[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3831035B2 - Hepatitis C virus sensitive recombinant hepatocytes and use thereof - Google Patents

Hepatitis C virus sensitive recombinant hepatocytes and use thereof Download PDF

Info

Publication number
JP3831035B2
JP3831035B2 JP35292096A JP35292096A JP3831035B2 JP 3831035 B2 JP3831035 B2 JP 3831035B2 JP 35292096 A JP35292096 A JP 35292096A JP 35292096 A JP35292096 A JP 35292096A JP 3831035 B2 JP3831035 B2 JP 3831035B2
Authority
JP
Japan
Prior art keywords
hcv
hepatocytes
recombinant
added
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35292096A
Other languages
Japanese (ja)
Other versions
JPH10165186A (en
Inventor
司 西原
哲郎 上野
博 中武
一義 上仲
周英 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP35292096A priority Critical patent/JP3831035B2/en
Publication of JPH10165186A publication Critical patent/JPH10165186A/en
Application granted granted Critical
Publication of JP3831035B2 publication Critical patent/JP3831035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、HCVRNAポリメラーゼを産生する組換え肝細胞及び該組換え肝細胞にHCVを接触させ、これを培養することからなるHCVの複製方法並びにその利用に関する。
【0002】
【従来技術】
ウイルス性肝炎にはA型肝炎(伝染性肝炎)とB型肝炎(血清肝炎)の2種類があることは古くから知られていた。これは主として感染経路の相違に基づいたもので、A型肝炎は経口感染で流行を起こし、B型肝炎は主として血液を介して伝播されるものであることが確認された。これら2つの肝炎ウイルスの確定診断方法が確立されるに従い、このいずれにも属さない非A非B型肝炎の存在が明らかになってきた(Prince, A. M., et al., Lancet I p.241, 1974)。
【0003】
この中で、血液を介して感染する輸血関連非A非B型肝炎の主たる原因であるC型肝炎ウイルスのゲノムがクローニングされ、全塩基配列が決定された(Choo. Q. L., et al., Science 244, 359, 1989他)。その結果、HCVは約9.5kbのプラス鎖RNAをゲノムとし、フラビあるいはペスティウイルスに近縁のウイルスであることが明らかとなった。しかしながら、C型肝炎は、患者血清中のウイルス濃度が102〜103と低いこと、感染実験モデルがチンパンジー、マーモセットに限られることなどの問題点のため、その研究に困難を来している。このため、C型肝炎については未だウイルス本体の分離同定はなされていない。
【0004】
このような状況の中、HCVをインビトロ細胞培養系で複製させる試みが、多くの研究室で行われている。それには宿主細胞として初代肝細胞を用いるもの(Ito. T., et al. J. Gen. Viol. 77, 1043-1054, 1996)、リンパ球細胞を用いるもの(Kato. N., Biochem. Biophys. Res. Commun. 206, 863-869, 1995)、マウスレトロウイルスの感染したリンパ球を用いるもの(Nakajima. N., J. Virol., 70, 3325-3329, 1996)、肝癌由来の細胞株を用いるもの(Tsuboi. S., J. Med. Virol., 48, 133-140, 1996)などがあり、感染成立が報告されている。また、HCVのインビトロ培養系構築の困難さを回避する手段として、HCVの5’非翻訳領域を有するキメラポリオウイルスを構築して、HCVの5’非翻訳領域の機能を解析しているグループもある(Lu. H. H., Proc. Natl. Acad. Sci., 93, 1412-1417, 1996)。しかしながら、上記の方法では、ウイルスの複製期間が短い、あるいはウイルス複製量が少ない等の問題があり、HCVに対する阻害物質を研究する上で十分に満足できる結果を得ることが困難であった。したがって、安定で容易なHCV感受性細胞の樹立が求められていた。
【0005】
【発明が解決しようとする課題】
本発明は、インビトロ細胞培養系において、HCVのRNAポリメラーゼを産生する組換え肝細胞を用いることにより、HCVを効率よく、長期に複製させる方法を提供することを目的としている。
【0006】
また、本発明の他の目的は、上記のHCVを複製する方法を利用したHCVの複製阻害物質の検出方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、HCVのRNAポリメラーゼを構成的に発現する組換え肝細胞株を樹立することに成功した。更に、HCVが該組換え肝細胞に対し感受性であり、HCVを接触させた該肝細胞の培養を続けることにより、長期にわたりHCVを複製させることが出来ることを見出し、本発明を完成するに至った。
【0008】
また、本発明は、HCVのRNAポリメラーゼを産生し、HCV感受性である組換え肝細胞を包含する。
【0009】
また、本発明は、上記の組換え肝細胞にHCVを接触させ、この組換え肝細胞を長期に培養することによるHCVの複製方法を包含する。
【0010】
更に、本発明は、HCVの複製方法を利用することによるHCVの複製阻害物質の検出方法を包含する。以下に、本発明について更に詳述する。
【0011】
本発明の組換え肝細胞及び方法は、HCVの非構造蛋白質もしくはその中のRNAポリメラーゼを産生する組換え肝細胞により特徴づけられる。該組換え肝細胞の作製は、HCVの非構造領域蛋白質もしくはHCVのRNAポリメラーゼをコードするDNA断片を適当な発現ベクターに組み込み、これを肝細胞に導入することにより達成される。
【0012】
HCVの非構造領域蛋白質もしくはHCVのRNAポリメラーゼをコードするDNA断片は、サムブルック等が述べている、RNAの抽出、逆転写酵素(RT)反応とポリメラーゼ連鎖反応(PCR)によるcDNAの合成と増幅、遺伝子のクローニング等の一般的な方法(J. Sambrook, et. al., Molecular Cloning. A laboratory manual. Cold Spring Harbor Laboratory, 1989)に従い、HCVを含むC型肝炎患者血清から得られる。好ましくは、公開特許公報の「特開平5−68563」に記載のHCVcDNAの塩基配列に基づいて、各断片の連結とpBR322への挿入を行うことにより構築された、HCVゲノムの全長を含むcDNAが組み込まれたプラスミド(pHCV-8と称する)が使用される。
より具体的には、HCVの非構造領域蛋白質をコードするDNA断片は、pHCV−8を適当な制限酵素、例えば、EcoRV及びEcoRIで切断し、その末端に適当なリンカー、例えば、HindIIIリンカーを付加した後、アガロース電気泳動法により各DNA断片を分離し、ゲルから非構造蛋白質をコードする遺伝子を含む約6.5kbのDNA断片(6.5HCVと称する)を回収することにより取得できる。また、HCVのRNAポリメラーゼをコードするDNA断片は、配列表の配列番号1及び2に記載した合成プライマーを用いてPCRを行うことにより、該RNAポリメラーゼ遺伝子を含むNS5B領域(図1に遺伝子上の位置を記載)を増幅し、これをSalI及びBamHIで切断後、アガロース電気泳動法により各DNA断片を分離し、ゲルから1.77kbのDNA断片(1.77NS5Bと称する)を回収することにより取得できる。このようにして得たDNA断片が適当な発現ベクターに組み込まれる。
【0013】
発現ベクターとしては、プラスミド、コスミド、ウイルスベクター等を用いることができ、該発現ベクターに含まれるプロモーターは、サイトメガロウイルス、SV40初期、SV40後期、βアクチンなどから選択される。また、RNAポリメラーゼ活性を有するものが産生されるのであれば、他の蛋白質やペプチド、例えば、myc、β−ガラクトシダーゼ、グルタチオン−S−トランスフェラーゼ、マルトース結合蛋白、プロテインA、ヒスチジンヘキサマー等との融合蛋白として発現させることもできる。好ましくは、DNA断片6.5HCVが発現プラスミドpRc/CMV(インヴィトロジェン社)のHindIII切断部位に、1.77NS5Bが、予めmycをプロモーターの下流に挿入した発現プラスミドpGST−E/CAGのHindIII−SalI切断部位に挿入される。かくして得られる発現プラスミドをpRcHCNS6.5及びpGCNmycNS5Bとそれぞれ命名した。
また、マーカー遺伝子として、アミノグリコシド3’ホスホトランスフェラーゼ遺伝子やジヒドロ葉酸還元酵素遺伝子、グルタミン合成酵素遺伝子などを利用でき、これらの選択用添加物質としては、G−418、ネオマイシン、メソトレキセート等が例示される。
【0014】
宿主細胞の形質転換は公知の方法、例えば、燐酸カルシウム共沈澱法、DEAEデキストラン法、リポフェクチン法、エレクトロポレーション法などが利用でき、用いる宿主細胞により適当な方法を選択すればよい。好ましくは、リポフェクチン(GIBCO−BRL社)が用いられ、添付のプロトコールに従って肝細胞の形質転換が行われる。宿主の肝細胞は、ヒトもしくはチンパンジーの初代肝細胞、H8Ad17、RY5等の不死化肝細胞あるいはHepG2、アレキサンダー等の株化肝細胞から適当に選択されるが、好ましくはHepG2が使用される。培地としては、肝細胞の培養に使用可能な一般の合成培地が使用される。
【0015】
組換え肝細胞は、形質転換処理4日後に、未形質転換肝細胞が死滅するのに十分な時間、通常数日から数週間、一般に用いられる培地、例えば、ウイリアムE培地にG418を添加した培地中で培養することにより得られる。かくして得られる形質転換肝細胞中のHCVのRNAポリメラーゼもしくは該ポリメラーゼをコードするDNA断片は、通常使用される蛋白質あるいはDNA断片の検出方法、例えば、ウエスタンブロット法、ノーザンブロット法、ELISA法、RIA法等に従って検出される。より具体的には、6.5HCV及び1.77NS5BのDNA断片の検出には、組換え肝細胞からmRNA isolation kit(ベーリンガー社)を用いてmRNAを精製し、ジゴキシゲニン標識したNS5B領域内のRNA(366bp)をプローブとするノーザンブロット法が行われる。また、各プラスミドで形質転換した組換え肝細胞中のHCVのRNAポリメラーゼは、ウエスタンブロット法により、間接的に検出することができる。すなわち、pRcHCNS6.5で形質転換した組換え肝細胞に対する1次抗体として、抗NS5ラビットIgGもしくは抗NS3ラビットIgGが、pGCNmycNS5Bで形質転換した組換え肝細胞に対する1次抗体として、抗mycマウスモノクローナル抗体もしくは抗NS5ラビットIgGがそれぞれ使用される。また、両形質転換肝細胞に対する1次抗体として、HCV陽性ヒトIgGを使用することも可能である。
【0016】
HCVが上記の組換え肝細胞中で複製するか否かは、該組換え肝細胞にHCVを含む血清を接触させた後、これを長期に培養し、その培養上清または細胞破砕液中のHCVRNAもしくはHCV抗原を、in situハイブリダイゼーション法、蛍光抗体法、PCR法もしくはELISA法等の通常用いられる方法を用いて検出することにより明らかとなる。より具体的には、試料中のRNAが、培養上清の場合ISOGEN−LS(日本ジーン社)を、細胞沈査の場合ISOGEN(日本ジーン社)を用い、添付のプロトコールに従って抽出される。続いて、該RNAを逆転写酵素、例えば、MMLV(GIBCO社)でcDNAに変換した後、これをPCRにより増幅し、1.5%アガロースゲル電気泳動にて該cDNAを検出することにより、HCVの複製を判定することができる。
【0017】
かくして得られるHCV感受性の組換え肝細胞は、長期にわたりHCVを効率よく複製させることができ、HCVの複製阻害物質、例えば、HCVゲノムに対し相補であるオリゴヌクレオチド(アンチセンスオリゴヌクレオチドと称することもある)、HCVに対する中和抗体またはHCVの複製を阻害することのできる他の化学合成物質等のスクリーニング系の一員として利用される。
【0018】
【発明の効果】
本発明によると、HCVのRNAポリメラーゼを構成的に産生し、且つ長期にHCVを効率よく複製させることの出来るHCV感受性の組換え肝細胞が提供される。
【0019】
本発明者が見出した上記のHCV感受性組換え肝細胞を用いることにより、従来困難とされていたHCVの長期にわたる効率的なin vitro複製系を提供することができ、このHCV複製系を利用することにより、HCVの治療薬の開発を行うことが可能となった。また、本発明のHCV複製系においては、HCVもしくはHCV構成蛋白質を生産するので、このHCV感染肝細胞及びHCV感染肝細胞溶解液は、HCVの抗原及び抗体検出系に利用することができ、HCV感染の診断薬を構築する材料となる。
以下、実施例に沿って本発明を更に詳細に説明するが、これらの実施例は本発明の種々の具体例を説明するものであって、本発明はこれらの実施例に限定されるものではない。
【0020】
【実施例】
実施例1:RNAポリメラーゼ遺伝子領域を含む発現プラスミドの構築
本実施例に用いたpHCV−8は、公開特許公報の「特開平5−68563」に記載の塩基配列に基づき、同報に記載のHCVcDNA断片が挿入されたλgt11ファージベクターの各クローンを用いてサムブルック等の方法に準じ構築された。すなわち、適当な制限酵素処理及びアガロース電気泳動法による各λgt11ベクターからのHCVcDNA断片の切り出し並びにHCVcDNA断片の連結とpBR322への挿入の繰り返しにより、最終的に、HCVゲノムの全長をpBR322のEcoRI及びHindIIIの部位に挿入したプラスミドpHCV−8を構築した。
【0021】
上記pHCV−8の2μgに、制限酵素EcoRV(宝酒造社)10ユニット及びEcoRI(宝酒造社)15ユニットを加えて37℃で2時間反応させた。この反応物をフェノール・クロロホルム処理後、エタノール沈殿を行って、DNA断片を回収した。このDNA断片を30μlの水に溶解し、これにT4DNAポリメラーゼ(宝酒造社)4ユニットと、2mMのdNTP混合物3μlを加えて37℃で30分反応して、制限酵素により生じた切断末端を修復した。このDNA断片を前記と同様の方法で回収し、20μlの水に溶解した。
このうちの10μlの溶液にHindIIIリンカー(宝酒造社)とDNA ligation kit(宝酒造社)の試薬を加えて、メーカーのプロトコールに従って連結反応を行った。反応終了後、前記と同様の方法でDNAを回収し、これに15ユニットのHindIIIを加えて37℃で2時間反応させた。この反応溶液を0.8%アガロースゲル電気泳動にかけ、非構造遺伝子領域を含む6.5kbの6.5HCVをゲルより抽出・回収した。この6.5HCVをHindIIIで処理済みの動物細胞用の発現ベクターpRc/CMVの100ngに加え、DNA ligation kitを用いて連結反応を行った。このようにして構築した発現プラスミドをpRcHCNS6.5と命名した(図2)。
【0022】
HCVのRNAポリメラーゼをコードする遺伝子を含むNS5B領域のみを発現するプラスミドは、以下のようにして構築した。まず、mycの10アミノ酸の付加した12アミノ酸からなるタグをコードする塩基配列の5’末端にHindIII切断配列を付加した、配列表の配列番号:3に記載のオリゴヌクレオチド、及びこれに相補であり、その5’末端にSalI切断配列を付加した、配列番号:4に記載のオリゴヌクレオチドを合成し(サワデー社)、これらのオリゴDNAをアニールさせた。このオリゴDNAをHindIIIおよびSalIで切断済みの動物細胞用の発現ベクターpGST−E/CAGの100ngに加え、DNA ligation kitを用いて連結反応を行った。こうして得られたプラスミドをN−12と命名した(図3)。
【0023】
次に配列番号:1及び2に記載のプライマーを合成し、これらのプライマーを用いてPCR法により、pHCV−8のNS5B領域を増幅した。具体的には、100pmol/μlのプライマーを各1μl、10xPCRバッファー10μl、25mMMgCl26μl、2.5mMdNTPミックス8μl、鋳型DNA(pHCV−8)100ng、組換えTaqDNAポリメラーゼ(5u/μl)(宝酒造社)0.5μlを混合し、これに水を加えて全量を100μlとした。この反応溶液をPC−800(アステック社)で35サイクルのPCR増幅を行った。PCRは以下の条件で行った。95℃1分、55℃2分、72℃2分の1サイクルの反応の後、94℃1分、55℃2分、72℃2分の反応を33サイクル、引き続き94℃1分、55℃2分、72℃5分の反応を1サイクルの合計35サイクルのPCR増幅を行った。反応終了後、フェノール・クロロホルム処理、引き続きエタノール沈殿で増幅産物を回収した。これを20μlの水に溶解し、SalI(宝酒造社)10ユニット及びBamHI(宝酒造社)10ユニットを加えて37℃で2時間反応した。反応後1%アガロースゲル電気泳動を行い、1.77kbのDNA断片1.77NS5Bを回収した(図4)。こうして得られた1.77NS5Bを、SalI及びBamHIで処理済みの図3に記載のN−12プラスミド100ngに加え、DNA ligation kitを用いて連結反応を行った。得られた発現プラスミドをpGCNmycNS5Bと命名した(図5)。
【0024】
実施例2:1.77NS5Bを含む発現プラスミドの肝細胞への導入と組換え肝細胞の取得
先に構築した発現プラスミドpRcHCNS6.5あるいはpGCNmycNS5Bを、リポフェクチン(GIBCO−BRL社)を用いてHepG2肝細胞(ATCC寄託番号: HB−8065)に導入した。導入方法はメーカー添付のプロトコールに従った。具体的には、発現プラスミド1μgを100μlのOpti−MEM培地(GIBCO社)に加えたDNA溶液ならびに10μlの1mg/mlリポフェクチンを100μlのOpti−MEM培地に加えた溶液をそれぞれ調製した後、室温でゆっくり混合し10−15分静置した。この混合溶液200μlにOpti−MEM培地を800μl加え、全量を35mmの培養ディッシュに1x105で播種したHepG2肝細胞に添加した。この細胞を37℃ CO2インキュベーターで一夜静置した後、10% FBSを含むウイリアムE培地に置換して48時間更に培養を続けた。培養ディッシュ一面に増殖した細胞を回収し、ウイリアムE培地で10倍希釈して10cmの培養ディッシュに拡張した。翌日、選択マーカーG418(シグマ社:geneticin)を終濃度1mg/mlとなるように添加したウイリアムE選択培地に置換して、培養を継続した。3−5日毎に上記選択培地で培地交換を行い、2−3週後にG418耐性の細胞を取得して分離・拡張した。
【0025】
実施例3:挿入遺伝子産物の発現の確認
G418耐性の細胞をそれぞれ15クローンずつ分離・拡張し、挿入遺伝子に由来する発現をRNAレベル及び蛋白レベルで解析した。
RNAレベルでの解析はノーザンブロット法によった。すなわち、25cm2培養ディッシュでコンフルエントとなった上記の組換え体肝細胞を回収し、107相当の細胞からmRNA isolation Kit(ベーリンガー社)を用いてmRNAを精製し、常法に従って1%アガロース電気泳動を行った後、HybondN+(アマシャム社)に転写した。次いで、HCVゲノムのNS5B領域に相当する配列表の配列番号:5に記載のDNA断片を鋳型として合成したジゴキシゲニン標識の366bpのRNAプローブを用いて、目的のRNAを検出した。その結果、組換え体細胞に特異的なシグナルを検出した。
【0026】
蛋白レベルでの解析はウエスタンブロット法によった。すなわち、25cm2培養ディッシュより組換え体肝細胞を回収し、細胞処理バッファー(5mMTrisHCl、5%SDS、2.5%2−メルカプトエタノール、12.5%グリセロール、0.01%BPB)で細胞を処理後、レーン当たり105の細胞を10−20%のグラディエントゲル(第一化学社)にかけた。40mAの定電流で1時間泳動後、SEMI−DRY TRANSFER CELL(BIO−RAD社)でPVDF膜(ミリポア社)に蛋白を転写し、常法に従い検出反応を行った。一次抗体には、抗NS5ラビットIgG、抗NS3ラビットIgG、抗mycマウスモノクローナル抗体もしくはHCV陽性ヒトIgGを用いた。PVDF膜上に転写された蛋白質の検出は、化学発光を利用したBM Chemiluminescence Western Blotting Kit(ベーリンガー社)を用い、添付のプロトコールに従って行った。その結果、組換え体肝細胞に特異的な予想されるサイズのシグナルを検出した(図6)。かくして得られたpRcHCNS6.5が組み込まれ、HCV構成蛋白質であるNS3及びNS5を産生する組換え肝細胞をHepG2 Dec4と命名した。また、pGCNmycNS5Bが組み込まれ、NS5Bを発現する組換え肝細胞をNmycNS5B−3と命名した。
【0027】
実施例4:HCV感染実験(その1)
HCVの感染力価が高く、且つ、ノーザンブロット解析で全長のHCVRNAが検出された3種の血漿6684、5269及び7878を等量混合し、これを更に血清無添加のウイリアムE培地で2倍に希釈した材料を感染材料として用いた。
10%FBSを含むウイリアムE培地に懸濁したHepG2 Dec4を24ウェル培養プレートにウェル当たり1x105個播種し、一夜吸着させた。翌日、各ウエルに上記の感染材料1mlを添加して37℃CO2インキュベーター内で一夜吸着させた。翌日、上清を吸引除去しPBSで3回洗浄した後、10%FBS入りウイリアムE培地を1ml加えて培養を開始した。感染材料接種4日後、細胞を6ウェル培養プレートに拡張し、さらに4日後25cm2フラスコに拡張した。さらに、4日後に2%あるいは10%FBS入りウイリアムE培地で培地のみ交換し、さらに3日後に細胞を継代した。この1週間単位の培地交換及び細胞継代を繰り返し、細胞を継代する毎にPCRアッセイのための培養上清と細胞のサンプリングを行った。
【0028】
HCVRNAの検出は、サンプルからRNAを抽出し、RT反応によりcDNAを合成した後、配列表の配列番号:6ないし17に記載の合成プライマーを用いたPCRによりHCVcDNAを増幅し、1.5%アガロースゲル電気泳動を行い、目的のサイズを有するcDNA断片を検出することにより行った。PCRは外側プライマーセットと内側プライマーセットの2段階で行った。用いたプライマー領域は3カ所有り、それぞれの場所と配列を図7に示す。より具体的には、まず、250μlの培養上清に750μlのISOGEN−LSを、2−4x106個の細胞沈査には1mlのISOGENをそれぞれ加え、添付のプロトコールに従って抽出したRNAに20μlのH2Oを加え溶解し、65℃で5分間加熱後急冷した。これにH2O 22.67μl、10x反応バッファー5μl、リボヌクレアーゼインヒビター(GIBCO−BRL社)0.18μl、各25mMのdNTP混合液0.4μl、配列表の配列番号:6及び9に記載の50μMのプライマーを各0.5μl、MMLV0.5μl、ampli Taq(Perkin社)0.25μlを加え、全量を50μlとして42℃30分間RT反応を行い、引き続きPC−800(アステック社)で35サイクルのPCR増幅を行った。2段階目のPCR増幅を行うため、1段階目のPCR産物2.5μlを分取し、これにH2O 19.55μl、10x反応バッファー2.5μl、各25mMのdNTP混合液0.1μl、配列表の配列番号:7及び8に記載の50μMのプライマーを各0.125μl、ampli Taq0.1μlを加え、全量を25μlとして35サイクルのPCR増幅を行った。2段階目のPCR産物を10μl採取し、1.5%アガロースゲル電気泳動を行い、HCVの複製を判定した。99日間の観察結果を表1に示す。●がHCV陽性を、○がHCV陰性を表す。99日間にわたり断続的にHCVが検出された。
【0029】
【表1】

Figure 0003831035
【0030】
実施例5:HCV感染実験(その2)
NmycNS5B−3の組換え肝細胞を用いてHCVの感染実験を行った。感染材料を組換え細胞に添加した後、37℃CO2インキュベーター内で4時間吸着させた以外は、全て実施例4と同様の方法で行った。56日間の観察経過を表2に示す。●がHCV陽性を、○がHCV陰性を表す。その結果、56日間にわたりHCVが検出された。NS5B遺伝子を導入していないHepG2細胞では、28日間の観察期間にはHCVは検出されなかった。
【0031】
【表2】
Figure 0003831035
【0032】
実施例6:In situ ハイブリダイゼーション
In situハイブリダイゼーションによる細胞内HCV RNAの検出を行った。
10%FBSを含むウイリアムE培地に懸濁した感染細胞を、4ウェルLabTek Chamber(ヌンク社)の各ウェルに5x104個播種し、37℃で一夜吸着させた。翌日、パラホルムアルデヒドで細胞を固定した後、0.2μg/mlのproteinase Kを5分間作用させた。この試料にジゴキシゲニン標識RNAプローブを加えて、55℃で一夜ハイブリダイゼーションを行った。HCVゲノムを検出するためのプローブは以下のようにして調製した。まず、HCVの翻訳開始コドンである342番目の塩基より700番目の塩基までの359塩基をPCRで増幅した。その際、下流側のプライマーにはT7 RNAポリメラーゼの認識配列を付加しておいた。このようにして増幅された配列表の配列番号:8に記載のHCVDNAをRNAプローブ合成の鋳型として用いた。RNAプローブの合成は、T7 RNAポリメラーゼ(ベーリンガー社)及び試薬を用いて、添付のプロトコールに従い、ジゴキシゲニン標識法で行った。
【0033】
ハイブリダイゼーション後、同じく55℃で5xSSC(20xSSCを4倍希釈したもの。20xSSCは175.3gのNaClと、88.2gのクエン酸ナトリウムをH2Oで1リットルとしてpH7.0に調製したもの)液で約1分、更に2xSSCで20分、引き続き0.2xSSCで20分を2回の洗浄操作を行った。洗浄操作終了後、アルカリフォスファターゼ標識抗ジゴキシゲニン抗体(ベーリンガー社)を室温で30分反応させた。次に基質溶液のBCIP33μlおよびNBT44μlを加えて、室温にて6時間あるいは一夜反応させた。反応後、アセトカルミン液で細胞を染色して脱水した後、封入して光学顕微鏡で観察した。
【0034】
実施例7:蛍光抗体法
10%FBSを含むウイリアムE培地に懸濁した感染細胞を、4ウェルのLab Tek Chamber(ヌンク社)の各ウェルに5x104個播種し、37℃で一夜吸着させた。翌日80%の冷エタノールで細胞を固定した後、常法に従い蛍光抗体反応を実施した。一次抗体にはHCVゲノムのコア蛋白を大腸菌で発現させて精製した抗原を、マウスに免疫して調製したモノクローナル抗体を用いた。このモノクローナル抗体を10μg/mlの濃度で一次抗体反応を行った。二次抗体にはFITC標識抗マウスIgG(カッペル社)を用いた。
【0035】
実施例8:アンチセンスオリゴヌクレオチドによるHCVの複製阻害
10%FBSを含むウイルアムE培地に懸濁したNmycNS5B-3細胞を24ウェルプレートにウェル当り5x104播種し、37℃で培養した。培養液の容量は1mlとした。2日後、細胞をPBSで洗浄し、2%のFBSを含むウイリアムE培地に置換した。次に、配列表の配列番号19に記載の、ホスホロチオエート結合を骨格に持ち、HCVの塩基配列に対し、相補であるオリゴヌクレオチド(グライナージャパン社)および、同じ配列を持ち、3’にコレステロールを付加したオリゴヌクレオチドを、終濃度が前者の場合10μM、後者の場合1μMとなるように添加して1日培養した。陰性対象としてHCVとは無関係の配列を有し、その他の構成要素は同じであるオリゴヌクレオチドを用いて、同様に処理した。翌日細胞をPBSで2回洗浄し、HCVを感染させた。HCVの感染は感染材料5269および7878の各血漿を当量混合して使用し、37℃で2時間吸着させた点以外は実施例4に記載の方法で行った。ウイルス吸着後、細胞をPBSで5回洗浄し10%のFBSを含むウイリアムE培地を1ml添加して培養を開始した。感染材料接種3日後に感染細胞をオリゴヌクレオチドで再度処理した。すなわち、感染細胞をPBSで1回洗浄後、2%のFBSを含むウイリアムE培地1mlに置換し、これに上述した濃度となるようにオリゴヌクレオチドをそれぞれ添加した。翌日終濃度が10%となるように80μlのFBSを加えて、培養を継続した。更に4日後に同じヌクレオチド処理操作を繰り返した。この3度目のオリゴヌクレオチド処理から4日後に培養上清および細胞を回収し、実施例4に記載の方法でHCVRNAの検出を行った。
【0036】
その結果を図8に示す。図の番号1、2は正常ヒト血清の結果を示す。3〜6はオリゴ処理したHCV感染NmycNS5B-3細胞の結果を示す。3は配列番号:19のオリゴヌクレオチドによる処理、4は陰性対象のオリゴヌクレオチドによる処理、5は3’端にコレステロールを付加した配列番号:19のオリゴヌクレオチドによる処理、6は3’端にコレステロールを付加した陰性対象のオリゴヌクレオチドによる処理をそれぞれ示す。7はオリゴヌクレオチド未処理のHCV感染NmycNS5B-3細胞を示す。8はオリゴ未処理のHCV感染HepG2細胞を示す。9はHCV非感染のNmycNS5B-3細胞を示す。10はHCV陽性血漿の結果を示す。配列番号:19のオリゴヌクレオチド処理を行った場合にHCVの複製阻害効果が見られた。
【0037】
【配列表】
配列番号:1
配列の長さ:30
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0038】
配列番号:2
配列の長さ:33
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0039】
配列番号:3
配列の長さ:42
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0040】
配列番号:4
配列の長さ:42
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0041】
配列番号:5
配列の長さ:366
配列の型:核酸
鎖の数:2本鎖
トポロジー:直鎖状
配列の種類:cDNA to genomic RNA
他の情報:HCVゲノム1b型の塩基配列の9041〜9406番目に相当する。
配列
Figure 0003831035
【0042】
配列番号:6
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0043】
配列番号:7
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0044】
配列番号:8
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0045】
配列番号:9
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0046】
配列番号:10
配列の長さ:21
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0047】
配列番号:11
配列の長さ:21
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0048】
配列番号:12
配列の長さ:21
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0049】
配列番号:13
配列の長さ:21
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0050】
配列番号:14
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0051】
配列番号:15
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0052】
配列番号:16
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0053】
配列番号:17
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
配列
Figure 0003831035
【0054】
配列番号:18
配列の長さ:359
配列の型:核酸
鎖の数:2本鎖
トポロジー:直鎖状
配列の種類:cDNA to genomic RNA
他の情報:HCVゲノム1b型の塩基配列の342〜700番目に相当する。
配列
Figure 0003831035
【0055】
配列番号:19
配列の長さ:20
配列の型:核酸
鎖の数:1本鎖
トポロジー:直鎖状
配列の種類:他の核酸(合成DNA)
他の情報:HCVゲノム1b型の塩基配列の340〜359番目に相当し、これに相補的な配列で、ホスホロチオエート結合を骨格に持つ。
配列
Figure 0003831035

【図面の簡単な説明】
【図1】HCVゲノムの遺伝子構造を示す図である。
【図2】発現ベクターpRc/CMVにHCVの非構造タンパク質をコードする遺伝子領域を含むDNA断片(6.5HCV)を挿入した発現プラスミドpRcHCNS6.5の構築の概略図を示す。
【図3】発現ベクターpGST−E/CAGにmycタグを挿入した発現プラスミドN−12の構築の概略図を示す。mycの10アミノ酸を含む12アミノ酸をコードするオリゴヌクレオチドと、これの相補鎖を合成し、アニールさせた後、発現ベクターのプロモーターの下流に挿入した。
【図4】HCVのRNAポリメラーゼをコードする遺伝子を含むDNA断片(1.77NS5B)を作製するための概略図を示す。
【図5】図3のN−12のmycタグの下流に図4の1.77NS5Bを挿入した発現プラスミドpGCNmycNS5Bの構築の概略図を示す。
【図6】pRcHCNS6.5を導入した肝細胞HepG2Dec4、及びpGCNmycNS5Bを導入したNmycNS5B−3をSDS−PAGEにかけ、ウエスタンブロット法でHCV遺伝子に由来するタンパク質の発現を同定した結果を示す模式図である。
【図7】RT−PCRに用いたプライマーのHCVゲノム上の位置を示す図である。A領域、B領域あるいはC領域を用いて、RT−PCRを行ない、感染細胞内のHCVを検出した。
【図8】それぞれのサンプルよりRNAを抽出し、RT-PCRを行った後、アガロース電気泳動にかけ、エチジウムブロミドで染色した結果を示す図面で、アンチセンスオリゴヌクレオチドによるHCVの複製阻害効果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a recombinant hepatocyte producing HCV RNA polymerase, an HCV replication method comprising contacting HCV with the recombinant hepatocyte and culturing the same, and use thereof.
[0002]
[Prior art]
It has long been known that there are two types of viral hepatitis: hepatitis A (infectious hepatitis) and hepatitis B (serum hepatitis). This was mainly based on the difference in the route of infection, and it was confirmed that hepatitis A was epidemic by oral infection and hepatitis B was mainly transmitted via blood. As a definitive diagnostic method for these two hepatitis viruses has been established, the existence of non-A non-B hepatitis that does not belong to any of these has been revealed (Prince, AM, et al., Lancet I p.241, 1974).
[0003]
Among these, the genome of the hepatitis C virus, which is the main cause of transfusion-related non-A non-B hepatitis that infects via blood, was cloned and the entire nucleotide sequence was determined (Choo. QL, et al., Science 244, 359, 1989 and others). As a result, it was clarified that HCV is a virus closely related to flavi or pestiviruses with a genome of about 9.5 kb plus-strand RNA. However, hepatitis C has a viral concentration of 10 in patient serum.2-10ThreeHowever, due to problems such as low infection and limited experimental models for chimpanzees and marmosets, the research has become difficult. For this reason, isolation and identification of the virus main body has not yet been made for hepatitis C.
[0004]
Under such circumstances, many laboratories have attempted to replicate HCV in an in vitro cell culture system. For this, primary hepatocytes are used as host cells (Ito. T., et al. J. Gen. Viol. 77, 1043-1054, 1996), and lymphocyte cells are used (Kato. N., Biochem. Biophys). Commun. 206, 863-869, 1995), those using mouse retrovirus-infected lymphocytes (Nakajima. N., J. Virol., 70, 3325-3329, 1996), cell lines derived from liver cancer (Tsuboi. S., J. Med. Virol., 48, 133-140, 1996) etc., and the establishment of infection has been reported. In addition, as a means to avoid the difficulty of constructing an in vitro culture system of HCV, there is a group that has constructed a chimeric poliovirus having a 5 ′ untranslated region of HCV and analyzed the function of the 5 ′ untranslated region of HCV (Lu. HH, Proc. Natl. Acad. Sci., 93, 1412-1417, 1996). However, the above method has problems such as a short virus replication period or a small amount of virus replication, and it has been difficult to obtain a sufficiently satisfactory result in studying inhibitors against HCV. Therefore, establishment of stable and easy HCV sensitive cells has been demanded.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently and long-term replicating HCV by using recombinant hepatocytes that produce HCV RNA polymerase in an in vitro cell culture system.
[0006]
Another object of the present invention is to provide a method for detecting an HCV replication inhibitor using the above-described method for replicating HCV.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have succeeded in establishing a recombinant hepatocyte cell line that constitutively expresses HCV RNA polymerase. Furthermore, the inventors have found that HCV is sensitive to the recombinant hepatocytes, and that HCV can be replicated over a long period of time by continuing to culture the hepatocytes in contact with HCV, thereby completing the present invention. It was.
[0008]
The present invention also includes recombinant hepatocytes that produce HCV RNA polymerase and are sensitive to HCV.
[0009]
The present invention also includes a method for replicating HCV by contacting HCV with the above-described recombinant hepatocytes and culturing the recombinant hepatocytes for a long period of time.
[0010]
Furthermore, the present invention includes a method for detecting an HCV replication inhibitor by utilizing an HCV replication method. The present invention is described in further detail below.
[0011]
The recombinant hepatocytes and methods of the present invention are characterized by recombinant hepatocytes that produce HCV nonstructural proteins or RNA polymerase therein. The production of the recombinant hepatocytes is achieved by incorporating a DNA fragment encoding HCV nonstructural region protein or HCV RNA polymerase into an appropriate expression vector and introducing it into hepatocytes.
[0012]
DNA fragments encoding HCV non-structural region protein or HCV RNA polymerase are synthesized and amplified by RNA extraction, reverse transcriptase (RT) reaction and polymerase chain reaction (PCR) as described by Sambrook et al. According to a general method such as gene cloning (J. Sambrook, et. Al., Molecular Cloning. A laboratory manual. Cold Spring Harbor Laboratory, 1989), it is obtained from sera of patients with hepatitis C containing HCV. Preferably, a cDNA comprising the full length of the HCV genome constructed by ligating each fragment and inserting it into pBR322 based on the base sequence of HCV cDNA described in “JP-A-5-68563” of the published patent publication An integrated plasmid (designated pHCV-8) is used.
More specifically, the DNA fragment encoding the non-structural region protein of HCV is cleaved with pHCV-8 with an appropriate restriction enzyme such as EcoRV and EcoRI, and an appropriate linker such as a HindIII linker is added to the end. Then, each DNA fragment is separated by agarose electrophoresis, and it can be obtained by recovering an approximately 6.5 kb DNA fragment (referred to as 6.5 HCV) containing a gene encoding a nonstructural protein from the gel. In addition, a DNA fragment encoding HCV RNA polymerase was subjected to PCR using the synthetic primers described in SEQ ID NOs: 1 and 2 in the sequence listing, whereby the NS5B region containing the RNA polymerase gene (FIG. Obtained by cleaving with SalI and BamHI, separating each DNA fragment by agarose electrophoresis, and recovering a 1.77 kb DNA fragment (referred to as 1.77NS5B) from the gel it can. The thus obtained DNA fragment is incorporated into an appropriate expression vector.
[0013]
As an expression vector, a plasmid, a cosmid, a virus vector, or the like can be used. The promoter contained in the expression vector is selected from cytomegalovirus, early SV40, late SV40, β-actin and the like. If a product having RNA polymerase activity is produced, fusion with other proteins and peptides such as myc, β-galactosidase, glutathione-S-transferase, maltose binding protein, protein A, histidine hexamer, etc. It can also be expressed as a protein. Preferably, DNA fragment 6.5HCV is inserted into the HindIII cleavage site of expression plasmid pRc / CMV (Invitrogen), 1.77NS5B is HindIII- of expression plasmid pGST-E / CAG in which myc is previously inserted downstream of the promoter. Inserted into the SalI cleavage site. The expression plasmids thus obtained were named pRcHCNS6.5 and pGCNmycNS5B, respectively.
As marker genes, aminoglycoside 3 'phosphotransferase gene, dihydrofolate reductase gene, glutamine synthetase gene and the like can be used. Examples of these additive substances include G-418, neomycin, methotrexate and the like.
[0014]
For transformation of host cells, known methods such as calcium phosphate coprecipitation method, DEAE dextran method, lipofectin method, electroporation method and the like can be used, and an appropriate method may be selected depending on the host cell to be used. Preferably, lipofectin (GIBCO-BRL) is used, and hepatocytes are transformed according to the attached protocol. The host hepatocytes are suitably selected from human or chimpanzee primary hepatocytes, immortalized hepatocytes such as H8Ad17 and RY5, or established hepatocytes such as HepG2 and Alexander, and preferably HepG2. As the medium, a general synthetic medium that can be used for culturing hepatocytes is used.
[0015]
Recombinant hepatocytes have a sufficient time for the untransformed hepatocytes to die after 4 days of transformation, usually a few days to a few weeks, a medium commonly used, for example, a medium in which G418 is added to William E medium. It is obtained by culturing in. The thus obtained HCV RNA polymerase or the DNA fragment encoding the polymerase in the transformed hepatocytes is obtained by a commonly used method for detecting a protein or DNA fragment, such as Western blotting, Northern blotting, ELISA, RIA. Detected according to etc. More specifically, for detection of 6.5 HCV and 1.77 NS5B DNA fragments, mRNA was purified from recombinant hepatocytes using mRNA isolation kit (Boehringer), and RNA in the NS5B region labeled with digoxigenin ( Northern blotting using 366 bp) as a probe is performed. Further, HCV RNA polymerase in recombinant hepatocytes transformed with each plasmid can be indirectly detected by Western blotting. That is, as a primary antibody against recombinant hepatocytes transformed with pRcHCNS6.5, anti-NS5 rabbit IgG or anti-NS3 rabbit IgG is used as a primary antibody against recombinant hepatocytes transformed with pGCNmycNS5B. Alternatively, anti-NS5 rabbit IgG is used, respectively. It is also possible to use HCV positive human IgG as the primary antibody against both transformed hepatocytes.
[0016]
Whether or not HCV replicates in the above recombinant hepatocytes is determined by contacting the recombinant hepatocytes with serum containing HCV and then culturing them for a long period of time in the culture supernatant or cell lysate. It becomes clear by detecting HCV RNA or HCV antigen using a commonly used method such as in situ hybridization method, fluorescent antibody method, PCR method or ELISA method. More specifically, RNA in the sample is extracted according to the attached protocol using ISOGEN-LS (Nippon Gene) in the case of a culture supernatant and ISOGEN (Nippon Gene) in the case of cell sedimentation. Subsequently, the RNA is converted into cDNA with a reverse transcriptase such as MMLV (GIBCO), and then amplified by PCR, and the cDNA is detected by 1.5% agarose gel electrophoresis, whereby HCV Can be determined.
[0017]
The HCV-sensitive recombinant hepatocytes thus obtained can efficiently replicate HCV over a long period of time, and are HCV replication inhibitors, for example, oligonucleotides complementary to the HCV genome (also referred to as antisense oligonucleotides). A), and is used as a member of a screening system for neutralizing antibodies against HCV or other chemically synthesized substances capable of inhibiting HCV replication.
[0018]
【The invention's effect】
The present invention provides HCV-sensitive recombinant hepatocytes that constitutively produce HCV RNA polymerase and can efficiently replicate HCV over a long period of time.
[0019]
By using the above-described HCV-sensitive recombinant hepatocytes found by the present inventor, it is possible to provide a long-term efficient in vitro replication system for HCV, which has been considered difficult in the past, and use this HCV replication system As a result, it has become possible to develop therapeutic agents for HCV. In addition, since the HCV replication system of the present invention produces HCV or HCV-constituting proteins, the HCV-infected hepatocytes and HCV-infected hepatocyte lysate can be used for HCV antigen and antibody detection systems. It becomes a material for constructing diagnostic agents for infection.
EXAMPLES Hereinafter, although this invention is demonstrated further in detail along an Example, these Examples demonstrate various specific examples of this invention, and this invention is not limited to these Examples. Absent.
[0020]
【Example】
Example 1: Construction of an expression plasmid containing an RNA polymerase gene region
The pHCV-8 used in this example is based on the nucleotide sequence described in “JP-A-5-68563” of the published patent gazette and uses each clone of the λgt11 phage vector into which the HCV cDNA fragment described in the same report is inserted. It was constructed according to the method of Sambrook. That is, by excising the HCV cDNA fragment from each λgt11 vector by appropriate restriction enzyme treatment and agarose electrophoresis, and repeating the ligation of the HCV cDNA fragment and the insertion into pBR322, the entire length of the HCV genome was finally reduced to EcoRI and HindIII of pBR322. Plasmid pHCV-8 inserted at the site was constructed.
[0021]
Ten units of restriction enzyme EcoRV (Takara Shuzo) and 15 units of EcoRI (Takara Shuzo) were added to 2 μg of pHCV-8 and reacted at 37 ° C. for 2 hours. The reaction product was treated with phenol / chloroform and then precipitated with ethanol to recover the DNA fragment. This DNA fragment was dissolved in 30 μl of water, 4 units of T4 DNA polymerase (Takara Shuzo Co., Ltd.) and 3 μl of 2 mM dNTP mixture were added thereto, and reacted at 37 ° C. for 30 minutes to repair the cleavage ends generated by restriction enzymes. . This DNA fragment was recovered by the same method as described above and dissolved in 20 μl of water.
To the 10 μl of the solution, HindIII linker (Takara Shuzo) and DNA ligation kit (Takara Shuzo) were added, and a ligation reaction was performed according to the manufacturer's protocol. After completion of the reaction, DNA was recovered by the same method as described above, 15 units of HindIII was added thereto and reacted at 37 ° C. for 2 hours. This reaction solution was subjected to 0.8% agarose gel electrophoresis, and 6.5 kb 6.5 HCV containing the nonstructural gene region was extracted and collected from the gel. The 6.5 HCV was added to 100 ng of an expression vector pRc / CMV for animal cells that had been treated with HindIII, and a ligation reaction was performed using a DNA ligation kit. The expression plasmid constructed in this way was named pRcHCNS6.5 (FIG. 2).
[0022]
A plasmid expressing only the NS5B region containing the gene encoding HCV RNA polymerase was constructed as follows. First, the oligonucleotide according to SEQ ID NO: 3 in the sequence listing, in which a HindIII cleavage sequence is added to the 5 ′ end of the base sequence encoding a tag consisting of 12 amino acids to which 10 amino acids of myc have been added, is complementary to this Then, an oligonucleotide described in SEQ ID NO: 4 with a SalI cleavage sequence added to its 5 ′ end was synthesized (Sawaday), and these oligo DNAs were annealed. This oligo DNA was added to 100 ng of an expression vector pGST-E / CAG for animal cells which had been cleaved with HindIII and SalI, and a ligation reaction was performed using a DNA ligation kit. The plasmid thus obtained was named N-12 (FIG. 3).
[0023]
Next, primers shown in SEQ ID NOs: 1 and 2 were synthesized, and the NS5B region of pHCV-8 was amplified by PCR using these primers. Specifically, 100 μmol / μl of primer was used for each 1 μl, 10 × PCR buffer 10 μl, 25 mM MgCl.26 μl, 2.5 mM dNTP mix 8 μl, template DNA (pHCV-8) 100 ng, recombinant Taq DNA polymerase (5 u / μl) (Takara Shuzo) 0.5 μl were mixed, and water was added to make a total volume of 100 μl. This reaction solution was subjected to PCR amplification for 35 cycles with PC-800 (Astech). PCR was performed under the following conditions. After 95 ° C for 1 minute, 55 ° C for 2 minutes and 72 ° C for 2 minutes of reaction, 94 ° C for 1 minute, 55 ° C for 2 minutes and 72 ° C for 2 minutes for 33 cycles, followed by 94 ° C for 1 minute PCR amplification was performed for 2 cycles at 72 ° C. for 5 minutes, a total of 35 cycles. After completion of the reaction, the amplification product was recovered by phenol / chloroform treatment and subsequent ethanol precipitation. This was dissolved in 20 μl of water, 10 units of SalI (Takara Shuzo) and 10 units of BamHI (Takara Shuzo) were added and reacted at 37 ° C. for 2 hours. After the reaction, 1% agarose gel electrophoresis was performed to recover a 1.77 kb DNA fragment 1.77NS5B (FIG. 4). The 1.77NS5B thus obtained was added to 100 ng of the N-12 plasmid shown in FIG. 3 that had been treated with SalI and BamHI, and a ligation reaction was performed using a DNA ligation kit. The obtained expression plasmid was designated as pGCNmycNS5B (FIG. 5).
[0024]
Example 2: Introduction of expression plasmid containing 1.77NS5B into hepatocytes and acquisition of recombinant hepatocytes
The previously constructed expression plasmid pRcHCNS6.5 or pGCNmycNS5B was introduced into HepG2 hepatocytes (ATCC deposit number: HB-8065) using lipofectin (GIBCO-BRL). The introduction method followed the protocol attached to the manufacturer. Specifically, after preparing a DNA solution in which 1 μg of expression plasmid was added to 100 μl of Opti-MEM medium (GIBCO) and a solution in which 10 μl of 1 mg / ml lipofectin was added to 100 μl of Opti-MEM medium, respectively. Mix gently and let stand for 10-15 minutes. To 200 μl of this mixed solution, 800 μl of Opti-MEM medium was added, and the entire amount was added to 1 × 10 5 in a 35 mm culture dish.FiveWas added to the HepG2 hepatocytes seeded in (1). The cells were treated at 37 ° C with CO2After standing overnight in an incubator, the medium was replaced with William E medium containing 10% FBS, and the culture was further continued for 48 hours. Cells grown on one side of the culture dish were collected, diluted 10-fold with William E medium, and expanded to a 10 cm culture dish. On the next day, the selection marker G418 (Sigma: geneticin) was replaced with a William E selective medium added to a final concentration of 1 mg / ml, and the culture was continued. The medium was replaced with the above selective medium every 3-5 days, and G418-resistant cells were obtained, separated and expanded after 2-3 weeks.
[0025]
Example 3: Confirmation of expression of inserted gene product
G418-resistant cells were each isolated and expanded by 15 clones, and the expression derived from the inserted gene was analyzed at the RNA level and the protein level.
Analysis at the RNA level was by Northern blotting. That is, 25cm2The above recombinant hepatocytes that became confluent in the culture dish were collected and 107MRNA was purified from corresponding cells using mRNA isolation Kit (Boehringer), subjected to 1% agarose electrophoresis according to a conventional method, and then transferred to HybondN + (Amersham). Subsequently, the target RNA was detected using a 366 bp RNA probe labeled with digoxigenin synthesized using the DNA fragment shown in SEQ ID NO: 5 in the sequence listing corresponding to the NS5B region of the HCV genome as a template. As a result, a signal specific to the recombinant cells was detected.
[0026]
Analysis at the protein level was by Western blotting. That is, 25cm2Recombinant hepatocytes are collected from the culture dish, treated with cell treatment buffer (5 mM TrisHCl, 5% SDS, 2.5% 2-mercaptoethanol, 12.5% glycerol, 0.01% BPB), and then the lane. 10 per hitFiveWere run on a 10-20% gradient gel (Daiichi Kagaku). After electrophoresis at a constant current of 40 mA for 1 hour, the protein was transferred to a PVDF membrane (Millipore) with SEMI-DRY TRANSFER CELL (BIO-RAD), and a detection reaction was performed according to a conventional method. As the primary antibody, anti-NS5 rabbit IgG, anti-NS3 rabbit IgG, anti-myc mouse monoclonal antibody or HCV positive human IgG was used. The protein transferred onto the PVDF membrane was detected using a BM Chemiluminescence Western Blotting Kit (Boehringer) using chemiluminescence according to the attached protocol. As a result, a signal having an expected size specific to recombinant hepatocytes was detected (FIG. 6). The recombinant hepatocyte in which pRcHCNS6.5 thus obtained was incorporated and produced NS3 and NS5, which are HCV-constituting proteins, was named HepG2 Dec4. In addition, a recombinant hepatocyte in which pGCNmycNS5B was incorporated and expressed NS5B was named NmycNS5B-3.
[0027]
Example 4: HCV infection experiment (1)
Three plasmas 6684, 5269, and 7878 with high HCV infectious titer and full length HCV RNA detected by Northern blot analysis were mixed in equal amounts, and this was further doubled with serum-free William E medium. Diluted material was used as infectious material.
HepG2 Dec4 suspended in William E medium containing 10% FBS was added to a 24-well culture plate at 1 × 10 6 per well.FiveIndividual seeds were seeded and adsorbed overnight. The next day, add 1 ml of the infectious material to each well and add 37 ° C CO2Adsorbed overnight in incubator. The next day, the supernatant was removed by aspiration and washed 3 times with PBS, and 1 ml of 10% FBS-containing William E medium was added to start the culture. Four days after inoculation, cells were expanded into 6-well culture plates and another 25 cm after 4 days.2Expanded to flask. Furthermore, 4 days later, only the medium was replaced with 2% or 10% FBS-containing William E medium, and the cells were passaged after another 3 days. This weekly medium exchange and cell passage were repeated, and each time the cells were passaged, the culture supernatant and cells were sampled for PCR assay.
[0028]
HCV RNA is detected by extracting RNA from a sample, synthesizing cDNA by RT reaction, amplifying HCV cDNA by PCR using synthetic primers described in SEQ ID NOs: 6 to 17 in the Sequence Listing, and then adding 1.5% agarose. Gel electrophoresis was performed to detect a cDNA fragment having the desired size. PCR was performed in two stages, an outer primer set and an inner primer set. Three primer regions were used, and their locations and sequences are shown in FIG. More specifically, first, 750 μl of ISOGEN-LS was added to 250 μl of culture supernatant at 2-4 × 10 4.6For each cell sedimentation, 1 ml of ISOGEN is added, and 20 μl of H is added to the RNA extracted according to the attached protocol.2O was added to dissolve, heated at 65 ° C. for 5 minutes, and then rapidly cooled. This is H2O 22.67 μl, 10 × reaction buffer 5 μl, ribonuclease inhibitor (GIBCO-BRL) 0.18 μl, each 25 mM dNTP mixed solution 0.4 μl, 50 μM primer set forth in SEQ ID NOs: 6 and 9 in the sequence listing for each 0 0.5 μl, MMLV 0.5 μl, ampli Taq (Perkin) 0.25 μl were added, the total amount was 50 μl, and RT reaction was performed at 42 ° C. for 30 minutes, followed by 35 cycles of PCR amplification with PC-800 (Astech). In order to perform the second stage PCR amplification, 2.5 μl of the first stage PCR product was collected,2O 19.55 μl, 10 × reaction buffer 2.5 μl, 25 μm each of dNTP mixed solution 0.1 μl, 50 μM primer described in SEQ ID NO: 7 and 8 of Sequence Listing, 0.125 μl each, ampli Taq 0.1 μl added, 35 cycles of PCR amplification were performed with a total volume of 25 μl. 10 μl of the second-stage PCR product was collected and subjected to 1.5% agarose gel electrophoresis to determine HCV replication. The observation results for 99 days are shown in Table 1. ● represents HCV positive, and ◯ represents HCV negative. HCV was detected intermittently over 99 days.
[0029]
[Table 1]
Figure 0003831035
[0030]
Example 5: HCV infection experiment (2)
HCV infection experiments were performed using NmycNS5B-3 recombinant hepatocytes. After adding the infectious material to the recombinant cells,2All were carried out in the same manner as in Example 4 except that the adsorption was performed for 4 hours in the incubator. The observation course for 56 days is shown in Table 2. ● represents HCV positive, and ◯ represents HCV negative. As a result, HCV was detected over 56 days. In HepG2 cells into which NS5B gene was not introduced, HCV was not detected during the 28-day observation period.
[0031]
[Table 2]
Figure 0003831035
[0032]
Example 6: In situ hybridization
Intracellular HCV RNA was detected by in situ hybridization.
Infected cells suspended in Williams E medium containing 10% FBS were transferred to each well of 4 well LabTek Chamber (Nunk) at 5 × 10 5.FourIndividual seeds were seeded and adsorbed overnight at 37 ° C. The next day, the cells were fixed with paraformaldehyde, and then 0.2 μg / ml proteinase K was allowed to act for 5 minutes. A digoxigenin-labeled RNA probe was added to this sample, and hybridization was performed overnight at 55 ° C. A probe for detecting the HCV genome was prepared as follows. First, 359 bases from the 342nd base, which is the translation initiation codon of HCV, to the 700th base were amplified by PCR. At that time, a T7 RNA polymerase recognition sequence was added to the downstream primer. The HCV DNA described in SEQ ID NO: 8 in the sequence listing thus amplified was used as a template for RNA probe synthesis. The synthesis of the RNA probe was performed by the digoxigenin labeling method using T7 RNA polymerase (Boehringer) and reagents according to the attached protocol.
[0033]
After hybridization, 5 × SSC (20 × SSC diluted 4 times) at 55 ° C. 20 × SSC contains 175.3 g NaCl and 88.2 g sodium citrate in H2The solution was adjusted to pH 7.0 with 1 liter of O), and washed twice for about 1 minute, 2 × SSC for 20 minutes, and then 0.2 × SSC for 20 minutes. After completion of the washing operation, alkaline phosphatase-labeled anti-digoxigenin antibody (Boehringer) was reacted at room temperature for 30 minutes. Next, BCIP 33 μl and NBT 44 μl were added and reacted at room temperature for 6 hours or overnight. After the reaction, the cells were stained with an acetocarmine solution, dehydrated, sealed, and observed with an optical microscope.
[0034]
Example 7: Fluorescent antibody method
Infected cells suspended in William E medium containing 10% FBS were transferred to each well of a 4 well Lab Tek Chamber (Nunk) 5 × 10FourIndividual seeds were seeded and adsorbed overnight at 37 ° C. On the next day, cells were fixed with 80% cold ethanol, and then fluorescent antibody reaction was performed according to a conventional method. As the primary antibody, a monoclonal antibody prepared by immunizing a mouse with an antigen purified by expressing the core protein of the HCV genome in E. coli was used. The monoclonal antibody was subjected to a primary antibody reaction at a concentration of 10 μg / ml. As the secondary antibody, FITC-labeled anti-mouse IgG (Cappel) was used.
[0035]
Example 8: Inhibition of HCV replication by antisense oligonucleotides
NmycNS5B-3 cells suspended in Wilam E medium containing 10% FBS were placed in a 24-well plate at 5 × 10 5 per well.FourSeeded and cultured at 37 ° C. The volume of the culture solution was 1 ml. Two days later, the cells were washed with PBS and replaced with William E medium containing 2% FBS. Next, an oligonucleotide (Gleiner Japan) having a phosphorothioate bond in the skeleton as shown in SEQ ID NO: 19 in the sequence listing and complementary to the base sequence of HCV, and having the same sequence, and adding cholesterol to 3 ′ The oligonucleotide was added so that the final concentration was 10 μM in the former case and 1 μM in the latter case, and cultured for 1 day. The same treatment was carried out using an oligonucleotide having a sequence unrelated to HCV as a negative target and the other components being the same. The next day cells were washed twice with PBS and infected with HCV. Infection with HCV was carried out by the method described in Example 4 except that the plasma of each of the infectious materials 5269 and 7878 was mixed in an equivalent amount and adsorbed at 37 ° C. for 2 hours. After the virus adsorption, the cells were washed 5 times with PBS, and 1 ml of William E medium containing 10% FBS was added to start the culture. Infected cells were treated again with oligonucleotide 3 days after inoculation. That is, the infected cells were washed once with PBS, replaced with 1 ml of William E medium containing 2% FBS, and oligonucleotides were added thereto so as to have the aforementioned concentrations. On the next day, 80 μl of FBS was added so that the final concentration was 10%, and the culture was continued. Further, the same nucleotide treatment operation was repeated 4 days later. Four days after the third oligonucleotide treatment, the culture supernatant and cells were collected, and HCV RNA was detected by the method described in Example 4.
[0036]
The result is shown in FIG. Numbers 1 and 2 in the figure show the results of normal human serum. 3 to 6 show the results of oligo-treated HCV-infected NmycNS5B-3 cells. 3 is treatment with the oligonucleotide of SEQ ID NO: 19, 4 is treatment with the negative target oligonucleotide, 5 is treatment with the oligonucleotide of SEQ ID NO: 19 added with cholesterol at the 3 ′ end, and 6 is cholesterol at the 3 ′ end. Each of the treatments with the added negative target oligonucleotide is shown. 7 shows HCV-infected NmycNS5B-3 cells not treated with oligonucleotide. 8 shows oligo-untreated HCV-infected HepG2 cells. 9 shows HCV non-infected NmycNS5B-3 cells. 10 shows the result of HCV positive plasma. When the oligonucleotide of SEQ ID NO: 19 was treated, an HCV replication inhibitory effect was observed.
[0037]
[Sequence Listing]
SEQ ID NO: 1
Sequence length: 30
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0038]
SEQ ID NO: 2
Sequence length: 33
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0039]
SEQ ID NO: 3
Sequence length: 42
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0040]
SEQ ID NO: 4
Sequence length: 42
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0041]
SEQ ID NO: 5
Sequence length: 366
Sequence type: Nucleic acid
Number of chains: 2 chains
Topology: Linear
Sequence type: cDNA to genomic RNA
Other information: Corresponds to positions 9041 to 9406 in the base sequence of HCV genome type 1b.
Array
Figure 0003831035
[0042]
SEQ ID NO: 6
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0043]
SEQ ID NO: 7
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0044]
SEQ ID NO: 8
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0045]
SEQ ID NO: 9
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0046]
SEQ ID NO: 10
Sequence length: 21
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0047]
SEQ ID NO: 11
Sequence length: 21
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0048]
SEQ ID NO: 12
Sequence length: 21
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0049]
SEQ ID NO: 13
Sequence length: 21
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0050]
SEQ ID NO: 14
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0051]
SEQ ID NO: 15
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0052]
SEQ ID NO: 16
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0053]
SEQ ID NO: 17
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Array
Figure 0003831035
[0054]
SEQ ID NO: 18
Sequence length: 359
Sequence type: Nucleic acid
Number of chains: 2 chains
Topology: Linear
Sequence type: cDNA to genomic RNA
Other information: Corresponds to positions 342 to 700 of the base sequence of HCV genome type 1b.
Array
Figure 0003831035
[0055]
SEQ ID NO: 19
Sequence length: 20
Sequence type: Nucleic acid
Number of chains: 1 strand
Topology: Linear
Sequence type: Other nucleic acids (synthetic DNA)
Other information: It corresponds to the 340th to 359th base sequence of the HCV genome type 1b, and is complementary to this, and has a phosphorothioate bond in the skeleton.
Array
Figure 0003831035

[Brief description of the drawings]
FIG. 1 shows the gene structure of the HCV genome.
FIG. 2 shows a schematic diagram of the construction of an expression plasmid pRcHCNS6.5 in which a DNA fragment (6.5HCV) containing a gene region encoding an HCV nonstructural protein is inserted into the expression vector pRc / CMV.
FIG. 3 shows a schematic diagram of the construction of an expression plasmid N-12 in which a myc tag is inserted into the expression vector pGST-E / CAG. An oligonucleotide encoding 12 amino acids including 10 amino acids of myc and its complementary strand were synthesized, annealed, and inserted downstream of the promoter of the expression vector.
FIG. 4 is a schematic view for preparing a DNA fragment (1.77NS5B) containing a gene encoding HCV RNA polymerase.
5 shows a schematic diagram of the construction of an expression plasmid pGCNmycNS5B in which 1.77NS5B of FIG. 4 is inserted downstream of the N-12 myc tag of FIG.
FIG. 6 is a schematic diagram showing the results obtained by subjecting hepatocytes HepG2Dec4 introduced with pRcHCNS6.5 and NmycNS5B-3 introduced with pGCNmycNS5B to SDS-PAGE and identifying the expression of a protein derived from the HCV gene by Western blotting. .
FIG. 7 shows the positions of primers used for RT-PCR on the HCV genome. RT-PCR was performed using region A, region B or region C to detect HCV in the infected cells.
FIG. 8 is a drawing showing the results of extracting RNA from each sample, performing RT-PCR, subjecting it to agarose electrophoresis and staining with ethidium bromide, and showing the inhibitory effect of antisense oligonucleotide on HCV replication.

Claims (5)

C型肝炎ウイルス(HCV)由来のRNAポリメラーゼ遺伝子が組み込まれた、該RNAポリメラーゼを産生する組換え肝細胞にHCVを接触し、該組換え肝細胞を培養することを特徴とする、HCVの複製方法。        HCV replication characterized by contacting HCV with a recombinant hepatocyte producing the RNA polymerase, into which an RNA polymerase gene derived from hepatitis C virus (HCV) is incorporated, and culturing the recombinant hepatocyte Method. 肝細胞がヒト由来である、請求項1記載の複製方法。        The replication method according to claim 1, wherein the hepatocytes are derived from human. 肝細胞がHepG2である、請求項2記載の複製方法。        The replication method according to claim 2, wherein the hepatocytes are HepG2. 請求項1ないし3の何れか一項記載の複製方法を利用することを特徴とする、HCVの複製阻害物質の検出方法。        A method for detecting an HCV replication inhibitor, which uses the replication method according to any one of claims 1 to 3. HCVの複製阻害物質が、アンチセンス核酸物質、抗体、化学合成物質から選択される請求項4記載の検出方法。        The detection method according to claim 4, wherein the HCV replication inhibitor is selected from antisense nucleic acid substances, antibodies, and chemically synthesized substances.
JP35292096A 1996-12-13 1996-12-13 Hepatitis C virus sensitive recombinant hepatocytes and use thereof Expired - Fee Related JP3831035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35292096A JP3831035B2 (en) 1996-12-13 1996-12-13 Hepatitis C virus sensitive recombinant hepatocytes and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35292096A JP3831035B2 (en) 1996-12-13 1996-12-13 Hepatitis C virus sensitive recombinant hepatocytes and use thereof

Publications (2)

Publication Number Publication Date
JPH10165186A JPH10165186A (en) 1998-06-23
JP3831035B2 true JP3831035B2 (en) 2006-10-11

Family

ID=18427367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35292096A Expired - Fee Related JP3831035B2 (en) 1996-12-13 1996-12-13 Hepatitis C virus sensitive recombinant hepatocytes and use thereof

Country Status (1)

Country Link
JP (1) JP3831035B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088161A1 (en) * 2000-05-15 2001-11-22 Tokyo Metropolitan Organization For Medical Research Vector for analysing replication mechanism of rna virus and use thereof

Also Published As

Publication number Publication date
JPH10165186A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
Honda et al. Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA
JP4094679B2 (en) Functional DNA clone for hepatitis C virus (HCV) and use thereof
Yoo et al. Transfection of a differentiated human hepatoma cell line (Huh7) with in vitro-transcribed hepatitis C virus (HCV) RNA and establishment of a long-term culture persistently infected with HCV
JP4903929B2 (en) Hepatitis C virus cell culture system, hepatitis C virus-RNA-construct, use of cell culture system or construct, method for obtaining mutants compatible with hepatitis C virus-RNA-construct cell culture, hepatitis C Method for making a virus-full-length genome, hepatitis C virus-partial genome, or any hepatitis C virus-construct mutant, hepatitis C virus-construct adapted for cell culture, mutant thereof, hepatitis C virus -Full-length genome mutants, hepatitis C virus particles or virus-like particles, and cells infected therewith
Lee et al. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome
EP0856051B1 (en) Novel 3' terminal sequence of hepatitis c virus genome and diagnostic and therapeutic uses thereof
US7935676B2 (en) Nucleic acid construct containing a nucleic acid derived from the genome of hepatitis C virus (HCV) of genotype 2A, and a cell having such nucleic acid construct introduced therein
EP0845042A1 (en) Reagents and methods useful for controlling the translation of hepatitis gbv proteins
CA2409873C (en) Hcv variants
US9057048B2 (en) Infectious hepatitis C virus—high producing HCV variants and use thereof
US7455969B2 (en) Highly permissive cell lines for hepatitis C virus RNA replication
Hiramatsu et al. HCV cDNA transfection to HepG2 cells
JP5693957B2 (en) HCV / GBV-B chimeric virus
JP3831035B2 (en) Hepatitis C virus sensitive recombinant hepatocytes and use thereof
US6524853B1 (en) Vector expressing the full-length gene of RNA virus and use thereof
JPWO2005028652A1 (en) Nucleic acid and gene derived from a novel HCV strain, and replicon-replicating cells using the gene
US6803214B1 (en) Nucleic acids and new polypeptides associated with and/or overlapping with hepatitis C virus core gene products
KR100471946B1 (en) Hepatitis c viral replicon, replicon-containing cell, and detecting method of hcv infection using replicon-containing cell
US20040229213A1 (en) Exhaustive analysis of viral protein interactions by two-hybrid screens and selection of correctly folded viral interacting polypeptides
JP2004537279A (en) Cell culture system for infectious hepatitis C virus synthesis
KR101122244B1 (en) An efficiently replicable heptitis c virus mutant, a heptitis c virus mutant comprising reporter gene, a method of preparing of hcv vaccine using the same and a method of screening anti hcv composition using the same
US20020102534A1 (en) Exhaustive analysis of viral protein interactions by two-hybrid screens and selection of correctly folded viral interacting polypeptides
WO2011024875A1 (en) Polynucleotide derived from novel hepatitis c virus strain and use thereof
EP1283267A1 (en) Vector for analysing replication mechanism of rna virus and use thereof
JP2000152793A (en) Vector for expressing complete length gene of rna virus and its use

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees