[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3821102B2 - Flow measuring device - Google Patents

Flow measuring device Download PDF

Info

Publication number
JP3821102B2
JP3821102B2 JP2003045642A JP2003045642A JP3821102B2 JP 3821102 B2 JP3821102 B2 JP 3821102B2 JP 2003045642 A JP2003045642 A JP 2003045642A JP 2003045642 A JP2003045642 A JP 2003045642A JP 3821102 B2 JP3821102 B2 JP 3821102B2
Authority
JP
Japan
Prior art keywords
measurement
vibrator
flow rate
time
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003045642A
Other languages
Japanese (ja)
Other versions
JP2003222545A (en
Inventor
行夫 長岡
謙三 黄地
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003045642A priority Critical patent/JP3821102B2/en
Publication of JP2003222545A publication Critical patent/JP2003222545A/en
Application granted granted Critical
Publication of JP3821102B2 publication Critical patent/JP3821102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を利用してガスなどの流量を計測する流量計測装置に関するものである。
【0002】
【従来の技術】
従来のこの種の流量計測装置は、図7に示すように、流体管路1の一部に超音波振動子2と3を流れの方向に相対して設け、トリガ回路4、発信回路5を介し振動子1から流れ方向に超音波を発生しこの超音波を振動子2で受信し、増幅回路6、比較回路7を介し再び振動子1から超音波を発生させ、繰り返し手段8でこの繰り返しを行ってその伝搬時間を計時手段9で計測し、逆に切換手段10で振動子2から流れに逆らって超音波を発生し同様の繰り返し時間を計測し、この時間の差から流量演算手段11で流体の流量を演算していた。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の流量計測装置では振動子1から振動子2へ超音波を発信する場合と振動子2から振動子1へ発信する場合とで、時間に微少ながら差が生じる。この時間的な差によって電子回路周辺の温度が変化するときがあり、また間欠的に測定する場合には通電による発熱のために温度が時間的に変化する。これらの温度変化の影響によって回路の信号伝達速度が変化する。この伝達速度のの変化によって超音波の伝搬時間の測定は誤差を生じ、精度を低下させていた。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明の流量計測装置は、以下の構成とした。
【0005】
すなわち、流体管路の上流と下流に設けられ超音波信号を発信受信する第1振動子及び第2振動子と、前記振動子間の超音波伝搬時間を計測する計時手段と、前記計時手段の値に基づいて流量を演算する流量演算手段と、前記振動子を間欠的に駆動し計測を行うサンプリング制御手段と、計測値を無効にする予備計測手段とを備え、前記サンプリング制御手段は、前記予備計測手段の計測終了後に実際の計測を行うものである。
【0007】
本発明は上記構成によって、温度の影響をなくし流量測定を行うものである。
【0008】
【発明の実施の形態】
以下、本発明の第1の実施例を図面にもとづいて説明する。図1において、流体管路12の途中に超音波を発信する第1振動子13と受信する第2振動子14が流れ方向に配置されている。15は発信を開始するトリガ回路で発信回路16を介し第1振動子13から超音波信号を発信する。この超音波信号は第2振動子14で受信され、増幅回路17でフィルタリングと増幅が行われ、この増幅された信号は基準信号と比較回路18で比較され、基準信号以上の信号が検出されたときカウンタからなる計時手段19でトリガから比較までの時間が計測される。
【0009】
この計時手段19の値に基づいて補正係数を乗じる流量演算手段20で流量値を求める。21は計測を開始するスタート回路で、このスタート回路21で上流先行計測手段22と下流先行計測手段23とが選択される。上流先行計測手段22は最初に振動子13(上流側)から振動子14(下流側)へ超音波信号を発信しその伝搬時間を求め、しかる後切換手段24で振動子13と振動子14とを切り換え振動子14(下流側)から振動子13(上流側)へ発信し伝搬時間を求めるものである。
【0010】
次に動作を図1と図2で説明する。スタート回路から計測開始信号が発せられると、まず上流先行計測手段が選択され、発信が第1振動子13になり受信が第2振動子14になる。トリガ回路15計時手段19がリセットされた後、発信回路16から信号が送出され振動子13(上流側)から超音波信号が発生される。
【0011】
この超音波は音速と流速の影響を受けた伝搬時間の後、第2振動子14(下流側)で受信され、その信号は増幅回路17を経て、比較回路18で判定され、計時手段19でトリガからの時間T1が計測され流量演算手段20にそのデータが記憶される。次にスタート回路21で切換手段24が作動し、発信が第2振動子14になり受信が第1振動子13になる。すなわち第2振動子14から第1振動子13へ超音波信号が発信され前述と同様にその伝搬時間T2が測定される。次にスタート回路21によって下流先行計測手段23が選択され、まず第2振動子14から第1振動子13へ超音波信号が発信されその伝搬時間T3が計測され、次に第1振動子13から第2振動子14へ超音波信号が発信されその伝搬時間T4が測定される。伝搬時間T1、T2、T3、T4は流量演算手段20に記憶されており、流量演算手段20では、
△T=(T2+T3)−(T1+T4)
が演算され、この値に流体管路12の大きさや管内の流速分布に応じた補正係数が乗じられて流量値が求められる。この一連の計測はミリ秒オーダーの短い時間で完了するので、このとき回路の温度変化は直線的に変化すると考えて差し支えない。△Tの演算では第1振動子13から第2振動子14への伝搬時間(T1+T4)を測定したときのスタートからの時間と、第2振動子14から第1振動子13への伝搬時間(T2+T3)を測定したときのスタートからの時間はほぼ同一であり、温度変化があったとしてもその平均温度はほぼ同一である。
【0012】
図3は第2の実施例であり、計測を時間を間欠的に行うサンプリング制御の場合を示したものである。サンプリング制御計測は計測の休止中には電圧を低くするかあるいは遮断し、計測開始と同時に電圧を高めるもので、消費電力を低くして電池による駆動を可能にするものである。サンプリング制御手段25は時間が経過毎に計測を行うもので、計測が開始されると予備計測手段26による動作が行われる。予備計測手段26は計測開始から所定回数の超音波発信による計測、あるいは所定時間の計測を行うが、その間の計測値を廃棄する。予備計測が終了すると実際の計測を行う。予備計測の回数および時間は計測開始時に通電電力が増し温度が急激に上昇する大きさによってあらかじめ設定する。
【0013】
図4は第3の実施例であり、前述のサンプリング制御に伴って行われるものである。第1振動子13から発信された超音波を第2振動子14により受信し、この受信信号を増幅回路17と比較回路18で受信信号を検出すると、繰り返し手段27からトリガ手段15に伝達され、再度発信回路16がトリガされる。この繰り返し手段27の回数は繰り返し設定手段28によって設定される。この繰り返し設定手段28によって設定された回数だけ超音波の伝搬を繰り返し、この繰り返しが終了すると、計時手段19によってこの間の累積時間が測定される。図5に示すように、サンプリング制御手段25により計測が開始されると、初期計測手段29によってトリガが開始されて所定回数の初期計測が行われ、この計測値によって繰り返し設定手段28の回数が設定される。
【0014】
初期計測の流量値が大きいとき、すなわち上流から下流と下流から上流との伝搬時間の差が大きいときには繰り返し設定回数を比較的小さくするが、流量値が小さいとき上述の伝搬時間の差が小さくなって精度確保が十分でなくなるので、繰り返し回数を比較的大きくして伝搬の累積時間を大きくするものである。初期計測手段29によって繰り返し回数が設定された後、実計測手段30によって通常の計測が行われ流量が測定される。
【0015】
図6は第4の実施例であり、第1振動子13から発信された超音波を第2振動子14により受信し、この受信信号を増幅回路17と比較回路18で受信信号を検出し計時手段19で時間を測定するまでの回路、すなわちトリガから計時までの信号処理回路31に正特性素子回路32と負特性素子回路33を含ませる。正特性素子回路32は温度上昇と共に伝達速度が速くなるもので通常の半導体素子ではこの傾向にある。負特性素子回路33は温度上昇と共に伝達速度が遅くなるもので、コンデンサ容量Cと抵抗Rとで構成される遅延回路で構成すると、この回路の時定数はその積(C*R)になり、このコンデンサ容量Cの温度特性を温度上昇と共に容量が大きくなるものを選定すると時定数は温度上昇によって大きくなるので伝達速度は遅くなる。正特性素子回路32と負特性素子回路33を組み合わせることにより、温度の影響に対し伝達速度の変化が相殺され影響が小さくなる。
【0016】
【発明の効果】
以上の説明から明らかなように本発明の流量計測装置によれば次の効果が得られる。
【0017】
体管路の上流と下流に設けられ超音波信号を発信受信する第1振動子及び第2振動子と、振動子間の超音波伝搬時間を計測する計時手段と、計時手段の値に基づいて流量を演算する流量演算手段と、振動子を間欠的に駆動し計測を行うサンプリング制御手段と、計測値を無効にする予備計測手段とを備え、前記サンプリング制御手段は、前記予備計測手段の計測終了後に実際の計測を行うので、サンプリング計測の際に発生する計測開始直後の不安定さをなくすことができ計測誤差が小さい。
【図面の簡単な説明】
【図1】本発明の第1の実施例の流量計測装置の制御ブロック図
【図2】同装置の制御を示すフローチャート
【図3】本発明の第2の実施例の流量計測装置の制御を示すフローチャート
【図4】本発明の第3の実施例の流量計測装置の制御ブロック図
【図5】同装置の制御を示すフローチャート
【図6】本発明の第4の実施例の流量計測装置の制御ブロック図
【図7】従来の流量計測装置の制御ブロック図
【符号の説明】
12 流体管路
13 第1振動子
14 第2振動子
19 計時手段
20 流量演算手段
21 外部設定手段
22 上流先行計測手段
23 下流先行計測手段
24 切換手段
25 サンプリング制御手段
26 予備計測手段
27 繰り返し手段
28 繰り返し設定手段
29 初期計測手段
30 実計測手段
31 信号処理回路
32 正特性素子回路
33 負特性素子回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow rate measuring device that measures a flow rate of gas or the like using ultrasonic waves.
[0002]
[Prior art]
As shown in FIG. 7, a conventional flow measuring device of this type is provided with ultrasonic transducers 2 and 3 in a part of a fluid pipe line 1 in the flow direction, and includes a trigger circuit 4 and a transmission circuit 5. The ultrasonic wave is generated from the vibrator 1 in the flow direction, the ultrasonic wave is received by the vibrator 2, the ultrasonic wave is again generated from the vibrator 1 via the amplifier circuit 6 and the comparison circuit 7, and the repetition means 8 repeats this. Then, the propagation time is measured by the time measuring means 9, and on the contrary, the switching means 10 generates ultrasonic waves against the flow from the vibrator 2 and measures the same repetition time. Was used to calculate the flow rate of the fluid.
[0003]
[Problems to be solved by the invention]
However, in the conventional flow rate measuring device, there is a slight difference in time between when ultrasonic waves are transmitted from the vibrator 1 to the vibrator 2 and when ultrasonic waves are transmitted from the vibrator 2 to the vibrator 1. Due to this time difference, the temperature around the electronic circuit may change, and in the case of intermittent measurement, the temperature changes with time due to heat generated by energization. The signal transmission speed of the circuit changes due to the influence of these temperature changes. Due to the change in the transmission speed, the measurement of the propagation time of the ultrasonic wave causes an error, and the accuracy is lowered.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the flow rate measuring device of the present invention has the following configuration.
[0005]
In other words, a timer means for measuring a first oscillator and a second oscillator for transmitting receive ultrasound signals provided upstream and downstream of the fluid conduit, between the time of ultrasonic wave propagation between the transducers, the clock means a flow rate calculation means for calculating a flow rate based on the value, the comprising a sampling control means for intermittently driving measured vibrator, and a preliminary measuring means for disabling the meter Hakachi, said sampling control means The actual measurement is performed after the measurement by the preliminary measurement means .
[0007]
The present invention eliminates the influence of temperature and performs flow rate measurement with the above configuration.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a first vibrator 13 that transmits ultrasonic waves and a second vibrator 14 that receives ultrasonic waves are arranged in the flow direction in the middle of a fluid conduit 12. Reference numeral 15 denotes a trigger circuit for starting transmission, which transmits an ultrasonic signal from the first vibrator 13 via the transmission circuit 16. The ultrasonic signal is received by the second vibrator 14, filtered and amplified by the amplifier circuit 17, and the amplified signal is compared with the reference signal by the comparison circuit 18, and a signal equal to or higher than the reference signal is detected. The time from the trigger to the comparison is measured by the time measuring means 19 comprising an hour counter.
[0009]
A flow rate value is obtained by a flow rate computing means 20 that multiplies the correction coefficient based on the value of the time measuring means 19. Reference numeral 21 denotes a start circuit for starting measurement. The start circuit 21 selects the upstream preceding measurement means 22 and the downstream preceding measurement means 23. The upstream preceding measurement means 22 first transmits an ultrasonic signal from the vibrator 13 (upstream side) to the vibrator 14 (downstream side) to obtain the propagation time, and then the switching means 24 uses the vibrator 13 and the vibrator 14. Is transmitted from the switching vibrator 14 (downstream side) to the vibrator 13 (upstream side) to determine the propagation time.
[0010]
Next, the operation will be described with reference to FIGS. When the measurement start signal is issued from the start circuit, the upstream preceding measurement means is first selected, the transmission is the first vibrator 13 and the reception is the second vibrator 14. After the trigger circuit 15 timer 19 is reset, a signal is transmitted from the transmission circuit 16 and an ultrasonic signal is generated from the vibrator 13 (upstream side).
[0011]
This ultrasonic wave is received by the second vibrator 14 (downstream side) after the propagation time affected by the speed of sound and the flow velocity, and the signal passes through the amplifier circuit 17 and is judged by the comparison circuit 18. The time T1 from the trigger is measured and the data is stored in the flow rate calculation means 20. Next, the switching means 24 is operated in the start circuit 21, and the transmission is the second vibrator 14 and the reception is the first vibrator 13. That is, an ultrasonic signal is transmitted from the second vibrator 14 to the first vibrator 13, and the propagation time T2 is measured as described above. Next, the downstream leading measurement means 23 is selected by the start circuit 21. First, an ultrasonic signal is transmitted from the second transducer 14 to the first transducer 13, and its propagation time T 3 is measured, and then from the first transducer 13. An ultrasonic signal is transmitted to the second vibrator 14 and its propagation time T4 is measured. The propagation times T1, T2, T3, and T4 are stored in the flow rate calculation means 20, and in the flow rate calculation means 20,
ΔT = (T2 + T3) − (T1 + T4)
Is calculated, and this value is multiplied by a correction coefficient corresponding to the size of the fluid pipe 12 and the flow velocity distribution in the pipe to obtain a flow rate value. Since this series of measurements is completed in a short time on the order of milliseconds, it is safe to assume that the temperature change of the circuit changes linearly at this time. In the calculation of ΔT, the time from the start when the propagation time (T1 + T4) from the first vibrator 13 to the second vibrator 14 is measured, and the propagation time from the second vibrator 14 to the first vibrator 13 ( The time from the start when T2 + T3) is measured is almost the same, and even if there is a temperature change, the average temperature is almost the same.
[0012]
FIG. 3 shows a second embodiment, and shows a case of sampling control in which measurement is performed intermittently. In the sampling control measurement, the voltage is lowered or cut off during the measurement pause, and the voltage is increased at the same time as the measurement is started. The power consumption is lowered and the battery can be driven. The sampling control means 25 performs measurement every time, and when the measurement is started, the operation by the preliminary measurement means 26 is performed. The preliminary measurement means 26 performs measurement by ultrasonic transmission a predetermined number of times from the start of measurement or measurement for a predetermined time, but discards the measurement value during that time. When the preliminary measurement is completed, the actual measurement is performed. The number and time of the preliminary measurement are set in advance according to the magnitude at which the energized power increases and the temperature rapidly increases at the start of measurement.
[0013]
FIG. 4 shows a third embodiment, which is performed in accordance with the above-described sampling control. When the ultrasonic wave transmitted from the first vibrator 13 is received by the second vibrator 14, and the received signal is detected by the amplifier circuit 17 and the comparison circuit 18, the signal is transmitted from the repetition means 27 to the trigger means 15, The transmission circuit 16 is triggered again. The number of repetition means 27 is set by repetition setting means 28. The propagation of the ultrasonic wave is repeated as many times as set by the repeat setting means 28, and when this repetition is completed, the time counting means 19 measures the accumulated time. As shown in FIG. 5, when measurement is started by the sampling control means 25, a trigger is started by the initial measurement means 29 and a predetermined number of initial measurements are performed, and the number of repetition setting means 28 is set by this measurement value. Is done.
[0014]
When the initial measurement flow rate value is large, that is, when the difference in propagation time from upstream to downstream and from downstream to upstream is large, the number of repeated settings is relatively small, but when the flow rate value is small, the above difference in propagation time is small. Therefore, the accuracy cannot be ensured sufficiently, so that the number of repetitions is relatively increased to increase the accumulated propagation time. After the number of repetitions is set by the initial measuring means 29, normal measurement is performed by the actual measuring means 30 to measure the flow rate.
[0015]
FIG. 6 shows a fourth embodiment in which the ultrasonic wave transmitted from the first vibrator 13 is received by the second vibrator 14 and the received signal is detected by the amplifier circuit 17 and the comparison circuit 18 to measure the time. The positive characteristic element circuit 32 and the negative characteristic element circuit 33 are included in the circuit until the time is measured by the means 19, that is, the signal processing circuit 31 from the trigger to the time measurement. The positive characteristic element circuit 32 has a higher transmission speed as the temperature rises, and this tendency is observed in a normal semiconductor element. The negative characteristic element circuit 33 has a transmission speed that decreases as the temperature rises. When the negative characteristic element circuit 33 is configured by a delay circuit including a capacitor C and a resistor R, the time constant of this circuit is the product (C * R). If the capacitor C has a temperature characteristic that increases as the temperature rises, the time constant increases as the temperature rises, so the transmission speed becomes slower. By combining the positive characteristic element circuit 32 and the negative characteristic element circuit 33, the change in transmission speed is canceled out by the influence of temperature, and the influence is reduced.
[0016]
【The invention's effect】
As is apparent from the above description, the flow measurement device of the present invention provides the following effects.
[0017]
And timer means for measuring a first oscillator and a second oscillator for transmitting receive ultrasound signals provided upstream and downstream of the flow body conduit, between the time of ultrasonic wave propagation between the transducers, the value of the clock means with a flow rate calculating means for calculating a flow rate based on the sampling control means for intermittently driving measured vibrator, and a preliminary measuring means for disabling the meter Hakachi, said sampling control means, said preliminary measurement Since the actual measurement is performed after the measurement of the means is completed, the instability immediately after the start of measurement that occurs during sampling measurement can be eliminated, and the measurement error is small.
[Brief description of the drawings]
FIG. 1 is a control block diagram of a flow rate measuring apparatus according to a first embodiment of the present invention. FIG. 2 is a flowchart showing the control of the apparatus. FIG. 3 is a flowchart showing control of a flow rate measuring apparatus according to a second embodiment of the present invention. FIG. 4 is a control block diagram of a flow rate measuring apparatus according to a third embodiment of the present invention. FIG. 5 is a flowchart showing control of the apparatus. FIG. 6 is a flow chart of the flow rate measuring apparatus according to the fourth embodiment of the present invention. Control block diagram [Fig. 7] Control block diagram of a conventional flow rate measuring device [Explanation of symbols]
12 Fluid line 13 First vibrator 14 Second vibrator 19 Time measuring means 20 Flow rate calculating means 21 External setting means 22 Upstream preceding measuring means 23 Downstream preceding measuring means 24 Switching means 25 Sampling control means 26 Preliminary measuring means 27 Repeating means 28 Repeat setting means 29 Initial measurement means 30 Actual measurement means 31 Signal processing circuit 32 Positive characteristic element circuit 33 Negative characteristic element circuit

Claims (2)

流体管路の上流と下流に設けられ超音波信号を発信受信する第1振動子及び第2振動子と、前記振動子間の超音波伝搬時間を計測する計時手段と、前記計時手段の値に基づいて流量を演算する流量演算手段と、前記振動子を間欠的に駆動し計測を行うサンプリング制御手段と、計測値を無効にする予備計測手段とを備え、前記サンプリング制御手段は、前記予備計測手段の計測終了後に実際の計測を行う流量計測装置。And timer means for measuring a first oscillator and a second oscillator for transmitting receive ultrasound signals provided upstream and downstream of the fluid conduit, between the time of ultrasonic wave propagation between the transducers, the value of the clock means with a flow rate calculating means for calculating a flow rate, and sampling control means for intermittently driving measure the oscillator, and a preliminary measuring means for disabling the meter Hakachi based on the sampling control means, said A flow rate measuring device that performs actual measurement after the measurement by the preliminary measuring means . 予備計測手段は、サンプリング制御手段による計測開始から所定回数または所定時間は計測値を無効にする請求項1記載の流量計測装置。 The flow measurement device according to claim 1, wherein the preliminary measurement means invalidates the measurement value a predetermined number of times or a predetermined time from the start of measurement by the sampling control means .
JP2003045642A 2003-02-24 2003-02-24 Flow measuring device Expired - Lifetime JP3821102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045642A JP3821102B2 (en) 2003-02-24 2003-02-24 Flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045642A JP3821102B2 (en) 2003-02-24 2003-02-24 Flow measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12098095A Division JP3422131B2 (en) 1995-05-19 1995-05-19 Flow measurement device

Publications (2)

Publication Number Publication Date
JP2003222545A JP2003222545A (en) 2003-08-08
JP3821102B2 true JP3821102B2 (en) 2006-09-13

Family

ID=27751645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045642A Expired - Lifetime JP3821102B2 (en) 2003-02-24 2003-02-24 Flow measuring device

Country Status (1)

Country Link
JP (1) JP3821102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6209732B2 (en) * 2013-05-29 2017-10-11 パナソニックIpマネジメント株式会社 Ultrasonic flow measuring device

Also Published As

Publication number Publication date
JP2003222545A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP5524972B2 (en) Flow measuring device
JPH08122117A (en) Flow rate measuring device
JP3432210B2 (en) Flow measurement device
JP4788235B2 (en) Fluid flow measuring device
JP3821102B2 (en) Flow measuring device
JP3689973B2 (en) Flow measuring device
JP3456060B2 (en) Flow measurement device
JP3422131B2 (en) Flow measurement device
JPH09280917A (en) Flow rate measuring apparatus
JP3422100B2 (en) Flow measurement device
JP2004069524A (en) Flow rate measuring apparatus
JP3838209B2 (en) Flow measuring device
JP5239876B2 (en) Flow measuring device
JP2002350202A (en) Flow measuring device
JP3419341B2 (en) Flow measurement device
JP2004286762A (en) Flow rate measuring device
JP3945530B2 (en) Flow measuring device
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JP3427696B2 (en) Flow measurement device
JP3468235B2 (en) Flow measurement device
JP3496670B2 (en) Flow measurement device
JP3453876B2 (en) Ultrasonic flow meter
JP4552285B2 (en) Flowmeter
JP2654203B2 (en) Pulse type ultrasonic distance measuring device
JPH0117090B2 (en)

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

EXPY Cancellation because of completion of term