[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3838871B2 - Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method - Google Patents

Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method Download PDF

Info

Publication number
JP3838871B2
JP3838871B2 JP2000375536A JP2000375536A JP3838871B2 JP 3838871 B2 JP3838871 B2 JP 3838871B2 JP 2000375536 A JP2000375536 A JP 2000375536A JP 2000375536 A JP2000375536 A JP 2000375536A JP 3838871 B2 JP3838871 B2 JP 3838871B2
Authority
JP
Japan
Prior art keywords
cerium
rare earth
raw material
abrasive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000375536A
Other languages
Japanese (ja)
Other versions
JP2002309235A (en
Inventor
秀彦 山▲崎▼
義嗣 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000375536A priority Critical patent/JP3838871B2/en
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to EEP200200016A priority patent/EE05140B1/en
Priority to CNB018011683A priority patent/CN1162499C/en
Priority to EP01919807A priority patent/EP1285956A4/en
Priority to BR0106273-5A priority patent/BR0106273A/en
Priority to AU46852/01A priority patent/AU762001B2/en
Priority to KR10-2001-7016083A priority patent/KR100453802B1/en
Priority to US09/980,123 priority patent/US6562092B1/en
Priority to PCT/JP2001/002988 priority patent/WO2001088056A1/en
Priority to EA200200170A priority patent/EA003909B1/en
Priority to TW090110595A priority patent/TW524843B/en
Priority to MYPI20012192A priority patent/MY127740A/en
Publication of JP2002309235A publication Critical patent/JP2002309235A/en
Application granted granted Critical
Publication of JP3838871B2 publication Critical patent/JP3838871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化セリウムを主成分とするセリウム系研摩材用原料およびその製造方法に関し、更に、この原料を用いた研摩特性に優れるセリウム系研摩材に関する。
【0002】
【従来の技術】
セリウム系研摩材は、種々のガラス材料の研摩に用いられており、特に近年では、ハードディスク等の磁気記録媒体用ガラス、液晶ディスプレイ(LCD)のガラス基板といった電気・電子機器で用いられるガラス材料の研摩にも用いられており、その応用分野が広がっている。
【0003】
このセリウム系研摩材は、主成分である酸化セリウム(CeO2)の粒子と他の希土類金属酸化物の粒子とからなり、全希土酸化物含有量に対する酸化セリウム含有量の割合によって高セリウム研摩材と低セリウム研摩材とに分類されているが、その製造工程に大差はない。即ち、いずれのセリウム系研摩材を製造する場合であっても、まず原料を粉砕し、その後に化学処理(湿式処理)を施す。これは、フッ素成分を添加してセリウム系研摩材の高い切削性を確保するためであると共に、後の焙焼工程時に異常粒成長の原因となるナトリウム等のアルカリ金属を除去するためである。そして、化学処理後、原料を濾過、乾燥し、その後高温で加熱して焙焼することで原料粒子同士を焼結し、これを再度粉砕して分級することにより、所望の粒径、粒度分布を有する研摩材を製造している。
【0004】
ここで、セリウム系研摩材の製造のために用いられる原料としては、従来は、バストネサイトと呼ばれる希土鉱石を選鉱したバストネサイト精鉱という天然原料を使用することが多かったが、最近ではバストネサイト鉱や比較的安価な中国産複雑鉱を化学処理することにより、希土類金属濃度を富化したセリウム系希土類炭酸塩(以下、炭酸希土とも称する)、又は、この炭酸希土を予め高温で仮焼することにより得られるセリウム系希土類酸化物(以下、酸化希土とも称する)を原料とすることが多くなっている。
【0005】
【発明が解決しようとする課題】
ところで、研摩材として十分な切削性を確保するためには、焙焼工程において原料粒子を焼結させ適度な大きさの研摩粒子を製造することが重要である。そのため、上記炭酸希土及び酸化希土を原料として製造する場合においては、焙焼温度を1000℃近傍と比較的高温域に設定するのが通常である。これは、いずれの原料を適用するにしても、かかる温度範囲でなければ、原料粒子の十分な焼結を生じさせることができないことが経験的に明らかとなっているからである。
【0006】
しかしながら、焙焼温度を高くすることは、焼結を促進するという効果がある一方で異常粒成長の要因でもある。この異常粒成長により粗大粒子が生ずると、それが最終製品である研摩材中に混入するおそれがある。このような粗大粒子は、傷の原因となることから、できるだけその含有率を低減させる必要がある。従来は、焙焼後の分級工程の調製により行なわれていたが、粗大粒子の濃度を低くしようとするあまり分級条件を厳密にすることは研摩材の生産効率を低下させそのコスト上昇の要因ともなる。
【0007】
従って、粗大粒子の混入を抑制し、且つ、生産効率を確保するためには、焙焼工程における焙焼温度をできるだけ低くして異常粒成長を抑制できるようにすることが望ましいといえる。
【0008】
そこで、本発明は、研摩材製造において焙焼温度が比較的低温であっても焼結可能であり、異常粒成長のおそれのない研摩材用原料を製造する方法を提示することを課題とする。そして、この方法により製造される研摩材用原料及びこれにより製造される高品位の研磨面を形成可能なセリウム系研摩材を提供することを課題とする。
【0009】
【課題を解決するための手段】
かかる課題を解決すべく、本発明者らは、鋭意研究を行い、上記した炭酸希土及び酸化希土を原料とした際の焙焼時の焼結機構につき検討した。本発明者らによれば、炭酸希土及び酸化希土について高温での焙焼が必要な理由としては以下のようなものが考えられる。
【0010】
まず、炭酸希土については、図1に示すようなものである。原料として搬入される炭酸希土は、炭酸希土粒子が結束した粗大な凝集体よりなる。そして、この炭酸希土を原料とした研摩材の製造工程では、まず原料を破砕するが、この炭酸希土の凝集体は結束力が強く、また、湿式粉砕における炭酸希土のスラリーの粘土は酸化希土のそれに比べて非常に高いため、粉砕効率が低く、これを完全に微粒にすることは困難である。したがって、粉砕後の微粒炭酸希土の中に部分的に粗大粒子が残留した状態になる。
【0011】
粉砕後、原料はフッ化処理されるが、このフッ化処理においては、炭酸希土中のCO3がフッ素と交換され、炭酸希土はフッ化炭酸希土となり、これに伴い粗大粒子の破壊が生ずる。しかし、フッ化処理で添加されるフッ素の量は最終製品のフッ素濃度との関係で制限されており、粗大粒子の破壊は十分にはなされない。
【0012】
フッ化処理された炭酸希土は焙焼される。このとき炭酸希土中の炭酸成分がCO2として放出され、これにより炭酸希土粒子が密度の低い多孔質の形骸粒子となる。また焙焼中の炭酸希土中には粗大粒子が多く残留しており、多くの粗大な形骸粒子が生成される。形骸粒子であること及び粒子が粗大であることはいずれも焼結速度を遅くする要因であるため、粗大な形骸粒子は焼結速度が極めて遅く、高温でなければ焼結が進行しない。このような理由から炭酸希土を原料として研摩材を製造する際、焙焼温度を高温にする必要があると考えられる。
【0013】
一方、酸化希土の焼結機構を図示すると図2のようになる。上記のように、酸化希土は炭酸希土を高温で仮焼したものである。酸化希土の原料である炭酸希土は図1と同様に粗大粒子を形成しており、これを仮焼すると、炭酸成分が放出して原料が形骸粒子化する。形骸粒子は脆く仮焼中に受ける衝撃によって徐々に崩壊してより微粒になり、この微粒の炭酸希土はさらなる加熱により酸化が進んで酸化希土となる。
【0014】
また、この仮焼では、生成した酸化希土粒子同士が焼結して凝集体を形成する。この酸化希土の凝集体は結束力が強く、その後粉砕されるものの、その一部が凝集体として残留する。このような酸化希土についてフッ化処理を行っても、凝集体の内部までフッ化されることなく中心部の酸化希土粒子は酸化物のままとなる。
【0015】
このようなフッ化の不均一は、その後の焙焼時における焼結に対して悪影響を与える。即ち、かかるフッ化が不均一になされた凝集体は、焙焼工程下における加熱、衝撃により崩壊するがこれによりフッ化が十分なされた酸化希土粒子とフッ化されていない又はフッ素濃度の低い酸化希土粒子とが混在した状態となる。そして、前者は速やかに焼結するが、後者は焼結速度が遅く相当高温下でなければ十分な焼結速度が得られない。このような理由から酸化希土を原料として研摩材を製造する際には、焙焼温度を高温にする必要があると考えられる。
【0016】
本発明者らは、以上のような炭酸希土及び酸化希土の焼結機構を考慮し、焙焼時に形骸粒子を存在させず、且つ、フッ化処理を均一に行うことができる原料を製造する方法として、酸化希土と同様に粉砕前の炭酸希土を仮焼し、この仮焼によって炭酸希土から酸化希土への変化が部分的に生ずるようにすることで、上記課題を解決可能であると考えた。このような部分的仮焼の過程を図3に示す。
【0017】
この部分的仮焼は酸化希土の製造方法と同様、炭酸希土を仮焼するものであるから、仮焼初期において炭酸希土粒子に生ずる変化は酸化希土を製造する過程において生ずる変化と同様である。つまり、炭酸成分がCO2として放出され、炭酸希土粒子が形骸粒子となり崩壊して微粒の炭酸希土を形成する。そして、これら炭酸希土の微粒子は酸化され、加熱時間の経過に伴い粒子中の酸化物の割合が増加する。本発明に係る部分的仮焼は、炭酸希土の全てが酸化希土となる前に仮焼を中止して、原料を構成する粒子を酸化物炭酸塩とからなる混合希土とするものである。
【0018】
この部分的仮焼により形成された混合希土粒子は、その後の粉砕及びフッ化処理によって残留した形骸粒子が破壊されることで、更に微粒子化される。また、フッ化処理においては、酸化希土とは異なり凝集体が存在していないので、均一にフッ化される。その結果、仮焼においては形骸粒子やフッ化の不十分な粒子のような焼結を妨げる要因がないので、比較的低温においても焼結が進行する。
【0019】
このように、本発明者らが提唱する部分的仮焼によれば、炭酸希土及び酸化希土が有する、高温でなければ焼結が生じがたいという問題を生じさせることのない研磨材用原料が製造可能である。
【0020】
ところで、この部分的仮焼においては、如何に炭酸希土を適度に酸化させて混合希土とするかが肝要である。加熱が過度であると、炭酸希土が完全に酸化希土になって上述のように不均一にフッ化されるおそれがあり、その一方で加熱が不足すると、十分な形骸粒子の破壊が生じず、いずれも原料としては焼結性に問題がある。本発明者らは、このような部分的仮焼を行って研摩材用原料を製造するにあたり差異的な条件を見出すべく鋭意検討を行う中で、本願請求項1に記載の発明を相当するに至った。
【0021】
即ち、本願請求項1に記載の発明は、セリウム系希土類炭酸塩を600℃〜900℃で仮焼するセリウム系研摩材用原料の製造方法である。
【0022】
この範囲の仮焼温度で仮焼すると、炭酸希土から炭酸成分が適度に放出されて酸化希土が生成される。即ち、900℃より高温にすると酸化希土の凝集体が生成されるおそれがある。また、形骸粒子の破壊は400℃以上であれば起こるが、600℃より低温では強熱減量1%以下にするのは困難である。
【0023】
そして同様に炭酸希土から適度に炭酸成分を放出させる観点から、請求項2に記載のように、600℃〜750℃で部分的仮焼を行うにあたっては、仮焼時間をy1時間〜y2時間とするのが好ましい。y1およびy2は次の式により定まる。
【0024】
【数3】

Figure 0003838871
【0025】
また、750℃〜900℃で部分的仮焼を行うにあたっては、仮焼時間をy3時間〜y4時間とするのが好ましい。y3およびy4は次式により定まる。
【0026】
【数4】
Figure 0003838871
【0027】
このように仮焼時間を定めたのは、鋭意研究を進める中で、仮焼時間が長いほど焼結が進んで酸化希土粒子同士の凝集体が形成されるおそれが高くなること、また仮焼時間があまりに短いと十分な仮焼の効果を得られないことを見出したからである。なお、600℃〜750℃で部分的仮焼を行う際の仮焼時間の条件として、請求項3に記載のように、4時間〜70時間という条件を用いてもよく、また750℃〜900℃で部分的仮焼を行う際の仮焼時間の条件として、請求項5に記載のように、1時間〜40時間という条件を用いてもよい。これらの条件を用いると、請求項2又は請求項4に記載の条件を用いた場合と同様に好ましい結果が得られ、しかも仮焼時間をより簡便に定めることができる。
【0028】
本発明により製造された原料は、従来のセリウム系研摩材の製造工程にそのまま適用でき、粉砕及びフッ化処理を行った際、より粗大粒子が少なくなる上、より均一にフッ化される。これにより焙焼工程の焙焼温度を低くすることができる。
【0029】
またセリウム系研摩材用原料の強熱減量(以下、LOI(Loss On Ignition)ともいう。)という物性に着目し、強熱減量と仮焼条件(仮焼温度及び仮焼時間)との関係を検討した結果、請求項6に記載のように、請求項1から請求項5のいずれか一項に記載の方法により製造されたセリウム系研摩材用原料を1000℃で1時間加熱した場合の強熱減量が乾燥重量基準で0.05%〜5.0%であると、炭酸希土から炭酸成分が適度に放出されており、しかも酸化希土の凝集体が生成されておらず、十分に形骸粒子が破壊されていることを期待できることが判った。また、セリウム系研摩材用原料の強熱減量がこの範囲であれば、焙焼時の焼結性に優れる上に、原料運搬時の利便性に優れると共に最終製品である研摩材の生産性が向上する。
【0030】
強熱減量とは、対象物を強熱した際の重量減少率をいう。セリウム系研摩材用原料において、この強熱減量が高いということは、焙焼される原料重量が同じでも焙焼後に得られる最終製品の重量が少なく、生産性が悪いということを意味する。この強熱減量の値は、炭酸希土は約30%、また酸化希土は0%であることが判っている。従って、本発明においてLOIの値は炭酸希土と酸化希土の存在比率を間接的に表示する指標ともいえる。なお、本発明において強熱減量を1000℃で1時間加熱した後に測定することにしたのは、希土塩の場合、500℃以上の加熱で強熱減量の値が安定し始めることが実験的に確認されており、1000℃での加熱が最も安定的な指標として適用可能であるという考えに基づくものである。
【0031】
上述のように本発明にかかる研摩材用原料は比較的低温で焙焼しても十分な焼結速度にて焼結可能である。そこで、請求項7に記載の発明は、この原料を粉砕しフッ化処理を行った後、フッ化処理後のセリウム系研摩材用原料を700℃〜1000℃で焙焼する工程を有するセリウム系研摩材の製造方法とした。このように低温で焙焼することにより、異常粒成長を抑制し、傷発生のない高品位の研摩面が形成可能なセリウム系研摩材を製造することができる。
【0032】
なお、このセリウム系研摩材の製造方法においては、焙焼工程前にフッ化処理を行うが、このフッ化処理はフッ化アンモニウムを用いて行うのが好ましい。フッ化処理についてはフッ酸も適用可能であるが、フッ化アンモニウムはフッ化反応が緩やかに進行するので、原料中にフッ素をより均一に分布させることができる。これにより、より低温での焙焼が可能となる。
【0033】
【発明の実施の形態】
以下、本発明の好適な実施の形態を説明する。
【0034】
第1実施形態:全希土酸化物含有率(以下、TREOという)が69.5%(酸化セリウム含有率/TREO=58%)の炭酸希土3kgを電気炉により、650℃で48時間仮焼することでセリウム系研摩材用原料を製造した。そして、この際のLOIを測定した。
【0035】
LOIの測定は次のように行った。予め重量を測定したるつぼに研摩材用原料を入れその重量を測定した後、電気炉中で1000℃、1時間加熱した後乾燥雰囲気下で放冷した。放冷後るつぼの重量を測定し、下記計算式に従いLOIの値を求めた。その結果、本実施形態により製造された研摩材用原料のLOIは0.2%であった。
【0036】
【数5】
Figure 0003838871
【0037】
次に、この研摩材用原料2kgと純水2l(リットル)とを、直径5mmの鋼製の粉砕媒体(ボール)12kgが充填された湿式ボールミルにて5時間粉砕し、平均粒径(マイクロクラット法D50(累積50%粒径))が1μmの粉体からなるスラリーとした。平均粒径は粒度分布測定装置(製品名:マイクロトラック、日機装社製)を用いて測定した。その後、このスラリーに濃度1mol/lのフッ化アンモニウム溶液を添加し、純水で洗浄後濾過してケーキを得た。次に、このケーキを乾燥後、920℃で2時間焙焼して再度粉砕した後、分級してセリウム系研摩材を得た。
【0038】
第2〜第6実施形態:第1実施形態で用いた炭酸希土と同様の炭酸希土を仮焼温度及び仮焼時間だけを変え、それ以外は第1実施形態と同様の条件でセリウム系研摩材を製造した。また、仮焼によって得られた研摩材用原料についてLOIの値を測定した。各実施形態における仮焼温度、仮焼時間および得られた研摩材用原料のLOIの測定値は、第2実施形態では650℃、12時間および3.2%、第3実施形態では750℃、24時間および0.1%、第4実施形態では750℃、6時間および3.0%、第5実施形態では850℃、12時間および0.1%、そして第6実施形態では850℃、3時間および2.9%であった。
【0039】
第1および第2比較例:各実施形態で用いた炭酸希土と同様の炭酸希土を仮焼温度及び仮焼時間だけを変え、それ以外は各実施形態と同様の条件でセリウム系研摩材を製造した。また、仮焼によって得られた研摩材用原料のLOIの値を測定した。仮焼温度はいずれの比較例とも1000℃であり、この温度で第1比較例では2時間仮焼した。LOIの値は0.1%であった。また第2比較例では0.5時間仮焼した。LOIの値は3.0%であった。
【0040】
第3比較例:各実施形態で用いた炭酸希土と同様の炭酸希土を仮焼して製造した研摩材用原料(酸化希土)を用いてセリウム系研摩材を製造した。仮焼条件は、電気炉によって1000℃で5時間仮焼するというものであった。また、仮焼によって得られた研摩材用原料のLOIの値は、0.05%未満であった。なお、得られた研摩材用原料からセリウム系研摩材を製造する際の条件は、焙焼温度を980℃とした以外は各実施形態と同様であった。
【0041】
第4比較例:各実施形態で用いた炭酸希土と同様の炭酸希土そのもの(LOIは30%)を研摩材用原料として用いてセリウム系研摩材を製造した。この炭酸希土からセリウム系研摩材を製造する際の条件は、焙焼温度を含めて比較例3と同様である。
【0042】
そして、各実施形態及び比較例により得られたセリウム系研摩材について研摩試験を行い、研摩値の測定および研摩面の状態評価(傷評価)を行った。研摩試験では、高速研摩試験機を試験装置として用い、65mmφの平面パネル用ガラスを被研摩材とし、このガラスをポリウレタン製の研摩パッドを用いて研摩した。研摩試験では、まず研摩材を水に分散させてスラリー濃度が10重量%の研磨材スラリーを調製した。研摩条件は、調製した研摩材スラリーを5ml/minの速度で供給し、研摩面に対する圧力を15.7kg/cm2に設定し、研摩試験機の回転速度を1000rpmに設定するというものであった。研摩後のガラス材料は、純水で洗浄し無塵状態で乾燥させた。
【0043】
この研摩試験における研摩値は、研摩前後のガラス重量を測定することにより求められたガラス重量の減量を基に求められた値である。傷についての評価は、研摩面の状態を評価したものであり、研摩表面の傷の有無および研磨材粒子の研摩面への残存の有無を基準として行ったものである。具体的には、研摩後のガラスの表面に30万ルクスのハロゲンランプを照射し、反射法にてガラス表面を観察して、傷の程度(大きさ)を見極めて点数化し、100点満点からの減点方式にて評価点を定めた。また、研摩値と傷の評価点とに基づく総合評価をした。これは、各実施形態や比較例によって製造されたセリウム系研摩材の品質を簡便に、かつ相対的に把握できるようにするものであり、総合評価に用いたしきい値(例えば、総合評価BとCとを分ける基準である研摩値102)は絶対的基準ではない。試験の結果を次の表に示す。
【0044】
【表1】
Figure 0003838871
【0045】
この結果から解るように、各実施形態により得られたセリウム系研摩材の研摩値はいずれも良好であった。また研摩面での傷発生が少なく、研摩面も優れていることが判った。特に第1実施形態から第4実施形態により得られたセリウム径研摩材の傷発生が少ないことから、仮焼温度は800℃以下がより好ましいことが解った。一方、第1、第2及び第3比較例の方法により得られた各セリウム系研摩材については、研摩値は良好であったが、傷評価は各実施形態と比較して劣っていた。これは、各実施形態の仮焼温度と比較して高温である1000℃という温度で仮焼したため、焼結が進んで異常粒成長が生じ、その後粉砕をしたが粗大粒子が残ったと考えられる。なお、仮焼時間が長いほど焼結が進み、傷評価が低下する傾向にあることが解った。また、第4比較例の方法により得られたセリウム系研摩材については、傷評価は良好であったが、研摩値は各実施形態と比較して劣っていた。炭酸希土は粉砕効率が低く、粗大粒子を含んだ状態で焙焼される。したがって、焙焼における焼結速度が遅く、焙焼の際に原料粒子が適度な大きさまで成長しなかったと考えられる。
【0046】
【発明の効果】
以上説明したように本発明によれば、研摩材製造において焙焼温度が比較的低温であっても焼結可能な研摩材用原料を製造することができる。そして、この研摩材用原料によれば、異常粒成長による粗大粒子の混入もなく、高品位の研摩面を形成可能なセリウム系研摩材を製造することができる。
【図面の簡単な説明】
【図1】研摩材製造工程における炭酸希土粒子の変化を示す図。
【図2】研摩材製造工程における酸化希土粒子の変化を示す図。
【図3】本発明にかかる部分的仮焼を行ったときの研摩材用原料粒子の変化を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a raw material for a cerium-based abrasive comprising cerium oxide as a main component and a method for producing the same, and further relates to a cerium-based abrasive having excellent polishing characteristics using the raw material.
[0002]
[Prior art]
Cerium-based abrasives are used for polishing various glass materials. Particularly, in recent years, glass materials used in electrical and electronic equipment such as glass for magnetic recording media such as hard disks and glass substrates for liquid crystal displays (LCD) are used. It is also used for polishing, and its application fields are expanding.
[0003]
This cerium-based abrasive is composed of particles of cerium oxide (CeO 2 ) as a main component and particles of other rare earth metal oxides, and high cerium polishing is performed depending on the ratio of the cerium oxide content to the total rare earth oxide content. There are no major differences in the manufacturing process. That is, even when any cerium-based abrasive is produced, the raw material is first pulverized and then subjected to chemical treatment (wet treatment). This is to add a fluorine component to ensure high machinability of the cerium-based abrasive and to remove alkali metals such as sodium that cause abnormal grain growth during the subsequent roasting process. Then, after the chemical treatment, the raw material is filtered and dried, and then heated at a high temperature and roasted to sinter the raw material particles, and then pulverized and classified again to obtain a desired particle size and particle size distribution. Is manufactured.
[0004]
Here, as a raw material used for the production of cerium-based abrasives, conventionally, a natural raw material called bastonite concentrate, which is a rare earth ore called bastonite, was often used. Then, the cerium-based rare earth carbonate (hereinafter also referred to as carbonate rare earth) enriched with rare earth metal concentration by chemical treatment of bust nesite or relatively inexpensive Chinese complex ore, A cerium-based rare earth oxide (hereinafter also referred to as rare earth oxide) obtained by calcination at a high temperature in advance is often used as a raw material.
[0005]
[Problems to be solved by the invention]
By the way, in order to ensure sufficient machinability as an abrasive, it is important to sinter raw material particles in a roasting process to produce abrasive particles of an appropriate size. For this reason, when producing the rare earth carbonate and rare earth oxide as raw materials, it is usual to set the roasting temperature in the vicinity of 1000 ° C. and a relatively high temperature range. This is because no matter which raw material is applied, it is empirically clear that sufficient sintering of the raw material particles cannot occur unless the temperature is within such a range.
[0006]
However, increasing the roasting temperature has the effect of accelerating the sintering while also causing abnormal grain growth. When coarse particles are generated by the abnormal grain growth, they may be mixed into the abrasive material as the final product. Since such coarse particles cause scratches, it is necessary to reduce the content thereof as much as possible. Conventionally, it has been done by preparing a classification process after roasting, but strict classification conditions that try to reduce the concentration of coarse particles can reduce the production efficiency of abrasives and increase the cost. Become.
[0007]
Therefore, it can be said that it is desirable to suppress abnormal grain growth by reducing the roasting temperature in the roasting process as low as possible in order to suppress the mixing of coarse particles and to secure production efficiency.
[0008]
Then, this invention makes it a subject to show the method of manufacturing the raw material for abrasives which can be sintered even if the baking temperature is comparatively low in abrasives manufacture, and there is no fear of abnormal grain growth. . Another object of the present invention is to provide an abrasive material produced by this method and a cerium-based abrasive capable of forming a high-quality polished surface produced thereby.
[0009]
[Means for Solving the Problems]
In order to solve such a problem, the present inventors have conducted intensive research and studied a sintering mechanism at the time of roasting using the rare earth carbonate and rare earth oxide as raw materials. According to the present inventors, the following reasons can be considered as the reason why the rare earth carbonate and the rare earth oxide need to be roasted at a high temperature.
[0010]
First, the carbonated rare earth is as shown in FIG. The rare earth carbonate introduced as a raw material consists of coarse aggregates in which rare earth carbonate particles are bound. In the production process of abrasives using this rare earth carbonate as a raw material, the raw material is first crushed. The aggregate of this rare earth carbonate has strong cohesion, and the clay of the rare earth carbonate slurry in wet grinding is Since it is very high compared to that of oxidized rare earth, the pulverization efficiency is low, and it is difficult to make it completely fine. Accordingly, coarse particles partially remain in the fine carbonated rare earth after pulverization.
[0011]
After pulverization, the raw material is fluorinated, but in this fluorination treatment, CO 3 in the rare earth carbonate is exchanged with fluorine, and the rare earth carbonate becomes rare earth fluorinated carbonate. Will occur. However, the amount of fluorine added in the fluorination treatment is limited in relation to the fluorine concentration of the final product, and the coarse particles are not sufficiently destroyed.
[0012]
Fluorinated carbon dioxide is roasted. At this time, the carbonic acid component in the carbonic acid rare earth is released as CO 2 , and thereby the carbonic acid rare earth particles become low-density porous shaped particles. In addition, a large amount of coarse particles remain in the rare earth carbonate during roasting, and many coarse particles are generated. Since both the shape particles and the coarse particles are factors that slow down the sintering rate, the coarse shape particles have a very slow sintering rate, and sintering does not proceed unless the temperature is high. For this reason, it is considered that the roasting temperature needs to be increased when producing abrasives using rare earth carbonate.
[0013]
On the other hand, the sintering mechanism of the rare earth oxide is shown in FIG. As described above, oxidized rare earth is calcined rare earth carbonate at high temperature. The rare earth carbonate, which is a raw material for oxidized rare earth, forms coarse particles as in FIG. 1. When this is calcined, the carbonic acid component is released and the raw material is turned into particles. The skeleton particles are brittle and gradually disintegrate by impacts during calcination to become finer particles. The fine carbonated rare earth is oxidized by further heating to become oxidized rare earth.
[0014]
In this calcining, the produced rare earth oxide particles are sintered to form an aggregate. This oxidized rare earth agglomerate has a strong binding force and is pulverized thereafter, but a part of it remains as an agglomerate. Even when such a rare earth oxide is subjected to a fluorination treatment, the central rare earth oxide particles remain as oxides without being fluorinated to the inside of the aggregate.
[0015]
Such non-uniformity of fluorination adversely affects the sintering during subsequent roasting. That is, the agglomerated non-uniformly fluorinated material is destroyed by heating and impact in the roasting process, but is not sufficiently fluorinated with the oxidized rare earth particles that are sufficiently fluorinated, or the fluorine concentration is low. It will be in a state where oxide rare earth particles are mixed. The former sinters quickly, but the latter has a slow sintering rate and a sufficient sintering rate cannot be obtained unless the temperature is considerably high. For these reasons, it is considered necessary to raise the roasting temperature when producing an abrasive using rare earth oxide as a raw material.
[0016]
In consideration of the sintering mechanism of the rare earth carbonate and rare earth oxide as described above, the present inventors produce a raw material that can be uniformly subjected to the fluorination treatment without the presence of shape particles during roasting. This method solves the above problem by calcining the rare earth carbonate before pulverization in the same way as the oxidized rare earth, and causing the partial change from the rare earth carbonate to the rare earth oxidized by this calcining. I thought it was possible. Such a partial calcination process is shown in FIG.
[0017]
This partial calcination is similar to the method for producing oxidized rare earth, and is used for calcining rare earth carbonate. It is the same. That is, the carbonic acid component is released as CO 2 , and the carbonic acid rare earth particles become crushed particles and collapse to form fine carbonic acid rare earth. These fine particles of rare earth carbonate are oxidized, and the ratio of oxides in the particles increases with the elapse of the heating time. The partial calcination according to the present invention is such that the calcination is stopped before all of the rare earth carbonate becomes oxidized rare earth, and the particles constituting the raw material are mixed rare earth composed of oxide carbonate. is there.
[0018]
The mixed rare earth particles formed by this partial calcination are further finely divided by destroying the remaining shape particles by subsequent pulverization and fluorination treatment. In addition, in the fluorination treatment, unlike the rare earth oxide, there is no aggregate, so that the fluorination is uniformly fluorinated. As a result, in the calcination, there is no factor that hinders the sintering such as the shape particles and the particles with insufficient fluorination, so that the sintering proceeds even at a relatively low temperature.
[0019]
Thus, according to the partial calcination proposed by the present inventors, the rare earth carbonate and rare earth oxide, for abrasives that do not cause the problem that sintering is difficult to occur at high temperatures. Raw materials can be manufactured.
[0020]
By the way, in this partial calcination, it is important how the carbonated rare earth is appropriately oxidized to form mixed rare earth. If the heating is excessive, the rare earth carbonate may be completely oxidized rare earth and may be fluorinated unevenly as described above. On the other hand, if the heating is insufficient, sufficient destruction of the particles will occur. However, both have a problem in sinterability as a raw material. The present inventors correspond to the invention according to claim 1 of the present invention while intensively studying to find different conditions in producing the raw material for abrasives by performing such partial calcination. It came.
[0021]
That is, the invention described in claim 1 of the present application is a method for producing a raw material for a cerium-based abrasive, which comprises calcining a cerium-based rare earth carbonate at 600 ° C. to 900 ° C.
[0022]
When calcining at a calcining temperature within this range, the carbonic acid component is appropriately released from the rare earth carbonate and the rare earth oxide is generated. That is, when the temperature is higher than 900 ° C., aggregates of rare earth oxide may be generated. Further, the destruction of the shape particles occurs at 400 ° C. or higher, but it is difficult to reduce the ignition loss to 1% or lower at a temperature lower than 600 ° C.
[0023]
Similarly, from the viewpoint of appropriately releasing the carbonic acid component from the carbonated rare earth, when performing partial calcination at 600 ° C. to 750 ° C. as described in claim 2, the calcination time is set to y1 hour to y2 hours. Is preferable. y1 and y2 are determined by the following equations.
[0024]
[Equation 3]
Figure 0003838871
[0025]
Moreover, when performing partial calcination at 750 to 900 ° C., the calcination time is preferably set to y3 hours to y4 hours. y3 and y4 are determined by the following equations.
[0026]
[Expression 4]
Figure 0003838871
[0027]
The calcination time was set in this way because the longer the calcination time, the higher the possibility of sintering and the formation of aggregates of oxidized rare earth particles as the calcination time progressed. This is because it has been found that a sufficient calcining effect cannot be obtained if the baking time is too short. In addition, as conditions for the calcination time when performing partial calcination at 600 ° C. to 750 ° C., a condition of 4 hours to 70 hours may be used as described in claim 3, and 750 ° C. to 900 ° C. As a condition of the calcining time when performing partial calcining at 0 ° C., a condition of 1 hour to 40 hours may be used as described in claim 5. When these conditions are used, preferable results are obtained as in the case of using the conditions described in claim 2 or claim 4, and the calcining time can be determined more easily.
[0028]
The raw material produced according to the present invention can be applied as it is to the conventional production process of cerium-based abrasives, and when pulverization and fluorination treatment are performed, coarser particles are reduced and the material is fluorinated more uniformly. Thereby, the baking temperature of a baking process can be made low.
[0029]
Focusing on the physical property of ignition loss of cerium-based abrasives (hereinafter also referred to as LOI (Loss On Ignition)), the relationship between ignition loss and calcination conditions (calcination temperature and calcination time) As a result of the examination, as described in claim 6, the strength when the cerium-based abrasive raw material produced by the method according to any one of claims 1 to 5 is heated at 1000 ° C. for 1 hour. When the heat loss is 0.05% to 5.0% on a dry weight basis, the carbonic acid component is moderately released from the carbonated rare earth, and the aggregate of oxidized rare earth is not generated. It turns out that we can expect the debris particles to be destroyed. If the loss on ignition of the cerium-based abrasive raw material is within this range, the sinterability during roasting is excellent, the convenience during transportation of the raw material is excellent, and the productivity of the final abrasive product is high. improves.
[0030]
The loss on ignition means the weight reduction rate when the object is ignited. In the cerium-based abrasive raw material, the high ignition loss means that even if the raw material weight to be baked is the same, the weight of the final product obtained after baking is small and the productivity is poor. The value of this loss on ignition is known to be about 30% for carbonated rare earth and 0% for oxidized rare earth. Therefore, in the present invention, the value of LOI can be said to be an index for indirectly displaying the existence ratio of rare earth carbonate and rare earth oxide. In the present invention, the loss on ignition was measured after heating at 1000 ° C. for 1 hour. In the case of rare earth salts, the value of loss on ignition starts to stabilize after heating at 500 ° C. or higher. It is based on the idea that heating at 1000 ° C. is applicable as the most stable index.
[0031]
As described above, the raw material for abrasives according to the present invention can be sintered at a sufficient sintering rate even when roasted at a relatively low temperature. Therefore, the invention according to claim 7 is a cerium-based process comprising a step of pulverizing and fluorinating the raw material, and then roasting the cerium-based abrasive raw material after the fluorination treatment at 700 ° C. to 1000 ° C. It was set as the manufacturing method of the abrasive. By roasting at such a low temperature in this way, it is possible to produce a cerium-based abrasive that can suppress abnormal grain growth and can form a high-quality polished surface with no scratches.
[0032]
In this method for producing a cerium-based abrasive, the fluorination treatment is performed before the roasting step, and this fluorination treatment is preferably performed using ammonium fluoride. For the fluorination treatment, hydrofluoric acid can also be applied. However, since the fluorination reaction proceeds slowly in ammonium fluoride, fluorine can be more uniformly distributed in the raw material. Thereby, roasting at a lower temperature is possible.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0034]
First embodiment : 3 kg of rare earth carbonate with a total rare earth oxide content (hereinafter referred to as TREO) of 69.5% (cerium oxide content / TREO = 58%) is temporarily set at 650 ° C. for 48 hours. The raw material for cerium-based abrasives was produced by baking. Then, the LOI at this time was measured.
[0035]
The measurement of LOI was performed as follows. The raw material for abrasives was put in a crucible whose weight was measured in advance, and the weight was measured. Then, the material was heated in an electric furnace at 1000 ° C. for 1 hour and then allowed to cool in a dry atmosphere. After cooling, the weight of the crucible was measured, and the LOI value was determined according to the following formula. As a result, the LOI of the abrasive material produced according to this embodiment was 0.2%.
[0036]
[Equation 5]
Figure 0003838871
[0037]
Next, 2 kg of this raw material for abrasive and 2 l (liter) of pure water were pulverized for 5 hours in a wet ball mill filled with 12 kg of a steel pulverization medium (ball) having a diameter of 5 mm to obtain an average particle size (microcrack). The slurry was made of powder having a method D50 (cumulative 50% particle size) of 1 μm. The average particle size was measured using a particle size distribution measuring device (product name: Microtrac, Nikkiso Co., Ltd.). Thereafter, an ammonium fluoride solution having a concentration of 1 mol / l was added to the slurry, washed with pure water and filtered to obtain a cake. Next, this cake was dried, roasted at 920 ° C. for 2 hours, pulverized again, and classified to obtain a cerium-based abrasive.
[0038]
Second to sixth embodiments : A cerium-based rare earth carbonate similar to the rare earth carbonate used in the first embodiment is changed under the same conditions as in the first embodiment except for the calcining temperature and calcining time. An abrasive was produced. Further, the LOI value of the raw material for abrasives obtained by calcination was measured. In each embodiment, the calcining temperature, calcining time, and measured LOI value of the obtained abrasive material are 650 ° C., 12 hours and 3.2% in the second embodiment, 750 ° C. in the third embodiment, 24 hours and 0.1%, 750 ° C., 6 hours and 3.0% in the fourth embodiment, 850 ° C., 12 hours and 0.1% in the fifth embodiment, and 850 ° C. in the sixth embodiment, 3 Time and 2.9%.
[0039]
First and second comparative examples : A cerium-based abrasive under the same conditions as in each embodiment except that the rare earth carbonate similar to the rare earth carbonate used in each embodiment is changed only in the calcining temperature and calcining time. Manufactured. Moreover, the LOI value of the raw material for abrasives obtained by calcination was measured. The calcination temperature was 1000 ° C. in all the comparative examples, and calcination was performed at this temperature for 2 hours in the first comparative example. The LOI value was 0.1%. In the second comparative example, calcination was performed for 0.5 hour. The LOI value was 3.0%.
[0040]
Third comparative example : A cerium-based abrasive was produced using an abrasive material (oxidized rare earth) produced by calcining a rare earth carbonate similar to the rare earth carbonate used in each embodiment. The calcining condition was that calcining was performed at 1000 ° C. for 5 hours in an electric furnace. Moreover, the LOI value of the raw material for abrasives obtained by calcination was less than 0.05%. The conditions for producing the cerium-based abrasive from the obtained abrasive material were the same as those of the embodiments except that the roasting temperature was 980 ° C.
[0041]
Fourth comparative example : A cerium-based abrasive was produced using the same rare earth carbonate (LOI 30%) as the rare earth carbonate used in each embodiment as an abrasive material. The conditions for producing a cerium-based abrasive from this rare earth carbonate are the same as in Comparative Example 3 including the roasting temperature.
[0042]
Then, a polishing test was performed on the cerium-based abrasives obtained by the respective embodiments and comparative examples, and the polishing value was measured and the state evaluation (scratch evaluation) of the polished surface was performed. In the polishing test, a high-speed polishing tester was used as a test apparatus, and 65 mmφ flat panel glass was used as the material to be polished, and this glass was polished using a polyurethane polishing pad. In the polishing test, first, an abrasive was dispersed in water to prepare an abrasive slurry having a slurry concentration of 10% by weight. The polishing conditions were such that the prepared abrasive slurry was supplied at a rate of 5 ml / min, the pressure on the polishing surface was set to 15.7 kg / cm 2, and the rotation speed of the polishing tester was set to 1000 rpm. . The glass material after polishing was washed with pure water and dried in a dust-free state.
[0043]
The polishing value in this polishing test is a value determined on the basis of a reduction in glass weight determined by measuring the glass weight before and after polishing. The evaluation of the scratch is based on the evaluation of the state of the polished surface, and is based on the presence or absence of scratches on the polished surface and the presence or absence of residual abrasive particles on the polished surface. Specifically, the surface of the polished glass is irradiated with a 300,000 lux halogen lamp, the surface of the glass is observed by a reflection method, the degree (size) of the scratch is determined and scored from a maximum of 100 points. Evaluation points were determined using the deduction method. In addition, a comprehensive evaluation was made based on the polishing value and the scratch evaluation score. This makes it possible to easily and relatively grasp the quality of the cerium-based abrasive produced by each embodiment or comparative example. The threshold values used for comprehensive evaluation (for example, comprehensive evaluation B and The polishing value 102), which is a criterion for separating C, is not an absolute criterion. The test results are shown in the following table.
[0044]
[Table 1]
Figure 0003838871
[0045]
As can be seen from the results, the polishing values of the cerium-based abrasives obtained by the respective embodiments were good. In addition, it was found that there were few scratches on the polished surface and the polished surface was excellent. In particular, it was found that the calcination temperature is more preferably 800 ° C. or less because there are few scratches on the cerium diameter abrasive obtained by the first to fourth embodiments. On the other hand, about each cerium type abrasive | polishing material obtained by the method of the 1st, 2nd and 3rd comparative example, although the polishing value was favorable, the flaw evaluation was inferior compared with each embodiment. This is presumed that coarse calcination was left after the calcination at a temperature of 1000 ° C., which is higher than the calcination temperature of each embodiment, so that sintering progressed and abnormal grain growth occurred, followed by pulverization. It has been found that the longer the calcination time, the more the sintering proceeds and the flaw evaluation tends to decrease. Moreover, about the cerium type abrasive | polishing material obtained by the method of the 4th comparative example, although flaw evaluation was favorable, the polishing value was inferior compared with each embodiment. Carbonated rare earth has low grinding efficiency and is roasted in a state containing coarse particles. Therefore, it is considered that the sintering rate in roasting was slow, and the raw material particles did not grow to an appropriate size during roasting.
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a raw material for an abrasive that can be sintered even when the roasting temperature is relatively low. And according to this raw material for abrasives, the cerium type abrasive | polishing material which can form a high quality polished surface without the mixing of the coarse particle by abnormal grain growth can be manufactured.
[Brief description of the drawings]
FIG. 1 is a diagram showing changes in carbonated rare earth particles in an abrasive production process.
FIG. 2 is a diagram showing changes in oxidized rare earth particles in an abrasive manufacturing process.
FIG. 3 is a view showing a change in abrasive raw material particles when partial calcination according to the present invention is performed.

Claims (7)

セリウム系希土類炭酸塩とセリウム系希土類酸化物との混合希土類塩を主成分とし、1000℃で1時間加熱した場合の強熱減量が乾燥重量基準で0.05〜5.0%であるセリウム系研摩材用原料の製造方法であって、
セリウム系希土類炭酸塩を600℃〜850℃で3〜70時間仮焼することにより、一部のセリウム系希土類炭酸塩をセリウム系希土類酸化物に変化させるセリウム系研摩材用原料の製造方法。
A cerium-based material comprising, as a main component, a mixed rare-earth salt of a cerium-based rare earth carbonate and a cerium-based rare earth oxide, and an ignition loss when heated at 1000 ° C. for 1 hour is 0.05 to 5.0% on a dry weight basis. A method for producing a raw material for abrasives,
A method for producing a raw material for cerium-based abrasives, wherein a portion of cerium-based rare earth carbonate is changed to cerium-based rare earth oxide by calcining cerium-based rare earth carbonate at 600 ° C. to 850 ° C. for 3 to 70 hours .
仮焼温度が600℃〜750℃である場合の仮焼時間はy1時間〜y2時間(但し、y1≧ 4 、y2≦70)であり、y1およびy2は次式により定まる請求項1に記載のセリウム系研摩材用原料の製造方法。
Figure 0003838871
The calcining time when the calcining temperature is 600 ° C. to 750 ° C. is y1 hour to y2 hour (where y1 ≧ 4 , y2 ≦ 70) , and y1 and y2 are determined by the following formulas: A method of manufacturing raw materials for cerium-based abrasives.
Figure 0003838871
仮焼温度が750℃〜850℃である場合の仮焼時間はy3時間〜y4時間(但し、y3≧3、y4≦40)であり、y3およびy4は次式により定まる請求項1に記載のセリウム系研摩材用原料の製造方法。
Figure 0003838871
The calcining time when the calcining temperature is 750 ° C. to 850 ° C. is y3 hours to y4 hours (where y3 ≧ 3, y4 ≦ 40) , and y3 and y4 are determined by the following formulas: A method of manufacturing raw materials for cerium-based abrasives.
Figure 0003838871
請求項1から請求項3のいずれか一項に記載の方法により製造されたものであって、1000℃で1時間加熱した場合の強熱減量が0.05%〜5.0%であるセリウム系研摩材用原料。  A cerium produced by the method according to any one of claims 1 to 3 and having a loss on ignition of 0.05% to 5.0% when heated at 1000 ° C for 1 hour. Raw material for abrasives. 請求項4に記載のセリウム系研摩材用原料を粉砕し、フッ化処理を行った後、700℃〜1000℃で焙焼する工程を有するセリウム系研摩材の製造方法。  The manufacturing method of the cerium type abrasive | polishing material which has the process of grind | pulverizing the raw material for cerium type abrasive | polishing materials of Claim 4 and performing a fluorination treatment at 700 to 1000 degreeC. フッ化処理をフッ化アンモニウムで行う請求項5に記載のセリウム系研摩材の製造方法。  The method for producing a cerium-based abrasive according to claim 5, wherein the fluorination treatment is performed with ammonium fluoride. 請求項5または請求項6に記載の方法によって製造されるセリウム系研摩材。  A cerium-based abrasive produced by the method according to claim 5 or 6.
JP2000375536A 2000-05-16 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method Expired - Fee Related JP3838871B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2000375536A JP3838871B2 (en) 2000-12-11 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
PCT/JP2001/002988 WO2001088056A1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
EP01919807A EP1285956A4 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
BR0106273-5A BR0106273A (en) 2000-05-16 2001-04-06 Cerium based abrasive, raw material for said abrasive and methods of producing said abrasive and said raw material
AU46852/01A AU762001B2 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
KR10-2001-7016083A KR100453802B1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
EEP200200016A EE05140B1 (en) 2000-05-16 2001-04-06 Source material for cerium-based abrasives, its manufacturing method, cerium-based abrasives manufacturing method and cerium-based abrasives
CNB018011683A CN1162499C (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
EA200200170A EA003909B1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
US09/980,123 US6562092B1 (en) 2000-05-16 2001-04-06 Cerium based abrasive material, raw material thereof and method for their preparation
TW090110595A TW524843B (en) 2000-05-16 2001-05-03 Cerium based abrasive material, raw material thereof and method for their preparation
MYPI20012192A MY127740A (en) 2000-05-16 2001-05-11 Cerium-based abrasive, stock material therefor, and methods of producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375536A JP3838871B2 (en) 2000-12-11 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006190891A Division JP2007008809A (en) 2006-07-11 2006-07-11 Mixed rare earth salt and raw material for cerium-based abrasive

Publications (2)

Publication Number Publication Date
JP2002309235A JP2002309235A (en) 2002-10-23
JP3838871B2 true JP3838871B2 (en) 2006-10-25

Family

ID=18844537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375536A Expired - Fee Related JP3838871B2 (en) 2000-05-16 2000-12-11 Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method

Country Status (1)

Country Link
JP (1) JP3838871B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925106A (en) * 2012-11-14 2013-02-13 内蒙古科技大学 Rare earth polishing powder and preparation method thereof

Also Published As

Publication number Publication date
JP2002309235A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
KR100453802B1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
US7722692B2 (en) Cerium oxide-based abrasive, and production method and use thereof
WO2002044300A2 (en) Cerium-based abrasive and production process thereof
WO2003104149A1 (en) Process for recovering rare earth oxide from waste liquid containing rare earth element, and process for producing rare earth oxide using same
US6905527B2 (en) Method of manufacturing cerium-based polishing agent
TWI308927B (en) Method for evaluating the quality of abrasive grains, polishing method and abrasive for polishing glass
JP3949147B2 (en) Mixed rare earth oxides, mixed rare earth fluorides, cerium-based abrasives using them, and methods for producing them
JP3694478B2 (en) Cerium-based abrasive and method for producing the same
JP3838870B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP3838871B2 (en) Method for producing raw material for cerium-based abrasive and raw material for cerium-based abrasive produced by the method
JP2002371267A (en) Method for manufacturing cerium-containing abrasive particle and cerium-containing abrasive particle
JP2007008809A (en) Mixed rare earth salt and raw material for cerium-based abrasive
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP4394848B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP4070180B2 (en) Method for producing cerium-based abrasive
JP3607592B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive
JP3875668B2 (en) Cerium-based abrasive containing fluorine and method for producing the same
TWI285674B (en) Cerium-based abrasive and production process thereof
JP4395049B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
JP4540611B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3838871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees