[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3839428B2 - 直流機 - Google Patents

直流機 Download PDF

Info

Publication number
JP3839428B2
JP3839428B2 JP2003328643A JP2003328643A JP3839428B2 JP 3839428 B2 JP3839428 B2 JP 3839428B2 JP 2003328643 A JP2003328643 A JP 2003328643A JP 2003328643 A JP2003328643 A JP 2003328643A JP 3839428 B2 JP3839428 B2 JP 3839428B2
Authority
JP
Japan
Prior art keywords
magnetic flux
armature
rectification
magnets
brush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328643A
Other languages
English (en)
Other versions
JP2005027491A (ja
Inventor
猛 田中
博幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2003328643A priority Critical patent/JP3839428B2/ja
Priority to CNB2004100485672A priority patent/CN100468924C/zh
Priority to US10/862,344 priority patent/US6927518B2/en
Priority to EP04013629A priority patent/EP1487090B1/en
Priority to DE602004007984T priority patent/DE602004007984T2/de
Publication of JP2005027491A publication Critical patent/JP2005027491A/ja
Application granted granted Critical
Publication of JP3839428B2 publication Critical patent/JP3839428B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • H02K23/28DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings having open windings, i.e. not closed within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/40DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the arrangement of the magnet circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Description

本発明は、直流モータ等の直流機に関するものである。
従来、直流機としての直流モータ等は、一般的に異なる極性(N極、S極)を有する磁石と、電機子と、コンミテータと、2つのブラシとを備えている。そして、直流モータは、ブラシとコンミテータとで電機子コイルに通電している電流の方向を切り換えることで回転する。
しかし、この電流の方向を切り換えるいわゆる整流の際、電機子コイルのインダクタンスのために電流の直線的な変化を遅らせようとする作用が生じ、不足整流となりやすい。この場合、整流終期においてコンミテータから電機子コイルに流れる電流は強制的に遮断されることになり、火花放電(整流火花)を発生することになる。この現象が、ブラシ摩耗、騒音、電磁ノイズの原因となることは既に知られており、根本的な解決が望まれている。
上述したような不足整流を解消するために、本出願人は、磁石の磁束(密度)分布を変えることで整流中の電機子コイルを通過する磁束量を変え、整流が改善できるように構成した直流モータを提案している(特許文献1参照)。
図21には、上記公報における直流モータ71の概略構成を示す。詳述すると、モータハウジング77には、N極及びS極を構成する一対の磁石72,73が電機子74を挟んで対向配置されている。電機子74は、電機子コア78と、電機子コイル79a,79bと、コンミテータ80とを有している。電機子コア78には、等間隔に12個のティース78aが形成されており、そのうち6個のティース78aを一組としてその周囲に電機子コイル79a,79bが巻き付けられている。図示を省略しているが、複数の他の電機子コイルが6つのティース78aを一組として同様に巻き付けられている。
電機子74の一端にはコンミテータ80が配設されている。コンミテータ80は、複数のセグメント(整流子片)76を有している。そして、隣り合うセグメント76a,76b間は前記電機子コイル79aにて結線され、隣り合うセグメント76c,76d間は前記電機子コイル79bに結線されている。また、ブラシ75a,75bがコンミテータ80に摺接するように付勢された状態で配設されている。そして、電機子コイル79a,79bには、図示しない直流電源から供給される直流電源が、ブラシ75a,75bとコンミテータ80の各対応するセグメント76を経て流入されるようになっている。
電機子74がX方向に回転すると、ブラシ75aによりセグメント76a,76bが短絡されて電機子コイル79aに短絡電流が流れ、ブラシ75bによりセグメント76c,76dが短絡されて電機子コイル79bに短絡電流が流れる。これらブラシ75a,75bによる短絡中に、電機子コイル79a,79bに流れる電流の向きが変更されて、電機子74が時計回り方向(図21中X方向)に回転するようになっている。なお、図21に示すように、12個のセグメント76が周方向に30°毎に設けられており、電機子コイル79a,79bの電流の向きが変更される。つまり、電機子74が略30°回転する間に電機子コイル79a,79bの整流が行われる。
磁石72は、主磁極72a(N極)と、該主磁極72aの両端部から延設される端部磁極72b,72c(S極)とを備えている。また、磁石73は、主磁極73a(S極)と、該主磁極73aの両端部から延設される端部磁極73b,73c(N極)とを備えている。そして、整流中の電機子コイル79aにより巻装されるティース先端部78bは、整流前半には磁石72の回転方向側の端部磁極72bに位置し、整流後半には磁石73の回転方向逆側の端部磁極73cに位置するように構成されている。また、整流中の電機子コイル79bにより巻装されるティース先端部78bは、整流前半には磁石73の回転方向側の端部磁極73bに位置し、整流後半には磁石72の回転方向逆側の端部磁極72cに位置するように構成されている。
上記の構成により、電機子コイル79aを通過する磁束は、整流前半では主磁極72a(N極)に対して逆極性の端部磁極72b(S極)により減少し、整流後半では主磁極72a(N極)に対して同じ極性の端部磁極73c(N極)により増加する。また、電機子コイル79bを通過する磁束は、整流前半では主磁極73a(S極)に対して逆極性の端部磁極73b(N極)により減少し、整流後半では主磁極73a(S極)に対して同じ極性の端部磁極72c(S極)により増加する。従って、整流前半では、整流中の電機子コイル79a,79bを通過する磁束の変化による誘起電圧は整流を遅らせる方向に発生する。一方、整流後半では、整流中の電機子コイル79a,79bを通過する磁束の変化による誘起電圧は整流を進ませる方向に発生される。これにより、整流を改善することができる。
更には、上記の直流モータ71において、端部磁極72bと端部磁極73cとの間、及び端部磁極72cと端部磁極73bとの間が接触するように磁石72,73を形成する場合についても提案されている。そうすると、モータハウジング77の内周面において全周に亘って磁石72,73が配設されることとなり、磁石72,73の磁束は有効に利用される。
特開2002―95230号公報
上記の直流モータ71では、磁石72,73において、主磁極72a,73aの両端部に端部磁極72b,72c,73b,73cを設けることにより磁束変化を持たせ、その磁束変化により整流が改善される。しかし、直流モータ71では、磁石72の回転方向側端部に主磁極72a(N極)とは逆極性である端部磁極72b(S極)を設け、磁石73の回転方向側端部に主磁極73a(S極)とは逆極性である端部磁極73b(N極)を設ける。そして、整流中の電機子コイル79a,79bを通過する磁束量を減少させるため、電機子74を回転させるために寄与する磁束量が減少してしまうという問題があった。
一方、一般に、直流モータには、その電機子コイルに電流が流れると電機子起磁力による磁束が発生し、永久磁石の磁束に影響を及ぼす、いわゆる電機子反作用が発生する。電機子反作用が大きいと空間の磁束分布が大きく歪み、例えば、電機子コイルの通電量が大きくなり誘起電圧が大きくなることによって、整流電流の切り換わりが遅れて整流終了時に電流がいきなり切り替わりブラシ花火が発生する場合がある。このような事態を防止するために、電機子コイルの通電量を大きくしても、電機子反作用の影響を小さくすることが望まれている。
しかし、上記の直流モータ71は、電機子コイル79a,79bの通電量を大きくした場合の電機子反作用による影響が考慮されておらず、通電量を大きくした場合にも電機子反作用により良好な整流が妨げられるのを防止することが望まれる。
本発明は上記課題に鑑みなされたものであり、整流改善を行うことができるとともに、磁石の磁束を電機子の回転のために有効に利用することができる直流機を提供することを目的とする。
上記の目的を達成するため、請求項1に記載の直流機は、等角度間隔に設けられた複数のティースを有する電機子コアに電機子コイルを巻装して構成される電機子を円筒状のヨークに内包し、該ヨークの内側面にて、全周に亘って周方向に沿って異なる極性を有する複数の磁石を交互に配置した直流機において、前記電機子コイルは、前記各磁石と同じ角度幅に対応する数のティースに巻装されており、整流が開始されるとき、整流中の電機子コイルにより巻装される回転方向逆側第1ティースの中心線に対応する位置が前記各磁石の境界に位置し、整流が終了するとき、整流中の電機子コイルにより巻装される回転方向側第1ティースの中心線に対応する位置が前記各磁石の境界に位置することを特徴とする。
請求項2に記載の発明は、請求項1に記載の直流機において、前記各磁石の回転方向側の端部が、整流の前半に対応した長さだけ弱磁束部とされていることを特徴とする。
請求項3に記載の発明は、請求項2に記載の直流機において、前記弱磁束部は前記ヨークの周方向に両端側から互いに逆方向に向かって徐々に磁束が減少するように形成されていることを特徴とする。
請求項4に記載の発明は、請求項1乃至請求項3のうち何れか1項に記載の直流機において、4つの前記磁石と、4つのブラシとを備えることを特徴とする。
請求項5に記載の発明は、請求項1乃至請求項3のうち何れか1項に記載の直流機において、前記複数の磁石は、開角角度180°をなして一対設けられ、前記電機子を挟んで対向位置に配置される第1及び第2ブラシと、該第1及び第2ブラシの対向位置から所定角度をなして配置される第3ブラシとを備え、前記各磁石の少なくとも一つは、前記第3のブラシにて短絡される前記電機子コイルに対応して形成された第2の弱磁束部を備えることを特徴とする。
請求項6に記載の発明は、請求項5に記載の直流機において、前記第2の弱磁束部は、前記回転方向側第1ティースの先端が、前記第3のブラシによる短絡時に通過する位置に形成されることを特徴とする。
請求項7に記載の発明は、請求項5に記載の直流機において、前記第2の弱磁束部は、前記回転方向逆側第1ティースの後端が、前記第3のブラシによる短絡時に通過する位置に形成されることを特徴とする。
請求項8に記載の発明は、請求項5乃至請求項7のうち何れか1項に記載の直流機において、前記第2の弱磁束部は、磁束がその回転方向逆側端部から回転方向側端部に向かって漸増するように形成されていることを特徴とする。
請求項9に記載の発明は、請求項2乃至請求項8のうち何れか1項に記載の直流機において、前記弱磁束部は、前記各磁石を切り欠いて形成されていることを特徴とする。
請求項10に記載の発明は、請求項2乃至請求項8のうち何れか1項に記載の直流機において、前記各弱磁束部は、着磁制御により形成されていることを特徴とする。
〔作用〕
請求項1に記載の発明によれば、整流中の電機子コイルの回転方向側第1ティースは、整流の前半は一方の磁石に位置し、整流の後半は一方の磁石とは逆極性の他方の磁石に位置する。このため、電機子コイルを通過する整流電流が切り換わる位置にて、該電機子コイルを通過する磁石による磁束量が変化し、整流区間に磁石が設けられていない場合と比較して、誘起電圧の発生傾きが大きい。これにより、整流開始時の誘起電圧が確保されるため、整流が進められて整流を改善することができる。それとともに、電機子コイルに電流が流れることにより生ずる電機子反作用の影響を小さくすることができる。即ち、電機子反作用によりヨーク内の磁界が乱れても、整流初期における誘導電圧を確保することができて整流が進められるため、整流の切り換えが遅れて整流終期に整流電流がいきなり切り換わる(遮断されてしまう)という事態を防止することができる。
また、電機子コイルを通過する電流が切り換わるまで一方の磁石の磁束が電機子を回転させるための回転力を発生させるために寄与することとなり、電機子コイルを通過する電流が切り換わると他方の磁石の磁束が電機子を回転させるための回転力を発生させるために寄与することとなる。つまり、電機子の回転を妨げる向きに作用する力が発生する磁束がティースを通過することがない。従って、整流改善を行うことができるとともに、磁石の磁束を電機子の回転のために有効に利用することができる。
請求項2に記載の発明によれば、請求項1に記載の発明の作用に加えて、整流の前半に、整流中の電機子コイルが巻装された回転方向側第1ティースが通過する一方の磁石の磁束が減少して、整流を遅らせる方向に誘起電圧が発生されるため、整流を改善することができる。
請求項3に記載の発明によれば、請求項2に記載の発明の作用に加えて、整流の初期には整流を遅らせる方向に誘起電圧を発生させ、その後整流区間の半分の位置までは整流を進ませる方向に誘起電圧を発生させることにより、効率よく整流を改善することができる。
請求項4に記載の発明によれば、請求項1乃至請求項3のうち何れか1項に記載の発明の作用に加えて、4極4ブラシの直流機とすることができる。
請求項5〜請求項7に記載の発明によれば、請求項1乃至請求項3のうち何れか1項に記載の発明の作用に加えて、電機子コイルへの通電により発生する誘起電圧を短絡区間においてキャンセルすることが可能になる。従って、負荷の上昇等、運転状態の変化により通電量が増加した場合においても、短絡時の電機子コイルを流れる電流の乱れを防止し、良好な整流を維持することができる。
請求項8に記載の発明によれば、請求項5乃至請求項8のうち何れか1項に記載の発明の作用に加えて、電機子コイルに発生する通電量増加時の通電時誘起電圧を短絡区間において略ゼロとすることが可能になる。従って、短絡時の電機子コイルを流れる電流の乱れを防止し、良好な整流を維持することができる。
請求項9に記載の発明によれば、請求項2乃至請求項8のうち何れか1項に記載の発明の作用に加えて、磁石の形状を調節することで、所望の磁束分布とすることができる。
請求項10に記載の発明によれば、請求項2乃至請求項8のうち何れか1項に記載の発明の作用に加えて、各磁石を組み付けた後に各弱磁束部を形成することができるので、製造工程の簡略化を図ることができる。
本発明によれば、整流改善を行うことができるとともに、磁石の磁束を電機子の回転のために有効に利用することができる。
〔第1実施形態〕
以下、本発明を直流機としてのブロア用モータに具体化した実施形態を、図1乃至図5を参照して説明する。
図1は第1実施形態のモータ1の概略構成を示す部分断面図であり、図2は整流の説明図である。
図1に示すように、モータ1は、ヨークであるモータハウジング7内に回転軸6に固定された電機子4が軸支され、モータハウジング7内の全周に亘って、電機子4を挟んで磁石2,3が対向配置されている。磁石2,3は、それぞれ円弧角度が180°の半円筒形状に形成され、磁石2はN極に着磁され、磁石3はS極に着磁されている。即ち、異なる極性を有する複数の磁石2,3を等角度間隔で交互に配置している。
電機子4は、電機子コア8と、その電機子コア8に巻装される電機子コイル9とを有し、直流電流の供給により回転する。
電機子コア8には、複数のティース12が形成されており、その半数のティース12の周囲に電機子コイル9a,9bが巻き付けられている。なお、本実施形態では、ティース12の個数は12個であり、そのティース12が、電機子4の周方向に30°毎に形成されている。つまり、隣り合うティース12は、その中心線のなす角度(モータ電機子スロット角、以下、ティース12間の角度という。)θが30°(=360°/12)となるように形成されている。そして、電機子コイル9a,9bは、6個のティース12、即ち、磁石2,3と同じ角度幅180°に対応する数のティース12に巻回されている。また、図示を省略しているが、複数の他の電機子コイルが6つのティース12毎に同様に巻き付けられている。つまり、電機子コイル(巻線)9の巻装方式は分布巻である。
電機子4の一端には、セグメント11を有するコンミテータ10が配設されている。図1に示すように、隣り合うセグメント11間は前記電機子コイル9a,9bにて結線されている。第1及び第2ブラシ5a,5bはコンミテータ10を挟んで配設され、セグメント11に摺接するように付勢されている。図示しない直流電源から供給される直流電流が、第1及び第2ブラシ5a,5bとコンミテータ10のセグメント11を経て電機子コイル9a,9bに流入されると、電機子4が回転し始める。つまり、隣接する一対のセグメント11間が第1及び第2ブラシ5a,5bを介して短絡することにより、電機子コイル9a,9bに流れる電流の向きが変更されて、電機子4が図1における時計回り方向(図中、矢印X方向)に回転し続ける。
本実施形態では、12個のセグメント11が周方向に30°毎に設けられており、電機子4が第1及び第2ブラシ5a,5bに対して略30°回転するとき、電機子コイル9a,9bの電流の向きが変更される。このとき、電機子コイル9a,9bが整流中であるといい、この回転する区間が各電機子コイル9a,9bに対する整流区間である。つまり、電機子4が略30°回転する間に電機子コイル9a,9bの整流が行われる。
なお、本実施形態では、第1及び第2ブラシ5a,5bとセグメント11との当接幅に対応する当接円弧角度は、前記ティース12間の角度θと略同じに設定されている。そして、各電機子コイル9の整流区間に対応する電機子4の回転角度も前記ティース12間の角度θに対応している。
ここで、第1ブラシ5aから電機子コイル9aに流入される電流変化を、図2を参照して説明する。なお、図2に示す各セグメント11は、実際には図1に示すように離間している。
先ず、図2(a)に示すように、整流開始時は、第1ブラシ5aはセグメント11aに接触し(図1参照)電機子コイル9aに右から左へ電流Iが流れており、誘起電圧は電流Iに逆らう方向(図中左から右)に発生される。そして、図2(b)に示すように、電機子4が回転してセグメント11a,11bが第1ブラシ5aに対して右側(図中X方向)に移動する。すると、第1ブラシ5aによって2つのセグメント11a,11bが短絡されて、電機子コイル9aに流れる電流は略0となる。このとき、電機子コイル9aに発生する誘起電圧も0となる。更に、図2(c)に示すように、電機子4が回転してセグメント11a,11bが第1ブラシ5aに対して右側(図中X方向)に移動すると、電機子コイル9aには左から右へ電流Iが流れ、誘起電圧は電流Iに逆らう方向(図中右から左)に発生される。
つまり、図2(a)→(b)→(c)の順に電機子4が回転するとき、その際に電機子コイル9aに流れる電流Iの向きが反転する。また、該電機子コイル9aに発生する誘起電圧の向きも反転する。この電機子コイル9aの電磁力と、磁石2,3からの磁力とによって回転力が発生し、モータ1が回転駆動する。
第1ブラシ5aにより短絡されて電機子コイル9aの整流が開始される回転位置にて、同電機子コイル9aにより巻装されるティース12の回転方向逆側第1ティース12bの中心線に対応する位置が、図中上側の磁石2(N極)と磁石3(S極)の境界位置に位置するように、第1ブラシ5aの位置が設定されている。また、第2ブラシ5bに短絡されて電機子コイル9bの整流が開始される回転位置にて、同電機子コイル9bにより巻装されるティース12の回転方向逆側第1ティース12dの中心線に対応する位置が図中下側の磁石2(N極)と磁石3(S極)の境界位置に位置するように、第2ブラシ5bの位置が設定されている。なお、この状態は図2(a)に示す状態である。
このため、電機子4が図1のX方向に15°回転すると、第1ブラシ5aにより整流される電機子コイル9aが巻装される回転方向側第1ティース12aの回転方向先端側は、図中下側の磁石2(N極)と磁石3(S極)との境界位置とされる。また、第2ブラシ5bにより整流される電機子コイル9bが巻装される回転方向側第1ティース12cの回転方向先端側は、図中上側の磁石2(N極)と磁石3(S極)との境界位置とされる。なお、この状態は図2(b)に示す状態である。
そして、更に電機子4が図1のX方向に15°回転すると、電機子コイル9a,9bにおける整流は終了する。このとき、第1ブラシ5aにより整流される電機子コイル9aが巻装される回転方向側第1ティース12aの中心線に対応する位置は、図中下側の磁石2(N極)と磁石3(S極)との境界位置とされる。また、第2ブラシ5bにより整流される電機子コイル9bが巻装される回転方向側第1ティース12cの中心線に対応する位置は、図中上側の磁石2(N極)と磁石3(S極)との境界位置とされる。なお、この状態は図2(c)に示す状態である。
次に、上記のモータ1(直流機)の作用について説明する。
図1において、第1及び第2ブラシ5a,5bを介して給電されると、電機子4が図中X方向に回転する。すると、整流中の電機子コイル9aが巻装される6個のティース12における回転方向側第1ティース12aは、磁石2の回転方向側端部から15°(=θ/2)の角度の区間と、磁石3の回転方向逆側から15°(=θ/2)の角度の区間を通過することとなる。また、整流中の電機子コイル9bが巻装される6個のティース12における回転方向側第1ティース12cは、磁石3の回転方向側端部から15°(=θ/2)の角度の区間と、磁石2の回転方向逆側から15°(=θ/2)の角度の区間を通過することとなる。
図5に示すモータ81を用いて、整流中の電機子コイル9a,9bが巻装される6個のティース12における回転方向側第1ティース12a,12cを通過する磁束の有無に対する作用を比較する。
図5に示すように、比較例としてのモータ81は、N極及びS極を構成する一対の磁石82,83を備えており、各磁石82,83の円弧角度は150°である。また、磁石82,83の円弧角度に対応して、電機子コイル89a,89bは5個のティース12に巻装されており、電機子コイル89a,89bの巻角(具体的には、電機子コイル89が巻装される5つのティース12において、回転方向側の端部と回転方向逆側の端部とのなす角)は150°とされている。尚、図示を省略しているが、複数の他の電機子コイルが5つのティース12毎に同様に巻き付けられていることはいうまでもない。
図3は、電機子4の回転位置に応じた磁束の変化、及び発生する誘起電圧の変化を示す波形図である。同図には、比較例のモータ81(図5参照)の電機子4の回転位置に応じた磁束の変化、及び発生する誘起電圧の変化を示している。
図3において、基準となる電機子コイル9の位置は、回転方向側の先端位置であり、その位置を0°〜360°回転させて、電機子コイル9を通過する前記変化を表したのである。なお、回転方向側の先端位置は、言い換えると、複数のティース12を跨いで電機子コイル9が巻装された回転方向側第1ティース12aと、その回転方向側第1ティース12aの更に回転側のティース12との間のスロット中心線である。よって、図1の状態は、最上点を0°とすれば、電機子コイル9の位置がX方向に165°回転したときの状態である。
図3に示す磁束の変化は、磁石2,3、及び電機子4の回転時における磁束(電機子コイル9を流れる電流による磁束)を合計した磁束量に相当する。また、誘起電圧は、便宜的に前記磁束により発生する誘起電圧と電機子4の回転時における磁束により発生する誘起電圧とを合計した誘起電圧の変化を示している。
図3に示すように、本発明のモータ1においては、整流中の電機子コイル9a,9bが巻装された回転方向側第1ティース12a,12cが整流区間において通過する部分に磁石2,3が設けられているため、整流区間でも磁束は変化している。一方、比較例のモータ81においては、整流中の電機子コイル89a,89bが巻装された回転方向側第1ティース12e,12fが整流区間において通過する部分に磁石が設けられていないため、整流区間での磁束は略0となっている。この結果、整流区間において、本発明のモータ1に発生される誘起電圧の傾斜は、比較例のモータ81に発生される誘起電圧の傾斜よりも大きくなっている。従って、整流開始時の誘起電圧の値は本発明の方が比較例よりも大きくなっている。このように、整流開始時に誘起電圧が確保されることで、電機子コイル9a,9bの整流が進められる。
図4には、整流時の整流電流の変化及び発生する誘起電圧の変化を示している。また、電機子コイル9a,9bの通電量を増加させたときの整流電流の変化及び発生する誘起電圧の変化を示している。なお、同図には、同様に比較のために、モータ81(図5参照)の整流時の整流電流の変化及び発生する誘起電圧の変化を示し、電機子コイル89a,89bの通電量を増加させたときの整流電流の変化及び発生する誘起電圧の変化を示している。
図4に示すように、通電量を増加させた場合、モータ1及びモータ81における誘起電圧はそれぞれ変化する。整流区間においては、本発明のモータ1に発生する誘起電圧を示す曲線は下方に移動し、比較例のモータ81により発生する誘起電圧を示す曲線も下方に移動している。これは、電機子コイル9a,9b及び電機子コイル89a,89bの通電量が増加することで、電機子反作用により電機子起磁力が発生して磁束に影響を及ぼし、モータハウジング7内の電機的中性軸がずれるため、誘起電圧が変化するものと考えられる。
図4に示すように、モータ1によれば、電機子コイル9a,9bの通電量が増加し、この電流に起因する電機子反作用により誘起電圧がずれても、比較例と比較して誘起電圧の発生傾きが大きいため、整流開始時の誘起電圧が確保される。
この結果、本発明のモータ1においては、電機子コイル9a,9bを通過する電流の大小に関わらず整流開始時の誘起電圧を確保することができ、整流を進ませる方向に誘起電圧が発生されるため、整流終了時に電流がいきなり切り換わるのを防止することができる。
〔実施形態の効果〕
従って、本実施形態のモータ1(直流機)によれば、以下のような効果を得ることができる。
(1)本実施形態では、電機子コイル9a,9bは、各磁石2,3と同じ角度幅に対応する数のティース12に巻装されており、整流が開始されるとき、整流中の電機子コイル9a,9bにより巻装される回転方向逆側第1ティース12b,12dの中心線に対応する位置が各磁石2,3の境界に位置する。そして、整流が終了するとき、整流中の電機子コイル9a,9bにより巻装される回転方向側第1ティース12a,12cの中心線に対応する位置が各磁石2,3の境界に位置する。
このため、整流中の電機子コイル9a,9bの回転方向側第1ティース12a,12cは、整流の前半は一方の磁石2,3に位置し、整流の後半は一方の磁石2,3とは逆極性の他方の磁石3,2に位置する。このため、電機子コイル9a,9bを通過する整流電流が切り換わる位置にて、該電機子コイル9a,9bを通過する磁石2,3による磁束量が変化し、整流区間に磁石が設けられていない場合と比較して、誘起電圧の発生傾きが大きい。このように、整流開始時の誘起電圧が確保されるため、整流が進められて整流改善を行うことができる。それとともに、電機子コイル9a,9bに電流が流れることにより生ずる電機子反作用の影響を小さくすることができる。即ち、電機子反作用によりモータハウジング7内の磁界が乱れても、整流初期における誘導電圧を確保することができて整流が進められるため、整流の切り換えが遅れて整流終期に整流電流がいきなり切り換わる(遮断されてしまう)という事態を防止することができる。
(2)本実施形態では、電機子コイル9a,9bを通過する電流が切り換わるまで一方の磁石2,3の磁束が電機子4を回転させるための回転力を発生させるために寄与することとなる。そして、電機子コイル9a,9bを通過する電流が切り換わると、他方の磁石3,2の磁束が電機子4を回転させるための回転力を発生させるために寄与することとなる。つまり、電機子4の回転を妨げる向きに作用する力が発生する磁束がティース12を通過することがない。従って、磁石2,3の磁束を電機子4の回転のために有効に利用することができる。
〔第2実施形態〕
以下、本発明を具体化した第2実施形態を図6乃至図9を参照して説明する。なお、第1実施形態と同様の構成については、その詳細な説明及び図面を省略する。
図6は、第2実施形態のモータ21の概略構成を示す部分断面図である。図6に示すように、本実施形態のモータ21は、上記第1実施形態の磁石2,3に代えて磁石22,23を備える。
各磁石22,23はそれぞれ円弧角度180°の半円筒形状に形成され、各磁石22,23の回転方向側の端部がそれぞれ切り欠かれて弱磁束部22a,23aが形成されている。弱磁束部22a,23aは、それぞれ電機子4の周方向に、各ティース12間の角度θの半分(=θ/2)に対応する円弧幅分だけ形成されている。
弱磁束部22a,23aは、切り欠きが形成されることにより、磁石22,23の他の部分よりも径方向の厚みが薄くなっている。このように、厚みを薄くすることで、磁石22,23の他の部分よりも弱い磁束となるように形成されている。また、弱磁束部22a,23aは、周方向に両端側から互いに逆方向に向かって、弱磁束部22a,23aの中央位置に向かって、径方向の幅が漸減するように形成されている。つまり、磁石22,23において、回転方向側端部からθ/4角度幅分だけ径方向の幅が漸減し、θ/4角度幅分だけ径方向の幅が漸増するように形成されている。このため、整流が行われる電機子コイル9a,9bが巻装された回転方向側第1ティース12a,12cを通過する磁束は、整流開始後初期(本実施形態では整流開始後θ/4の円弧角度に対応する区間)は減少し、その後、整流の中間位置までの間には増加する。
次に、モータ21の作用について説明する。
図6において、前記第1実施形態と同様に、第1及び第2ブラシ5a,5bから直流電流が流入されることで、電機子4は図中X方向に回転する。そして、第1及び第2ブラシ5a,5bにおいて整流が行われる。
図7は、本実施形態のモータ21における磁束(磁束密度)の分布を示す波形図である。同図に示すように、上記のように構成された本実施形態のモータ21では、電機子4を通過する磁束は、電機子コイル9aの整流時にその回転方向側第1ティース12aが通過する区間、即ち整流区間を挟んでその磁束方向が逆転する。具体的には、電機子4の回転により、回転方向側第1ティース12aを通過する磁束は、その整流区間の前半(整流初期)において、各磁石22,23に形成された弱磁束部22a,23aの影響により、急激に減少した後一度増加する。そして、その後再び減少を続け整流区間の中間(0°,180°)でゼロとなり、整流区間の後半(整流後期)には、整流開始時とは逆極性の磁束が増加する。
さらに詳述すると、整流開始時から整流区間の1/4の位置(整流開始位置からθ/4角度幅の位置)までの区間においては、第1ブラシ5aにより整流される電機子コイル9aの回転方向側第1ティース12aを通過する磁束が、弱磁束部22aの径方向幅が漸減する部分により減少する。また、第2ブラシ5bにより整流される電機子コイル9bの回転方向側第1ティース12cを通過する磁束が、弱磁束部23aの径方向幅が漸減する部分により減少する。
そして、整流開始時から整流区間の1/4の位置(θ/4角度幅の位置)から、整流が行われる中間位置(θ/2角度幅の位置)までの区間においては、第1ブラシ5aにより整流される電機子コイル9aの回転方向側第1ティース12aを通過する磁束が、弱磁束部22aの径方向幅が漸増する部分により増加する。また、第2ブラシ5bにより整流される電機子コイル9bの回転方向側第1ティース12cを通過する磁束が、弱磁束部23aの径方向幅が漸増する部分により増加する。
その後、整流区間の中間位置(整流開始位置からθ/2角度幅の位置)から整流終了位置(整流開始位置からθ角度幅)までの区間においては、第1ブラシ5aにより整流される電機子コイル9aの回転方向側第1ティース12aは、磁石22(N極)と逆極性の磁石23(S極)に対向する位置を通過する。このため、整流開始時とは逆極性の磁束が増加する。また、第2ブラシ5bにより整流される電機子コイル9bの回転方向側第1ティース12cは、磁石23(S極)と逆極性の磁石22(N極)に対向する位置を通過する。このため、整流開始時とは逆極性の磁束が増加する。
図8は、モータ21の電機子4の回転位置と電機子コイル9aに発生する誘起電圧との関係を示す波形図であり、同図中、波形Aは無通電時誘起電圧、波形Bは電機子電流により発生する誘起電圧、そして波形Cは通電時誘起電圧を示している。
同図に示すように、本実施形態のモータ21では、磁束変化により電機子コイル9aに発生する無通電時誘起電圧は、図7に示す磁束分布に従って、電機子コイル9aの整流区間においてその発生する方向が逆転する。具体的には、電機子コイル9aに発生する無通電時誘起電圧は、整流初期において一度急激に減少する。そして、急激に増加した後、再び減少し、整流区間の中間(180°)でゼロとなる。そして、整流後期には、その発生する方向が逆転する。
また、電機子4への通電時には、電機子コイル9aにその電機子電流により発生する誘起電圧が発生する。従って、電機子コイル9aに発生する通電時誘起電圧の波形Cは、電機子電流(により生ずる磁束)により発生する誘起電圧の波形Bと無通電時誘起電圧の波形Aとの合成波形となる。
ここで、電機子電流により発生する誘起電圧は、電機子4への通電量が増加する程増加する(振幅が大きくなる)。そして、その波形Bは、整流区間の中間(180°)をピークとする正弦波形となり、無通電時誘起電圧の波形Aとは位相が90°ずれている。従って、図8に示す範囲内(90°〜220°)においては、通電時誘起電圧の波形Cは、電機子4への通電量が増加する程、無通電時誘起電圧の波形Aから図8中上側に持ち上がった波形となる。
次に、モータ21において、電機子コイル9a,9bの通電量を増加させたときの誘起電圧の変化、及び整流電流の変化について考察する。
図9に、電機子4の回転角度に対応する整流時の誘起電圧の変化及び整流電流の変化を示す。図9(a)には、第1実施形態のモータ1における変化を示し、図9(b)には本実施形態のモータ21における変化を示している。それぞれの波形図において、電機子コイル9a,9bの通電量を増加させた場合の誘起電圧及び整流電流の変化も示している。
図9(a)に示すように、モータ1の整流区間における誘起電圧は、第1実施形態で説明したように比較例と比較して大きな傾斜となるため、整流開始時には大きな誘起電圧が得られる。このため、整流は進められる。しかし、電機子コイル9a,9bの通電量を増加させると、整流区間において誘起電圧が全体的に増加し、整流電流が増加する。このため、整流電流は整流終了時に切り換え時期が遅れ、整流終了時に電流がいきなり切り換わる事態が起こり得る。
一方、図9(b)に示すように、本実施形態のモータ21においては、整流初期に、磁石22,23の弱磁束部22a,23aの磁束変化により整流中の電機子コイル9a,9bを通過する磁石の磁束量が減少する。このため、整流初期において、誘起電圧は整流を遅らせる方向に発生される。従って、電機子コイル9a,9bの通電量を増加させることにより整流区間において誘起電圧が全体的に増加しても、整流終期において電流がいきなり切り換わるという事態を防止することができる。
〔実施形態の効果〕
従って、本実施形態のモータ21(直流機)によれば、上記第1実施形態の効果に加えて、以下のような効果を得ることができる。
(1)本実施形態では、各磁石22,23の回転方向側の端部が、整流の前半に対応した長さだけ弱磁束部22a,23aとされている。このため、整流の前半に、整流中の電機子コイル9a,9bの回転方向側第1ティース12a,12cが通過する一方の磁石22,23の磁束が減少して、整流を遅らせる方向に誘起電圧が発生されるため、整流を改善することができる。
(2)本実施形態では、弱磁束部22a,23aはモータハウジング7の周方向に両端側から互いに逆方向に向かって、中央位置に向かって徐々に磁束が減少するように形成されている。このため、整流開始後、整流区間の4分の1の区間にて整流を遅らせる方向に誘起電圧を発生させ、その後整流の半分の位置までの間で整流を進ませる方向に誘起電圧を発生させることにより、効率よく整流を改善することができる。
(3)本実施形態では、弱磁束部22a,23aは、各磁石22,23を切り欠いて形成されている。このため、磁石22,23の形状を調節することで、所望の磁束分布とすることができる。
〔第3実施形態〕
以下、本発明を3ブラシ直流モータに具体化した第3実施形態を図面を参照して説明する。なお、第2実施形態と同様の構成については、その詳細な説明及び図面を省略することとし、異なる部分を中心に説明する。
図10に示すように、本実施形態のモータ30は、電機子4の中心軸、即ち回転軸6に対して対向位置(180°間隔)に配置された第1ブラシ31及び第2ブラシ32と、第2ブラシ32と所定角度θ0をなして配置された第3ブラシ33との3つの給電ブラシを備えている。そして、図示しない切替スイッチにて、電流を供給する給電ブラシの組み合わせを第1ブラシ31及び第2ブラシ32、又は第1ブラシ31及び第3ブラシ33に切り替える、即ち第2ブラシからの給電又は第3ブラシからの給電に切り替えることにより、通常モード(低速回転)と高速モード(高速回転)とを選択することができる。
尚、本実施形態では、第1ブラシ31及び第2ブラシ32は通常ポジションである低速回転ポジションに配置され、第1ブラシ31及び第3ブラシ33は高速回転ポジションに配置されている。そして、第1ブラシ31及び第2ブラシ32を介して給電する場合に通常モードとなり、第1ブラシ31及び第3ブラシ33を介して給電する場合に高速モードとなる。
また、本実施形態のモータ30は、通常モード、即ち第1ブラシ31及び第2ブラシ32を介して給電されることにより電機子4が回転する状態において、それぞれ、同電機子4の回転により第3ブラシ33にて短絡される電機子コイル34aに対応して形成された第2の弱磁束部35を備えた一対の磁石36,37を備えている。
詳述すると、各磁石36,37は、上記第2の実施形態のモータ21における各磁石22,23(図6参照)と同様に、円弧角度(開角角度)180°の半円筒形状に形成され、その回転方向側の端部には、それぞれ通常モードにおける整流中の電機子コイル34b,34cに対応して形成された第1の弱磁束部36a,37aが形成されている。そして、各磁石36,37には、これら各第1の弱磁束部36a,37aに加え、第2の弱磁束部35が形成されている。
さらに詳述すると、磁石36には、通常モードにおいて、第3ブラシ33により短絡される電機子コイル34aが巻装された複数(6本)のティース39のうち回転方向側第1ティース39aに対応する位置に第2の弱磁束部35aが形成されている。より具体的には、第2の弱磁束部35aは、電機子コイル34aが結線された隣り合うセグメント38a,38bを第3ブラシ33が短絡するときに回転方向側第1ティース39aの先端、即ちティースバー40の回転方向側端部40aが同第2の弱磁束部35aを通過する位置に形成されている。
一方、磁石37には、同じく通常モードにおいて、第3ブラシ33により短絡される電機子コイル34aが巻装された複数(6本)のティース39のうち回転方向逆側第1ティース39bに対応する位置に第2の弱磁束部35bが形成されている。より具体的には、第2の弱磁束部35bは、電機子コイル34aが結線された隣り合うセグメント38a,38bを第3ブラシ33が短絡するときに回転方向逆側第1ティース39bの後端、即ちティースバー40の回転方向逆側端部40bが同第2の弱磁束部35bを通過する位置に形成されている。
これらの第2の弱磁束部35(35a,35b)は、第3ブラシ33が電機子コイル34aを短絡する、即ちセグメント38a,38bを短絡する期間となる回転方向の角度に対応する幅にて形成されており、磁束密度がその回転方向逆側端部から回転方向側端部に向かって漸増するように設定されている。
本実施形態では、これらの各第2の弱磁束部35は、各磁石36,37の一部(電機子4と対向する面)を切り欠くことで径方向の厚みを薄くすることにより、他の部分よりも磁束が弱くなるように形成されている。そして、各第2の弱磁束部35は、その回転方向逆側端部から回転方向側端部に向かって径方向の幅が漸増するように形成することにより、磁束密度がその回転方向逆側端部から回転方向側端部に向かって漸増するように設定されている。
次に、上記のように構成されたモータ30の作用について説明する。
図11に示すように、上記のように構成された本実施形態のモータ30の磁束分布は、第2実施形態のモータ21と同様の第1の弱磁束部36a,37aに対応する磁束減少区間Rb1,Rb2の他、第2の弱磁束部35a,35bに対応する磁束減少区間Rb3,Rb4を有している。そして、各磁束減少区間Rb3,Rb4内においては、その磁束は、各第2の弱磁束部35の形状に従って、電機子4の回転方向に向かって漸増している。
図12に示すように、本実施形態のモータ30では、電機子コイル34aに発生する無通電時誘起電圧の波形α1は、第3ブラシ33が電機子コイル34aを短絡する短絡区間Rsに相当する位置に、磁束減少区間Rb3(図11参照)に対応する電圧降下区間Rvを有している。そして、この電圧降下区間Rv内においては、電機子コイル34aに発生する無通電時誘起電圧が短絡開始時をその降下ピークとして短絡終了時まで漸増する。
本実施形態では、この短絡区間Rsにおいて、無通電時誘起電圧の波形α1が、電機子電流により発生する誘起電圧の通電量増加時の波形β1と誘起電圧ゼロを示す線を挟んで略線対称となるように各第2の弱磁束部35の形状が設定されている。これにより、波形α1と波形β1との合成波形である波形γ1が示す通電時誘起電圧は、この短絡区間Rsにおいて略ゼロとなり、図13に示すように、短絡区間Rsにおいても電機子コイル34aを流れる電流の波形(整流波形)δ1は乱れない。従って、負荷の上昇等、運転状態の変化により通電量が増加した場合であっても良好な整流が維持される。
また、図12及び図13に示すような通電量増加時には、電機子電流により発生する誘起電圧が通常時(通電量の増加がない場合)よりも増加し、その波形β1は、図14に示す通常時の波形β2の波形と比較して同図中上側に持ち上がっている。従って、図14に示すような通常時には、電機子電流により発生する誘起電圧の波形β2と無通電時誘起電圧の波形α2と合成波形である通電時誘起電圧の波形γ2は、図12に示す通電量増加時の波形γ1よりも図中下側に下がる。しかし、電機子電流により発生する誘起電圧自体は、各第2の弱磁束部35に対応する電圧降下区間Rvの効果によりキャンセルされているため、図15に示すように、短絡区間Rsにおける電機子コイル34aを流れる電流の波形(整流波形)δ2に大きな乱れは生じない。
これに対し、図16に示す比較例のモータ90のように、モータ30における各第2の弱磁束部35に対応する位置(図10参照)に両弱磁束部に代えて無磁束部91を有する磁石92,93を用いた場合、図17に示すように、波形α3が示す無通電時誘起電圧は、短絡区間Rsにおいて略ゼロとなる。従って、通電時誘起電圧の波形γ3は、この短絡区間Rsにおいて、電機子電流により発生する誘起電圧の波形β3と略一致する波形となり、図18に示すように、通電量増加時には、短絡区間Rsにおける電機子コイル94aを流れる電流の波形δ3に大きな乱れが生じてしまう。
従って、運転状態が変化し通電量が増加した場合を考慮すれば、比較例のモータ90のように各磁石92,93に無磁束部91を形成するよりも、本実施形態のモータ30のように、各磁石36,37に各第2の弱磁束部35を形成した方がより良好な整流を得ることができる。
〔実施形態の効果〕
従って、本実施形態のモータ30(直流機)によれば、上記第2実施形態の効果に加えて、以下のような効果を得ることができる。
(1)モータ30は、電機子4の中心軸、即ち回転軸6に対して対向位置に配置された第1ブラシ31及び第2ブラシ32と、第2ブラシ32と所定角度θ0をなして配置された第3ブラシ33との3つの給電ブラシと、円弧角度(開角角度)180°の半円筒形状に形成された一対の磁石36,37を備えている。
そして、磁石36には、第3ブラシ33による電機子コイル34aの短絡時に、この電機子コイル34aが巻装された回転方向側第1ティース39aの先端が通過する位置に第2の弱磁束部35aを形成し、磁石37には、回転方向逆側第1ティース39bの後端が通過する位置に第2の弱磁束部35bを形成することとした。
このような構成とすれば、電機子コイル34aへの通電により発生する誘起電圧を短絡区間Rsにおいてキャンセルすることが可能になる。従って、負荷の上昇等、運転状態の変化により通電量が増加した場合においても、短絡時の電機子コイル34aを流れる電流の乱れを防止し、良好な整流を維持することができる。
(2)各第2の弱磁束部35(35a,36a)は、その回転方向逆側端部から回転方向側端部に向かって径方向の幅が漸増するように形成することにより、磁束密度がその回転方向逆側端部から回転方向側端部に向かって漸増するように設定した。このような構成とすれば、電機子コイル34aに発生する通電量増加時の通電時誘起電圧を短絡区間Rsにおいて略ゼロとすることが可能になり、短絡時の電機子コイル34aを流れる電流の乱れを防止し、良好な整流を維持することができる。
〔別例〕
なお、上記両実施形態は以下のような別例に変更して具体化してもよい。
・上記第1実施形態においては、モータ1には2つの磁石2,3、即ち、N極とS極の磁石が一つずつ設けられるものとした。しかし、図19に示すように、電機子4を挟んで4つの磁石52,53,54,55が設けられた、4極構成のモータ51としてもよい。モータ51では、電機子4を挟んで、N極の磁石52と磁石54とが対向配置され、S極の磁石53と磁石55とが対向配置されている。そして、整流開始時には、ブラシ56a,56b,56c,56dにより短絡される、隣接するセグメント11に結線された電機子コイル59a,59b,59c,59dが巻き付けられた回転方向逆側第1ティース12g,12h,12i,12jの中心線に対応する位置が、各磁石52,53,54,55の境界位置に位置するように配置する。モータ51においても、上記第1実施形態と同様に、整流を改善することができる。
・上記第2実施形態においては、弱磁束部22a,23aは、両端部から中央位置に向かって徐々に磁束が減少する構成とした。しかし、整流の前半において整流を遅らせる方向に誘起電圧を発生させるように磁束を変化させ、整流終期に整流電流の切り換わりが遅れて電流が遮断される事態を発生させないのであれば、磁石における弱磁束部の磁束分布をどのようにしてもよい。電機子コイルの通電量等に対応可能なように構成すればよい。
・上記第2実施形態においては、モータ21には2つの磁石22,23、即ち、N極とS極の磁石が一つずつ設けられるものとした。しかし、図20に示すように、電機子4を挟んで、それぞれが弱磁束部を有する4つの磁石62,63,64,65を備えた4極構成のモータ61としてもよい。モータ61では、電機子4を挟んで、N極の磁石62と磁石64とが対向配置され、S極の磁石63と磁石65とが対向配置されている。電機子4は図中X方向の1方向回転とされており、磁石62,63,64,65の回転方向側端部に切り欠きが形成されて径方向の厚みを薄くすることで、それぞれ弱磁束部62a,63a,64a,65aとされている。そして、整流開始時には、ブラシ66a,66b,66c,66dにより短絡される、隣接するセグメント11に結線された電機子コイル69a,69b,69c,69dが巻き付けられたそれぞれの回転方向逆側第1ティース12k,12l,12m,12nの中心線に対応する位置が、各磁石62,63,64,65の境界位置に位置するように配置する。このモータ61においても、上記第2実施形態と同様に、整流を改善することができる。
・上記第2(第3)実施形態においては、弱磁束部22a,23a(35)は、磁石22,23(36,37)を切り欠くことにより形成されているが、磁石22,23(36,37)において所望の磁束分布が得られるのであれば、それぞれどのように弱磁束部を形成してもよい。例えば、磁石22,23(36,37)の径方向の厚みを均一とし、弱磁束部に相当する位置において磁束分布を変化するように着磁させる、即ち着磁制御により形成してもよい。このような構成とすれば、各磁石22,23(36,37)を組み付けた後に各弱磁束部22a,23a(35)を形成することができるので、製造工程の簡略化を図ることができる。
第1実施形態のモータの概略構成図。 (a)〜(c)は、整流の説明図。 電機子の回転位置に応じた磁束の変化、及び発生する誘起電圧の変化を示す波形図。 整流時における電流変化及び誘起電圧を示す波形図。 比較例のモータの概略構成図。 第2実施形態のモータの概略構成図。 第2実施形態のモータにおける磁束(磁束密度)の分布を示す波形図。 電機子の回転位置と誘起電圧との関係を示す説明図。 (a)は第1実施形態の整流時の電流と誘起電圧の変化を示す図、(b)は第2実施形態の整流時の電流と誘起電圧の変化を示す波形図。 第3実施形態のモータの概略構成図。 第3実施形態のモータにおける磁束(磁束密度)の分布を示す波形図。 第3実施形態のモータにおける電機子電流増加時の電機子の回転位置と電機子コイルに発生する誘起電圧との関係を示す波形図。 第3実施形態のモータにおける電機子電流増加時の通電時誘起電圧と電機子コイルを流れる電流との関係を示す波形図。 第3実施形態のモータにおける通常時の電機子の回転位置と電機子コイルに発生する誘起電圧との関係を示す波形図。 第3実施形態の通常時における通電時誘起電圧と電機子コイルを流れる電流との関係を示す波形図。 比較例のモータの概略構成図。 比較例のモータにおける電機子電流増加時の電機子の回転位置と電機子コイルに発生する誘起電圧との関係を示す波形図。 比較例のモータにおける電機子電流増加時の通電時誘起電圧と電機子コイルを流れる電流との関係を示す波形図。 別例のモータの概略構成図。 別例のモータの概略構成図。 従来のモータの概略構成図。
符号の説明
1,21,30,51,61…モータ(直流機)、2,3,22,23,36,37,52,53,54,55,62,63,64,65,82,83,92,93…磁石、4…電機子、5a,31…第1ブラシ、5b,32…第2ブラシ、7…モータハウジング(ヨーク)、8…電機子コア、9,9a,9b,34a〜34c,59a〜59d,69a〜69d,89a,89b,94a…電機子コイル、12,39…ティース、12a,12c,39a…回転方向側第1ティース、12b,12d,12g〜12j,12k〜12n,39b…回転方向逆側第1ティース、22a,23a,62a,63a,64a,65a…弱磁束部、33…第3ブラシ、36a,37b…第1の弱磁束部、35,35a,35b…第2の弱磁束部。

Claims (10)

  1. 等角度間隔に設けられた複数のティースを有する電機子コアに電機子コイルを巻装して構成される電機子を円筒状のヨークに内包し、該ヨークの内側面にて、全周に亘って周方向に沿って異なる極性を有する複数の磁石を交互に配置した直流機において、
    前記電機子コイルは、前記各磁石と同じ角度幅に対応する数のティースに巻装されており、
    整流が開始されるとき、整流中の電機子コイルにより巻装される回転方向逆側第1ティースの中心線に対応する位置が前記各磁石の境界に位置し、
    整流が終了するとき、整流中の電機子コイルにより巻装される回転方向側第1ティースの中心線に対応する位置が前記各磁石の境界に位置することを特徴とする直流機。
  2. 請求項1に記載の直流機において、前記各磁石の回転方向側の端部が、整流の前半に対応した長さだけ弱磁束部とされていることを特徴とする直流機。
  3. 請求項2に記載の直流機において、前記弱磁束部は、前記ヨークの周方向に両端側から互いに逆方向に向かって徐々に磁束が減少するように形成されていることを特徴とする直流機。
  4. 請求項1乃至請求項3のうち何れか1項に記載の直流機において、4つの前記磁石と、4つのブラシとを備えることを特徴とする直流機。
  5. 請求項1乃至請求項3のうち何れか1項に記載の直流機において、
    前記複数の磁石は、開角角度180°をなして一対設けられ、
    前記電機子を挟んで対向位置に配置される第1及び第2ブラシと、該第1及び第2ブラシの対向位置から所定角度をなして配置される第3ブラシとを備え、
    前記各磁石の少なくとも一つは、前記第3のブラシにて短絡される前記電機子コイルに対応して形成された第2の弱磁束部を備えること、を特徴とする直流機。
  6. 請求項5に記載の直流機において、
    前記第2の弱磁束部は、前記回転方向側第1ティースの先端が、前記第3のブラシによる短絡時に通過する位置に形成されること、を特徴とする直流機。
  7. 請求項5に記載の直流機において、
    前記第2の弱磁束部は、前記回転方向逆側第1ティースの後端が、前記第3のブラシによる短絡時に通過する位置に形成されること、を特徴とする直流機。
  8. 請求項5乃至請求項7のうち何れか1項に記載の直流機において、
    前記第2の弱磁束部は、磁束がその回転方向逆側端部から回転方向側端部に向かって漸増するように形成されていること、を特徴とする直流機。
  9. 請求項2乃至請求項8のうち何れか1項に記載の直流機において、
    前記各弱磁束部は、前記各磁石を切り欠いて形成されていることを特徴とする直流機。
  10. 請求項2乃至請求項8のうち何れか1項に記載の直流機において、
    前記各弱磁束部は、着磁制御により形成されていることを特徴とする直流機。
JP2003328643A 2003-06-10 2003-09-19 直流機 Expired - Fee Related JP3839428B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003328643A JP3839428B2 (ja) 2003-06-10 2003-09-19 直流機
CNB2004100485672A CN100468924C (zh) 2003-06-10 2004-06-08 具有连续排列的磁极的直流电机
US10/862,344 US6927518B2 (en) 2003-06-10 2004-06-08 Direct current machine having continuously arranged magnetic poles
EP04013629A EP1487090B1 (en) 2003-06-10 2004-06-09 Direct current machine having continuously arranged magnetic poles
DE602004007984T DE602004007984T2 (de) 2003-06-10 2004-06-09 Gleichstrommaschine mit Magnetpolkernen die in kontinuierlicher Anordnung angeordnet sind

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003165232 2003-06-10
JP2003328643A JP3839428B2 (ja) 2003-06-10 2003-09-19 直流機

Publications (2)

Publication Number Publication Date
JP2005027491A JP2005027491A (ja) 2005-01-27
JP3839428B2 true JP3839428B2 (ja) 2006-11-01

Family

ID=33302286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328643A Expired - Fee Related JP3839428B2 (ja) 2003-06-10 2003-09-19 直流機

Country Status (5)

Country Link
US (1) US6927518B2 (ja)
EP (1) EP1487090B1 (ja)
JP (1) JP3839428B2 (ja)
CN (1) CN100468924C (ja)
DE (1) DE602004007984T2 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215326A (ja) * 2002-12-26 2004-07-29 Aisan Ind Co Ltd ブラシ付き直流モータ
WO2005076442A1 (ja) * 2004-02-10 2005-08-18 Mitsuba Corporation 電動モータ
EP1854202B1 (de) * 2005-03-04 2013-03-20 ebm-papst St. Georgen GmbH & Co. KG Elektromotor und verfahren zu seiner steuerung
JP4093263B2 (ja) * 2005-08-08 2008-06-04 愛知製鋼株式会社 異方性ボンド磁石とそれを用いた直流モータ。
DE102006011547A1 (de) * 2006-03-14 2007-09-20 Robert Bosch Gmbh Elektrische Maschine
FR2920259B1 (fr) * 2007-08-22 2015-03-27 Valeo Equip Electr Moteur Machine electrique tournante, en particulier pour un demarreur automobile
JP5038025B2 (ja) * 2007-06-07 2012-10-03 マブチモーター株式会社 4角形状外形の小型モータ
JP5026949B2 (ja) * 2007-12-25 2012-09-19 マブチモーター株式会社 モータ
EP2313961B1 (de) * 2008-07-19 2017-10-04 Faurecia Autositze GmbH Gleichstrom-kommutatormotor, insbesondere für eine fahrzeugkomponentenverstellung
CN101771319B (zh) * 2008-12-31 2012-07-04 台达电子工业股份有限公司 无刷直流马达及其驱动单元
FR2959360B1 (fr) * 2010-04-27 2013-01-18 Valeo Equip Electr Moteur Machine electrique comportant un rotor muni d'un bobinage permettant de faciliter la commutation, et demarreur associe
JP6220662B2 (ja) * 2013-01-11 2017-10-25 アスモ株式会社 ブラシレスモータ
CN103984156B (zh) 2014-05-04 2017-06-09 京东方科技集团股份有限公司 封框胶固化装置及其掩膜板
US20160329762A1 (en) * 2015-05-08 2016-11-10 Johnson Electric S.A. Single-phase Outer-Rotor Motor And Rotor Thereof
CN110971024A (zh) * 2018-09-30 2020-04-07 广东肇庆爱龙威机电有限公司 永磁直流电机
DE102022210487A1 (de) * 2022-10-04 2024-04-04 Continental Automotive Technologies GmbH Vorrichtung und Verfahren zur Erkennung der Orientierung eines Rotors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341969A (en) * 1980-12-01 1982-07-27 Honeywell Inc. Direct current motor with improved pole piece that reduces cogging
DE3523755A1 (de) * 1985-07-03 1987-01-15 Bosch Gmbh Robert Kollektormaschine
US5331245A (en) * 1986-01-13 1994-07-19 Papst Licensing Gmbh Permanent magnet excited electric motor with improved torque ripple
GB8724000D0 (en) * 1987-10-13 1987-11-18 Lucas Ind Plc Permanent magnet machines
JP3816707B2 (ja) * 1999-05-21 2006-08-30 アスモ株式会社 直流機
JP2001258228A (ja) * 2000-03-08 2001-09-21 Asmo Co Ltd 直流機のマグネット及び直流機
JP2002095230A (ja) * 2000-09-13 2002-03-29 Asmo Co Ltd 直流機
US6720697B2 (en) * 2000-12-18 2004-04-13 Asmo Co., Ltd. Direct-current motor
JP3779204B2 (ja) * 2000-12-18 2006-05-24 アスモ株式会社 直流機
JP3667691B2 (ja) * 2000-12-25 2005-07-06 アスモ株式会社 直流機
US6580237B2 (en) * 2000-12-25 2003-06-17 Asmo Co., Ltd Direct-current motor and manufacturing method of the same
CN2482760Y (zh) * 2001-06-28 2002-03-20 白贺斌 电磁永磁联合励磁发电机

Also Published As

Publication number Publication date
DE602004007984T2 (de) 2008-05-08
EP1487090A2 (en) 2004-12-15
US6927518B2 (en) 2005-08-09
DE602004007984D1 (de) 2007-09-20
EP1487090A3 (en) 2006-04-12
JP2005027491A (ja) 2005-01-27
CN100468924C (zh) 2009-03-11
EP1487090B1 (en) 2007-08-08
US20040251760A1 (en) 2004-12-16
CN1574567A (zh) 2005-02-02

Similar Documents

Publication Publication Date Title
JP3839428B2 (ja) 直流機
JP5714548B2 (ja) 回転電気機械
JP2008136298A (ja) 回転電機の回転子及び回転電機
JP3958715B2 (ja) 直流機及びその製造方法
JP2000166135A (ja) ブラシレスモータ
JP3813906B2 (ja) 直流機
JPH1198721A (ja) 永久磁石電動機
JP2013150539A (ja) 回転電気機械
JP2005124335A (ja) スイッチドリラクタンスモータ及びその制御方法
JPH08126279A (ja) ブラシレスdcモータ
JP2002095230A (ja) 直流機
JP3667691B2 (ja) 直流機
JP2002084719A (ja) 直流機
JP2003250255A (ja) 直流機
JP2004215326A (ja) ブラシ付き直流モータ
JP2003189573A (ja) 直流モータ
CN108448756B (zh) 包括u形转子磁极结构的开关磁阻电机
JP2003032922A (ja) 直流機
JP2002095229A (ja) 直流機
JP3730911B2 (ja) 直流機
JP2002262537A (ja) 直流機
JP3954471B2 (ja) 直流機
JP3730913B2 (ja) 直流機とその製造方法
JP3730912B2 (ja) 直流機
JPH08149775A (ja) スピンドル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees