0005】
本発明は前記課題に着目してなされたもので、その目的とするところは、従来技術の手術作業の邪魔になる大型化や作業空間が狭められるという問題点を解消した2人観察用の手術用顕微鏡を提供することにある。
【0006】
【課題を解決するための手段及び作用】
(構成)
本発明は、観察対象の物体からの光を入射しアフォーカル光として出射する対物光学系を内蔵し架台に支持された鏡体と、前記アフォーカル光を結像し物体の左右眼像を作る結像光学系及び前記左右眼像をそれぞれ観察者の左右眼に入射せしめる接眼光学系をそれぞれ内蔵した2つの接眼鏡筒とを有した手術用顕微鏡において、
前記対物光学系と前記結像光学系との間に設けられ、前記対物光学系からの光を入射させる入射面と、前記入射した光の一部を一方の第1接眼鏡筒に向けて第1出射光として透過させるとともに前記入射した光の他の一部を前記入射面側へある角度をもって向かうべく反射させる半透過半反射面と、前記入射面側へ向かう光を反射し前記第1出射光の出射方向と直交しない斜め上方に向けて第2出射光として出射させる出射用反射面と、を有した第1プリズムと、
前記第1プリズムから出射する第2出射光の光軸に対してある角度をもって斜めに配置され、且つ前記第2出射光を反射させる第1反射面、及び前記第1反射面で反射した前記第2出射光を再び前記第1反射面側に位置して形成した出射面に向かうべく反射させる第2反射面を有し、前記第2反射面で反射し前記出射面側から他方の第2接眼鏡筒に向けて出射する光を第3出射光とし、この第3出射光の光軸方向を前記第2出射光の光軸方向に対してある角度をもって斜めに配置した第2プリズムと、
を備え、
前記第1プリズムは第1ハウジングに内蔵され、前記第2プリズムは第2ハウジングに内蔵され、前記第1ハウジングと前記第2ハウジングは互いに前記第1プリズムに対して前記第2プリズムが左右の前記第2出射光の光軸間の中心に位置する軸周りに回動すべく接続され、さらに、前記第1ハウジングの入射側に前記鏡体を接続し、前記第1ハウジングの第1出射光の出射側には前記第1接眼鏡筒を接続し、前記第2ハウジングの前記第3出射光の出射側には前記第2接眼鏡筒を前記第2プリズムから出射する左右の前記第3出射光の光軸間の中心に位置する軸まわりに回転すべく接続したことを特徴とする手術用顕微鏡である。
【0007】
(作用)
物体からの光は対物光学系を介してアフォーカル光となり、第1プリズムに入射する。第1プリズムに入射したアフォーカル光の一部は第1出射光となり、結像光学系、接眼光学系を介して一方の観察者の左右眼に入射する。アフォーカル光の他の一部は第1プリズムの入射面側へある角度をもって反射された後、再び前記第1反射面で反射され第2出射光となり第2プリズムに入射する。第2プリズムに入射した光は第2プリズムの第1反射面で反射された後、第2反射面で再び反射され第3出射光となり、結像光学系、接眼光学系を介してもう一方の観察者の左右眼に入射する。ここで、第1プリズムに対して第2プリズムを回動させると、第2プリズムを内蔵している第2ハウジングに接続された接眼鏡筒も回動し、一方の接眼鏡筒の向きに対するもう一方の接眼鏡筒の向きが変わる。
【0008】
【発明の実施の形態】
<第1実施形態>
図1から図6を参照して、本発明の第1実施形態を説明する。
(構成)
図1において、1は手術用顕微鏡の鏡体であり、これの先端部分には対物光学系の対物レンズ2が内蔵されている。3は第1ハウジングであり、これには前記鏡体1に接続された第1プリズム4を内蔵する。5は第2ハウジングであり、これには第2プリズム6が内蔵されている。第2ハウジング5は前記第1ハウジング3に対して後述の光軸O2 を中心に回動すべく接続されている。7a,7bはそれぞれ接眼鏡筒であり、一方の接眼鏡筒7aは前記第1ハウジング3に接続され、結像光学系8aおよび接眼光学系9aを内蔵する。他方の接眼鏡筒7bは前記第2ハウジング5に接続され、結像光学系8bおよび接眼光学系9bを内蔵する。
【0009】
ここで、第2ハウジング5に接続された接眼鏡筒7bの中心軸の向きは第1ハウジング3に接続された接眼鏡筒7aの中心軸の向きに対して90°回転する向きで側方へ向いている。また、前記各接眼鏡筒7a,7bにおいて、その結像光学系8a,8bと接眼光学系9a,9bとの間には図示しない像正立化プリズムが配設されている。
【0010】
次に、第1プリズム4と第2プリズム6、および各光軸について具体的に説明する。まず、第1プリズム4は、鏡体1側の面を入射面10とし、その反対側の面を半透過半反射面11としてある。そして、半透過半反射面11は前記対物光学系側から入射面10を通して入射させた光の一部を第1出射光として透過させる一方、前記光の他の一部を前記入射面10に対してある角度をもって向かうべく反射させるとともに、入射面10で反射させる光を第2出射光とするようになっている。
【0011】
第1出射光の光軸O1 は前記対物レンズ2の光軸であると同時に第1ハウジング3に接続された接眼鏡筒7aの左右光軸の中心に位置する対称軸でもある。第2出射光の光軸O2 は前記第1出射光の光軸O1 が前記半透過半反射面11および入射面10により偏向されて形成され、前記第1プリズム4から第2プリズム6に向けて配置される。
【0012】
前記第2プリズム6は接眼鏡筒7b側の面を出射面12とし、その反対側の面を全反射面13としてある。出射面12は前記第1出射光の光軸O1 に対して垂直で前記第2出射光の光軸に対してある角度をもって斜めに配置されている。そして、第2プリズム6に入射した第2出射光の光束は一旦、第2プリズム6の出射面12で反射し、再び第2プリズム6の全反射面13で反射して第3出射光となり、出射面12から接眼鏡筒7aの光学系に入射する。第3出射光の光軸は接眼鏡筒7bの中心軸O3 に平行に配置されている。
【0013】
図1中矢印A方向から見た図2で示すように前記鏡体1の側面には鏡体支持アーム14が一体的に取り付けられている。鏡体支持アーム14の先端は鏡体1を所望の位置に移動可能な周知の架台のアーム先端部15に連結されている。そして、前記鏡体支持アーム14は前記架台のアーム先端部15に対して紙面に垂直な軸Opを中心として回動自在に支持されている。
【0014】
(作用)
この手術用顕微鏡で物体面Xを観察する場合、物体面Xを発した光は対物レンズ2を介してアフォーカルな光束となり、第1プリズム4にその反射面10から入射する。この入射光束は第1プリズム4の半透過半反射面11で、これを透過する第1出射光と反射する第2出射光とに分れる。
【0015】
半透過半反射面11を透過した第1出射光の部分光束は接眼鏡筒7aにおける2組の結像光学系8a,8aを介して結像面Yにそれぞれ結像し、物体の左右眼像を作る。左右眼像はそれぞれの接眼光学系9aを介し、一方の観察者の左右眼に入射する。
【0016】
一方、前記半透過半反射面11で反射した光束は前記第1プリズム4の入射面10で反射して第2出射光となり、第2ハウジング5の第2プリズム6に入射する。第2プリズム6に入射した光束は一旦、第2プリズム6の出射面12で反射し、第2プリズム6の全反射面13で再び反射して第3出射光となり、第1出射光と同様にして、接眼鏡筒7bにおける2組の結像光学系8b,8bを介して結像面Yにそれぞれ結像し、物体の左右眼像を作る。左右眼像はそれぞれの接眼光学系9bを介し、もう1人の観察者の左右眼に入射する。
【0017】
ここで、2人の観察者が軸O1 まわりで接眼鏡筒7a,7bを覗き込む相対角度は90°であるが、それぞれの観察者が作業するのにふさわし正しい向き、正しい視差の左右眼像が提供されている。
【0018】
次に、図1のように物体を、上方向から観察している状態から、物体を横方向から観察する状態に変更するためには、図2において架台のアーム先端部15に対して鏡体支持アーム14を軸Opを中心に回動させると共に、第1ハウジング3に対して第2ハウジング5を第2出射光の光軸O2 を中心に回動させれば、図2の状態から図3の状態に変えることができる。なお、図4は図3の姿勢を同図3の矢印B方向から見た状態である。
【0019】
すなわち、2人の観察者は略横に並んで接眼鏡筒7a,7bを覗き込むようになるが、この場合、第1ハウジング3に対して、第2ハウジング5が光軸O2 周りに90゜回転し、第2ハウジング3に対して接眼鏡筒7bがその中心軸周りに90゜で回転させる。つまり、第2ハウジング5と接眼鏡筒7bを逆向きに同じ量で回転させる。従って、それぞれの観察者に同一の、正しい向き、正しい視差の左右眼像が提供される。
【0020】
(効果)
本実施形態は、第1ハウジング3に対して第2ハウジング5を回動自在に接続しただけの簡単な構成で上方向からの観察と横方向から観察の変更が可能となった。本実施形態では変倍光学系を省略したが、例えば対物レンズ2と第1プリズム4の間、第1プリズム4と接眼鏡筒7aの間、第2プリズム6と接眼鏡筒7bの間などに周知のドラムまたはターレット型変倍レンズを挿入することにより変倍させることができる。
【0021】
さらに、左右光軸の対称軸O1 を中心に第1プリズム4を回動すべく鏡体1に対して第1ハウジング3を接続すれば、一方の接眼鏡筒7aのまわりに他方の接眼鏡筒7aを回転させてその位置を選択できる。例えば図5や図6の状態に変えてより多くの方向からの観察が可能になる。
【0022】
<第2実施形態>
図7および図8を参照して本発明の第2実施形態を説明する。
(構成)
図7において、20は手術用顕微鏡の鏡体であり、この鏡体の先端には対物レンズ21が内蔵されている。鏡体20内には対物レンズ21の出射側に位置してアフォーカル変倍光学系の第1アフォーカルレンズ群22と第2アフォーカルレンズ群23が前記対物レンズ21の光軸O3 と平行に配置されて設けられている。第1アフォーカルレンズ群22と第2アフォーカルレンズ群23はいずれも対称的に配置され、その各対称中心軸は共通する。
【0023】
これらの対物レンズ21、第1アフォーカル群22および第2アフォーカル群23を上方から見ると、図8で示す如く第1アフォーカル群22および第2アフォーカル群23は点対称的に配置されている。すなわち、第1アフォーカル群22の中心を結ぶ線分と、第2のアフォーカル群23の中心を結ぶ線分とは直交すると共に、その交点に対称点が一致する。また、この交点は対物レンズ21の光軸O3 とも一致している。
【0024】
前記鏡体20には第1ハウジング25が接続され、この第1ハウジング25内には第1プリズム26が内蔵されている。第1ハウジング25には、後述の光軸O4 を中心に回動すべく第2ハウジング27が接続されている。第2ハウジング27は第2プリズム28を内蔵する。前記第1ハウジング25および第2ハウジング27には前述した第1実施形態と同様に接眼鏡筒7a,7bが接続されている。
【0025】
次に、第1プリズム26および光軸について具体的に説明する。第1プリズム26は入射面29、半透過半反射面30および出射面31を有してなる。第2プリズム28は出射面32および全反射面33を有して成る。前記対物レンズ21の光軸O3 は同時に第1ハウジング25に接続された接眼鏡筒7aの左右光軸の対称軸であり、さらに、第1プリズム26から出射する第1出射光の光軸でもある。そして、半透過半反射面30は前記対物光学系側から入射させた光の一部を第1出射光として透過させる一方、前記光の他の一部を前記入射面29に対してある角度をもって向かうべく反射させる。さらに入射面29で反射させた光を出射面31で反射し、再び前記入射面29に向け、その入射面29で反射して第2出射光とするようになっている。つまり、第2出射光の光軸O4 は前記光軸O3 が前記半透過半反射面30から入射面29、出射面31、再び入射面29により偏向されて作られる。
【0026】
なお、図示しないが、鏡体20は第1実施形態と同様に鏡体支持アーム、架台のアーム部によって保持される。
(作用)
この手術用顕微鏡で物体面Xを観察する場合、その物体面Xを発した光は対物レンズ21を介してアフォーカル光束となり、第1アフォーカルレンズ群22および第2アフォーカルレンズ群23にそれぞれ入射する。各アフォーカルレンズ群22,23に入射した光はその内部で変倍に必要ないくつかのレンズを介した後、再び4本のアフォーカル光束となり、第1プリズム26内に入射する。そして、第1プリズム26の半透過半反射面30において透過する第1出射光と、反射する第2出射光とに分れる。
【0027】
半透過半反射面30を透過した第1出射光のうち第1アフォーカルレンズ群22からの光束は接眼鏡筒7aにおける結像光学系8aを介して結像面Yにそれぞれ結像し、物体の左右眼像をつくる。この左右眼像は前記第1アフォーカルレンズ群22中のレンズの移動によって変倍される。左右眼像は接眼光学系9aを介して観察者の左右眼に入射する。
【0028】
一方、前記半透過半反射面30で反射した光束は前記第1プリズム26の入射面29、出射面31、再び入射面29と順に反射して第2出射光となり、第2ハウジング27の第2プリズム28に入射する。第2プリズム28に入射した光束は一旦、第2プリズム28の出射面32で反射し、再び第2プリズム28の全反射面33で反射してから第3出射光となり、このうち第2のアフォーカルレンズ群23からの光束は結像光学系8bを介して結像面Yにそれぞれ結像し、物体の左右眼像をつくる。この左右眼像は前記第2のアフォーカルレンズ群23中のレンズの移動によって変倍される。左右眼像は接眼光学系9bを介して、もう1人の観察者の左右眼にそれぞれ入射して観察することになる。
【0029】
ここで、2人の観察者が接眼鏡筒7aと接眼鏡筒7bを覗き込む相対角度は、90°であるが、第1のアフォーカルレンズ群22および第2のアフォーカルレンズ群23により、それぞれの観察者が作業するにふさわしい正しい向き、正しい視差の左右眼像が提供される。
【0030】
次に、第1実施形態と同様に物体を横方向から観察するためには前述した如く図3の状態に変形することができる。すなわち、2人の観察者はほぼ横に並んで接眼鏡筒7a,7bを覗き込むようになるが、それぞれの観察者に第1のアフォーカルレンズ群22を介した同一の、正しい向き、正しい視差の左右眼像が提供される。
【0031】
(効果)
本実施形態はアフォーカル変倍光学系のアフォーカルレンズ群を鏡体に内蔵した従来の手術用顕微鏡の形でありながら第1実施形態と同様の作用効果が得られる。また、第1プリズム26内での反射回数を増すことにより、2人の観察者の距離を離すことができるで手術作業が行い易いものである。
【0032】
<第3実施形態>
図9および図10を参照して本発明の第3実施形態を説明する。
(構成)
第3実施形態では前述した第2実施形態に比べてその鏡体の構成のみが異なるので、その鏡体以外の説明は省略する。
【0033】
(構成)
図9において、40は手術用顕微鏡の鏡体であり、これには対物レンズ41とアフォーカル変倍光学系のアフォーカルレンズ群42が設けられている。O5 は前記対物レンズ41の光軸であると同時に第1ハウジング25に接続された接眼鏡筒7の左右光軸の対称軸であり、さらに前記第1プリズム26から出射する第1出射光の光軸でもある。
【0034】
(作用)
この手術用顕微鏡で物体面Xを観察する場合、その物体面Xを発した光は対物レンズ41を介してアフォーカル光束となり、アフォーカルレンズ群42に入射する。アフォーカルレンズ群42に入射した光は変倍に必要ないくつかのレンズを介した後、再び1本のアフォーカル光束となり、第1プリズム26に入射する。これ以後は第1実施形態や第2実施形態と同様にそれぞれの観察者に正しい向き、正しい視差の左右眼像が提供される。
【0035】
(効果)
本実施形態では対物光学系を単一の対物レンズ41と単一のアフォーカルレンズ群42で構成しているため、図10に示すごとく前述した第2実施形態の効果に加え、もう1人観察者が光軸O5 まわりのあらゆる方向からの観察が可能となるという効果が得られる。
【0036】
<第4実施形態>
図11および図12を参照して本発明の第4実施形態を説明する。
(構成)
第4実施形態は前述した第3実施形態に比べて第1プリズム4の半透過半反射面11を透過する第1出射光以後の光路部分のみ異なるので、それ以外の説明は省略する。
【0037】
(構成)
図11において、51は第3プリズム52を内蔵した第3ハウジングであり、この第3ハウジング51は第1ハウジング25に対して光軸O5 を中心に回動すべく接続されている。前述した第3実施形態において第1、第2ハウジング25,27に接続されていた接眼鏡筒7a,7bは第2ハウジング27と第3ハウジング51に対して後述の光軸O6 ,O7 を中心に回動すべく接続されている。
【0038】
次に、第3プリズム52および光軸O6 ,O7 について説明する。第3プリズム52は第1の全反射面53、第2の全反射面54を備える。そして、第3プリズム52から出射する出射光軸O6 は前記光軸O5 が前記第1の全反射面53と第2の全反射面54により偏向されて作られる光束の光軸である。O7 は第2プリズム28から出射する光束の光軸である。
【0039】
(作用)
第3プリズムに入射した第1出射光による光束は第1の全反射面53、第2の全反射面54で反射して出射し、接眼鏡筒7aを介して観察者の左右眼に入射する。
【0040】
図11のように物体を真上方向から観察している状態から、物体を傾め上方向から観察する状態に変更するために架台のアーム先端部15に対して鏡体支持アーム14を回動させると共に、第2ハウジング27、第3ハウジング51に対して接眼鏡筒7a,7bを光軸O7 ,O6 を中心に回動させると、図12の状態に変わる。すなわち、2人の観察者の左右光軸を結ぶ線は水平に保たれる。
【0041】
(効果)
本実施形態は2つの接眼鏡筒7a,7bを光軸O5 に垂直な光軸O6 ,O7 まわりに回動自在にしたので、物体を傾め上方向から観察した状態でも楽な姿勢で手術できる上、接眼鏡筒7は光軸O5 に対してほぼ同条件で観察できるので手術作業を行い易い。
【0042】
なお、本実施形態では第3プリズム52をペンタリズムで構成したが、他の2回反射プリズムでも同様の効果が得られることは説明するまでもない。
[付記]
(1)物体からの光を入射しアフォーカル光として出射する対物光学系を内蔵した鏡体と、前記アフォーカル光を結像し物体の左右眼像を作る結像光学系および前記左右眼像をそれぞれ観察者の左右眼に入射せしめる接眼光学系を内蔵した接眼鏡筒とを有する手術用顕微鏡において、前記対物光学系と前記結像光学系との間に、前記対物光学系からの光を透過して入射させる入射面、および前記入射した光の一部を第1出射光として透過させ、前記入射した光の他の一部を前記入射面側へある角度をもって向かうべく反射させる半透過半反射面を有し、かつ前記入射面側へ向かう光を反射し、この反射光を第2出射光とする第1プリズムと、前記第1プリズムから出射する第2出射光の光軸に対してある角度をもって斜めに配置され、かつ前記第2出射光を反射させる第1反射面、および前記第1反射面で反射した前記第2出射光を再び前記第1反射面側に位置して形成した出射面に向かうべく反射させる第2反射面を有し、前記第2反射面で反射した光を前記出射面から出射する第3出射光とする第2プリズムとを配置すると共に、前記第1プリズムは第1ハウジングに内蔵し、前記第2プリズムは第2ハウジングに内蔵し、これら第1ハウジングと第2ハウジングは、前記第1プリズムに対して前記第2プリズムが前記第2出射光の対称軸を中心に回動すべく接続し、さらに前記第1ハウジングの入射側に前記鏡体を接続し、前記第1ハウジングの第1出射光の出射側に第1接眼鏡筒を接続し、前記第2ハウジングの出射側に第2接眼鏡筒を接続したことを特徴とする手術用顕微鏡。
【0043】
(2)前記対物光学系の左右光軸の対称軸まわりに前記第1プリズムが回動すべく前記鏡体に前記第1ハウジングを接続したことを特徴とする(1)の手術用顕微鏡。
この構成によれば、鏡体に対して第1プリズムを対物光学系の左右光軸まわりに回動させると、第1プリズムを内蔵している第1ハウジング、これに接続された第2ハウジング、さらに、これに接続された接眼鏡筒も回動し、(1)の作用に加えて、もう1箇所で一方の接眼鏡筒の向きに対するもう一方の接眼鏡筒の向きが変わる。
【0044】
(3)前記対物光学系を単一の対物レンズと共通の対称軸をもつ2組のアフォーカル変倍光学系のアフォーカルレンズ群で構成したことを特徴とする(1)または(2)の手術用顕微鏡。
この構成によれば、第1プリズムを回動し2組のアフォーカルレンズ群の何れかの光軸ともう一方の接眼鏡筒の光軸が一致する位置で観察者の左右眼に観察光(物体からの光)が入射するという作用をもつ。
【0045】
(4)前記対物光学系を単一の対物レンズと単一のアフォーカル変倍光学系のアフォーカルレンズ群で構成したことを特徴とする(1)または(2)の手術用顕微鏡。
この構成によれば、第1プリズムを回動しても単一のアフォーカルレンズ群の部分光束を結像光学系で結像し、もう一方の接眼鏡筒のあらゆる位置で観察者の左右眼に観察光(物体からの光)が入射するという作用をもつ。
【0046】
(5)前記第1ハウジングと前記第1ハウジングに接続した接眼鏡筒との間に前記第1プリズムの第1出射光を2回反射して直角に偏向し第4出射光をつくる第3プリズムを配置すると共に、前記第1ハウジングに、前記第3プリズムが前記第1プリズムに対して前記第1出射光の光軸を中心に回動すべく第3ハウジングを接続する一方、前記第3出射光も前記第1出射光に対して直角に出射すべく設定したことを特徴とする(1)〜(4)の手術用顕微鏡。
【0047】
(6)前記第3プリズムをペンタプリズムで構成したことを特徴とする(5)の手術用顕微鏡。
(5)及び(6)の構成によれば、第1プリズムに入射したアフォーカル光の一部は第1出射る光となり第3プリズムに入射する。第3プリズムに入射した光は2回反射されると共に直角に偏向され第4出射光となり、結像光学系、接眼光学系を介して一方の観察者の左右眼に入射する。ここで第1プリズムに対して第3プリズムを第1出射光の光軸を中心に回動させると、第3プリズムを内蔵している第3ハウジング、さらに、これに接続された接眼鏡筒も回動し、(2)の作用に加えてもう1箇所で一方の接眼鏡筒の向きが変わる。2人の観察者の手術用顕微鏡を覗き込む角度が自由に設定できる。
【0048】
(7)物体からの光を入射しアフォーカル光として出射する対物光学系を内蔵した鏡体と、前記アフォーカル光を結像し物体の左右眼像を作る結像光学系および前記左右眼像をそれぞれ観察者の左右眼に入射せしめる接眼光学系を内蔵した接眼鏡筒とを有する手術用顕微鏡において、前記対物光学系と前記結像光学系との間に、前記対物光学系からの光の一部を第1出射光として透過させ、前記光の他の一部を第2出射光として反射させる半透過半反射面を有した第1プリズムと、前記第1プリズムからの第2出射光を受け、その第2出射光を反射する反射面と、この反射面で反射した光を第3出射光として出射させる出射面を有する第2プリズムとを配置すると共に、前記第1プリズムは第1ハウジングに内蔵し、前記第2プリズムは第2ハウジングに内蔵し、これら第1ハウジングと第2ハウジングは、前記第1プリズムに対して前記第2プリズムが前記第2出射光の対称軸を中心に回動すべく接続し、さらに前記第1ハウジングの入射側に前記鏡体を接続し、前記第1ハウジングの第1出射光の出射側に第1接眼鏡筒を接続し、前記第2ハウジングの出射側に第2接眼鏡筒を接続したことを特徴とする手術用顕微鏡。
【0049】
(8)前記第1プリズムは半透過半反射面で反射した第1出射光を反射させる反射面を備え、前記第2プリズムは前記第1プリズムからの第2出射光を受けて最初に反射する第1反射面とこの第1反射面で反射した光を前記出射面に向けて反射する第2反射面とを備え、第2接眼鏡筒は前記第2ハウジングに対して前記第2プリズムから出射する第3出射光の対称軸を中心に回動すべく接続したことを特徴とする(7)の手術用顕微鏡。
【0050】
(9)前記第1プリズムにおいての、半透過半反射面を含め、第1出射光を反射させる反射面の数と、前記第2プリズムの反射面の数が互いに奇数または偶数の同じ数であることを特徴とする(8)の手術用顕微鏡。
【0051】
【発明の効果】
以上説明したように本発明は、対物光学系の上方に配置した第1プリズムにより2人の観察者の光束を分割しているので、対物レンズ付近が小型に構成でき、また、90°反射型のビームスプリッタのようなスペースを占める部材が不要なので、鏡体と接眼鏡筒の間の全光束分のスペースは不要となり、作業空間が広がる。さらに接眼鏡筒が接続されたハウジングが左右の出射光の光軸間の中心に位置する軸まわりに回動自在なものであるために2人の観察者の手術用顕微鏡を覗き込む角度がさまざまに設定でき、作業が容易な姿勢をとることができる。
【図面の簡単な説明】
【図1】第1実施形態に係る手術用顕微鏡の正面図。
【図2】図1中矢印A方向から見た前記手術用顕微鏡の側面図。
【図3】前記手術用顕微鏡の姿勢を変えた状態の側面図。
【図4】図3中矢印B方向から見た前記手術用顕微鏡の下面図。
【図5】前記手術用顕微鏡を他の状態に姿勢を変えた図。
【図6】前記手術用顕微鏡を他の状態に姿勢を変えた図。
【図7】第2実施形態に係る手術用顕微鏡の正面図。
【図8】同じく第2実施形態に係る手術用顕微鏡の鏡体の内部構造の平面図。
【図9】第3実施形態に係る手術用顕微鏡の正面図。
【図10】同じく第3実施形態に係る手術用顕微鏡の姿勢を変えた状態の正面図。
【図11】第3実施形態に係る手術用顕微鏡の正面図。
【図12】同じく第3実施形態に係る手術用顕微鏡の姿勢を変えた状態の側面図。
【符号の説明】
1…手術用顕微鏡の鏡体、2…対物光学系の対物レンズ、3…第1ハウジング、4…第1プリズム、5…第2ハウジング、6…第2プリズム、7a,7b…接眼鏡筒、8a,8b…結像光学系、9a,9b…接眼光学系、10…入射面、11…半透過半反射面、12…出射面、13…全反射面、O1 …光軸、O2 …光軸、O3 …中心軸。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an imaging optical system that creates left and right eye images of an object and a surgical microscope that includes an eyepiece optical system that allows the left and right eye images to enter the left and right eyes of an observer, respectively.
[0002]
[Prior art]
Nowadays, surgery using a surgical microscope, so-called microsurgery, has become sophisticated and precise, and in particular, it has become possible to perform surgery while observing the surgical microscope with two people, or approach the surgical site from various directions. It was. Conventional surgical microscopes are known from Japanese Patent Publication No. 6-22502, Japanese Patent Publication No. 47-41473, or Japanese Utility Model Publication No. 55-39364.
[0003]
[Problems to be solved by the invention]
However, the conventional surgical microscope has the following problems. First, the surgical microscope known from Japanese Examined Patent Publication No. 6-22502 has a configuration in which the positional relationship between two eyepieces is fixed at 180 °, and many optical members are intensively arranged at the tip of the microscope. For this reason, there is a problem that the vicinity of the objective lens becomes large and obstructs the surgical operation. Further, since the light beam incident on the objective lens is divided by the 90 ° reflection type beam splitter, there is a problem that the distance from the lower surface of the surgical microscope to the eyepiece lens becomes long and the work space is narrowed. .
[0004]
On the other hand, in the surgical microscopes of Japanese Patent Publication Nos. 47-41473 and 55-39364, the angle at which two observers look into the surgical microscope is limited to 180 ° and 90 °. There is a problem that only one observer can observe depending on the approach direction to the club.
[0005]
The present invention has been made paying attention to the above-mentioned problems, and the object of the present invention is a surgical operation for two-person observation that has solved the problems of upsizing and narrowing of the work space that obstruct the conventional surgical operation. It is to provide a microscope for use.
[0006]
[Means and Actions for Solving the Problems]
(Constitution)
The present invention has a built-in objective optical system that receives light from an object to be observed and emits it as afocal light, and a mirror supported by a gantry, and forms the left and right eye images of the object by imaging the afocal light. In a surgical microscope having an imaging optical system and two eyepiece tubes each containing an eyepiece optical system that allows the left and right eye images to enter the left and right eyes of an observer,
An incident surface provided between the objective optical system and the imaging optical system, on which light from the objective optical system is incident, and a part of the incident light directed toward one first eyepiece tube; A semi-transparent semi-reflective surface that transmits as one outgoing light and reflects another part of the incident light toward the incident surface side at a certain angle, and reflects light toward the incident surface side to reflect the first outgoing light. Towards diagonally upward not orthogonal to the direction of emission And an outgoing reflecting surface that emits the second outgoing light. A first prism;
A first reflecting surface that is obliquely arranged with an angle with respect to an optical axis of the second outgoing light emitted from the first prism, and that reflects the second outgoing light; and the first reflective surface that is reflected by the first reflective surface. (2) a second reflecting surface that reflects the emitted light toward the emitting surface formed again on the first reflecting surface side, is reflected by the second reflecting surface, and is reflected from the emitting surface side to the other second contact A second prism in which the light emitted toward the eyeglass tube is a third outgoing light, and the optical axis direction of the third outgoing light is arranged obliquely at an angle with respect to the optical axis direction of the second outgoing light;
With
The first prism is built in a first housing, the second prism is built in a second housing, and the first housing and the second housing are located on the left and right sides of the first prism with respect to the first prism. It is connected to rotate around an axis located at the center between the optical axes of the second outgoing light, and further, the mirror is connected to the incident side of the first housing, and the first outgoing light of the first housing is connected. The first eyepiece tube is connected to the output side, and the left and right third output light beams are emitted from the second prism to the output side of the third housing from the second prism. The surgical microscope is connected to rotate around an axis located at the center between the optical axes.
[0007]
(Function)
The light from the object becomes afocal light through the objective optical system and enters the first prism. A part of the afocal light incident on the first prism becomes the first outgoing light and enters the left and right eyes of one observer through the imaging optical system and the eyepiece optical system. The other part of the afocal light is reflected at a certain angle toward the incident surface side of the first prism, and then reflected again by the first reflecting surface to become the second outgoing light and enter the second prism. The light incident on the second prism is reflected by the first reflecting surface of the second prism and then reflected again by the second reflecting surface to become the third outgoing light, which is passed through the imaging optical system and the eyepiece optical system. It enters the left and right eyes of the observer. Here, when the second prism is rotated with respect to the first prism, the eyepiece tube connected to the second housing containing the second prism is also rotated, so that the other eyepiece tube is oriented with respect to the direction of the one eyepiece tube. The orientation of one eyepiece tube changes.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
<First Embodiment>
A first embodiment of the present invention will be described with reference to FIGS.
(Constitution)
In FIG. 1, reference numeral 1 denotes a mirror body of a surgical microscope, and an objective lens 2 of an objective optical system is built in a tip portion thereof. Reference numeral 3 denotes a first housing, which contains a first prism 4 connected to the mirror body 1. Reference numeral 5 denotes a second housing, in which a second prism 6 is built. The second housing 5 is connected to the first housing 3 so as to rotate about an optical axis O2 which will be described later. Reference numerals 7a and 7b denote eyepiece tubes. One eyepiece tube 7a is connected to the first housing 3 and incorporates an imaging optical system 8a and an eyepiece optical system 9a. The other eyepiece tube 7b is connected to the second housing 5 and incorporates an imaging optical system 8b and an eyepiece optical system 9b.
[0009]
Here, the direction of the central axis of the eyepiece tube 7 b connected to the second housing 5 is laterally rotated by 90 ° with respect to the direction of the central axis of the eyepiece tube 7 a connected to the first housing 3. It is suitable. In each of the eyepiece tubes 7a and 7b, an image erecting prism (not shown) is disposed between the imaging optical systems 8a and 8b and the eyepiece optical systems 9a and 9b.
[0010]
Next, the first prism 4 and the second prism 6 and each optical axis will be specifically described. First, the first prism 4 has a surface on the side of the mirror body 1 as an incident surface 10 and a surface on the opposite side as a semi-transmissive / semi-reflective surface 11. The semi-transmissive / semi-reflective surface 11 transmits a part of the light incident from the objective optical system side through the incident surface 10 as the first emitted light, while the other part of the light is transmitted to the incident surface 10. In addition, the light reflected by the incident surface 10 is reflected as the second outgoing light.
[0011]
The optical axis O1 of the first outgoing light is not only the optical axis of the objective lens 2, but also the symmetry axis located at the center of the left and right optical axes of the eyepiece tube 7a connected to the first housing 3. The optical axis O2 of the second outgoing light is formed by deflecting the optical axis O1 of the first outgoing light by the semi-transmissive and semi-reflective surface 11 and the incident surface 10, and from the first prism 4 toward the second prism 6. Be placed.
[0012]
The second prism 6 has a surface on the side of the eyepiece tube 7 b as an emission surface 12 and a surface on the opposite side as a total reflection surface 13. The exit surface 12 is perpendicular to the optical axis O1 of the first outgoing light and is inclined at an angle with respect to the optical axis of the second outgoing light. The light beam of the second outgoing light incident on the second prism 6 is once reflected by the outgoing surface 12 of the second prism 6 and again reflected by the total reflection surface 13 of the second prism 6 to become third outgoing light, The light enters the optical system of the eyepiece tube 7a from the exit surface 12. The optical axis of the third outgoing light is arranged parallel to the central axis O3 of the eyepiece tube 7b.
[0013]
As shown in FIG. 2 as viewed from the direction of arrow A in FIG. 1, a mirror support arm 14 is integrally attached to the side surface of the mirror 1. The tip of the mirror support arm 14 is connected to an arm tip 15 of a well-known frame that can move the mirror 1 to a desired position. The mirror support arm 14 is supported by the arm tip 15 of the gantry so as to be rotatable about an axis Op perpendicular to the paper surface.
[0014]
(Function)
When observing the object plane X with this surgical microscope, the light emitted from the object plane X becomes an afocal beam through the objective lens 2 and enters the first prism 4 from the reflecting surface 10. This incident light beam is separated by the semi-transmissive / semi-reflective surface 11 of the first prism 4 into a first outgoing light that passes through it and a second outgoing light that is reflected.
[0015]
The partial luminous flux of the first outgoing light that has passed through the semi-transmissive / semi-reflective surface 11 is imaged on the image-forming surface Y via the two sets of image-forming optical systems 8a and 8a in the eyepiece tube 7a, and the left and right eye images of the object. make. The left and right eye images enter the left and right eyes of one observer via the respective eyepiece optical systems 9a.
[0016]
On the other hand, the light beam reflected by the semi-transmissive / semi-reflective surface 11 is reflected by the incident surface 10 of the first prism 4 to become the second outgoing light and enters the second prism 6 of the second housing 5. The light beam incident on the second prism 6 is once reflected by the emission surface 12 of the second prism 6 and reflected again by the total reflection surface 13 of the second prism 6 to become third emitted light, which is the same as the first emitted light. Thus, images are formed on the image plane Y through the two sets of image forming optical systems 8b and 8b in the eyepiece tube 7b, and left and right eye images of the object are formed. The left and right eye images enter the left and right eyes of another observer through the respective eyepiece optical systems 9b.
[0017]
Here, the relative angle at which the two observers look into the eyepiece tubes 7a and 7b around the axis O1 is 90 °, but the right and left eye images with the correct parallax and correct parallax are suitable for each observer to work. Is provided.
[0018]
Next, in order to change the state of observing the object from the upper direction as shown in FIG. 1 to the state of observing the object from the lateral direction, in FIG. When the support arm 14 is rotated about the axis Op and the second housing 5 is rotated about the optical axis O2 of the second outgoing light with respect to the first housing 3, the state shown in FIG. Can be changed to 4 shows a state in which the posture of FIG. 3 is viewed from the direction of arrow B in FIG.
[0019]
That is, the two observers look side by side and look into the eyepiece tubes 7a and 7b. In this case, the second housing 5 is 90 ° around the optical axis O2 with respect to the first housing 3. The eyepiece tube 7b rotates about the central axis at 90 ° with respect to the second housing 3. That is, the second housing 5 and the eyepiece tube 7b are rotated in the opposite directions by the same amount. Accordingly, right and left eye images with the same correct orientation and correct parallax are provided to each observer.
[0020]
(effect)
In the present embodiment, observation from the upper direction and observation from the lateral direction can be changed with a simple configuration in which the second housing 5 is rotatably connected to the first housing 3. Although the zoom optical system is omitted in the present embodiment, for example, between the objective lens 2 and the first prism 4, between the first prism 4 and the eyepiece tube 7a, between the second prism 6 and the eyepiece tube 7b, and the like. The magnification can be changed by inserting a known drum or turret type variable magnification lens.
[0021]
Further, if the first housing 3 is connected to the mirror body 1 so as to rotate the first prism 4 about the symmetry axis O1 of the left and right optical axes, the other eyepiece tube around the one eyepiece tube 7a. The position can be selected by rotating 7a. For example, it is possible to observe from more directions by changing to the state of FIGS.
[0022]
Second Embodiment
A second embodiment of the present invention will be described with reference to FIGS.
(Constitution)
In FIG. 7, reference numeral 20 denotes a mirror body of a surgical microscope, and an objective lens 21 is built in the tip of the mirror body. A first afocal lens group 22 and a second afocal lens group 23 of the afocal variable magnification optical system, which are located on the exit side of the objective lens 21 in the mirror body 20, are parallel to the optical axis O3 of the objective lens 21. Arranged and provided. The first afocal lens group 22 and the second afocal lens group 23 are both symmetrically arranged, and their respective symmetry central axes are common.
[0023]
When the objective lens 21, the first afocal group 22 and the second afocal group 23 are viewed from above, the first afocal group 22 and the second afocal group 23 are arranged point-symmetrically as shown in FIG. ing. That is, the line segment connecting the centers of the first afocal group 22 and the line segment connecting the centers of the second afocal group 23 are orthogonal to each other, and the symmetry point coincides with the intersection. This intersection also coincides with the optical axis O3 of the objective lens 21.
[0024]
A first housing 25 is connected to the mirror body 20, and a first prism 26 is built in the first housing 25. A second housing 27 is connected to the first housing 25 so as to rotate about an optical axis O4 which will be described later. The second housing 27 contains a second prism 28. The eyepiece tubes 7a and 7b are connected to the first housing 25 and the second housing 27 as in the first embodiment.
[0025]
Next, the first prism 26 and the optical axis will be specifically described. The first prism 26 has an incident surface 29, a semi-transmissive / semi-reflective surface 30, and an output surface 31. The second prism 28 has an exit surface 32 and a total reflection surface 33. The optical axis O3 of the objective lens 21 is simultaneously the axis of symmetry of the left and right optical axes of the eyepiece tube 7a connected to the first housing 25, and is also the optical axis of the first outgoing light emitted from the first prism 26. . The transflective surface 30 transmits a part of the light incident from the objective optical system side as the first outgoing light, while the other part of the light has an angle with respect to the incident surface 29. Reflect toward you. Further, the light reflected by the incident surface 29 is reflected by the exit surface 31 and is directed again to the entrance surface 29, and is reflected by the entrance surface 29 to be second emitted light. That is, the optical axis O4 of the second outgoing light is formed by deflecting the optical axis O3 from the semi-transmissive / semi-reflective surface 30 by the incident surface 29, the outgoing surface 31, and again the incident surface 29.
[0026]
Although not shown, the mirror body 20 is held by the mirror body support arm and the arm portion of the gantry as in the first embodiment.
(Function)
When observing the object plane X with this surgical microscope, the light emitted from the object plane X becomes an afocal beam through the objective lens 21, and is applied to the first afocal lens group 22 and the second afocal lens group 23, respectively. Incident. The light incident on each of the afocal lens groups 22 and 23 passes through several lenses necessary for zooming therein, and then becomes four afocal luminous fluxes again and enters the first prism 26. Then, it can be divided into first outgoing light that is transmitted through the semi-transmissive and semi-reflective surface 30 of the first prism 26 and reflected second outgoing light.
[0027]
Of the first outgoing light that has passed through the semi-transmissive and semi-reflective surface 30, the light beam from the first afocal lens group 22 forms an image on the image plane Y via the image forming optical system 8a in the eyepiece tube 7a, and the object Create left and right eye images. The left and right eye images are scaled by the movement of the lenses in the first afocal lens group 22. The left and right eye images enter the left and right eyes of the observer through the eyepiece optical system 9a.
[0028]
On the other hand, the light beam reflected by the semi-transmitting / semi-reflecting surface 30 is sequentially reflected on the incident surface 29, the emitting surface 31 and again the incident surface 29 of the first prism 26 to become second emitted light. The light enters the prism 28. The light beam incident on the second prism 28 is once reflected by the emission surface 32 of the second prism 28, reflected again by the total reflection surface 33 of the second prism 28, and then becomes the third emitted light. The light beams from the focal lens group 23 are respectively imaged on the image plane Y via the image forming optical system 8b to form left and right eye images of the object. The left and right eye images are scaled by the movement of the lens in the second afocal lens group 23. The left and right eye images are incident on the left and right eyes of another observer through the eyepiece optical system 9b and are observed.
[0029]
Here, the relative angle at which the two observers look into the eyepiece tube 7a and the eyepiece tube 7b is 90 °, but by the first afocal lens group 22 and the second afocal lens group 23, The right and left eye images with the correct orientation and correct parallax for each observer to work are provided.
[0030]
Next, in order to observe the object from the lateral direction as in the first embodiment, it can be transformed into the state of FIG. 3 as described above. That is, the two observers look side by side into the eyepiece tubes 7a and 7b, but the same correct orientation and correctness through the first afocal lens group 22 are given to each observer. A parallax left and right eye image is provided.
[0031]
(effect)
Although the present embodiment is in the form of a conventional surgical microscope in which an afocal lens group of an afocal variable magnification optical system is built in a mirror body, the same operational effects as those of the first embodiment can be obtained. Further, by increasing the number of reflections in the first prism 26, the distance between the two observers can be increased, so that the surgical operation can be easily performed.
[0032]
<Third Embodiment>
A third embodiment of the present invention will be described with reference to FIGS.
(Constitution)
In the third embodiment, only the configuration of the mirror body is different from that of the second embodiment described above, and the description other than the mirror body will be omitted.
[0033]
(Constitution)
In FIG. 9, reference numeral 40 denotes a mirror body of a surgical microscope, which is provided with an objective lens 41 and an afocal lens group 42 of an afocal variable magnification optical system. O5 is the optical axis of the objective lens 41 and at the same time the symmetry axis of the left and right optical axes of the eyepiece tube 7 connected to the first housing 25, and the light of the first outgoing light emitted from the first prism 26. It is also an axis.
[0034]
(Function)
When observing the object plane X with this surgical microscope, the light emitted from the object plane X becomes an afocal beam through the objective lens 41 and enters the afocal lens group 42. The light incident on the afocal lens group 42 passes through several lenses necessary for zooming, and then becomes one afocal light beam again and enters the first prism 26. Thereafter, as in the first and second embodiments, the right and left eye images with the correct orientation and correct parallax are provided to each observer.
[0035]
(effect)
In this embodiment, since the objective optical system is composed of a single objective lens 41 and a single afocal lens group 42, as shown in FIG. 10, in addition to the effects of the second embodiment described above, another person observation is possible. It is possible to obtain an effect that a person can observe from all directions around the optical axis O5.
[0036]
<Fourth embodiment>
A fourth embodiment of the present invention will be described with reference to FIGS.
(Constitution)
Since the fourth embodiment differs from the third embodiment described above only in the optical path portion after the first emitted light that passes through the semi-transmissive / semi-reflective surface 11 of the first prism 4, the other description is omitted.
[0037]
(Constitution)
In FIG. 11, reference numeral 51 denotes a third housing incorporating a third prism 52, and this third housing 51 is connected to the first housing 25 so as to rotate about the optical axis O5. The eyepiece tubes 7a and 7b connected to the first and second housings 25 and 27 in the third embodiment described above are centered on optical axes O6 and O7 described later with respect to the second housing 27 and the third housing 51, respectively. Connected to rotate.
[0038]
Next, the third prism 52 and the optical axes O6 and O7 will be described. The third prism 52 includes a first total reflection surface 53 and a second total reflection surface 54. An outgoing optical axis O6 emitted from the third prism 52 is an optical axis of a light beam produced by deflecting the optical axis O5 by the first total reflection surface 53 and the second total reflection surface 54. O7 is the optical axis of the light beam emitted from the second prism 28.
[0039]
(Function)
The light beam generated by the first outgoing light that has entered the third prism is reflected by the first total reflection surface 53 and the second total reflection surface 54 and then emitted to the left and right eyes of the observer via the eyepiece tube 7a. .
[0040]
As shown in FIG. 11, the mirror support arm 14 is rotated with respect to the arm tip 15 of the gantry in order to change from the state in which the object is observed from directly above to the state in which the object is inclined and observed from above When the eyepiece tubes 7a and 7b are rotated about the optical axes O7 and O6 with respect to the second housing 27 and the third housing 51, the state shown in FIG. That is, the line connecting the left and right optical axes of the two observers is kept horizontal.
[0041]
(effect)
In the present embodiment, since the two eyepiece tubes 7a and 7b are rotatable about the optical axes O6 and O7 perpendicular to the optical axis O5, it is possible to perform an operation in an easy posture even when the object is tilted and observed from above. In addition, since the eyepiece tube 7 can be observed under substantially the same conditions with respect to the optical axis O5, it is easy to perform the operation.
[0042]
In the present embodiment, the third prism 52 is formed of a pentarhythm, but it goes without saying that the same effect can be obtained with other two-time reflecting prisms.
[Appendix]
(1) A mirror body including an objective optical system that receives light from an object and emits it as afocal light, an imaging optical system that forms an image of the afocal light and forms left and right eye images of the object, and the left and right eye images In a surgical microscope having an eyepiece tube incorporating an eyepiece optical system that respectively enters the left and right eyes of an observer, and the light from the objective optical system is placed between the objective optical system and the imaging optical system. A semi-transmission half reflecting the incident surface that is transmitted and incident, and transmitting a part of the incident light as the first outgoing light and reflecting the other part of the incident light toward the incident surface side at a certain angle. A first prism that has a reflecting surface and reflects light traveling toward the incident surface and uses the reflected light as second outgoing light, and an optical axis of the second outgoing light emitted from the first prism Placed diagonally at an angle and front A first reflection surface that reflects the second emission light, and a second reflection that reflects the second emission light reflected by the first reflection surface toward the emission surface formed again on the first reflection surface side. A second prism having a surface and third reflected light that is emitted from the light exit surface from the light reflected by the second reflective surface, and the first prism is incorporated in the first housing, Two prisms are built in the second housing, and the first housing and the second housing are connected to the first prism so that the second prism rotates about the symmetry axis of the second emitted light, Further, the mirror body is connected to the incident side of the first housing, a first eyepiece tube is connected to the emission side of the first emitted light of the first housing, and the second eyepiece is arranged to the emission side of the second housing. Surgical microscope characterized by connecting tubes Mirror.
[0043]
(2) The surgical microscope according to (1), wherein the first housing is connected to the mirror body so that the first prism rotates around a symmetry axis of the left and right optical axes of the objective optical system.
According to this configuration, when the first prism is rotated around the left and right optical axes of the objective optical system with respect to the mirror body, the first housing incorporating the first prism, the second housing connected thereto, Further, the eyepiece tube connected to this also rotates, and in addition to the action of (1), the direction of the other eyepiece tube changes with respect to the direction of the one eyepiece tube at another location.
[0044]
(3) The objective optical system is composed of two sets of afocal lens groups having a common axis of symmetry with a single objective lens. (1) or (2) Surgical microscope.
According to this configuration, the first prism is rotated, and the observation light (to the left and right eyes of the observer) at a position where one of the two afocal lens groups and the optical axis of the other eyepiece tube coincide with each other. (The light from the object) is incident.
[0045]
(4) The surgical microscope according to (1) or (2), wherein the objective optical system is composed of a single objective lens and an afocal lens group of a single afocal variable magnification optical system.
According to this configuration, even if the first prism is rotated, the partial light flux of the single afocal lens group is imaged by the imaging optical system, and the left and right eyes of the observer are located at any position of the other eyepiece tube. The observation light (light from the object) is incident on.
[0046]
(5) A third prism that reflects the first emitted light of the first prism twice between the first housing and the eyepiece tube connected to the first housing and deflects it at a right angle to produce fourth emitted light. The third housing is connected to the first housing so that the third prism rotates about the optical axis of the first emitted light with respect to the first prism, while the third output is connected to the first housing. The surgical microscope according to any one of (1) to (4), wherein the incident light is set so as to be emitted at right angles to the first emitted light.
[0047]
(6) The surgical microscope according to (5), wherein the third prism is a pentaprism.
According to the configurations of (5) and (6), a part of the afocal light incident on the first prism becomes the first outgoing light and enters the third prism. The light incident on the third prism is reflected twice and deflected at right angles to become the fourth outgoing light, which enters the left and right eyes of one observer through the imaging optical system and the eyepiece optical system. Here, when the third prism is rotated around the optical axis of the first outgoing light with respect to the first prism, a third housing incorporating the third prism and an eyepiece tube connected thereto are also provided. In addition to the action of (2), the direction of one eyepiece tube changes in another place. The angle at which the two observers look into the surgical microscope can be freely set.
[0048]
(7) A mirror body including an objective optical system that receives light from an object and emits it as afocal light, an imaging optical system that forms an image of the left and right eyes of the object by imaging the afocal light, and the left and right eye images In a surgical microscope having an eyepiece tube incorporating an eyepiece optical system that allows the left and right eyes of the observer to enter each other, between the objective optical system and the imaging optical system. A first prism having a semi-transmissive and semi-reflective surface that transmits a part of the light as a first outgoing light and reflects the other part of the light as a second outgoing light; and a second outgoing light from the first prism. And a second prism having a reflecting surface for reflecting the second emitted light and a second prism having an emitting surface for emitting the light reflected by the reflecting surface as the third emitted light, and the first prism is a first housing. And the second prism is the second prism. The first housing and the second housing are connected to the first prism so that the second prism rotates about the axis of symmetry of the second outgoing light. Further, the first housing and the second housing are connected to the first prism. The mirror is connected to the incident side of the first housing, the first eyepiece tube is connected to the emission side of the first emitted light of the first housing, and the second eyepiece tube is connected to the emission side of the second housing. Surgical microscope characterized by.
[0049]
(8) The first prism includes a reflecting surface that reflects the first emitted light reflected by the semi-transmissive and semi-reflecting surface, and the second prism receives the second emitted light from the first prism and reflects it first. A first reflecting surface and a second reflecting surface for reflecting the light reflected by the first reflecting surface toward the emitting surface; and the second eyepiece tube emits from the second prism to the second housing. The operating microscope according to (7), wherein the operating microscope is connected so as to rotate about the axis of symmetry of the third emitted light.
[0050]
(9) In the first prism, the number of reflecting surfaces that reflect the first outgoing light, including the semi-transmissive and semi-reflecting surfaces, and the number of reflecting surfaces of the second prism are the same, odd or even. (8) The operation microscope characterized by the above-mentioned.
[0051]
【The invention's effect】
As described above, in the present invention, since the light beams of two observers are divided by the first prism disposed above the objective optical system, the vicinity of the objective lens can be made compact, and the 90 ° reflection type Since a member occupying a space such as the beam splitter is unnecessary, a space for the total luminous flux between the mirror body and the eyepiece tube is unnecessary, and the work space is expanded. In addition, the housing to which the eyepiece tube is connected It is rotatable around an axis located at the center between the optical axes of the left and right outgoing lights. For this reason, the angle at which the two observers look into the surgical microscope can be set in various ways, and the posture in which the operation is easy can be taken.
[Brief description of the drawings]
FIG. 1 is a front view of a surgical microscope according to a first embodiment.
FIG. 2 is a side view of the surgical microscope as viewed from the direction of arrow A in FIG.
FIG. 3 is a side view showing a state where the posture of the surgical microscope is changed.
4 is a bottom view of the surgical microscope as seen from the direction of arrow B in FIG. 3. FIG.
FIG. 5 is a diagram in which the posture of the surgical microscope is changed to another state.
FIG. 6 is a diagram in which the posture of the surgical microscope is changed to another state.
FIG. 7 is a front view of a surgical microscope according to a second embodiment.
FIG. 8 is a plan view of the internal structure of the body of the surgical microscope according to the second embodiment.
FIG. 9 is a front view of a surgical microscope according to a third embodiment.
FIG. 10 is a front view showing a state where the posture of the surgical microscope according to the third embodiment is changed.
FIG. 11 is a front view of a surgical microscope according to a third embodiment.
FIG. 12 is a side view showing a state where the posture of the surgical microscope according to the third embodiment is changed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... The microscope body of a surgical microscope, 2 ... Objective lens of an objective optical system, 3 ... 1st housing, 4 ... 1st prism, 5 ... 2nd housing, 6 ... 2nd prism, 7a, 7b ... Eyepiece tube, 8a, 8b ... imaging optical system, 9a, 9b ... ocular optical system, 10 ... incident surface, 11 ... semi-transmissive / semi-reflective surface, 12 ... emission surface, 13 ... total reflection surface, O1 ... optical axis, O2 ... optical axis , O3 ... central axis.

Claims (4)

観察対象の物体からの光を入射しアフォーカル光として出射する対物光学系を内蔵し架台に支持された鏡体と、前記アフォーカル光を結像し物体の左右眼像を作る結像光学系及び前記左右眼像をそれぞれ観察者の左右眼に入射せしめる接眼光学系をそれぞれ内蔵した2つの接眼鏡筒とを有した手術用顕微鏡において、
前記対物光学系と前記結像光学系との間に設けられ、前記対物光学系からの光を入射させる入射面と、前記入射した光の一部を一方の第1接眼鏡筒に向けて第1出射光として透過させるとともに前記入射した光の他の一部を前記入射面側へある角度をもって向かうべく反射させる半透過半反射面と、前記入射面側へ向かう光を反射し前記第1出射光の出射方向と直交しない斜め上方に向けて第2出射光として出射させる出射用反射面と、を有した第1プリズムと、
前記第1プリズムから出射する第2出射光の光軸に対してある角度をもって斜めに配置され、且つ前記第2出射光を反射させる第1反射面、及び前記第1反射面で反射した前記第2出射光を再び前記第1反射面側に位置して形成した出射面に向かうべく反射させる第2反射面を有し、前記第2反射面で反射し前記出射面側から他方の第2接眼鏡筒に向けて出射する光を第3出射光とし、この第3出射光の光軸方向を前記第2出射光の光軸方向に対してある角度をもって斜めに配置した第2プリズムと、
を備え、
前記第1プリズムは第1ハウジングに内蔵され、前記第2プリズムは第2ハウジングに内蔵され、前記第1ハウジングと前記第2ハウジングは互いに前記第1プリズムに対して前記第2プリズムが左右の前記第2出射光の光軸間の中心に位置する軸周りに回動すべく接続され、さらに、前記第1ハウジングの入射側に前記鏡体を接続し、前記第1ハウジングの第1出射光の出射側には前記第1接眼鏡筒を接続し、前記第2ハウジングの前記第3出射光の出射側には前記第2接眼鏡筒を前記第2プリズムから出射する左右の前記第3出射光の光軸間の中心に位置する軸まわりに回転すべく接続したことを特徴とする手術用顕微鏡。
Built-in objective optical system that receives light from the object to be observed and emits it as afocal light, and a mirror that is supported by a gantry, and an imaging optical system that forms the left and right eye images of the object by imaging the afocal light And a surgical microscope having two eyepiece tubes each containing an eyepiece optical system that allows the left and right eye images to enter the left and right eyes of an observer, respectively.
An incident surface provided between the objective optical system and the imaging optical system, on which light from the objective optical system is incident, and a part of the incident light directed toward one first eyepiece tube; A semi-transparent semi-reflective surface that transmits as one outgoing light and reflects another part of the incident light toward the incident surface side at a certain angle, and reflects light toward the incident surface side to reflect the first outgoing light. A first prism having an outgoing reflection surface that emits the second outgoing light obliquely upward not orthogonal to the outgoing direction of the outgoing light ;
A first reflecting surface that is obliquely arranged with an angle with respect to an optical axis of the second outgoing light emitted from the first prism, and that reflects the second outgoing light; and the first reflective surface that is reflected by the first reflective surface. (2) a second reflecting surface that reflects the emitted light toward the emitting surface formed again on the first reflecting surface side, is reflected by the second reflecting surface, and is reflected from the emitting surface side to the other second contact A second prism in which the light emitted toward the eyeglass tube is a third outgoing light, and the optical axis direction of the third outgoing light is arranged obliquely at an angle with respect to the optical axis direction of the second outgoing light;
With
The first prism is built in a first housing, the second prism is built in a second housing, and the first housing and the second housing are located on the left and right sides of the first prism with respect to the first prism. It is connected to rotate around an axis located at the center between the optical axes of the second outgoing light, and further, the mirror is connected to the incident side of the first housing, and the first outgoing light of the first housing is connected. The first eyepiece tube is connected to the output side, and the left and right third output light beams are emitted from the second prism to the output side of the third housing from the second prism. A surgical microscope characterized in that it is connected to rotate about an axis located at the center between the optical axes.
前記対物光学系の左右光軸の中心に位置する軸まわりに前記第1プリズムが回転すべく前記第1ハウジングが前記鏡体に接続されたことを特徴とする請求項1に記載の手術用顕微鏡。  2. The surgical microscope according to claim 1, wherein the first housing is connected to the mirror body so that the first prism rotates around an axis positioned at the center of the left and right optical axes of the objective optical system. . 前記第1ハウジングと前記第1接眼鏡筒との間に前記第1プリズムからの第1出射光を反射して前記第1出射光の向きを変更し第4出射光を作る第3プリズムを配置するとともに、前記第1ハウジングと前記第1接眼鏡筒とは、前記第3プリズムの左右の第4出射光の光軸間の中心に位置する軸まわりに回動すべく接続されたことを特徴とする請求項1または請求項2に記載の手術用顕微鏡。  A third prism is disposed between the first housing and the first eyepiece tube to reflect the first emitted light from the first prism and change the direction of the first emitted light to produce the fourth emitted light. In addition, the first housing and the first eyepiece tube are connected to rotate around an axis located at the center between the optical axes of the left and right fourth outgoing lights of the third prism. The surgical microscope according to claim 1 or 2. 前記第1プリズムの、半透過半反射面を含めた、第2出射光を反射させる反射面の数と、前記第2プリズムの第2出射光を反射させる反射面の数が互いに奇数または偶数で同じ数であることを特徴とする請求項1、請求項2または請求項3に記載の手術用顕微鏡。  The number of reflective surfaces that reflect the second outgoing light, including the semi-transmissive and semi-reflective surfaces of the first prism, and the number of reflective surfaces that reflect the second outgoing light of the second prism are odd or even. The surgical microscope according to claim 1, 2, or 3, wherein the number is the same.
JP16204096A 1996-06-21 1996-06-21 Surgical microscope Expired - Fee Related JP3944262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16204096A JP3944262B2 (en) 1996-06-21 1996-06-21 Surgical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16204096A JP3944262B2 (en) 1996-06-21 1996-06-21 Surgical microscope

Publications (2)

Publication Number Publication Date
JPH105244A JPH105244A (en) 1998-01-13
JP3944262B2 true JP3944262B2 (en) 2007-07-11

Family

ID=15746951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16204096A Expired - Fee Related JP3944262B2 (en) 1996-06-21 1996-06-21 Surgical microscope

Country Status (1)

Country Link
JP (1) JP3944262B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675270A (en) * 1986-02-10 1987-06-23 Loctite (Ireland) Limited Imaging method for vapor deposited photoresists of anionically polymerizable monomer
JP2004109488A (en) 2002-09-18 2004-04-08 Olympus Corp Stereoscopic microscope
JP4734277B2 (en) * 2007-03-29 2011-07-27 オリンパスメディカルシステムズ株式会社 Surgical observation system.
DE102009019575A1 (en) * 2009-04-28 2010-11-11 Carl Zeiss Surgical Gmbh Stereoscopic optical viewing device has multi-channel optics with two stereoscopic optical channels having optical channels, where afocal optical interface device is arranged before optical inlet end of multi-channel optics
US10983319B2 (en) * 2015-05-14 2021-04-20 Sony Olympus Medical Solutions Inc. Surgical microscope device and surgical microscope system

Also Published As

Publication number Publication date
JPH105244A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US5898518A (en) Stereo microscope arrangement
JPH02160209A (en) Prism system for stereoscopic microscope
JP2002174773A (en) Stereoscopic microscope inspection system
JPH07218841A (en) Microscope
JPS61172111A (en) Stereomicroscope
JPH0712364B2 (en) Surgical microscope
JPH085923A (en) Stereomicroscope
JP3290467B2 (en) Binocular stereo microscope
JP3944262B2 (en) Surgical microscope
JPH01233430A (en) Keplerian finder optical system
US7085045B2 (en) Stereoscopic microscope
JP2004109488A (en) Stereoscopic microscope
JP2002006228A (en) Video type microscope for surgery
US7088504B2 (en) Surgical microscope
JPS60641B2 (en) squint stereo microscope
JP2945118B2 (en) Stereo microscope
JP3605315B2 (en) Stereoscopic microscope
JP3619858B2 (en) Stereoscopic microscope
JPS63167318A (en) Stereoscopic microscope
JP4398003B2 (en) Surgical microscope
JPH0949971A (en) Microscope
JP4499223B2 (en) Surgical microscope
JP3072930B2 (en) Stereo microscope
JPH08234113A (en) Bonocular tube of stereomicroscope
JPH07230044A (en) Binocular ocular part with zoom mechanism of telescope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees