[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3830918B2 - Tunnel excavator for pipe formation - Google Patents

Tunnel excavator for pipe formation Download PDF

Info

Publication number
JP3830918B2
JP3830918B2 JP2003147514A JP2003147514A JP3830918B2 JP 3830918 B2 JP3830918 B2 JP 3830918B2 JP 2003147514 A JP2003147514 A JP 2003147514A JP 2003147514 A JP2003147514 A JP 2003147514A JP 3830918 B2 JP3830918 B2 JP 3830918B2
Authority
JP
Japan
Prior art keywords
outer cylinder
excavator
tunnel
peripheral surface
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003147514A
Other languages
Japanese (ja)
Other versions
JP2004346689A (en
Inventor
正明 大林
啓氏 片平
潤治 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2003147514A priority Critical patent/JP3830918B2/en
Publication of JP2004346689A publication Critical patent/JP2004346689A/en
Application granted granted Critical
Publication of JP3830918B2 publication Critical patent/JP3830918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中にトンネルを掘削しながら管体を埋設することによって管路を形成したのち、該管路内を通じて後方に撤去、回収可能にした管路形成用トンネル掘削機に関するものである。
【0002】
【従来の技術】
地中に管路を形成するためのシールド工事においては、発進立坑側からトンネル掘削機を到達立坑に向かって掘進させ、一定長のトンネルを掘削する毎に該トンネル掘削機に後続させて一定長の埋設管を順次、継ぎ足すことにより管路を形成しており、到達立坑に達したトンネル掘削機は、通常、該到達立坑内から地上に回収しているが、到達立坑が既設のマンホール等の狭隘な立坑である場合、或いは、到達立坑が設けられない場合や、2基のトンネル掘削機を地中でドッキングさせる場合のように到達立坑を設けない場合には、到達側からトンネル掘削機を取り出すことができない。
【0003】
従って、掘削終了後にトンネル掘削機を解体して管路内を通じて発進立坑側に撤去、回収しなけれならず、その撤去、回収作業に著しい手間と労力を要するという問題点があった。特に、径が3000mm以下の小径の管路を形成するトンネル掘削機の場合には、狭い作業空間での撤去作業が極めて困難である。
【0004】
このため、先頭の敷設管内にトンネル掘削機を挿入、固定しておき、先頭の施設管の開口端から前方に突設している該トンネル掘削機のカッタヘッドを回転させながら発進立坑側で施設管を押し進めることにより、トンネル掘削機を掘進させてトンネルを掘削すると共に、一定長のトンネルが掘削される毎に施設管を順次継ぎ足すことにより管路を形成し、次いで、掘削終了後には、カッタヘッドを施設管の内径よりも小径となるように縮小させると共に先頭の施設管に対するシールド掘削機の固定を解いたのち、シールド掘削機を解体することなく管路内を通じて発進立坑まで後退させ、発進立坑から地上側に回収することが行われている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特公平7−68871号公報(第2〜5頁、第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記のよう管路の形成工法によれば、施設管内に対する掘削機本体の固定手段として、スキンプレートに押圧ボルトを内外面間に亘って貫通させてスキンプレート外に突出した該押圧ボルト先端に取り付けている押止板を施設管の内面に圧着させてなり、この固定手段によって掘削機本体に作用する推進反力を支持させるようにしているため、推進反力が上記押圧ボルトの長さ方向に対して直角方向に作用して充分な支持力を得ることができず、掘削機本体が後退したり施設管に破損が生じたりする虞れがある。
【0007】
さらに、先頭の施設管と次の施設管との接合部分を屈折可能にして方向修正を可能にすることが開示されているが、中折れ機構ではないために大きく屈折させることができず、十分な方向修正が困難であるという問題点がある。
【0008】
また、トンネル掘削機と施設管との間のシール機構は、スキンプレートに外嵌している金属製のホルダの溝内にシールリングを嵌入し、この金属製ホルダを先頭の施設管の先端面に当接させると共に上記シールリングを該施設管の外周面から突設している前補助プレートに密接させた構造としているため、トンネル掘削機を管路内を通じて後退させる際に、この金属製ホルダを取り外さなければならないが、スキンプレート内から該スキンプレート外の金属製ホルダを除去する作業は極めて困難であり、撤去作業に著しい手間を要するという問題点がある。
【0009】
本発明は上記のような問題点に鑑みてなされたもので、その目的とするところは、トンネル掘進時における推進反力を強固に受止し得ると共に、トンネル掘削後においては管路を通じてのトンネル掘削機の回収、撤去作業が円滑且つ能率よく行うことができる管路形成用トンネル掘削機を提供するにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために本発明の管路形成用トンネル掘削機は、請求項1に記載したように、地中にトンネルを掘削しながら該トンネル内に管体を順次、埋設することにより管路を形成していくトンネル掘削機において、先頭の管体の前端側に設けられ且つ該管体と略同一外径を有する外筒と、この外筒内に配設された掘削機本体とからなり、上記外筒は前側外筒部と後側外筒部とに分割されていて該後側外筒部の前端側に方向修正ジャッキを介して上記前側外筒部を屈折自在に連結し且つ該前側外筒部の前端部内周面に内径が上記管体の内径よりも小径のリング体を突設している一方、上記掘削機本体は外周面の前端部を上記リング体の内周面にシール材を介して密接させている内筒と、この内筒の前部に設けられた隔壁と、この隔壁に回転自在に支持されて上記外筒の開口端から前方の地盤を掘削し且つ外径が上記シール材の内径よりも小径に縮小可能に形成しているカッタヘッドとを備えてなる管路形成用トンネル掘削機であって、上記掘削機本体の内筒を上記前側外筒部の内周面に切り離し可能な推進反力伝達部材を介して連結してなり、該推進反力伝達部は互いに緒校する2つの接続面を有していて、一方の接続面を掘削機本体に、他方の接続面を外筒の内周面にそれぞれ切り離し可能に固着してなる構造としている。
【0011】
このように構成した管路形成用トンネル掘削機において、請求項2及び請求項3に係る発明は上記推進反力伝達部材の一方の接続面を掘削機本体の内筒の後端部又は掘削機本体の隔壁背面に一体に固着し、他方の接続面を外筒における前側外筒部の内周面に切り離し可能に固着していることを特徴とする。
【0012】
【作用】
発進立坑内において、先頭の管体の先端面に外筒における後側外筒部の後端を連結し、且つこの外筒内に掘削機本体を配設して該掘削機本体の内筒の開口端から突設しているカッタヘッドを外管と略同一径にまで拡径した状態にし、このカッタヘッドを回転させながら管体の後端面を押し進めることにより発進立坑内からトンネルを掘進する。掘削されたトンネル内に先頭の管体が推進、埋設されると次の管体を接続し、以下、このトンネル掘削機によって一定長、掘削される毎に管体を継ぎ足して順次トンネル掘削機に後続させながら管路を形成していく。
【0013】
この管路形成時には、管体に対する推進力は先頭の管体から該管体と連結している外筒に伝達され、さらに、この外筒における前側外筒部の内周面とトンネル掘削機の内筒とを一体に連結している推進反力伝達部材を介して掘削機本体に伝達される。また、掘削機本体のカッタヘッドに作用する推進反力は、掘削機本体から上記推進反力伝達部材、外筒を介して管体に支持される。
【0014】
この場合、上記推進反力伝達部材として、互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体の内筒の後端又は隔壁の背面に一体に固着し、他方の接続面を外筒における前側外筒部の内周面に切り離し可能に固着しておくことによって、上記推進反力をこの推進反力伝達部材を介して外筒から管体に確実且つ強固に支持させることができ、トンネル掘削機によるトンネルの掘進を円滑に行いながら管路を形成することができる。なお、管体の埋設は、このような推進工法だけではなく、セグメントを管体として組み立てていくシールド工法を採用して行ってもよい。
【0015】
さらに、トンネルの掘進中において、方向修正や曲線トンネルを掘削する際には、管体の前端に一体に連結している後側外筒部に対して前側外筒部をこれらの前後外筒部間に連結している方向修正ジャッキを作動させることによって所望方向に屈折させることができ、この前側外筒部内に配設されている掘削機本体を一体に屈折させてトンネルの方向修正や曲線トンネルの掘削が正確に且つ能率よく行うことができる。
【0016】
また、所定長の管路を形成後に掘削機本体を回収する場合、掘削機本体内から上記推進反力伝達部材の切り離し作業が容易に行えると共に、掘削機本体の内筒の外周面の前端部に密接しているシール材は、外筒における前側外周面の前端部内周面に突設しているリング体における上記管体の内径よりも小径の内周面に設けているので、このシール材に摺接させながら掘削機本体の内筒を後方に円滑に離脱させることができ、カッタヘッドを管体の内径よりも縮径させた状態にして管路を通じての掘削機本体の回収、撤去作業が能率よく行えるものである。
【0017】
【発明の実施の形態】
次に本発明の具体的な実施の形態を図面について説明すると、トンネル掘削機Aは、外径が埋設すべき管体Pの外径に等しい鋼管製の外筒1と、この外筒1内に配設された掘削機本体10とからなり、掘削機本体10は外径が管体Pの内径よりも小径の内筒11と、この内筒11の前部に設けられてその外周端面を内筒11の内周面に一体に固着している隔壁12と、この隔壁12に回転自在に支持されて上記外筒の開口端に面した地盤を掘削するカッタヘッド13とを備えている。
【0018】
上記外筒1は長さが掘削機本体10の内筒11と同等若しくは該内筒11よりも長い前側外筒部1Aと、長さの短い円環形状の後側外筒部1Bとに分割されてあり、この後側外筒部1Bの後端を上記管体Pの前端に一体に連結、固着していると共に、該後側外筒部1Bの前端側の四方に方向修正ジャッキ7を介して上記前側外筒部1Aを屈折自在に連結している。
【0019】
これらの前後外筒部1A、1Bは、内外二重の筒状周壁部1a1 、1a2 ;1b1 、1b2 の前端部間と後端部間をそれぞれ前後リング状連結端板1a3 、1a4 ;1b3 、1b4 によって連結してなる厚みが管体Pの厚みに略等しい断面横長矩形状に形成されてあり、さらに、前側外筒部1Aにおける前側リング状連結端板1a3 の内周端から内方に延長する方向にリング体1cを一体に突設して、このリング体1cの内周端面に上記掘削機本体10の内筒11の前端外周面をシール材4を介して摺接させていると共に、前側外筒部1Aにおける上記外側筒状周壁部1a1 の前後端部を内側筒状周壁部1a2 の前後端からそれぞれ一定長さだけ突出させて、後側の突出片部1a5 を後側外筒部1Bにおける外側筒状周壁部1b1 の外周面前端部にシール材4aを介して屈折可能に被嵌させている。
【0020】
なお、後側外筒部1Bは、その後側端面板1b4 とこの後側端面板1b4 から後方に突出している突片1b5 とを管体Pの前端面と前端外周面とにそれぞれ密接させた状態で一体に固着している一方、前側端面板1b3 に前側外筒部1Aの後側端面板1a4 を固定することなく受止させている。
【0021】
このように構成している外筒1における前側外筒部1A内に上記掘削機本体10がその内筒11を前側外筒部1Aの内側筒状周壁部1a2 の内周面から小間隔を存した状態で且つ上述したように該内筒11の前端外周面を上記リング体1cの内周端面にシール材4を介して摺接させた状態にして配設されてあり、内筒11の前端部における少なくとも下周部の複数個所にガイドローラ2を回転自在に軸支して外筒1の内周面、即ち、上記内側筒状周壁部1a2 の内周面前端部上に支持させている。
【0022】
さらに、掘削機本体10の内筒11の後端部を上記前側外筒部1Aの後端部内周面、即ち、内側筒状周壁部1a2 の後端部内周面に対して切り離し可能な推進反力伝達部材3を介して連結、固着し、トンネル掘削機Aの掘進時に発生する推進反力を掘削機本体10の内筒11からこの推進反力伝達部材3、前後外筒部1A、1Bを介して管体Pに支持させるように構成している。
【0023】
この推進反力伝達部材3は、垂直矩形状板片3aと水平矩形状板片3bとを互いに直角に組み合わせて補強リブ3cにより一体に連結、固着してなり、垂直矩形状板片3aの前面と水平矩形状板片3bの外面とによって互いに直交する2つの接続面を形成している。一方、上記掘削機本体10の内筒11の後端部における周方向の複数個所(図においては四方)に、上記推進反力伝達部材3の垂直矩形状板片3aと面接合する垂直連結板片3dを補強部材3eと共に一体に固着してあり、これらの各垂直連結板片3dに推進反力伝達部材3の垂直矩形状板片3aを接合して複数個のボルト3fにより連結、固定している。
【0024】
さらに、推進反力伝達部材3における水平矩形状板片3bを上記外筒1の後端内周面、即ち、該外筒1の内側周壁部1bの後端内周面に切り離し可能に固着している水平連結板片3gに面接合させて複数個のボルト3fにより一体に連結、固定している。この内筒11に対して推進反力伝達部材3の水平矩形状板片3bを切り離し可能にするには、上記水平連結板片3gを内筒11の内周面に溶接によって固着しておき、この水平連結板片3gに水平矩形状板片3bをボルト3fによって切り離し可能に固着しておいてもよく、上記水平連結板片3gを内筒11の内周面に溶接によって固着することなく水平矩形状板片3bと共にボルト3fによって内筒11の内面に切り離し可能に固着しておいてもよい。
【0025】
一方、上記後側外筒部1Bの内周面、即ち、後側筒状周壁部1b2 の内周面における上部の2個所に、図3に示すように、周方向に小宜間隔を存して前後方向に長い横長長方形状の突出片6a、6aを掘削機本体10の内筒11の後端部外周面に向かって内方に突設している一方、該内筒11の後端部外周面の上部2個所に、上記突出片6a、6a間に介挿した横長長方形状の介入片6bを突設してこれらの突出片6a、6aと介入片6bとによってトンネル掘削機のローリング防止手段6を形成している。
【0026】
即ち、内筒11と一体のこの介入片6bの両側面を管体Pと一体に連結している後側外筒部1Bと一体の突出片6a、6aの対向内側面に受止させることによって、外筒1と掘削機本体10とからなるトンネル掘削機全体が管体Pに対してローリングするのを防止するように構成している。なお、内筒11側に突出片6a、6aを、後側外筒部1B側に介入片6bを設けておいてもよい。
【0027】
また、外筒1における前側外筒部1Aと後側外筒部1Bとの上下左右の4個所間を上述したように方向修正ジャッキ7によって連結している。具体的には、前側外筒部1Aの内側筒状周壁部1a2 における後半部の上下左右部分を切除してその切除部における外側筒状周壁部1a1 の内周面の上下左右に沿って方向修正ジャッキ7を配設し、この方向修正ジャッキ7の前端部を外側筒状周壁部1a1 の内周面から突設している軸受片8にピン5aによって回動自在に連結する一方、後端部を上記後側外筒部1Bの前端部に固着している軸受片9にピン5bによって回動自在に連結している。
【0028】
掘削機本体10の上記カッタヘッド13は、その回転中心軸14を隔壁12の中央部に回転自在に支持されていると共に、この回転中心軸14の前端から該回転中心軸14に対して直交する方向(外径方向)に向かって図2に示すように、長さが外筒1や管体Pの内周面の半径よりも小径で内筒11の半径に略等しい長さを有する複数本(図においては、6本)のスポーク部13a を放射状に突設し、隣接するスポーク部13a の外端対向面間を円弧状の連結部材13b によって一体に連結している。
【0029】
さらに、これらのスポーク部13a に長さ方向に適宜間隔毎にカッタビット15a を前方に向かって突設していると共に、これらの複数本のスポーク部13a において、一本おきに配設されているスポーク部13a'はその長さを上記のように外筒1や管体Pの内周面の半径よりも短い長さから外筒1の外周面に達する長い長さまで伸長可能で且つこの長い形状から短い形状となるまで縮小可能に形成してカッタヘッドの外径を、外筒1の外径に略等しい径から管体Pの内径よりも小径に縮径可能に構成されている。
【0030】
この拡縮可能な上記スポーク部13a'の具体的な構造としては、該スポーク部13a'を図1に示すように、その先端面が開口した筒状の中空スポーク部13a'に形成し、この中空スポーク部13a'内に、前面両側部に前方に向かって複数個のカッタビット15b を突設しているスポーク片13a'' を収納し、中空スポーク部13a'内の奥底部に装着しているジャッキ16の作動により、このスポーク片13a'' を中空スポーク部13a'の開口端から出没させるように構成している。なお、上記カッタヘッド13の回転中心軸14の前面にセンタビット15c を突設している。
【0031】
また、カッタヘッド13の背面外周部数カ所に、後方に向かってアーム部材17を突設していると共に、これらのアーム部材17、17の後端を円環枠材18によって一体に連結して該円環状枠材18を内筒11の内周面に回転自在に支持させてあり、さらに、この円環状枠材18の後端面に内歯車19を固着している一方、掘削機本体10の上記隔壁12の外周部後面に駆動モータ20を装着してこの駆動モータ20の回転軸に固着している小歯車21を上記内歯車19に噛合させ、駆動モータ20によってカッタヘッド13を回転させるように構成している。
【0032】
さらに、カッタヘッド13の後面と上記隔壁12の前面間の空間部を、カッタヘッド12によって掘削された土砂を取り込んで一旦滞留させておく土砂室22に形成してあり、この土砂室22から排土手段23を通じて掘削土砂を後方に排出するように構成している。
【0033】
この排土手段23は図1に示すようにスクリューコンベアからなり、その前端開口部を隔壁12の下部を貫通して上記土砂室22の下端部内に臨ませていると共に隔壁12から後方に向かって斜め上方に傾斜させた状態で配設されている。
【0034】
次に、以上のように構成した管路形成用トンネル掘削機Aによって地中に管路を形成する方法について説明する。まず、このトンネル掘削機Aを発進立坑B内に設置し、そのカッタヘッド13を拡径させた状態にすると共に、このトンネル掘削機Aにおける後側外筒部1Bの後端にヒューム管からなる管体Pの前端を一体に連結する。この状態にしてカッタヘッド12を回転させると共に管体Pの後端面を発進立坑Bの後部内に配設している推進ジャッキ等の推進手段Cによって押し進めてトンネルを掘進する。
【0035】
そして、トンネル掘削機Aが発進立坑Bから地中内に一定長推進すると、管体Pの後端に次の管体Pの前端を接続させ、この管体Pの後端を上記推進手段Cによって押し進めて、先頭の管体Pに該管体Pを後続させた状態でトンネル掘削機Aをさらにトンネル計画線に沿って掘進させ、以下、トンネル掘削機Aによって一定長のトンネルが掘削される毎に発進立坑B側において管体Pを順次、継ぎ足しながら押し進めて図4に示すように、管路を形成しておく。なお、カッタヘッド13によって掘削された土砂は、土砂室22から排土手段23を通じて発進立坑B側に排出する。
【0036】
推進手段Cによる推進力は、最後尾の管体Pから先頭の管体Pの前端に一体に固着している後側外筒部1Bを介してこの後側外筒部1Bの前端に当接、受止されている前側外筒部1Aに伝達され、さらに、該前側外筒部1Aから推進反力伝達部材3を介して掘削機本体10に伝達されてカッタヘッド13を切羽に押し付けながら掘進する。なお、方向修正ジャッキ7のシリンダ部における長さ方向の中央部の内側外周面に突片7aを突設しておき、該突片7aを図1に示すように、掘削機本体10の内筒11の外周面に突設している突片11a にボルトによって連結しておけば、上記推進力を後側外筒部1Bから方向修正ジャッキ7、突片7a、11a を介して掘削機本体10の内筒11に伝達することができる。
【0037】
一方、上記推進力の反力は、カッタヘッド13を支持している掘削機本体10から内筒11と外筒1における前側外筒部1Aとを一体に連結している上記推進反力伝達部材3を介して前側外筒部1Aに支持され、さらに、この前側外筒部1Aの後端を受止している後側外筒部1Bを介して管体Pに支持される。
【0038】
この際、推進反力伝達部材3は垂直矩形状板片3aと水平矩形状板片3bとを互いに直角に組み合わせて補強リブ3cにより一体に連結、固着してなり、この推進反力伝達部材3における垂直矩形状板片3aの前面に掘削機本体10の内筒11の後端部に固着した垂直連結板片3dを面接合させてボルト3fにより連結、固着していると共に、水平矩形状板片3bを上記前側外筒部1Aの後端内周面に切り離し可能に固着している水平連結板片3gに面接合させて複数個のボルト3eにより一体に連結、固定しているので、カッタヘッド13に作用する推進反力をこの推進反力伝達部材3を介して管体P側に強固に受止させることができる。
【0039】
また、トンネルの掘進中において、カッタヘッド13の回転反力により掘削機本体10の内筒11がローリングしようとするが、この内筒11の後端部外周面に突設している横長長方形状の介入片6bを、先頭の管体Pの前端に一体に固着している後側外筒部1Bの内周面に並列状態に突設した突出片6a、6a間に介挿させているので、介入片6bが突出片6a、6aの対向内面のいずれか一方に受止されて、管体Pに対しローリングするのを確実に防止することができ、さらに、内筒11がローリングしようとする回動力が前側外筒部1Aに伝達することもなく、トンネル掘削機A全体のローリング防止を行うことができる。
【0040】
さらに、トンネル掘削機Aによるトンネル掘進中において、管路を形成するための計画トンネルが湾曲している場合、又は、掘削方向を修正する必要が生じた場合、トンネル掘削機Aの外筒1における前側外筒部1Aと、先頭の管体Pの前端に固着した上記外筒1における後側外筒部1B間を連結している四方の方向修正ジャッキ7のうち、所定の方向修正ジャッキ7を作動させてトンネル掘削機A全体の向きを後側外筒部1Bに対して計画曲線トンネル方向に、又は、修正したい方向に向ける。
【0041】
例えば、トンネル掘削機Aの向きを右側に変えたい場合には、右側の方向修正ジャッキ7を不作動状態又は収縮させると共に左側の方向修正ジャッキ7を伸長させると、トンネル掘削機Aの外筒1における後側外筒部1Bの前部外周面に対して前側外筒部1Aの後端突出部1a5 がシール材4aを介して右方向に屈折する。この屈折角度は左側の方向修正ジャッキ7の伸長量によって大小に調整することができ、掘削中における方向修正や曲線トンネル施工が容易に且つ正確に行うことができる。
【0042】
次に、上記シールド掘削機Aによって所定長のトンネルを掘削して管路を形成したのち、掘削機本体10を撤去、回収するには、カッタヘッド13における中空スポーク部13a'の開口端から突出してカッタヘッド13を拡径しているスポーク片13a'' をジャッキ16の収縮によって図5に示すようにスポーク部13a'内に収納し、カッタヘッド13の全体の外径を外筒1及び管体Pの内径よりも小径にする。
【0043】
さらに、内筒11の後端部と外筒1における前側外筒部1Aとを連結している推進反力伝達部材3における上記前側外筒部1Aの後端内周面に固着した水平連結板片3gを該前側外筒部1Aから切り離して除去すると共に推進反力伝達部材3の垂直矩形状板片3aと水平矩形状板片3bとを一体に連結している補強リブ3cの一部を切除して図6に示すように、該補強リブ3cに後側ガイドローラ2'を回転自在に軸支させて外筒1の内周面に支持させた状態にする。この際、推進反力伝達部材3の水平連結板片3gの除去や後側ガイドローラ2'の取り付け作業等は、推進反力伝達部材3がトンネル掘削機A内に配設されているので、容易に行うことができる。なお、予め、内筒11の外周面の後端部にもガイドローラを設けておいてもよく、この場合には上記後側ガイドローラ2'の装着作業を必要としなく、推進反力伝達部材3を前側外筒部1Aから切り離す作業のみ行えばよい。
【0044】
また、ローリング防止手段6を構成している上記突出片6a、6aと介入片6bも切除等により除去すると共に、図7に示すように、掘削機本体10の隔壁12に装着しているスクリューコンベアからなる排土手段23を取り外して管路内を通じて発進立坑B側に回収、撤去する。なお、ローリング防止手段6における外筒1の内周面に固着している突出片6a、6aがカッタヘッド13の後退の支障にならない場合には、必ずしも除去する必要はない。
【0045】
このように、カッタヘッド13を縮径させると共にトンネル掘削機Aにおける外筒1の前側外筒部1Aに対する掘削機本体10の内筒11の連結、固定を解除し、且つ排土手段23を撤去したのち、掘削機本体10を後方側から適宜な引っ張り手段(図示せず)によって引っ張ると、内筒11の前端外周面が外筒1の前端内周面に内方に向かって突出しているリング体1cのシール材4に摺接しながら後退して該シール材4から離脱し、図8に示すように、前後のガイドローラ2、2'を管体Pの内周面上を転動させながら掘削機本体10を発進立坑B側に回収し、この発進立坑B内から地上に撤去する。しかるのち、図9に示すように方向修正ジャッキ7を取り外して撤去、回収する。なお、トンネル掘削機Aの回収時には、カッタヘッド前方の地盤を薬液注入などにより固化処理しておけばよい。
【0046】
以上の実施の形態においては、掘削機本体10における内筒11の後端部を推進反力伝達部材3によって外筒1における前側外筒部1Aの内側筒状周壁部1a2 の後端内周面に切り離し可能に連結しているが、図10、図11に示すように、隔壁12の背面側における内筒11の前端部に、推進反力伝達部材3が装着し得る大きさの切欠部24を周方向に所定間隔毎に設けて該切欠部24における隔壁背面に垂直連結板片3d' を固着し、この垂直連結板片3d’に推進反力伝達部材3の垂直矩形状板片3aをボルト3fによって一体に固着する共に、該推進反力伝達部材3の水平矩形状板片3bを外筒1における前側外筒部1Aの内側筒状周壁部1a2 の内周面に切り離し可能に固着している水平連結板片3gに面接合させて複数個のボルト3fにより一体に連結、固定しておいてもよい。その他の構造については上記実施の形態と同様であるので、同一部分には同一符号を付して詳細な説明を省略する。
【0047】
また、以上のいずれの実施の形態においても、管路を形成する管体Pとしてヒューム管を採用しているが鋼管であってもよく、さらに、トンネル掘削機Aにおける上記外筒1としては、鋼製であることが望ましいがコンクリート製であっても適用できないことはない。
【0048】
さらに、カッタヘッド13のスポーク部13a'は、このスポーク部13a'を中空に形成してこの中空スポーク部13a'内に、前面両側部に前方に向かって複数個のカッタビット15b を突設しているスポーク片13a'' を収納し、中空スポーク部13a'内の奥底部に装着しているジャッキ16の作動により、スポーク片13a'' を中空スポーク部13a'の開口端から出没させてカッタヘッド13の外径を拡縮させるように構成しているが、スポーク部13a'の外端に一定長のスポーク片を切り離し自在に連結して、該スポーク片を連結した状態においてはカッタヘッド13を外筒1の外径に略等しい外径とし、スポーク片を取り外した状態においては、カッタヘッド13の外径を管路内を通じて撤去可能な径となるように構成しておいてもよい。
【0049】
さらにまた、管路は管体Pを推進工法によって順次、推進、埋設することにより形成しているが、トンネル掘削機Aによって一定長のトンネルを掘削する毎にその後側外筒部1Bの後方にセグメントを組立て、後側外筒部1Bの後端部内に装着している複数本の推進ジャッキをこのセグメントの前端面に押し付けて伸長させることによりトンネルを掘進するシールド工法にも適用してもよい。
【0050】
【発明の効果】
以上のように本発明の管路形成用トンネル掘削機によれば、請求項1に記載したように、地中にトンネルを掘削しながら該トンネル内に管体を順次、埋設することにより管路を形成していくトンネル掘削機であって、先頭の管体の前端側に設けられ且つ該管体と略同一外径を有する外筒と、この外筒内に配設された掘削機本体とからなり、上記外筒は前側外筒部と後側外筒部とに分割されていて該後側外筒部の前端側に方向修正ジャッキを介して上記前側外筒部を屈折自在に連結しているので、この方向修正ジャッキを作動させることにより、外筒の後側外筒部に対して前側外筒部を該方向修正ジャッキの作動量に応じて所定方向に容易に且つ大きく屈折させることができ、掘削中におけるトンネル掘削機の方向修正やこのトンネル掘削機による曲線トンネル施工が正確に且つ能率よく行うことができる。
【0051】
さらに、掘削機本体は外周面の前端部を外筒の前側外筒部における前端部内周面に突設しているリング体の内周面にシール材を介して密接させている内筒と、この内筒の前部に設けられた隔壁と、この隔壁に回転自在に支持されて上記外筒の開口端から前方の地盤を掘削し且つ外径が上記シール材の内径よりも小径に縮小可能に形成しているカッタヘッドとを備えてなり、上記内筒の外径を管体の内径よりも小径に形成していると共にこの内筒を上記前側外筒部の内周面に切り離し可能な推進反力伝達部材を介して連結しているので、管路形成時には、後方からの推進力を外筒及び推進反力伝達部材を介して掘削機本体の内筒に確実に伝達することができ、内筒の前部に設けている隔壁に回転自在に支持されたカッタヘッドによってトンネルを円滑に掘削することができる。
【0052】
その上、掘削機本体に作用する推進反力を上記推進反力伝達部材を介して外管から管体側に強固に支持させることができると共に、推進反力伝達部材はトンネル掘削機内に露呈した状態に設けられているから、所定長の管路の形成後、外筒の内周面からの該推進反力伝達部材の切り離し作業が機内から容易に行うことができ、カッタヘッドの外径を管体の内径よりも小径に形成したのち、外管を地中に残した状態で該外管と管体の内周面をガイド面として掘削機本体全体の回収、撤去作業が能率よく行うことができる。
【0053】
また、上記推進反力伝達部材は互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体の内筒の後端又は掘削機本体の隔壁背面に一体に固着し、他方の接続面を外筒における前側外筒部の内周面に切り離し可能に固着しているので、上記掘削機本体を作用する推進反力をこの推進反力伝達部材の直角な2つの接続面を介して外筒の内周面から管体に確実且つ強固に支持させることができ、トンネル掘削機によるトンネルの掘進を円滑に行いながら管路を形成することができる。
【図面の簡単な説明】
【図1】 管体の先端に接続したトンネル掘削機全体の簡略縦断側面図、
【図2】 カッタヘッドの正面図、
【図3】 推進反力伝達部材とローリング防止手段部分の簡略縦断背面図、
【図4】 管路を形成している状態の簡略縦断側面図、
【図5】 管路形成後にカッタヘッドを縮径させた状態の簡略横断平面図、
【図6】 掘削機本体を回収可能な状態にした簡略縦断側面図、
【図7】 排土手段を撤去する状態の簡略縦断側面図、
【図8】 掘削機本体を回収している状態の簡略縦断側面図、
【図9】 方向修正ジャッキを回収している状態の簡略縦断側面図、
【図10】 本発明の別な実施の形態を示す簡略縦断側面図、
【図11】 推進反力伝達部材を取り外した状態の簡略縦断側面図。
【符号の説明】
A シールド掘削機
B 発進立坑
1 外筒
1A 前側外筒部
1B 後側外筒部
3 推進反力伝達部材
3a 垂直矩形状板片
3b 水平矩形状板片
6 ローリング防止手段
7 方向修正ジャッキ
10 掘削機本体
11 内筒
12 隔壁
13 カッタヘッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tunnel excavating machine for forming a pipeline, in which a pipeline is formed by burying a pipe while excavating a tunnel in the ground, and then removed and recovered through the pipeline. .
[0002]
[Prior art]
In shield construction to form a pipeline in the ground, the tunnel excavator is excavated from the start shaft side toward the arrival shaft, and every time a fixed length tunnel is excavated, the tunnel excavator is followed by a fixed length. The tunnel excavator that has reached the reaching shaft is usually recovered from the inside of the reaching shaft, but the reaching shaft is already installed in the manhole, etc. If there is no narrow shaft, or if there is no final shaft, or if there are no vertical shafts, such as when two tunnel excavators are docked in the ground, the tunnel excavator from the arrival side Can not be taken out.
[0003]
Therefore, after excavation, the tunnel excavator must be disassembled and removed to the start shaft side through the pipe and recovered, and there is a problem that the removal and recovery work requires considerable labor and labor. In particular, in the case of a tunnel excavator that forms a small-diameter pipe having a diameter of 3000 mm or less, removal work in a narrow work space is extremely difficult.
[0004]
For this reason, the tunnel excavator is inserted and fixed in the leading laying pipe, and the facility on the start shaft side while rotating the cutter head of the tunnel excavating machine protruding forward from the opening end of the leading facility pipe By pushing the pipe forward, the tunnel excavator is advanced to excavate the tunnel, and each time a certain length of tunnel is excavated, a facility pipe is formed in order, and then after excavation is completed, After reducing the cutter head so that it has a smaller diameter than the inner diameter of the facility pipe and unlocking the shield excavator to the leading facility pipe, the shield excavator is retracted to the starting shaft through the pipeline without dismantling, Recovery from the start shaft to the ground side is performed (for example, refer to Patent Document 1).
[0005]
[Patent Document 1]
Japanese Examined Patent Publication No. 7-68871 (pages 2 to 5, Fig. 1)
[0006]
[Problems to be solved by the invention]
However, as above Na According to the pipe line forming method, as a means for fixing the excavator body to the inside of the facility pipe, a pressing bolt is passed through the skin plate across the inner and outer surfaces and attached to the pressing bolt tip protruding out of the skin plate. Since the stop plate is pressure-bonded to the inner surface of the facility pipe and the propulsion reaction force acting on the excavator body is supported by this fixing means, the propulsion reaction force is perpendicular to the length direction of the pressing bolt. There is a risk that the excavator body may be retracted or the facility pipe may be damaged due to the fact that it does not obtain sufficient support force by acting in the direction.
[0007]
Furthermore, although it is disclosed that the joint portion between the first facility pipe and the next facility tube can be refracted so that the direction can be corrected, it cannot be refracted greatly because it is not a middle-folding mechanism. There is a problem that correct direction correction is difficult.
[0008]
In addition, the seal mechanism between the tunnel excavator and the facility pipe has a seal ring inserted into the groove of the metal holder that is externally fitted to the skin plate, and this metal holder is attached to the front end surface of the first facility pipe. And the seal ring is in close contact with the front auxiliary plate projecting from the outer peripheral surface of the facility pipe. Therefore, when the tunnel excavator is retracted through the pipe, the metal holder However, it is extremely difficult to remove the metal holder outside the skin plate from the inside of the skin plate, and there is a problem that the removal work requires a lot of labor.
[0009]
The present invention has been made in view of the above-described problems, and the object of the present invention is that the propulsion reaction force during tunnel excavation can be firmly received. After tunnel excavation Is providing a tunnel excavator for forming a pipeline that can smoothly and efficiently collect and remove the tunnel excavator through the pipeline.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a tunnel excavator for forming a pipeline according to the present invention includes a pipe by sequentially burying pipes in the tunnel while excavating the tunnel in the ground. In a tunnel excavator that forms a path, an outer cylinder that is provided on the front end side of the leading pipe body and has substantially the same outer diameter as the pipe body, and an excavator body disposed in the outer cylinder The outer cylinder is divided into a front outer cylinder part and a rear outer cylinder part, and the front outer cylinder part is refractably coupled to the front end side of the rear outer cylinder part via a direction correcting jack, and A ring body having an inner diameter smaller than the inner diameter of the pipe body projects from the inner peripheral surface of the front end portion of the front outer cylinder portion, while the excavator body has the front end portion of the outer peripheral surface at the inner peripheral surface of the ring body. An inner cylinder that is in intimate contact with a sealing material, a partition wall provided at the front of the inner cylinder, and a partition wall Comprises a rolling freely supported and the outer diameter drilled in front of the ground from the open end of the outer cylinder and a cutter head which is reducible to a diameter smaller than the inner diameter of the sealing material A tunnel excavator for forming a pipeline, comprising the above Connect the inner cylinder of the excavator main body to the inner peripheral surface of the front outer cylinder part via a propulsion reaction force transmission member that can be separated. The propulsion reaction force transmission part has two connection surfaces that are connected to each other, and one of the connection surfaces is fixed to the excavator body and the other connection surface is fixed to the inner peripheral surface of the outer cylinder so as to be separable. Become It has a structure.
[0011]
In the tunnel excavator for pipe formation configured as described above, the invention according to claim 2 and claim 3 is the propulsion reaction force transmission member. One of The connection surface is integrally fixed to the rear end of the inner cylinder of the excavator body or the partition wall rear surface of the excavator body, and the other connection surface is detachably fixed to the inner peripheral surface of the front outer cylinder portion of the outer cylinder. It is characterized by that.
[0012]
[Action]
In the starting shaft, the rear end of the rear outer cylinder portion of the outer cylinder is connected to the front end surface of the leading pipe body, and the excavator body is disposed in the outer cylinder, and the inner cylinder of the excavator body The cutter head projecting from the open end is expanded to the same diameter as the outer pipe, and the tunnel is dug from the start shaft by pushing the rear end face of the pipe while rotating the cutter head. When the first pipe is propelled and buried in the excavated tunnel, the next pipe is connected, and each time the pipe is excavated for a certain length by this tunnel excavator, the pipe is added to the tunnel excavator sequentially. A pipeline is formed while making it follow.
[0013]
When this pipe is formed, the propulsive force for the pipe is transmitted from the leading pipe to the outer cylinder connected to the pipe, and the inner peripheral surface of the front outer cylinder in the outer cylinder and the tunnel excavator It is transmitted to the excavator body via a propulsion reaction force transmission member that integrally connects the inner cylinder. The propulsion reaction force acting on the cutter head of the excavator body is supported by the tubular body from the excavator body via the propulsion reaction force transmission member and the outer cylinder.
[0014]
In this case, the propulsion reaction force transmission member has two connection surfaces orthogonal to each other, and one connection surface is integrally fixed to the rear end of the inner cylinder of the excavator body or the back surface of the partition wall, and the other By fixing the connection surface to the inner peripheral surface of the front outer cylinder portion of the outer cylinder in a detachable manner, the propulsion reaction force is reliably and firmly supported from the outer cylinder to the tube body via the propulsion reaction force transmission member. It is possible to form a pipeline while smoothly tunneling with a tunnel excavator. The tube body may be embedded not only by such a propulsion method but also by a shield method in which the segments are assembled as a tube body.
[0015]
Further, when excavating a tunnel or tunnel, the front outer cylinder portion is connected to the front outer end of the tubular body integrally with the front end of the tubular body. It can be refracted in a desired direction by actuating a direction correction jack connected between them, and the excavator body arranged in the front outer cylinder portion is refracted integrally to correct the direction of the tunnel or curved tunnel. Can be excavated accurately and efficiently.
[0016]
Further, when the excavator body is recovered after forming a pipe having a predetermined length, the propulsion reaction force transmission member can be easily separated from the excavator body, and the front end portion of the outer peripheral surface of the inner cylinder of the excavator body Since the sealing material that is in close contact with the ring is provided on the inner peripheral surface of the ring body that is smaller than the inner diameter of the tubular body projecting from the inner peripheral surface of the front end portion of the front outer peripheral surface of the outer cylinder, this sealing material The inner cylinder of the excavator main body can be smoothly removed backward while being in sliding contact with the cutter, and the excavator main body is collected and removed through the pipeline with the cutter head being smaller than the inner diameter of the pipe body. Can be done efficiently.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, a specific embodiment of the present invention will be described with reference to the drawings. A tunnel excavator A includes an outer cylinder 1 made of a steel pipe whose outer diameter is equal to the outer diameter of a pipe body P to be embedded, and the inner diameter of the outer cylinder 1 The excavator body 10 is provided with an inner cylinder 11 whose outer diameter is smaller than the inner diameter of the pipe body P, and an outer peripheral end surface of the inner cylinder 11 provided at the front portion of the inner cylinder 11. A partition wall 12 that is integrally fixed to the inner peripheral surface of the inner cylinder 11 and a cutter head 13 that is rotatably supported by the partition wall 12 and excavates the ground facing the open end of the outer cylinder.
[0018]
The outer cylinder 1 is divided into a front outer cylinder part 1A having a length equal to or longer than the inner cylinder 11 of the excavator main body 10 and a short annular outer rear cylinder part 1B. The rear end of the rear outer cylinder portion 1B is integrally connected and fixed to the front end of the tubular body P, and the direction correcting jack 7 is attached to the front end side of the rear outer cylinder portion 1B. The front outer cylinder portion 1A is connected in a refractive manner.
[0019]
These front and rear outer cylindrical portions 1A and 1B are formed of inner and outer double cylindrical peripheral wall portions 1a1 and 1a2; 1b1 and 1b2 between front end portions and rear end portions, respectively, front and rear ring-shaped connecting end plates 1a3 and 1a4; 1b3 and 1b4 Is formed in a rectangular shape having a cross section that is substantially equal to the thickness of the tube P, and further extends inward from the inner peripheral end of the front ring-shaped connecting end plate 1a3 in the front outer cylinder portion 1A. A ring body 1c is integrally projected in the direction, and the front end outer peripheral surface of the inner cylinder 11 of the excavator body 10 is slidably contacted with the inner peripheral end surface of the ring body 1c via the sealing material 4 and the front side The front and rear ends of the outer cylindrical peripheral wall portion 1a1 in the outer cylindrical portion 1A are connected to the inner cylindrical peripheral wall portion. 1a2 The rear protruding piece 1a5 is protruded from the front and rear ends of the outer cylindrical peripheral wall 1b1 of the rear outer cylindrical portion 1B so that it can be refracted through the sealing material 4a. It is fitted.
[0020]
The rear outer cylinder portion 1B is in a state where the rear end face plate 1b4 and the protruding piece 1b5 projecting rearward from the rear end face plate 1b4 are brought into close contact with the front end face and the front end outer peripheral face of the tube P, respectively. Without fixing the rear end face plate 1a4 of the front outer cylinder 1A to the front end face plate 1b3. Acceptance I am letting.
[0021]
The excavator body 10 places the inner cylinder 11 in the front outer cylinder portion 1A of the outer cylinder 1 thus configured at a small interval from the inner peripheral surface of the inner cylindrical peripheral wall portion 1a2 of the front outer cylinder portion 1A. In this state and as described above, the front end of the inner cylinder 11 is disposed in such a manner that the outer peripheral surface of the front end of the inner cylinder 11 is in sliding contact with the inner peripheral end surface of the ring body 1c via the sealing material 4. The guide roller 2 is rotatably supported at a plurality of locations on at least the lower peripheral portion of the portion, and is supported on the inner peripheral surface of the outer cylinder 1, that is, on the front end portion of the inner peripheral surface of the inner cylindrical peripheral wall portion 1a2. .
[0022]
Further, the rear end portion of the inner cylinder 11 of the excavator body 10 can be separated from the inner peripheral surface of the rear end portion of the front outer cylindrical portion 1A, that is, the inner peripheral surface of the rear end portion of the inner cylindrical peripheral wall portion 1a2. The driving reaction force generated when the tunnel excavator A is dug is transferred from the inner cylinder 11 of the excavator body 10 to the driving reaction force transmission member 3 and the front and rear outer cylinder portions 1A and 1B. It is comprised so that it may be supported by the pipe body P via.
[0023]
The propulsion reaction force transmission member 3 is formed by connecting and fixing a vertical rectangular plate piece 3a and a horizontal rectangular plate piece 3b at right angles to each other by a reinforcing rib 3c. And an outer surface of the horizontal rectangular plate piece 3b form two connection surfaces orthogonal to each other. On the other hand, vertical connecting plates that are surface-bonded to the vertical rectangular plate pieces 3a of the propulsion reaction force transmission member 3 at a plurality of circumferential positions (four directions in the figure) at the rear end portion of the inner cylinder 11 of the excavator body 10. The piece 3d is integrally fixed together with the reinforcing member 3e, and the vertical rectangular plate piece 3a of the propulsion reaction force transmission member 3 is joined to each of the vertical connecting plate pieces 3d and connected and fixed by a plurality of bolts 3f. ing.
[0024]
Further promotion A horizontal rectangular plate piece 3b in the reaction force transmitting member 3 is detachably fixed to the inner peripheral surface of the rear end of the outer cylinder 1, that is, the inner peripheral surface of the inner peripheral wall portion 1b of the outer cylinder 1. The surface is joined to the connecting plate piece 3g, and is integrally connected and fixed by a plurality of bolts 3f. In order to make it possible to separate the horizontal rectangular plate piece 3b of the propulsion reaction force transmission member 3 from the inner cylinder 11, the horizontal connecting plate piece 3g is fixed to the inner peripheral surface of the inner cylinder 11 by welding, A horizontal rectangular plate piece 3b may be fixed to the horizontal connecting plate piece 3g so as to be separable by bolts 3f, and the horizontal connecting plate piece 3g can be horizontally fixed without being fixed to the inner peripheral surface of the inner cylinder 11 by welding. The rectangular plate piece 3b and the bolt 3f may be detachably fixed to the inner surface of the inner cylinder 11.
[0025]
On the other hand, as shown in FIG. 3, there are small intervals in the circumferential direction at two locations on the inner peripheral surface of the rear outer cylindrical portion 1B, that is, the upper portion of the inner peripheral surface of the rear cylindrical peripheral wall portion 1b2. The projecting pieces 6a, 6a, which are horizontally long and long in the front-rear direction, project inward toward the outer peripheral surface of the rear end of the inner cylinder 11 of the excavator body 10, while the rear end of the inner cylinder 11 Two horizontally long intervention pieces 6b inserted between the protruding pieces 6a and 6a are provided at the upper two locations on the outer peripheral surface. These protruding pieces 6a and 6a and the intervention pieces 6b prevent rolling of the tunnel excavator. Means 6 are formed.
[0026]
That is, by receiving both side surfaces of the intervention piece 6b integral with the inner cylinder 11 on the opposite inner side surfaces of the projecting pieces 6a and 6a integral with the rear outer cylinder portion 1B integrally coupled with the pipe body P. The entire tunnel excavator composed of the outer cylinder 1 and the excavator main body 10 is configured to prevent rolling with respect to the pipe body P. The protruding pieces 6a and 6a may be provided on the inner cylinder 11 side, and the intervention piece 6b may be provided on the rear outer cylinder portion 1B side.
[0027]
Further, the four upper and lower left and right portions of the front outer cylinder portion 1A and the rear outer cylinder portion 1B in the outer cylinder 1 are connected by the direction correcting jack 7 as described above. Specifically, the upper, lower, left and right portions of the rear half portion of the inner cylindrical peripheral wall portion 1a2 of the front outer cylindrical portion 1A are cut off, and the direction is corrected along the upper, lower, left and right sides of the inner peripheral surface of the outer cylindrical peripheral wall portion 1a1 at the cut portion. A jack 7 is provided, and a front end portion of the direction correcting jack 7 is rotatably connected to a bearing piece 8 projecting from an inner peripheral surface of the outer cylindrical peripheral wall portion 1a1 by a pin 5a, while a rear end portion. Is rotatably connected by a pin 5b to a bearing piece 9 fixed to the front end portion of the rear outer cylinder portion 1B.
[0028]
The cutter head 13 of the excavator main body 10 has a rotation center shaft 14 rotatably supported at the center of the partition wall 12 and is orthogonal to the rotation center shaft 14 from the front end of the rotation center shaft 14. As shown in FIG. 2 toward the direction (outer diameter direction), a plurality of pieces having a length smaller than the radius of the inner peripheral surface of the outer cylinder 1 or the tubular body P and substantially equal to the radius of the inner cylinder 11 Spoke portions 13a (six in the figure) project radially, and the outer end facing surfaces of adjacent spoke portions 13a are integrally connected by an arc-shaped connecting member 13b.
[0029]
Further, cutter bits 15a are projected forward from the spoke portions 13a at appropriate intervals in the lengthwise direction, and are disposed at intervals in the plurality of spoke portions 13a. As described above, the spoke portion 13a 'can be extended from a length shorter than the radius of the inner peripheral surface of the outer cylinder 1 or the tube P to a longer length reaching the outer peripheral surface of the outer cylinder 1, and this long shape. The outer diameter of the cutter head can be reduced from a diameter substantially equal to the outer diameter of the outer cylinder 1 to a smaller diameter than the inner diameter of the tubular body P.
[0030]
As the concrete structure of the expandable / reducible spoke portion 13a ′, as shown in FIG. 1, the spoke portion 13a ′ is formed in a cylindrical hollow spoke portion 13a ′ having an open front end surface. A spoke piece 13a '' having a plurality of cutter bits 15b projecting forward on both sides of the front face is accommodated in the spoke part 13a 'and mounted on the bottom of the hollow spoke part 13a'. By the operation of the jack 16, this spoke piece 13a '' is configured to protrude and retract from the open end of the hollow spoke portion 13a '. A center bit 15c is projected from the front surface of the rotation center shaft 14 of the cutter head 13.
[0031]
In addition, arm members 17 are protruded rearward at several locations on the outer periphery of the back surface of the cutter head 13, and the rear ends of these arm members 17 and 17 are integrally connected by an annular frame member 18. An annular frame member 18 is rotatably supported on the inner peripheral surface of the inner cylinder 11, and an internal gear 19 is fixed to the rear end surface of the annular frame member 18, while the excavator main body 10 has the above-mentioned structure. A drive motor 20 is mounted on the rear surface of the outer peripheral portion of the partition wall 12, and the small gear 21 fixed to the rotation shaft of the drive motor 20 is engaged with the internal gear 19, and the cutter head 13 is rotated by the drive motor 20. It is composed.
[0032]
Further, a space between the rear surface of the cutter head 13 and the front surface of the partition wall 12 is formed in a sand chamber 22 that takes in the sand excavated by the cutter head 12 and temporarily retains it. The excavated sediment is discharged backward through the soil means 23.
[0033]
As shown in FIG. 1, the earth discharging means 23 is a screw conveyor, and its front end opening penetrates the lower part of the partition wall 12 and faces the lower end part of the earth and sand chamber 22. It is arranged in a state inclined obliquely upward.
[0034]
Next, a method for forming a pipeline in the ground by the pipeline forming tunnel excavator A configured as described above will be described. First, the tunnel excavator A is installed in the start shaft B, and the cutter head 13 is in a state of expanding the diameter, and a fume pipe is formed at the rear end of the rear outer cylinder portion 1B in the tunnel excavator A. The front ends of the pipes P are connected together. In this state, the cutter head 12 is rotated and the rear end surface of the pipe P is pushed forward by the propulsion means C such as a propulsion jack disposed in the rear portion of the start shaft B to dig the tunnel.
[0035]
When the tunnel excavator A propels from the start shaft B into the ground for a certain length, the front end of the next pipe P is connected to the rear end of the pipe P, and the rear end of the pipe P is connected to the propulsion means C. The tunnel excavator A is further excavated along the tunnel planned line with the pipe P following the leading pipe P. Hereinafter, a tunnel of a certain length is excavated by the tunnel excavator A. Every time, the pipe P is pushed forward while being added on the start shaft B side to form a pipe line as shown in FIG. The earth and sand excavated by the cutter head 13 is discharged from the earth and sand chamber 22 through the earth discharging means 23 to the start shaft B side.
[0036]
The propulsive force by the propulsion means C comes into contact with the front end of the rear outer cylindrical portion 1B via the rear outer cylindrical portion 1B that is integrally fixed to the front end of the leading tubular body P from the rearmost tubular body P. Is transmitted to the received front outer cylinder portion 1A, and further transmitted from the front outer cylinder portion 1A to the excavator body 10 via the propulsion reaction force transmission member 3 to dig while pressing the cutter head 13 against the face. To do. A projecting piece 7a is projected on the inner peripheral surface of the central portion in the length direction of the cylinder portion of the direction correcting jack 7, and the projecting piece 7a is formed in the inner cylinder of the excavator body 10 as shown in FIG. 11 is connected to the projecting piece 11a projecting on the outer peripheral surface of the excavator 11 by bolts, the above-mentioned propulsive force is transmitted from the rear outer cylinder part 1B to the excavator body 10 via the direction correcting jack 7 and the projecting pieces 7a, 11a. Can be transmitted to the inner cylinder 11.
[0037]
On the other hand, the reaction force of the propulsive force is the propulsion reaction force transmitting member that integrally connects the inner cylinder 11 and the front outer cylinder portion 1A of the outer cylinder 1 from the excavator body 10 supporting the cutter head 13. 3 is supported by the front outer cylinder portion 1A, and is further supported by the tubular body P via the rear outer cylinder portion 1B receiving the rear end of the front outer cylinder portion 1A.
[0038]
At this time, the propulsion reaction force transmission member 3 is formed by connecting the vertical rectangular plate pieces 3a and the horizontal rectangular plate pieces 3b at right angles to each other and connecting and fixing them together by the reinforcing ribs 3c. The vertical connecting plate piece 3d fixed to the rear end portion of the inner cylinder 11 of the excavator body 10 is joined to the front surface of the vertical rectangular plate piece 3a in FIG. Since the piece 3b is surface joined to the horizontal connecting plate piece 3g that is detachably fixed to the rear end inner peripheral surface of the front outer cylinder portion 1A, and is integrally connected and fixed by a plurality of bolts 3e. The propulsion reaction force acting on the head 13 can be firmly received on the tube P side via the propulsion reaction force transmission member 3.
[0039]
Further, during tunnel excavation, the inner cylinder 11 of the excavator body 10 tries to roll due to the rotational reaction force of the cutter head 13, but the horizontally long rectangular shape projecting on the outer peripheral surface of the rear end portion of the inner cylinder 11 The intervening piece 6b is inserted between the projecting pieces 6a and 6a projecting in parallel on the inner peripheral surface of the rear outer cylinder portion 1B that is integrally fixed to the front end of the leading tubular body P. The intervention piece 6b is received by one of the opposing inner surfaces of the protruding pieces 6a and 6a, and can be reliably prevented from rolling with respect to the tube P, and the inner cylinder 11 tries to roll. The rotating power of the entire tunnel excavator A can be prevented without transmitting the rotational force to the front outer cylinder portion 1A.
[0040]
Furthermore, during tunnel excavation by the tunnel excavator A, when the planned tunnel for forming the pipe is curved, or when it is necessary to correct the excavation direction, the outer cylinder 1 of the tunnel excavator A Of the four direction correction jacks 7 connecting the front outer cylinder portion 1A and the rear outer cylinder portion 1B of the outer cylinder 1 fixed to the front end of the leading tube P, a predetermined direction correction jack 7 is provided. The tunnel excavator A is operated so that the entire direction of the tunnel excavator A is directed to the planned curve tunnel direction or the direction to be corrected with respect to the rear outer cylinder portion 1B.
[0041]
For example, when it is desired to change the direction of the tunnel excavator A to the right side, when the right direction correction jack 7 is inactivated or contracted and the left direction correction jack 7 is extended, the outer cylinder 1 of the tunnel excavator A is expanded. The rear end protruding portion 1a5 of the front outer cylinder portion 1A is refracted rightward through the sealing material 4a with respect to the front outer peripheral surface of the rear outer cylinder portion 1B. This refraction angle can be adjusted to be large or small depending on the amount of extension of the left direction correction jack 7, and the direction correction and curved tunnel construction during excavation can be easily and accurately performed.
[0042]
Next, after excavating a tunnel of a predetermined length by the shield excavator A to form a pipeline, the excavator body 10 can be removed and recovered by projecting from the open end of the hollow spoke portion 13a 'in the cutter head 13. As shown in FIG. 5, the spoke piece 13a '' whose diameter of the cutter head 13 is expanded is accommodated in the spoke portion 13a 'by contraction of the jack 16, and the outer diameter of the cutter head 13 is set to the outer cylinder 1 and the tube. The diameter is smaller than the inner diameter of the body P.
[0043]
Further, a horizontal connecting plate fixed to the inner peripheral surface of the rear end of the front outer cylinder portion 1A in the propulsion reaction force transmission member 3 that connects the rear end portion of the inner cylinder 11 and the front outer cylinder portion 1A of the outer cylinder 1. The piece 3g is separated from the front outer cylinder portion 1A and removed, and a part of the reinforcing rib 3c integrally connecting the vertical rectangular plate piece 3a and the horizontal rectangular plate piece 3b of the propulsion reaction force transmitting member 3 is formed. As shown in FIG. 6, the rear guide roller 2 ′ is rotatably supported on the reinforcing rib 3 c so as to be supported on the inner peripheral surface of the outer cylinder 1. At this time, the removal of the horizontal connecting plate piece 3g of the propulsion reaction force transmission member 3 and the installation work of the rear guide roller 2 'are performed because the propulsion reaction force transmission member 3 is disposed in the tunnel excavator A. It can be done easily. In addition, a guide roller may be provided in advance at the rear end portion of the outer peripheral surface of the inner cylinder 11, and in this case, it is not necessary to install the rear guide roller 2 ′, and the propulsion reaction force transmission member It is only necessary to perform the operation of separating 3 from the front outer cylinder portion 1A.
[0044]
Further, the protruding pieces 6a, 6a and the intervention pieces 6b constituting the rolling preventing means 6 are also removed by excision or the like, and the screw conveyor mounted on the partition wall 12 of the excavator body 10 as shown in FIG. The earth removing means 23 is removed and recovered and removed to the start shaft B side through the pipe. If the protruding pieces 6a, 6a fixed to the inner peripheral surface of the outer cylinder 1 in the rolling preventing means 6 do not hinder the cutter head 13 from moving backward, it is not always necessary to remove it.
[0045]
As described above, the diameter of the cutter head 13 is reduced, the connection and fixing of the inner cylinder 11 of the excavator body 10 to the front outer cylinder portion 1A of the outer cylinder 1 in the tunnel excavator A are released, and the soil removal means 23 is removed. After that, when the excavator body 10 is pulled from the rear side by a suitable pulling means (not shown), the outer peripheral surface of the front end of the inner cylinder 11 protrudes inwardly from the inner peripheral surface of the front end of the outer cylinder 1. While sliding against the sealing material 4 of the body 1c and retreating from the sealing material 4, the front and rear guide rollers 2 and 2 'are rolled on the inner peripheral surface of the tube P as shown in FIG. The excavator body 10 is collected on the start shaft B side and removed from the start shaft B to the ground. Thereafter, as shown in FIG. 9, the direction correcting jack 7 is removed, removed and collected. When the tunnel excavator A is collected, the ground in front of the cutter head may be solidified by chemical injection or the like.
[0046]
In the above embodiment, the rear end inner peripheral surface of the inner cylindrical peripheral wall portion 1a2 of the front outer cylinder portion 1A of the outer cylinder 1 is connected to the rear end portion of the inner cylinder 11 in the excavator body 10 by the propulsion reaction force transmission member 3. 10 and 11, as shown in FIGS. 10 and 11, a notch 24 having a size that allows the propulsion reaction force transmission member 3 to be attached to the front end of the inner cylinder 11 on the back side of the partition wall 12. Are provided at predetermined intervals in the circumferential direction, and a vertical connecting plate piece 3d 'is fixed to the rear surface of the partition wall in the notch 24, and a vertical rectangular plate piece 3a of the propulsion reaction force transmitting member 3 is attached to the vertical connecting plate piece 3d'. The horizontal rectangular plate piece 3b of the propulsion reaction force transmission member 3 is fixed to the inner peripheral surface of the inner cylindrical peripheral wall portion 1a2 of the front outer cylindrical portion 1A of the outer cylinder 1 in a detachable manner. The horizontal connecting plate piece 3g may be surface-joined and integrally connected and fixed by a plurality of bolts 3f. Since other structures are the same as those in the above embodiment, the same parts are denoted by the same reference numerals and detailed description thereof is omitted.
[0047]
Further, in any of the above embodiments, a fume pipe is adopted as the pipe body P forming the pipe line, but it may be a steel pipe. Further, as the outer cylinder 1 in the tunnel excavator A, It is desirable that it is made of steel, but even if it is made of concrete, it cannot be applied.
[0048]
Further, the spoke portion 13a ′ of the cutter head 13 is formed by hollowly forming the spoke portion 13a ′, and a plurality of cutter bits 15b projecting forward from both sides of the front face in the hollow spoke portion 13a ′. The spoke piece 13a '' is retracted from the opening end of the hollow spoke portion 13a 'by the operation of the jack 16 mounted in the bottom portion of the hollow spoke portion 13a'. The outer diameter of the head 13 is configured to expand and contract, but a spoke piece of a certain length is detachably connected to the outer end of the spoke portion 13a ', and the cutter head 13 is connected in a state where the spoke piece is connected. The outer diameter of the outer cylinder 1 may be substantially equal to the outer diameter of the outer cylinder 1, and the cutter head 13 may be configured such that the outer diameter of the cutter head 13 can be removed through the pipe line when the spoke piece is removed.
[0049]
Furthermore, the pipe line is formed by sequentially propelling and burying the pipe body P by the propulsion method, but every time a tunnel of a fixed length is excavated by the tunnel excavator A, it is located behind the rear outer cylinder portion 1B. It may also be applied to a shield method for assembling a tunnel by assembling a segment and pressing and extending a plurality of propulsion jacks mounted in the rear end portion of the rear outer cylinder portion 1B against the front end surface of this segment. .
[0050]
【The invention's effect】
As described above, according to the tunnel excavator for forming a pipeline of the present invention, as described in claim 1, the pipeline is formed by sequentially burying the pipe body in the tunnel while excavating the tunnel in the ground. An outer cylinder that is provided on the front end side of the leading pipe body and has substantially the same outer diameter as the pipe body, and an excavator body disposed in the outer cylinder. The outer cylinder is divided into a front outer cylinder part and a rear outer cylinder part, and the front outer cylinder part is refractably connected to the front end side of the rear outer cylinder part via a direction correcting jack. Therefore, by operating this direction correcting jack, the front outer cylinder part can be easily and largely refracted in a predetermined direction according to the operation amount of the direction correcting jack with respect to the rear outer cylinder part of the outer cylinder. The direction of the tunnel excavator during excavation and That curve tunnel construction can be performed with accurate and efficient.
[0051]
Furthermore, the excavator body has an inner cylinder in which the front end portion of the outer peripheral surface is in close contact with the inner peripheral surface of the ring body protruding from the inner peripheral surface of the front end portion of the front outer cylinder portion of the outer cylinder via a sealing material; A partition provided at the front of the inner cylinder, and supported by the partition so as to be rotatable, excavate the front ground from the opening end of the outer cylinder, and the outer diameter can be reduced to a smaller diameter than the inner diameter of the sealing material. The outer cylinder has an outer diameter smaller than the inner diameter of the tubular body, and the inner cylinder can be separated from the inner circumferential surface of the front outer cylinder portion. Since it is connected via the propulsion reaction force transmission member, the propulsion force from the rear can be reliably transmitted to the inner cylinder of the excavator main body via the outer cylinder and the propulsion reaction force transmission member when the pipe is formed. Tunnel by a cutter head rotatably supported by a partition wall provided at the front of the inner cylinder It is possible to smoothly drilling.
[0052]
In addition, the propulsion reaction force acting on the excavator body can be firmly supported from the outer tube to the tube side via the propulsion reaction force transmission member, and the propulsion reaction force transmission member is exposed in the tunnel excavator. Therefore, after the formation of the predetermined length of the conduit, the driving reaction force transmission member can be easily detached from the inner peripheral surface of the outer cylinder from the inside of the machine, and the outer diameter of the cutter head can be reduced. After the outer diameter is formed smaller than the inner diameter of the body, the entire excavator body can be efficiently recovered and removed with the outer pipe and the inner peripheral surface of the pipe body as a guide surface with the outer pipe remaining in the ground. it can.
[0053]
Also, above The propulsion reaction force transmission member has two connection surfaces orthogonal to each other, and one of the connection surfaces is integrally fixed to the rear end of the inner cylinder of the excavator body or the partition wall rear surface of the excavator body, and the other connection surface Is attached to the inner peripheral surface of the front outer cylinder portion of the outer cylinder so as to be separable, so that the propulsion reaction force acting on the excavator body is externally connected through two perpendicular connection surfaces of the propulsion reaction force transmission member. The pipe body can be reliably and firmly supported from the inner peripheral surface of the cylinder, and the pipe line can be formed while smoothly tunneling with the tunnel excavator.
[Brief description of the drawings]
FIG. 1 is a simplified longitudinal side view of an entire tunnel excavator connected to the tip of a tubular body,
FIG. 2 is a front view of the cutter head,
FIG. 3 is a simplified longitudinal rear view of a propulsion reaction force transmitting member and a rolling prevention means portion;
FIG. 4 is a simplified vertical side view of a pipe forming state,
FIG. 5 is a simplified cross-sectional plan view of a state in which the diameter of the cutter head is reduced after the pipe is formed;
FIG. 6 is a simplified vertical side view of the excavator body in a state where it can be recovered;
FIG. 7 is a simplified vertical side view of the state in which the soil removal means is removed,
FIG. 8 is a simplified longitudinal side view of the excavator body being collected,
FIG. 9 is a simplified longitudinal side view of a state in which the direction correcting jack is being collected,
FIG. 10 is a simplified vertical side view showing another embodiment of the present invention;
FIG. 11 is a simplified longitudinal sectional side view of a state in which a propulsion reaction force transmission member is removed.
[Explanation of symbols]
A Shield excavator
B Starting shaft
1 outer cylinder
1A Front outer cylinder
1B Rear outer cylinder
3 Propulsion reaction force transmission member
3a Vertical rectangular plate
3b Horizontal rectangular plate
6 Rolling prevention means
7 direction correction jack
10 Excavator body
11 Inner cylinder
12 Bulkhead
13 Cutter head

Claims (3)

地中にトンネルを掘削しながら該トンネル内に管体を順次、埋設することにより管路を形成していくトンネル掘削機において、先頭の管体の前端側に設けられ且つ該管体と略同一外径を有する外筒と、この外筒内に配設された掘削機本体とからなり、上記外筒は前側外筒部と後側外筒部とに分割されていて該後側外筒部の前端側に方向修正ジャッキを介して上記前側外筒部を屈折自在に連結し且つ該前側外筒部の前端部内周面に内径が上記管体の内径よりも小径のリング体を突設している一方、上記掘削機本体は外周面の前端部を上記リング体の内周面にシール材を介して密接させている内筒と、この内筒の前部に設けられた隔壁と、この隔壁に回転自在に支持されて上記外筒の開口端から前方の地盤を掘削し且つ外径が上記シール材の内径よりも小径に縮小可能に形成しているカッタヘッドとを備えてなる管路形成用トンネル掘削機であって、上記掘削機本体の内筒を上記前側外筒部の内周面に切り離し可能な推進反力伝達部材を介して連結してなり、該推進反力伝達部は互いに直交する2つの接続面を有していて、一方の接続面を掘削機本体に、他方の接続面を外筒の内周面にそれぞれ切り離し可能に固着していることを特徴とするいることを特徴とする管路形成用トンネル掘削機。In a tunnel excavator that forms a conduit by sequentially burying pipes in the tunnel while excavating the tunnel in the ground, it is provided on the front end side of the leading pipe and is substantially the same as the pipe An outer cylinder having an outer diameter and an excavator body disposed in the outer cylinder, the outer cylinder being divided into a front outer cylinder part and a rear outer cylinder part, the rear outer cylinder part The front outer cylinder part is refractably connected to the front end side of the front outer cylinder part via a direction correcting jack, and a ring body having an inner diameter smaller than the inner diameter of the pipe body is projected on the inner peripheral surface of the front end part of the front outer cylinder part On the other hand, the excavator body has an inner cylinder in which the front end portion of the outer peripheral surface is in close contact with the inner peripheral surface of the ring body via a sealing material, a partition wall provided in the front portion of the inner cylinder, Excavated from the open end of the outer cylinder supported by the partition wall, and the outer diameter is the inner diameter of the sealing material Remote a conduit forming tunneling machine comprising a cutter head which is reducible to a smaller diameter, which can disconnect the inner cylinder of the excavator body to the inner peripheral surface of the front outer cylinder portion The propulsion reaction force transmission part is connected via a propulsion reaction force transmission member , and the propulsion reaction force transmission part has two connection surfaces orthogonal to each other, one connection surface being an excavator body and the other connection surface being an outer cylinder. A tunnel excavating machine for forming a pipeline, characterized in that it is separably fixed to the inner peripheral surface of the pipe. 推進反力伝達部材の一方の接続面を掘削機本体の隔壁より後方の内筒に、他方の接続面を外筒における前側外筒部の内周面にそれぞれ切り離し可能に固着していることを特徴とする請求項1に記載の管路形成用トンネル掘削機。 One of the connection surfaces of the propulsion reaction force transmission member is detachably fixed to the inner cylinder behind the partition wall of the excavator body, and the other connection surface is detachably fixed to the inner peripheral surface of the front outer cylinder portion of the outer cylinder. The tunnel excavator for pipe formation according to claim 1 characterized by the above-mentioned. 推進反力伝達部材の一方の接続面を掘削機本体の隔壁背面に、他方の接続面を外筒における前側外筒部の内周面にそれぞれ切り離し可能に固着していることを特徴とする請求項1に記載の管路形成用トンネル掘削機。 One of the connection surfaces of the propulsion reaction force transmission member is detachably fixed to the rear surface of the bulkhead of the excavator body, and the other connection surface is detachably fixed to the inner peripheral surface of the front outer cylinder portion of the outer cylinder. Item 2. A tunnel excavator for forming a pipeline according to Item 1.
JP2003147514A 2003-05-26 2003-05-26 Tunnel excavator for pipe formation Expired - Lifetime JP3830918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147514A JP3830918B2 (en) 2003-05-26 2003-05-26 Tunnel excavator for pipe formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147514A JP3830918B2 (en) 2003-05-26 2003-05-26 Tunnel excavator for pipe formation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006131292A Division JP4037436B2 (en) 2006-05-10 2006-05-10 Tunnel excavator for pipe formation

Publications (2)

Publication Number Publication Date
JP2004346689A JP2004346689A (en) 2004-12-09
JP3830918B2 true JP3830918B2 (en) 2006-10-11

Family

ID=33534014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147514A Expired - Lifetime JP3830918B2 (en) 2003-05-26 2003-05-26 Tunnel excavator for pipe formation

Country Status (1)

Country Link
JP (1) JP3830918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202319A (en) * 2007-02-21 2008-09-04 Okumura Corp Method for recovering excavator main body in tunnel excavator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705662B2 (en) * 2011-06-15 2015-04-22 株式会社奥村組 Shield excavator
JP6465707B2 (en) * 2015-03-17 2019-02-06 株式会社熊谷組 Pipe installation device
CN114620658B (en) * 2022-05-17 2022-07-22 太原矿机电气股份有限公司 Hydraulic support transfer platform and hydraulic support transfer method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202319A (en) * 2007-02-21 2008-09-04 Okumura Corp Method for recovering excavator main body in tunnel excavator

Also Published As

Publication number Publication date
JP2004346689A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
TW507043B (en) Semi-shield machine
JP4398485B2 (en) Tunnel excavator and tunnel excavation method
JP3836467B2 (en) Tunnel excavator
JP3830918B2 (en) Tunnel excavator for pipe formation
JP3830917B2 (en) Tunnel excavator for pipe formation
JP4037436B2 (en) Tunnel excavator for pipe formation
JP3892412B2 (en) Shield excavator
JP4966551B2 (en) Recovery method for tunnel excavator
JP4731308B2 (en) Cutter plate for tunnel excavator
JP2006037595A (en) Excavator for jacking method and jacking method
JP4718990B2 (en) Method of retaining soil near tunnel face
JP4423159B2 (en) Thrust transmission member in tunnel excavator
JP3853325B2 (en) How to collect and recover shield excavators
JP2009203736A (en) Shield machine
JP7465831B2 (en) Excavator
JP7465832B2 (en) Excavator
JP3836468B2 (en) Tunnel excavator
JP4409491B2 (en) Tunnel excavation method by tunnel excavator
JP3884033B2 (en) Tunnel excavator
JP3733796B2 (en) Shield device and shield method
JP3784317B2 (en) Tunnel excavator for pipe formation
JP3875227B2 (en) How to collect and recover shield excavators
JP4382020B2 (en) Guide device for recovery of tunnel excavator
JP4731507B2 (en) Method of collecting excavator body in tunnel excavator
JP4731307B2 (en) Cutter head of tunnel excavator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Ref document number: 3830918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150721

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term