[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3839961B2 - Method for producing catalyst for solid polymer electrolyte fuel cell - Google Patents

Method for producing catalyst for solid polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3839961B2
JP3839961B2 JP16798398A JP16798398A JP3839961B2 JP 3839961 B2 JP3839961 B2 JP 3839961B2 JP 16798398 A JP16798398 A JP 16798398A JP 16798398 A JP16798398 A JP 16798398A JP 3839961 B2 JP3839961 B2 JP 3839961B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
platinum
fuel cell
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16798398A
Other languages
Japanese (ja)
Other versions
JP2000000467A (en
Inventor
智之 多田
夕美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP16798398A priority Critical patent/JP3839961B2/en
Priority to US09/462,477 priority patent/US6339038B1/en
Priority to PCT/JP1999/002710 priority patent/WO1999066576A1/en
Priority to EP99923853.8A priority patent/EP1022795B1/en
Publication of JP2000000467A publication Critical patent/JP2000000467A/en
Application granted granted Critical
Publication of JP3839961B2 publication Critical patent/JP3839961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高分子固体電解質型燃料電池用触媒の製造方法に関するものであり、特に、耐一酸化炭素触媒被毒性を有する白金とルテニウムが複合的に担持された高分子固体電解質型燃料電池用触媒の製造方法に関するものである。
【0002】
【従来の技術】
高分子固体電解質型燃料電池は、リン酸型燃料電池と比較してコンパクトで高い電流密度が取り出せることから、電気自動車や宇宙船用の電源として注目されている。そして、この燃料電池の電極反応促進の一策として触媒の適用は従来から広く用いられている手段である。しかし、ここで問題となるのが、供給燃料である水素ガス中に微量含まれる一酸化炭素による触媒被毒である。
【0003】
白金とルテニウムが複合的に担持された触媒は、優れた耐一酸化炭素触媒被毒性を有することが従来から知られている。この複合的な触媒の耐一酸化炭素触媒被毒性については、ルテニウムが親水性を有する物質であり、このルテニウムと結合したOH-が白金上に吸着した一酸化炭素を酸化させることにより達成されるものと考えられている。
【0004】
従って、この触媒の耐一酸化炭素触媒被毒性を向上させるためには、白金粒子とルテニウム粒子とを凝集させることなく高度に分散させること、および両貴金属粒子を可能な限り近接した状態で担持させることが重要となる。
【0005】
従来、この金属白金粒子と金属ルテニウム粒子とを触媒担体に担持させる方法としては、白金化合物の水溶液とルテニウム化合物の水溶液とを混合し、担体である炭素粉末とエチルアルコール等の還元剤を添加し、白金イオンとルテニウムイオンを還元させて炭素粉末上に白金及びルテニウム粒子を析出させるものがある。
【0006】
また、特開平9−153366号公報で開示された製造方法によれば、白金とルテニウムの担持を別工程とし、導電性物質表面に予め含浸法にて白金を析出させ、次いで、この導電性物質の表面に含浸法にてルテニウムを析出させることで複合的触媒の成形体が得ることができる。そして、白金、ルテニウムの順序にて別工程で析出させた方が両貴金属を同時に析出させた場合よりも優れた触媒能を発揮することが明らかにされている。
【0007】
しかし、貴金属粒子はオングストロームオーダーの微小粒子ゆえに、白金粒子とルテニウム粒子とを両者が常に近接した状態で担持させることは困難である。特に、含浸法や従来の還元法においては、ルテニウム粒子の凝集が生じることがあり、一酸化炭素触媒被毒性の観点から最適の特性を有する触媒を得がたい。
【0008】
【発明が解決しようとする課題】
本発明の目的は、白金粒子またはルテニウム粒子が凝集することなく近接した状態で担持された耐一酸化炭素触媒被毒性に優れた高分子固体電解質型燃料電池用触媒の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
この課題を解決するため、本発明者らは従来の高分子固体電解質型燃料電池用触媒の製造方法を基本として鋭意研究の結果、次のような知見を得た。
【0010】
水溶液中のルテニウムイオンを還元剤によって還元させるとき、還元剤濃度とルテニウムイオン濃度との濃度積が小さすぎると、還元剤の酸化反応が起こらず、ルテニウムの析出は生じない。しかし、還元剤濃度が低い場合であっても、溶液中に白金触媒を共存させた場合、白金粒子近傍においては白金の酸化作用による還元剤の酸化が起こり電子の放出が生じる。そして、この放出電子がルテニウムイオンに関与して、ルテニウムイオンは金属ルテニウムに還元され、担体上に析出することとなる。このとき、電子供与反応は、白金粒子近傍の酸化力の及ぶ範囲でのみ生じることから、金属ルテニウムが白金粒子と近接した状態で析出することとなる。
【0011】
本発明は、上記知見に基づいたものであり、炭素粉末担体に白金を担持させた触媒とルテニウム化合物の水溶液とを混合させて混合溶液を製造し、混合溶液の全容量に対して5〜15vol%のアルコールを添加し加熱することにより、ルテニウムを還元させて担体上に白金とルテニウムとを複合的に担持させることにより高分子固体電解質型燃料電池用触媒を製造するものとした。
【0012】
即ち、本発明は、適当な還元剤濃度の下、上記のような白金が仲介する還元剤とルテニウムの間の電子供与反応を優先的に利用することをその基本的な原理としている。そして、これにより従来法よりも両貴金属が高い状態で分散、担持された複合触媒を得ることができる。
【0013】
本発明に係る高分子固体電解質型燃料電池用触媒の製造方法においては、まず、担体に白金微粒子を担持させ、白金触媒を製造する。この白金触媒の製造方法としては、例えば、白金化合物水溶液に炭素粉末担体を加えて混合し、これに還元剤を添加、混合させて白金微粒子を還元させる方法が挙げられる。ここで、白金化合物水溶液としては、ジニトロジアミン白金硝酸水溶液、塩化白金酸水溶液等が適用できる。また、還元剤としては、水素化ホウ素ナトリウム、アルコール、水素ガス等が適用できるが、アルコール特にエチルアルコールが好ましい。
【0014】
次に、この白金触媒をルテニウム化合物の水溶液中に混合する。ここで、ルテニウム化合物水溶液の種類としては、ルテニウム塩化物、ルテニウム硝酸物、ルテニウム錯体の水溶液等があるが、塩化ルテニウム(RuCl3)の水溶液が好ましい。
【0015】
そして、この混合溶液にルテニウムイオンの還元剤としてアルコールを添加するが、本発明の最大の特徴は上記のように、還元剤を白金触媒の酸化力により酸化させて、放出される電子によってルテニウムイオンを還元させる点にある。本発明においてはこの作用を、アルコールの種類、アルコール濃度、反応温度、及び反応時間を操作することにより生じさせている。
【0016】
ここで、アルコールの濃度としては、混合溶液の全容量に対して5〜15vol%とするのが好ましい。この濃度以下においては、白金触媒の酸化力をもってもルテニウムが還元されにくく、また、この濃度以上ではアルコール自体の還元力によりルテニウムの還元反応が白金粒子近傍以外でも生ずることとなり、ルテニウム粒子の凝集が生ずることとなるからである。
【0017】
また、アルコールの種類としては、メチルアルコール、エチルアルコール、プロピルアルコール、及びブチルアルコール等が適用可能であるが、還元力の観点からメチルアルコール及びエチルアルコールが特に好ましい。
【0018】
反応温度について、本発明は、50℃程度の比較的低い温度でも実施可能である。しかし、反応時間の短縮という観点から、アルコールを添加した後の混合溶液の沸点に近いを反応温度とするのが好ましい。一般的に、前記温度は90〜100℃とすることになる。
【0019】
さらに、反応時間は2時間以上で行うのが好ましい。反応時間を2時間以内とした場合、ルテニウム粒子の還元が不完全となり、その後の熱処理合金化工程において凝集が生じることがあるからである。尚、この反応時間を2時間以上としてもルテニウムの分散状態に大きな差異はない。
【0020】
また、この白金とルテニウムの2種の金属を複合的に担持させた触媒は、熱処理を施すことで両貴金属粒子を更に近接させて合金とすることができる。そして、この合金化により触媒の耐一酸化炭素触媒被毒性は更に向上することとなる。
【0021】
この熱処理による合金化は、600℃〜900℃の範囲で行うのが好ましい。600℃以下では貴金属粒子の合金化が不完全である一方、900℃以上では触媒粒子の凝集が進んで粒径が過大となり、触媒の活性に影響を与えるからである。
【0022】
【発明の実施の形態】
以下に本発明の好適と思われる実施形態を示す。
【0023】
第1実施形態 15wt%の白金を含有するジニトロジアミン白金硝酸溶液4500gに炭素粉末(商品名Vulcan XC72)を100g混合させ攪拌混合後、還元剤として98%エチルアルコール550ml添加した。この溶液を約95℃で6時間、攪拌、混合し白金を炭素粉末に担持させることで白金触媒を得た。
【0024】
次に、8.232wt%のルテニウムを含有する塩化ルテニウム溶液35.47g(ルテニウム:2.92g)に水720mlを添加し、混合、攪拌した後、上記白金触媒25g(白金:5.64g)を浸漬させた。そしてこの混合溶液の全容量に対して濃度が10vol%となるように、95%エチルアルコール80mlを添加し、このアルコール添加後の混合溶液を沸点近傍(約95℃)で6時間、攪拌させて反応させた。反応終了後の溶液は、ろ過して60℃で乾燥させて白金/ルテニウム触媒を得た。
【0025】
白金とルテニウムの合金化熱処理は、50%水素ガス(バランス:窒素ガス)中で、0.5〜1時間、900℃に保持することにより行った。
【0026】
第2実施形態 本実施形態では、還元剤としてエチルアルコールに変えてメチルアルコールを用いて触媒の製造を行った。従って、基本的な実施形態は第1実施形態と変わりはない。従って、重複する記載は避け、ルテニウムの析出工程における形態の違いのみを述べることとする。
【0027】
ここでのルテニウムの析出工程は、第1実施形態と同様に白金触媒を調整し、8.232wt%のルテニウムを含有する塩化ルテニウム溶液35.47g(ルテニウム:2.92g)に水450mlを添加し、混合、攪拌した後、白金触媒25g(白金:5.64g)を浸漬させた。そしてこの混合溶液の全容量に対して濃度が10vol%となるように、95%メチルアルコールを50mlを添加し、このアルコール添加後の混合溶液を沸点近傍(約95℃)で6時間、攪拌させて反応させた。反応終了後の溶液は、第1実施形態と同様、ろ過、乾燥させて白金/ルテニウム触媒を得た。
【0028】
【比較例】
本発明に係る方法と比較するため、比較例として従来法によって触媒を製造した。塩化ルテニウム溶液35.47g(ルテニウム:2.92g)に水100mlを添加し、混合、攪拌した後、第1実施形態と同様の方法で予め炭素粉末に白金を担持させた白金触媒25.0g(白金:5.64g)を添加した。この混合溶液を室温で1時間攪拌しルテニウム溶液を含浸させた。その後、溶液を60℃で乾燥させ、乾燥物を水素還流下で、250℃で0.5時間さらに900℃で0.5時間還元させて触媒を得た。
【0029】
【実験例1】
以上の製造方法により製造した白金/ルテニウム複合触媒について、水素極側ハーフセルの電池性能の評価を行った。測定は、100ppmの一酸化炭素を混合した水素ガス中で行っている。電流密度500mA/cm2における測定結果を表1に示す。表1より、第1実施形態及び第2実施形態の触媒はいずれも比較例に比して分極値が約30%低く、高い耐一酸化炭素触媒被毒性を有することがわかった。
【0030】
【表1】

Figure 0003839961
【0031】
【実験例2】
次に、熱処理による合金化の影響について検討した。まず、第1実施形態において900℃で0.5時間合金化熱処理を行った触媒と、合金化熱処理を省略した触媒とについて水素極ハーフセル電池性能の評価を行った。測定は上記と同様、100ppmの一酸化炭素を混合した水素ガス中で行っている。その測定結果を図1に示す。図1では、縦軸に分極値を、横軸には電流密度値をとり各電流密度における分極値をプロットした。
【0032】
図1で示されるように、熱処理を行った触媒はいずれの電流密度においても分極値が低く、本発明に係る触媒は、熱処理を行うことで更に優れた耐一酸化炭素触媒被毒性を発揮することがわかった。
【0033】
【実験例3】
次に、熱処理温度の影響について検討した。測定条件は上記と同様である。その測定結果を図2に示す。図2では、縦軸に電流密度500mA/cm2における水素極の分極値を、横軸には熱処理温度をとり各温度で作製された電極触媒の分極値をプロットした。また、熱処理温度の影響の比較は、白金とルテニウムとの担持量を変化させた触媒について行い、30%担持した触媒と50%担持した触媒とについて行った。
【0034】
図2から、30%担持した触媒の場合は、熱処理温度の上昇と共に分極値の減少が見られ、処理温度の増加に伴い触媒性能が向上していることがわかった。即ち、処理温度の上昇と共に白金とルテニウムの合金化が進んでいることがわかった。しかし、50%担持した触媒の場合は、分極値は700℃近傍で極小となるが、その後熱処理温度の上昇と共に電極値が増大、性能の低下が見られた。これは、担持率が大きい場合、高温で熱処理すると貴金属粒子の凝集が生じ性能が低下したためと考えられる。
【0035】
【発明の効果】
本発明によれば、白金とルテニウム粒子が互いに近接した状態で高度に分散した複合的な触媒が得られる。その結果、耐一酸化炭素触媒被毒性に優れた燃料電池用触媒を得ることができる。さらに、この触媒に熱処理を施すことで白金粒子とルテニウム粒子をより近接させ合金化することができ、これによりさらに耐一酸化炭素触媒被毒性を向上させることができる。
【図面の簡単な説明】
【図1】熱処理の有無による電極特性の違いを比較して示すグラフ。
【図2】各熱処理温度における電極特性の違いを比較して示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a catalyst for a solid polymer electrolyte fuel cell, and in particular, for a polymer solid electrolyte fuel cell in which platinum and ruthenium having a poisoning resistance to a carbon monoxide catalyst are supported in combination. The present invention relates to a method for producing a catalyst.
[0002]
[Prior art]
The solid polymer electrolyte fuel cell is attracting attention as a power source for electric vehicles and spacecrafts because it is compact and can take out a higher current density than a phosphoric acid fuel cell. The application of a catalyst as a measure for promoting the electrode reaction of this fuel cell has been widely used. However, what is a problem here is catalyst poisoning by carbon monoxide contained in a trace amount in the hydrogen gas as the supply fuel.
[0003]
It has been conventionally known that a catalyst in which platinum and ruthenium are supported in combination has excellent carbon monoxide catalyst poisoning resistance. About the carbon monoxide catalyst poisoning resistance of this composite catalyst, ruthenium is a substance having hydrophilicity, and is achieved by oxidizing the carbon monoxide adsorbed on platinum by OH bonded to the ruthenium. It is considered a thing.
[0004]
Therefore, in order to improve the carbon monoxide catalyst poisoning resistance of this catalyst, platinum particles and ruthenium particles are highly dispersed without agglomeration, and both noble metal particles are supported as close as possible. It becomes important.
[0005]
Conventionally, as a method for supporting the metal platinum particles and metal ruthenium particles on a catalyst carrier, an aqueous solution of a platinum compound and an aqueous solution of a ruthenium compound are mixed, and a reducing agent such as carbon powder as a carrier and ethyl alcohol is added. In some cases, platinum ions and ruthenium ions are reduced to deposit platinum and ruthenium particles on the carbon powder.
[0006]
Further, according to the manufacturing method disclosed in Japanese Patent Laid-Open No. 9-153366, platinum and ruthenium are supported in separate steps, and platinum is deposited in advance on the surface of the conductive material by an impregnation method. A composite catalyst molded body can be obtained by precipitating ruthenium on the surface of the catalyst by impregnation. And it has been clarified that the deposition of platinum and ruthenium in a separate process exhibits superior catalytic ability than the case of depositing both noble metals simultaneously.
[0007]
However, since noble metal particles are angstrom order fine particles, it is difficult to support platinum particles and ruthenium particles in a state where they are always close to each other. In particular, in the impregnation method and the conventional reduction method, agglomeration of ruthenium particles may occur, and it is difficult to obtain a catalyst having optimum characteristics from the viewpoint of carbon monoxide catalyst toxicity.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a catalyst for a solid polymer electrolyte fuel cell that is excellent in poisoning resistance to carbon monoxide catalyst in which platinum particles or ruthenium particles are supported in an adjacent state without aggregation. is there.
[0009]
[Means for Solving the Problems]
In order to solve this problem, the present inventors have obtained the following knowledge as a result of intensive studies based on a conventional method for producing a solid polymer electrolyte fuel cell catalyst.
[0010]
When reducing the ruthenium ions in the aqueous solution with the reducing agent, if the concentration product of the reducing agent concentration and the ruthenium ion concentration is too small, the reducing agent oxidation reaction does not occur and ruthenium precipitation does not occur. However, even when the concentration of the reducing agent is low, when a platinum catalyst coexists in the solution, the reducing agent is oxidized by the oxidizing action of platinum in the vicinity of the platinum particles, and electrons are emitted. The emitted electrons are involved in the ruthenium ions, and the ruthenium ions are reduced to the metal ruthenium and deposited on the carrier. At this time, since the electron donating reaction occurs only in the range where the oxidizing power in the vicinity of the platinum particles reaches, the metal ruthenium is deposited in the state of being close to the platinum particles.
[0011]
The present invention is based on the above findings, and a mixed solution is produced by mixing a catalyst in which platinum is supported on a carbon powder carrier and an aqueous solution of a ruthenium compound, and the total volume of the mixed solution is 5 to 15 vol. % Of alcohol was added and heated to reduce the ruthenium, and platinum and ruthenium were supported on the support in a composite manner to produce a solid polymer electrolyte fuel cell catalyst.
[0012]
That is, the basic principle of the present invention is to preferentially use the above electron-donating reaction between the reducing agent and ruthenium mediated by platinum under an appropriate reducing agent concentration. As a result, a composite catalyst in which both noble metals are dispersed and supported in a higher state than in the conventional method can be obtained.
[0013]
In the method for producing a polymer electrolyte fuel cell catalyst according to the present invention, first, platinum fine particles are supported on a carrier to produce a platinum catalyst. Examples of the method for producing the platinum catalyst include a method in which a carbon powder carrier is added to and mixed with an aqueous platinum compound solution, and a reducing agent is added to and mixed therewith to reduce platinum fine particles. Here, as the platinum compound aqueous solution, dinitrodiamine platinum nitric acid aqueous solution, chloroplatinic acid aqueous solution and the like can be applied. As the reducing agent, sodium borohydride, alcohol, hydrogen gas and the like can be applied, but alcohol, particularly ethyl alcohol is preferable.
[0014]
Next, this platinum catalyst is mixed in an aqueous solution of a ruthenium compound. Here, examples of the type of ruthenium compound aqueous solution include ruthenium chloride, ruthenium nitrate, an aqueous solution of ruthenium complex, and the like, but an aqueous solution of ruthenium chloride (RuCl 3 ) is preferable.
[0015]
Then, alcohol is added to this mixed solution as a reducing agent for ruthenium ions. As described above, the greatest feature of the present invention is that the reducing agent is oxidized by the oxidizing power of the platinum catalyst as described above, and the ruthenium ions are released by the emitted electrons. It is in the point of reducing. In the present invention, this action is caused by manipulating the type of alcohol, alcohol concentration, reaction temperature, and reaction time.
[0016]
Here, the alcohol concentration is preferably 5 to 15 vol% with respect to the total volume of the mixed solution. Below this concentration, ruthenium is difficult to reduce even with the oxidizing power of the platinum catalyst, and above this concentration, the reducing power of the alcohol itself causes the reduction reaction of ruthenium to occur outside the vicinity of the platinum particles, and the aggregation of ruthenium particles It will occur.
[0017]
Moreover, as a kind of alcohol, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, etc. are applicable, but methyl alcohol and ethyl alcohol are particularly preferable from the viewpoint of reducing power.
[0018]
Regarding the reaction temperature, the present invention can be carried out even at a relatively low temperature of about 50 ° C. However, from the viewpoint of shortening the reaction time, the reaction temperature is preferably close to the boiling point of the mixed solution after addition of the alcohol. Generally, the temperature will be 90-100 ° C.
[0019]
Furthermore, the reaction time is preferably 2 hours or longer. This is because when the reaction time is within 2 hours, the reduction of the ruthenium particles becomes incomplete and aggregation may occur in the subsequent heat treatment alloying step. Even if the reaction time is 2 hours or longer, there is no significant difference in the dispersed state of ruthenium.
[0020]
In addition, the catalyst in which two kinds of metals, platinum and ruthenium, are supported in a composite manner can be made into an alloy by further bringing both noble metal particles closer by heat treatment. This alloying further improves the carbon monoxide catalyst poisoning resistance of the catalyst.
[0021]
The alloying by this heat treatment is preferably performed in the range of 600 ° C to 900 ° C. This is because the alloying of the noble metal particles is incomplete at 600 ° C. or lower, while the aggregation of the catalyst particles proceeds and the particle size becomes excessive at 900 ° C. or higher, which affects the activity of the catalyst.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described.
[0023]
First Embodiment 100 g of carbon powder (trade name Vulcan XC72) was mixed with 4500 g of a dinitrodiamine platinum nitric acid solution containing 15 wt% platinum, and after stirring and mixing, 550 ml of 98% ethyl alcohol was added as a reducing agent. This solution was stirred and mixed at about 95 ° C. for 6 hours, and platinum was supported on carbon powder to obtain a platinum catalyst.
[0024]
Next, 720 ml of water was added to 35.47 g (ruthenium: 2.92 g) of a ruthenium chloride solution containing 8.232 wt% ruthenium, mixed and stirred, and then 25 g of the platinum catalyst (platinum: 5.64 g) was added. Soaked. Then, 80 ml of 95% ethyl alcohol is added so that the concentration becomes 10 vol% with respect to the total volume of the mixed solution, and the mixed solution after addition of the alcohol is allowed to stir at the boiling point (about 95 ° C.) for 6 hours. Reacted. The solution after completion of the reaction was filtered and dried at 60 ° C. to obtain a platinum / ruthenium catalyst.
[0025]
The alloying heat treatment of platinum and ruthenium was performed by holding at 900 ° C. for 0.5 to 1 hour in 50% hydrogen gas (balance: nitrogen gas).
[0026]
Second Embodiment In this embodiment, the catalyst was produced using methyl alcohol instead of ethyl alcohol as the reducing agent. Therefore, the basic embodiment is not different from the first embodiment. Therefore, the description which overlaps is avoided and only the difference in the form in the ruthenium precipitation process is described.
[0027]
In this ruthenium precipitation step, a platinum catalyst was prepared as in the first embodiment, and 450 ml of water was added to 35.47 g of ruthenium chloride solution containing 8.232 wt% ruthenium (ruthenium: 2.92 g). After mixing and stirring, 25 g of platinum catalyst (platinum: 5.64 g) was immersed. Then, 50 ml of 95% methyl alcohol is added so that the concentration becomes 10 vol% with respect to the total volume of the mixed solution, and the mixed solution after the addition of alcohol is allowed to stir at around the boiling point (about 95 ° C.) for 6 hours. And reacted. The solution after completion of the reaction was filtered and dried as in the first embodiment to obtain a platinum / ruthenium catalyst.
[0028]
[Comparative example]
In order to compare with the method according to the present invention, a catalyst was produced by a conventional method as a comparative example. After adding 100 ml of water to 35.47 g of ruthenium chloride solution (ruthenium: 2.92 g), mixing and stirring, 25.0 g of platinum catalyst in which platinum was previously supported on carbon powder in the same manner as in the first embodiment ( Platinum: 5.64 g) was added. This mixed solution was stirred at room temperature for 1 hour to impregnate the ruthenium solution. Thereafter, the solution was dried at 60 ° C., and the dried product was reduced at 250 ° C. for 0.5 hour and further at 900 ° C. for 0.5 hour under hydrogen reflux to obtain a catalyst.
[0029]
[Experiment 1]
About the platinum / ruthenium composite catalyst manufactured by the above manufacturing method, the battery performance of the hydrogen electrode side half cell was evaluated. The measurement is performed in hydrogen gas mixed with 100 ppm of carbon monoxide. The measurement results at a current density of 500 mA / cm 2 are shown in Table 1. From Table 1, it was found that the catalysts of the first embodiment and the second embodiment both have a polarization value of about 30% lower than that of the comparative example, and have high carbon monoxide catalyst poisoning resistance.
[0030]
[Table 1]
Figure 0003839961
[0031]
[Experimental example 2]
Next, the influence of alloying by heat treatment was examined. First, the hydrogen electrode half-cell battery performance was evaluated for the catalyst that had been subjected to the alloying heat treatment at 900 ° C. for 0.5 hours in the first embodiment and the catalyst that did not have the alloying heat treatment. The measurement is performed in a hydrogen gas mixed with 100 ppm of carbon monoxide as described above. The measurement results are shown in FIG. In FIG. 1, the polarization value is plotted on the vertical axis and the current density value is plotted on the horizontal axis, and the polarization value at each current density is plotted.
[0032]
As shown in FIG. 1, the heat-treated catalyst has a low polarization value at any current density, and the catalyst according to the present invention exhibits further excellent carbon monoxide catalyst poisoning resistance when heat-treated. I understood it.
[0033]
[Experiment 3]
Next, the influence of the heat treatment temperature was examined. The measurement conditions are the same as above. The measurement results are shown in FIG. In FIG. 2, the vertical axis represents the polarization value of the hydrogen electrode at a current density of 500 mA / cm 2 , and the horizontal axis represents the heat treatment temperature, and the polarization value of the electrode catalyst produced at each temperature is plotted. Further, the comparison of the influence of the heat treatment temperature was performed on a catalyst in which the supported amount of platinum and ruthenium was changed, and was performed on a 30% supported catalyst and a 50% supported catalyst.
[0034]
From FIG. 2, it was found that in the case of a 30% supported catalyst, the polarization value decreased as the heat treatment temperature increased, and the catalyst performance improved as the treatment temperature increased. That is, it was found that the alloying of platinum and ruthenium is progressing with the increase of the processing temperature. However, in the case of a 50% supported catalyst, the polarization value was minimized near 700 ° C., but thereafter the electrode value increased and the performance decreased with increasing heat treatment temperature. This is presumably because, when the loading ratio is large, the precious metal particles are aggregated when the heat treatment is performed at a high temperature, and the performance is lowered.
[0035]
【The invention's effect】
According to the present invention, a composite catalyst in which platinum and ruthenium particles are highly dispersed in a state in which they are close to each other can be obtained. As a result, a fuel cell catalyst excellent in carbon monoxide catalyst poisoning resistance can be obtained. Furthermore, by subjecting this catalyst to heat treatment, the platinum particles and the ruthenium particles can be brought closer to each other to be alloyed, whereby the poisoning of the carbon monoxide catalyst can be further improved.
[Brief description of the drawings]
FIG. 1 is a graph showing a comparison of differences in electrode characteristics with and without heat treatment.
FIG. 2 is a graph showing a comparison of electrode characteristics at each heat treatment temperature.

Claims (5)

炭素粉末担体に白金を担持させた触媒とルテニウム化合物の水溶液とを混合させて混合溶液を製造し、該混合溶液の全容量に対して5〜15vol%のアルコールを添加し加熱することにより、ルテニウムを還元させて、担体上に白金とルテニウムとを複合的に担持させ、これにより得られた触媒を熱処理することで白金とルテニウムとを合金化させる高分子固体電解質型燃料電池用合金触媒の製造方法。A catalyst in which platinum is supported on a carbon powder carrier and an aqueous solution of a ruthenium compound are mixed to produce a mixed solution, and 5 to 15 vol% of alcohol is added to the total volume of the mixed solution and heated to obtain ruthenium. Production of a solid polymer electrolyte fuel cell alloy catalyst in which platinum and ruthenium are supported on a support in a composite form and platinum and ruthenium are alloyed by heat-treating the resulting catalyst. Method. アルコールは、メチルアルコール又はエチルアルコールである請求項1記載の高分子固体電解質型燃料電池用触媒の製造方法  The method for producing a catalyst for a solid polymer electrolyte fuel cell according to claim 1, wherein the alcohol is methyl alcohol or ethyl alcohol. 加熱温度は、90〜100℃である請求項1又は請求項2記載の高分子固体電解質型燃料電池用触媒の製造方法。The method for producing a solid polymer electrolyte fuel cell catalyst according to claim 1 or 2, wherein the heating temperature is 90 to 100 ° C. ルテニウム化合物は、塩化ルテニウムである請求項1から請求項3のいずれか1項に記載の高分子固体電解質型燃料電池用触媒の製造方法。  The method for producing a solid polymer electrolyte fuel cell catalyst according to any one of claims 1 to 3, wherein the ruthenium compound is ruthenium chloride. 熱処理温度は、600℃〜900℃である請求項1から4のいずれか1項に記載の高分子固体電解質型燃料電池用触媒の製造方法。The method for producing a solid polymer electrolyte fuel cell catalyst according to any one of claims 1 to 4 , wherein the heat treatment temperature is 600 ° C to 900 ° C.
JP16798398A 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell Expired - Lifetime JP3839961B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16798398A JP3839961B2 (en) 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell
US09/462,477 US6339038B1 (en) 1998-06-16 1999-05-24 Catalyst for a fuel cell containing polymer solid electrolyte and method for producing catalyst thereof
PCT/JP1999/002710 WO1999066576A1 (en) 1998-06-16 1999-05-24 Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
EP99923853.8A EP1022795B1 (en) 1998-06-16 1999-05-24 Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16798398A JP3839961B2 (en) 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000000467A JP2000000467A (en) 2000-01-07
JP3839961B2 true JP3839961B2 (en) 2006-11-01

Family

ID=15859641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16798398A Expired - Lifetime JP3839961B2 (en) 1998-06-16 1998-06-16 Method for producing catalyst for solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3839961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072934A (en) * 2009-09-30 2011-04-14 Hokkaido Univ PtRu/C CATALYST HAVING CONTROLLED ALLOYING DEGREE AND DISPERSIBILITY AND METHOD FOR PRODUCING THE SAME
WO2012133017A2 (en) 2011-03-25 2012-10-04 国立大学法人北海道大学 Fuel cell anode catalyst and manufacturing method therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201993B2 (en) 2000-08-04 2007-04-10 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
JP4773622B2 (en) * 2001-01-30 2011-09-14 田中貴金属工業株式会社 Method for producing catalyst for solid polymer electrolyte fuel cell
KR100570689B1 (en) 2004-05-11 2006-04-12 삼성에스디아이 주식회사 Catalyst for fuel cell and fuel cell comprising same
WO2007029607A1 (en) * 2005-09-08 2007-03-15 Nippon Sheet Glass Company, Limited Noble metal microparticle and method for production thereof
KR100647700B1 (en) 2005-09-14 2006-11-23 삼성에스디아이 주식회사 Supported catalyst and fuel cell using the same
KR100846478B1 (en) * 2006-05-16 2008-07-17 삼성에스디아이 주식회사 Supported Catalyst, manufacturing method thereof, and fuel cell using the same
US7608358B2 (en) 2006-08-25 2009-10-27 Bdf Ip Holdings Ltd. Fuel cell anode structure for voltage reversal tolerance
KR101113632B1 (en) 2009-10-29 2012-03-13 서울대학교산학협력단 Synthesis methods of Nano-sized transition metal catalyst on a Carbon support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072934A (en) * 2009-09-30 2011-04-14 Hokkaido Univ PtRu/C CATALYST HAVING CONTROLLED ALLOYING DEGREE AND DISPERSIBILITY AND METHOD FOR PRODUCING THE SAME
WO2012133017A2 (en) 2011-03-25 2012-10-04 国立大学法人北海道大学 Fuel cell anode catalyst and manufacturing method therefor

Also Published As

Publication number Publication date
JP2000000467A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
Travitsky et al. Pt-, PtNi-and PtCo-supported catalysts for oxygen reduction in PEM fuel cells
JP5082187B2 (en) Method for producing electrode catalyst particles for polymer electrolyte fuel cell
EP1812160B1 (en) A process for preparing a noble metal-based alloy catalyst on a carbon support material.
US4202934A (en) Noble metal/vanadium alloy catalyst and method for making
JP2879649B2 (en) Method for producing platinum-based catalyst
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JPH0724775B2 (en) Ternary alloy catalyst and method for producing the same
Ghavidel et al. The relationship between the structure and ethanol oxidation activity of Pt-Cu/C alloy catalysts
KR20120115559A (en) Process for producing a catalyst and catalyst
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JP3839961B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
KIVRAK The effect of temperature and concentration for methanol electrooxidation on Pt-Ru catalyst synthesized by microwave assisted route
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
EP2735044B1 (en) Electrocatalytic composite(s), associated composition(s), and associated process(es)
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
WO2005081340A1 (en) Supported catalyst for fuel cell, method for producing same and fuel cell
JP4649574B2 (en) Anode catalyst for polymer electrolyte fuel cell
CN109792059B (en) Catalyst for solid polymer fuel cell and method for producing same
Montaña-Mora et al. Phosphorous incorporation into palladium tin nanoparticles for the electrocatalytic formate oxidation reaction
Fox et al. Effect of pretreatment on Pt–Co/C cathode catalysts for the oxygen reduction reaction
KR20210012676A (en) Method for manufacturing alloy catalysts using metal-aniline complex and transient metals
Boennemann et al. Efficient fuel cell catalysts emerging from organometallic chemistry
JP2020145154A (en) Manufacturing method of platinum core-shell catalyst and fuel cell using the same
JP4773622B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JP4082800B2 (en) Catalyst production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term