[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3943381B2 - Bearing device and motor equipped with the same - Google Patents

Bearing device and motor equipped with the same Download PDF

Info

Publication number
JP3943381B2
JP3943381B2 JP2001371166A JP2001371166A JP3943381B2 JP 3943381 B2 JP3943381 B2 JP 3943381B2 JP 2001371166 A JP2001371166 A JP 2001371166A JP 2001371166 A JP2001371166 A JP 2001371166A JP 3943381 B2 JP3943381 B2 JP 3943381B2
Authority
JP
Japan
Prior art keywords
bearing
lubricant
oil
bearing device
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001371166A
Other languages
Japanese (ja)
Other versions
JP2003172336A (en
Inventor
剛 服部
誠 白波
夏比古 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nidec Corp
Original Assignee
NTN Corp
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nidec Corp filed Critical NTN Corp
Priority to JP2001371166A priority Critical patent/JP3943381B2/en
Publication of JP2003172336A publication Critical patent/JP2003172336A/en
Application granted granted Critical
Publication of JP3943381B2 publication Critical patent/JP3943381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受装置及びこれを備えたモータに関する。
【0002】
【従来の技術】
ハードディスク駆動装置等の記録ディスク駆動装置で使用されるスピンドルモータの軸受装置として、焼結金属からなる多孔質体に潤滑剤を含浸させた含油軸受や、シャフトとスリーブとの間に形成される軸受隙間内に潤滑剤を保持し、回転時に、動圧溝によって潤滑剤に生じる動圧作用を利用して軸を支持する動圧軸受等を用いた軸受装置が知られている。
【0003】
上記何れの軸受装置においても、潤滑剤の油膜によって軸を非接触状態で支持することができるため、スピンドルモータの軸受装置としてこれまで多く用いられてきた転がり軸受装置に比べて、振動や騒音特性の点で優れているという利点を有する。
【0004】
含油軸受や動圧軸受に使用される潤滑剤としては、炭化水素系やエステル系の潤滑剤が知られているが、炭化水素系の潤滑剤はエステル系の潤滑剤に比べて蒸発速度が高く、凝固点も高い。例えば、ほぼ同粘度での蒸発速度では、炭化水素系の潤滑剤はエステル系の潤滑剤の数倍以上となり、また凝固点は室温以上となるものが多い。従って、比較的に幅広い温度範囲で使用される記録ディスク駆動装置用スピンドルモータの軸受装置においては、粘度、蒸発率及び凝固点のバランスから、エステル系の潤滑剤、特にDOS(2エチルヘキシルセバケート)が含油軸受や動圧軸受の潤滑剤として好適である。
【0005】
【発明が解決しようとする課題】
しかしながら、エステル系の潤滑剤はエステル基を含有しているため反応性が高く、特に鉛との反応性が高い。一方、含油軸受や動圧軸受を用いた軸受装置では、比較的に硬質で高い加工性を有することから、該軸受装置を構成する部材(ハウジングやスリーブ等)の材料として快削黄銅が用いられる場合が多いが、快削黄銅には切削性を良くするためにC3604等の鉛が数%添加されており、このような鉛を含有する快削黄銅とエステル系の潤滑剤とが高温で接触すると、潤滑剤中に鉛が溶出して金属石鹸のような生成物ができ、潤滑剤が変質して粘度増加する懸念がある。また、エステル基が水分を吸収し易いことから、高温雰囲気下では、空気中の水分を吸収し、水分と鉛とによって、上記と同様に、潤滑剤が変質して粘度増加する懸念もある。
【0006】
さらに、鉛を含有する銅系材料は、脱亜鉛腐食によってパーティクル(微細粉)が発生し易く、ヘッドクラッシュを防止する観点から、高い清浄性が要求されるハードディスク等の記録ディスク駆動装置での使用に適さず、例えば表面処理を施す等、パーティクルの発生を防止する手段を別途講じる必要がある。そのため、加工工数の削減が困難で歩留まりが良くない。
【0007】
本発明の課題は、軸受装置及びこれを備えたモータにおいて、蒸発率及び凝固点のバランスの良いエステル系の潤滑剤を使用しつつ、鉛の溶出による潤滑剤の変性劣化を防止して、安定した軸受機能を長期にわたって維持させることにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明は、焼結金属からなる多孔質体に潤滑剤を含浸して構成される含油軸受と、含油軸受を収容するハウジングとを備えた軸受装置において、ハウジングが鉛レス黄銅で形成され、潤滑剤がエステル系潤滑剤である構成を提供する。
【0009】
ここでの「含油軸受」には、軸受面に動圧溝を有しない、いわゆる真円軸受と、軸受面に動圧溝を有する動圧軸受の双方が含まれる。
【0010】
本明細書において、「鉛レス黄銅」は、鉛の含有量を微小量に規制した黄銅(又は黄銅合金)、あるいは、鉛を含まない黄銅(又は黄銅合金)をいう。好ましくは、鉛の含有量を0.2%以下に規制したものが良い。「鉛レス黄銅」としては、例えば株式会社キッツ製「キーパロイ」(鉛含有量0.2%以下)、サンエツ金属株式会社製「Bz3」「EES−PF」(何れも鉛含有量0.1%以下)、三宝伸銅工業株式会社製「エコブラス」(鉛を含まない黄銅合金)等を用いることができる。これらの鉛レス黄銅は、加工性(切削性、鍛造性、鋳造性)が良く、また環境負荷元素である鉛の含有量が少なく、あるいは、鉛を含んでいないので、人と環境に優しく、高いリサイクル性を有する。また、脱亜鉛腐食によるパーティクルの発生が起こり難く、高い清浄性が要求されるハードディスク等の記録ディスク駆動装置での使用にも適している。さらに、蒸発率及び凝固点のバランスの良いエステル系の潤滑剤を使用しても、鉛の溶出による潤滑剤の変性劣化がなく、安定した軸受機能が長期にわたって維持される。
【0011】
また、本発明は、上記課題を解決するため、軸部材と、焼結金属からなる多孔質体に潤滑剤を含浸して構成され、軸受隙間に生じる潤滑剤の動圧作用で軸部材を回転自在に非接触支持する含油軸受と、一端に開口部を有すると共に、含油軸受を収容するハウジングとを備えた軸受装置において、ハウジングが鉛レス黄銅で形成され、潤滑剤がエステル系潤滑剤である構成を提供する。
【0012】
ここでの「含油軸受」は、軸受面に動圧溝を有する動圧軸受である。あるいは、「含油軸受」を真円軸受とし、軸受隙間に臨む軸部材の外周面に動圧溝を形成しても良い。ハウジングの開口部にシール部材を配設する場合は、さらに該シール部材を鉛レス黄銅で形成するのが好ましい。
【0013】
また、本発明は、上記課題を解決するため、静止部材と回転部材との相対回転を、両部材間に形成された軸受隙間に介在する潤滑剤の動圧作用で非接触支持する軸受装置において、静止部材及び回転部材のうち少なくとも一方は鉛レス黄銅で形成され、潤滑剤がエステル系潤滑剤である構成を提供する。この構成では、軸受隙間に臨む、静止側部材の表面又は回転部材の表面に動圧溝が設けられる。
【0014】
以上の構成の軸受装置を備えたモータは、振動や騒音特性の点で優れ、また、安定した機能を長期にわたって維持することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0016】
図1は、この実施形態に係る動圧型軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を示している。このスピンドルモータは、HDD等の記録ディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧型軸受装置1と、軸部材2に装着されたディスクハブ3と、半径方向のギャップを介して対向させたモータステータ4およびモータロータ5とを備えている。ステータ4はケーシング6の外周に取付けられ、ロータ5はディスクハブ3の内周に取付けられる。動圧型軸受装置1のハウジング7は、ケーシング6の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータ4に通電すると、ステータ4とロータ5との間の励磁力でロータ5が回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。
【0017】
図2は、動圧型軸受装置1を示している。動圧型軸受装置1は、一端に開口部7aを有する有底円筒状のハウジング7と、ハウジング7の内周面に固定された円筒状の含油軸受8と、軸部材2と、ハウジング7の開口部7aに配設されたシール部材10とを主要な構成要素とする。
【0018】
ハウジング7は、鉛レス黄銅、例えば三宝伸銅工業(株)製「エコブラス」(鉛を含まない黄銅合金)等の素材から切削加工又は鍛造加工によって形成され、円筒状の側部7bと底部7cとで構成される。底部7cの内底面7c1の、スラスト軸受面となる領域には図3(b)に示す形状の動圧溝7c2が形成されている。尚、この実施形態では、ハウジング7の側部7bと底部7cとを一体構造にしているが、両者を別体構造としても良い。その場合、底部7cを構成する底蓋部材を、側部7bを構成する円筒部材の他端開口部に接着、加締め等の手段で固定する。また、側部7bを構成する円筒部材および底部7cを構成する底蓋部材のうち少なくとも一方、好ましくは双方を鉛レス黄銅で形成する。
【0019】
含油軸受8は、例えば銅を主成分とする燒結金属の多孔質体で形成され、その内部の気孔に潤滑油又は潤滑グリースが含浸される。含油軸受8の内周面8aの、ラジアル軸受面となる上下2箇所の領域R1、R2には、それぞれ図2に示す形状の動圧溝8a1、8a2が形成される。領域R1とR2とは、動圧溝を有しない領域R3を挟んで軸方向に離隔している。また、含油軸受8の下端面8bの、スラスト軸受面となる領域には図3(a)に示す形状の動圧溝8b1が形成される。
【0020】
ラジアル軸受面およびスラスト軸受面の動圧溝形状は任意に選択することができ、公知のへリングボーン形、スパイラル形、ステップ形、多円弧形等の何れかを選択し、あるいはこれらを適宜組合わせて使用することができる。図2、図3には、一例としてヘリングボーン形の動圧溝8a1、8a2、8b1、7c2を例示している。
【0021】
軸部材2は、例えば、ステンレス鋼(SUS420J2)等の金属材で形成され、軸部2aと、軸部2aに一体又は別体に設けられたフランジ部2bとを備えている。軸部2aの外周面2a1の一部領域には、他の領域に対して僅かに小径となるぬすみ溝2a2が設けられる。また、フランジ部2bの下端面2b2の中心領域には、他の領域に対して僅かに凹んだぬすみ部2b3が設けられる。
【0022】
軸部材2の軸部2aは含油軸受8の内周面8aに挿入され、フランジ部2bは含油軸受8の下端面8bとハウジング7の底面7c1との間の空間部に収容される。軸部2aの外周面2a1と含油軸受8の内周面8aの領域R1、R2との間には、それぞれ、所定のラジアル軸受隙間が設けられ、フランジ部2bの上端面2b1と含油軸受8の下端面8bとの間、および、フランジ部2bの下端面2b2とハウジング7の底面7c1との間には、それぞれ、所定のスラスト軸受隙間が設けられる。軸部2aのぬすみ溝2a2は、含油軸受8の内周面8aの領域R3とラジアル軸受隙間よりも大きな隙間を介して対向し、フランジ部2bのぬすみ部2b3は、ハウジング7の内底面7c1の中心領域(動圧溝7c2が形成されていない領域)とスラスト軸受隙間よりも大きな隙間を介して対向する。
【0023】
シール部材10は、鉛レス黄銅、例えば三宝伸銅工業(株)製「エコブラス」(鉛を含まない黄銅合金)等で環状に形成され、ハウジング7の開口部7aの内周面に圧入、接着等の手段で固定される。この実施形態において、シール部材10の内周面は円筒状に形成され、シール部材10の下端面は含油軸受8の上端面と当接している。シール部材10の内周面は軸部2aの外周面2a1と所定の隙間(ラジアル軸受隙間よりも大きい。)を介して対向し、これにより、両者の間に、所定の容積をもったシール空間が形成される。
【0024】
シール部材10で密封されたハウジング7の内部空間(含油軸受8の内部の気孔も含む。)には潤滑剤、例えばセバシン酸ビス(2―エチルヘキシル)や2−エチルヘキシルセバゲート(DOS)又はアジピン酸ビス(2−エチルヘキシル)や2―エチルヘキシルアジペート(DOZ)あるいはそれらの混合物からなるエステル系の潤滑油が充満され、その潤滑油の油面は上記のシール空間内にある。シール空間の容積は、ハウジング7の内部空間に充満された潤滑油の、使用温度範囲内の温度変化に伴う容積変化量よりも大きくなるように設定される。
【0025】
軸部材2が回転すると、上記ラジアル軸受隙間に動圧作用が発生し、軸部材2の軸部2aが上記ラジアル軸受隙間内に形成される潤滑油の油膜によってラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持するラジアル軸受部が構成される。同時に、上記スラスト軸受隙間に動圧作用が発生し、軸部材2のフランジ部2bが上記スラスト軸受隙間内に形成される潤滑油の油膜によってスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持するスラスト軸受部が構成される。
【0026】
この実施形態の動圧型軸受装置1は、ハンジング7とシール部材10を鉛レス黄銅で形成しているので、人と環境に優しく、高いリサイクル性を有する。また、ハンジング7およびシール部材10の加工性も良い。さらに、ハウジング7の内部空間にエステル系の潤滑油を充満しているが、高温・高湿雰囲気下等においても、鉛の溶出による潤滑油の変性劣化がなく、安定した軸受機能が長期にわたって維持される。
【0027】
【実施例】
動圧型軸受装置に給油するためのエステル系潤滑油に、鉛入り黄銅材と鉛レス黄銅材をそれぞれ浸漬し、温度80°C、湿度90%の高温高湿条件下で2000時間放置して、上記潤滑油の動粘度を測定した。尚、上記潤滑油の初期時の動粘度は40°Cで13.18(cSt)である。
【0028】
測定の結果、上記潤滑油(2000時間放置後)の40°Cにおける動粘度(cSt)は、鉛入り黄銅材を浸漬した場合が14.63、鉛レス黄銅材を浸漬した場合が12.97であった。このように、鉛入り黄銅材を浸漬した場合では潤滑油の増粘が見られたが、鉛レス黄銅材を浸漬した場合では粘度変化がほとんど見られなかった。
【0029】
【発明の効果】
本発明によれば、軸受装置を構成する部材、特にハウジング、さらにはシール部材等を鉛レス黄銅で形成しているので、環境負荷の軽減が図られると共に、エステル系潤滑剤を使用しても、鉛の溶出による潤滑油の変性劣化がなく、安定した軸受機能が長期にわたって維持される。また、脱亜鉛腐食によるパーティクルの発生が起こり難くいので、高い清浄性が要求されるハードディスク等の記録ディスク駆動装置での使用にも適している。
【0030】
以上に説明した構成の軸受装置を備えた本発明のモータは、振動や騒音特性の点で優れ、また、安定した機能を長期にわたって維持する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る動圧型軸受装置を有するスピンドルモータの断面図である。
【図2】本発明の実施形態に係る動圧型軸受装置を示す断面図である。
【図3】スラスト軸受面を示す図である。
【符号の説明】
1 動圧型軸受装置
2 軸部材
7 ハウジング
7a 開口部
8 含油軸受
10 シール部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing device and a motor including the same.
[0002]
[Prior art]
As a bearing device for a spindle motor used in a recording disk drive device such as a hard disk drive device, an oil-impregnated bearing in which a porous body made of sintered metal is impregnated with a lubricant, or a bearing formed between a shaft and a sleeve 2. Description of the Related Art A bearing device using a hydrodynamic bearing or the like that holds a lubricant in a gap and supports a shaft by utilizing a hydrodynamic action generated in the lubricant by a hydrodynamic groove during rotation is known.
[0003]
In any of the above-mentioned bearing devices, the shaft can be supported in a non-contact state by an oil film of a lubricant, so that vibration and noise characteristics are higher than those of rolling bearing devices that have been widely used so far as spindle motor bearing devices. This has the advantage of being excellent.
[0004]
As lubricants used in oil-impregnated bearings and hydrodynamic bearings, hydrocarbon-based and ester-based lubricants are known, but hydrocarbon-based lubricants have a higher evaporation rate than ester-based lubricants. The freezing point is also high. For example, at an evaporation rate with substantially the same viscosity, hydrocarbon-based lubricants are more than several times higher than ester-based lubricants, and the freezing point is often higher than room temperature. Therefore, in a spindle motor bearing device for a recording disk drive device used in a relatively wide temperature range, an ester-based lubricant, particularly DOS (2-ethylhexyl sebacate) is used from the balance of viscosity, evaporation rate and freezing point. It is suitable as a lubricant for oil-impregnated bearings and dynamic pressure bearings.
[0005]
[Problems to be solved by the invention]
However, ester-based lubricants have high reactivity because they contain ester groups, and are particularly reactive with lead. On the other hand, in bearing devices using oil-impregnated bearings and hydrodynamic bearings, since they are relatively hard and have high workability, free-cutting brass is used as a material for members (housings, sleeves, etc.) constituting the bearing devices. In many cases, lead such as C3604 is added to free-cutting brass to improve machinability, and free-cutting brass containing such lead and ester-based lubricant are in contact at high temperatures. Then, lead elutes in the lubricant to form a product such as a metal soap, and there is a concern that the lubricant is denatured and viscosity is increased. In addition, since the ester group easily absorbs moisture, it absorbs moisture in the air under a high-temperature atmosphere, and there is a concern that the lubricant is denatured and viscosity is increased due to moisture and lead.
[0006]
In addition, copper-based materials containing lead are likely to generate particles (fine powder) due to dezincification corrosion and are used in recording disk drive devices such as hard disks that require high cleanliness from the viewpoint of preventing head crashes. For example, it is necessary to take another means for preventing the generation of particles, for example, by performing a surface treatment. Therefore, it is difficult to reduce the number of processing steps, and the yield is not good.
[0007]
An object of the present invention is to provide a bearing device and a motor including the same, using an ester-based lubricant having a good balance between evaporation rate and freezing point, and preventing deterioration and deterioration of the lubricant due to elution of lead. The purpose is to maintain the bearing function for a long time.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a bearing device including an oil-impregnated bearing configured by impregnating a porous body made of sintered metal with a lubricant, and a housing for housing the oil-impregnated bearing, wherein the housing is lead. Provided is a structure formed of less brass and the lubricant is an ester-based lubricant.
[0009]
The “oil-impregnated bearing” here includes both a so-called perfect bearing having no dynamic pressure groove on the bearing surface and a dynamic pressure bearing having a dynamic pressure groove on the bearing surface.
[0010]
In this specification, “lead-free brass” refers to brass (or brass alloy) whose lead content is regulated to a minute amount, or brass (or brass alloy) that does not contain lead. Preferably, the lead content is regulated to 0.2% or less. Examples of “lead-free brass” include “Keepalloy” manufactured by KITZ (lead content 0.2% or less), “Bz3” “EES-PF” manufactured by Sanetsu Metals Co., Ltd. (both lead content 0.1%) The following may be used: “Eco Brass” (brass alloy not containing lead) manufactured by Sanpo Shindoh Co., Ltd. These lead-less brasses have good processability (cutability, forgeability, castability) and have a low content of lead, which is an environmentally hazardous element, or they do not contain lead. High recyclability. Further, it is suitable for use in a recording disk drive device such as a hard disk or the like that is unlikely to generate particles due to dezincification corrosion and requires high cleanliness. Furthermore, even if an ester-based lubricant having a good balance between evaporation rate and freezing point is used, there is no modification and deterioration of the lubricant due to elution of lead, and a stable bearing function is maintained over a long period of time.
[0011]
In order to solve the above problems, the present invention is configured by impregnating a porous member made of a sintered member and a shaft member with a lubricant, and the shaft member is rotated by the dynamic pressure action of the lubricant generated in the bearing gap. In a bearing device including an oil-impregnated bearing that is freely contactlessly supported and a housing that has an opening at one end and accommodates the oil-impregnated bearing, the housing is formed of leadless brass, and the lubricant is an ester lubricant. Provide configuration.
[0012]
The “oil-impregnated bearing” here is a hydrodynamic bearing having a hydrodynamic groove on the bearing surface. Alternatively, the “oil-impregnated bearing” may be a perfect circle bearing, and the dynamic pressure groove may be formed on the outer peripheral surface of the shaft member facing the bearing gap. When the seal member is disposed in the opening of the housing, it is preferable that the seal member is further formed of leadless brass.
[0013]
In order to solve the above problems, the present invention provides a bearing device that supports the relative rotation of a stationary member and a rotating member in a non-contact manner by the dynamic pressure action of a lubricant interposed in a bearing gap formed between the two members. At least one of the stationary member and the rotating member is formed of leadless brass, and the lubricant is an ester-based lubricant. In this configuration, the dynamic pressure groove is provided on the surface of the stationary member or the surface of the rotating member facing the bearing gap.
[0014]
The motor including the bearing device having the above configuration is excellent in terms of vibration and noise characteristics, and can maintain a stable function for a long period of time.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0016]
FIG. 1 shows an example of the configuration of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to this embodiment. The spindle motor is used in a recording disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports the shaft member 2 in a non-contact manner, a disk hub 3 mounted on the shaft member 2, and a radial direction. The motor stator 4 and the motor rotor 5 are provided to face each other through the gap. The stator 4 is attached to the outer periphery of the casing 6, and the rotor 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the casing 6. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator 4 is energized, the rotor 5 is rotated by the exciting force between the stator 4 and the rotor 5, whereby the disk hub 3 and the shaft member 2 are rotated together.
[0017]
FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a bottomed cylindrical housing 7 having an opening 7 a at one end, a cylindrical oil-impregnated bearing 8 fixed to the inner peripheral surface of the housing 7, a shaft member 2, and an opening of the housing 7. The seal member 10 disposed in the portion 7a is a main component.
[0018]
The housing 7 is formed by cutting or forging from a material such as lead-free brass, for example, “Eco Brass” (brass alloy not containing lead) manufactured by Sanho Shindoh Co., Ltd., and has cylindrical side portions 7b and bottom portions 7c. It consists of. A dynamic pressure groove 7c2 having a shape shown in FIG. 3B is formed in a region of the inner bottom surface 7c1 of the bottom portion 7c which becomes a thrust bearing surface. In this embodiment, the side portion 7b and the bottom portion 7c of the housing 7 are integrated, but both may be separate structures. In that case, the bottom lid member constituting the bottom portion 7c is fixed to the other end opening of the cylindrical member constituting the side portion 7b by means such as adhesion or caulking. Further, at least one of the cylindrical member constituting the side portion 7b and the bottom lid member constituting the bottom portion 7c, preferably both are formed of leadless brass.
[0019]
The oil-impregnated bearing 8 is formed of, for example, a sintered metal porous body mainly composed of copper, and the internal pores are impregnated with lubricating oil or lubricating grease. Dynamic pressure grooves 8a1 and 8a2 each having the shape shown in FIG. 2 are formed in two regions R1 and R2 on the inner peripheral surface 8a of the oil-impregnated bearing 8 at upper and lower portions serving as radial bearing surfaces. The regions R1 and R2 are separated from each other in the axial direction with a region R3 having no dynamic pressure groove interposed therebetween. Further, a dynamic pressure groove 8b1 having a shape shown in FIG. 3A is formed in a region of the lower end surface 8b of the oil-impregnated bearing 8 to be a thrust bearing surface.
[0020]
The dynamic pressure groove shape of the radial bearing surface and the thrust bearing surface can be arbitrarily selected, and any of the known herringbone shape, spiral shape, step shape, multi-arc shape, etc. is selected, or these are appropriately selected. Can be used in combination. 2 and 3 illustrate herringbone-shaped dynamic pressure grooves 8a1, 8a2, 8b1, and 7c2 as an example.
[0021]
The shaft member 2 is formed of a metal material such as stainless steel (SUS420J2), for example, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately with the shaft portion 2a. In a partial region of the outer peripheral surface 2a1 of the shaft portion 2a, a thinning groove 2a2 having a slightly smaller diameter than the other region is provided. Further, in the center region of the lower end surface 2b2 of the flange portion 2b, there is provided a shading portion 2b3 that is slightly recessed with respect to the other regions.
[0022]
The shaft portion 2 a of the shaft member 2 is inserted into the inner peripheral surface 8 a of the oil-impregnated bearing 8, and the flange portion 2 b is accommodated in a space portion between the lower end surface 8 b of the oil-impregnated bearing 8 and the bottom surface 7 c 1 of the housing 7. Predetermined radial bearing gaps are provided between the outer peripheral surface 2a1 of the shaft portion 2a and the regions R1 and R2 of the inner peripheral surface 8a of the oil-impregnated bearing 8, and the upper end surface 2b1 of the flange portion 2b and the oil-impregnated bearing 8 are respectively provided. A predetermined thrust bearing gap is provided between the lower end surface 8 b and between the lower end surface 2 b 2 of the flange portion 2 b and the bottom surface 7 c 1 of the housing 7. The thin groove 2a2 of the shaft portion 2a faces the region R3 of the inner peripheral surface 8a of the oil-impregnated bearing 8 via a gap larger than the radial bearing gap, and the thin portion 2b3 of the flange portion 2b is formed on the inner bottom surface 7c1 of the housing 7. It faces the central region (region where the dynamic pressure groove 7c2 is not formed) via a gap larger than the thrust bearing gap.
[0023]
The seal member 10 is formed in a ring shape from lead-free brass, for example, “Eco Brass” (brass alloy not containing lead) manufactured by Sanho Shindoh Co., Ltd., and is press-fitted and bonded to the inner peripheral surface of the opening 7a of the housing 7 It is fixed by such means. In this embodiment, the inner peripheral surface of the seal member 10 is formed in a cylindrical shape, and the lower end surface of the seal member 10 is in contact with the upper end surface of the oil-impregnated bearing 8. The inner peripheral surface of the seal member 10 is opposed to the outer peripheral surface 2a1 of the shaft portion 2a via a predetermined gap (larger than the radial bearing gap), and thereby, a seal space having a predetermined volume therebetween. Is formed.
[0024]
A lubricant such as bis (2-ethylhexyl) sebacate, 2-ethylhexyl sebagate (DOS) or adipic acid is contained in the internal space of the housing 7 (including the pores inside the oil-impregnated bearing 8) sealed with the seal member 10. An ester-based lubricating oil composed of bis (2-ethylhexyl), 2-ethylhexyl adipate (DOZ), or a mixture thereof is filled, and the oil level of the lubricating oil is within the above-described seal space. The volume of the seal space is set to be larger than the volume change amount of the lubricating oil filled in the internal space of the housing 7 due to the temperature change within the operating temperature range.
[0025]
When the shaft member 2 rotates, a dynamic pressure action is generated in the radial bearing gap, and the shaft portion 2a of the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction by an oil film of lubricating oil formed in the radial bearing gap. Is done. Thereby, the radial bearing part which non-contact-supports the shaft member 2 rotatably in a radial direction is comprised. At the same time, a dynamic pressure action is generated in the thrust bearing gap, and the flange portion 2b of the shaft member 2 is supported in a non-contact manner so as to be rotatable in the thrust direction by an oil film of lubricating oil formed in the thrust bearing gap. Thereby, the thrust bearing part which non-contact-supports the shaft member 2 rotatably in the thrust direction is configured.
[0026]
In the hydrodynamic bearing device 1 of this embodiment, the handling 7 and the seal member 10 are made of leadless brass. Therefore, the hydrodynamic bearing device 1 is friendly to people and the environment, and has high recyclability. Moreover, the processability of the handling 7 and the seal member 10 is also good. Furthermore, the interior space of the housing 7 is filled with ester-based lubricant, but even under high-temperature and high-humidity atmospheres, there is no degradation and deterioration of the lubricant due to elution of lead, and a stable bearing function is maintained for a long time. Is done.
[0027]
【Example】
A lead-containing brass material and a lead-less brass material are respectively immersed in an ester-based lubricating oil for supplying oil to a hydrodynamic bearing device, and left for 2000 hours under a high temperature and high humidity condition of a temperature of 80 ° C. and a humidity of 90%. The kinematic viscosity of the lubricating oil was measured. The initial kinematic viscosity of the lubricating oil is 13.18 (cSt) at 40 ° C.
[0028]
As a result of the measurement, the kinematic viscosity (cSt) at 40 ° C. of the lubricating oil (after standing for 2000 hours) is 14.63 when the lead-containing brass material is immersed, and 12.97 when the lead-less brass material is immersed. Met. Thus, when the lead-containing brass material was immersed, the viscosity of the lubricating oil was increased, but when the lead-less brass material was immersed, almost no viscosity change was observed.
[0029]
【The invention's effect】
According to the present invention, the members constituting the bearing device, particularly the housing, and further the seal member, etc. are made of leadless brass, so that the environmental load can be reduced and even when an ester-based lubricant is used. In addition, there is no degradation and deterioration of the lubricating oil due to elution of lead, and a stable bearing function is maintained over a long period of time. Further, since the generation of particles due to dezincification hardly occurs, it is also suitable for use in a recording disk drive device such as a hard disk that requires high cleanliness.
[0030]
The motor of the present invention including the bearing device having the above-described configuration is excellent in terms of vibration and noise characteristics, and maintains a stable function over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle motor having a hydrodynamic bearing device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a hydrodynamic bearing device according to an embodiment of the present invention.
FIG. 3 is a view showing a thrust bearing surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Dynamic pressure type bearing apparatus 2 Shaft member 7 Housing 7a Opening part 8 Oil impregnated bearing 10 Seal member

Claims (5)

焼結金属からなる多孔質体に潤滑剤を含浸して構成される含油軸受と、該含油軸受を収容するハウジングとを備えた軸受装置において、
前記ハウジングが鉛レス黄銅で形成され、
前記潤滑剤がエステル系潤滑剤であることを特徴とする軸受装置。
In a bearing device comprising an oil-impregnated bearing configured by impregnating a porous body made of sintered metal with a lubricant, and a housing for housing the oil-impregnated bearing,
The housing is formed of leadless brass;
A bearing device, wherein the lubricant is an ester lubricant.
軸部材と、焼結金属からなる多孔質体に潤滑剤を含浸して構成され、軸受隙間に生じる潤滑剤の動圧作用で前記軸部材を回転自在に非接触支持する含油軸受と、一端に開口部を有すると共に、前記含油軸受を収容するハウジングとを備えた軸受装置において、
前記ハウジングが鉛レス黄銅で形成され、
前記潤滑剤がエステル系潤滑剤であることを特徴とする軸受装置。
A shaft member, an oil-impregnated bearing configured by impregnating a porous body made of sintered metal with a lubricant, and rotatably supporting the shaft member in a non-contact manner by the dynamic pressure action of the lubricant generated in the bearing gap, and at one end In a bearing device having an opening and a housing that houses the oil-impregnated bearing,
The housing is formed of leadless brass;
A bearing device, wherein the lubricant is an ester lubricant.
前記ハウジングの開口部に配設されたシール部材をさらに備え、該シール部材が鉛レス黄銅で形成されていることを特徴とする請求項1又は2記載の軸受装置。The bearing device according to claim 1, further comprising a seal member disposed in an opening of the housing, wherein the seal member is formed of lead-free brass. 静止部材と回転部材との相対回転を、両部材間に形成された軸受隙間に介在する潤滑剤の動圧作用で非接触支持する軸受装置において、
前記静止部材及び回転部材のうち少なくとも一方は鉛レス黄銅で形成され、
前記潤滑剤がエステル系潤滑剤であることを特徴とする軸受装置。
In the bearing device that supports the relative rotation between the stationary member and the rotating member in a non-contact manner by the dynamic pressure action of the lubricant interposed in the bearing gap formed between the two members,
At least one of the stationary member and the rotating member is formed of leadless brass,
A bearing device, wherein the lubricant is an ester lubricant.
請求項1から4の何れかに記載の軸受装置を備えたモータ。A motor comprising the bearing device according to claim 1.
JP2001371166A 2001-12-05 2001-12-05 Bearing device and motor equipped with the same Expired - Lifetime JP3943381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371166A JP3943381B2 (en) 2001-12-05 2001-12-05 Bearing device and motor equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371166A JP3943381B2 (en) 2001-12-05 2001-12-05 Bearing device and motor equipped with the same

Publications (2)

Publication Number Publication Date
JP2003172336A JP2003172336A (en) 2003-06-20
JP3943381B2 true JP3943381B2 (en) 2007-07-11

Family

ID=19180255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371166A Expired - Lifetime JP3943381B2 (en) 2001-12-05 2001-12-05 Bearing device and motor equipped with the same

Country Status (1)

Country Link
JP (1) JP3943381B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213552B1 (en) * 2004-04-09 2012-12-18 엔티엔 가부시키가이샤 Dynamic pressure bearing device
US7699528B2 (en) 2004-05-26 2010-04-20 Ntn Corporation Dynamic bearing device
US20080309183A1 (en) 2004-08-03 2008-12-18 Ntn Corporation Dynamic Bearing Device
JP2006046430A (en) 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device
JP2006207787A (en) * 2004-12-28 2006-08-10 Ntn Corp Housing for dynamic pressure bearing device and manufacturing method therefor
WO2006085426A1 (en) 2005-02-10 2006-08-17 Ntn Corporation Housing for fluid bearing device, housing for dynamic pressure bearing device, and method of manufacturing the same
JP5074687B2 (en) * 2005-07-15 2012-11-14 出光興産株式会社 Oil-impregnated bearing lubricant
US8403565B2 (en) 2006-03-20 2013-03-26 Ntn Corporation Fluid dynamic bearing device
JP5095115B2 (en) 2006-03-27 2012-12-12 Ntn株式会社 Hydrodynamic bearing device

Also Published As

Publication number Publication date
JP2003172336A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
CN103119313B (en) Sintered bearing
JP3943381B2 (en) Bearing device and motor equipped with the same
JPH099568A (en) Disc drive
JP4408788B2 (en) Brushless motor and manufacturing method thereof
JP2008008368A (en) Hydrodynamic bearing device
JP2005147394A (en) Dynamic-pressure bearing device and disc driving device
JP2008259261A (en) Spindle motor and disclike medium recorder/reproducer
JP2000291648A (en) Dynamic pressure-type bearing unit
JP2002061641A (en) Dynamic pressure type bearing device
JP2007177808A (en) Hydrodynamic bearing unit
JP2006189081A (en) Fluid bearing device
JP3686630B2 (en) Hydrodynamic bearing device
JP4579177B2 (en) Hydrodynamic bearing device
JP6026123B2 (en) Sintered metal bearing
JPH11311253A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP2006304565A (en) Brushless electric motor and its manufacturing method
JP2004176815A (en) Liquid bearing device
JP2003314533A (en) Fluid bearing device
JP2014074461A (en) Fluid dynamic pressure bearing device and spindle motor
JP2005201455A (en) Fluid bearing device
JP2003097557A (en) Oil bearing device
JP2006017223A (en) Dynamic pressure bearing device
JP2002061659A (en) Dynamic pressure-type porous oil-impregnated bearing unit
JP2000092776A (en) Spindle motor
JPH0328517A (en) Dynamic pressure bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Ref document number: 3943381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term