JP3819307B2 - Gas flow control device - Google Patents
Gas flow control device Download PDFInfo
- Publication number
- JP3819307B2 JP3819307B2 JP2002056786A JP2002056786A JP3819307B2 JP 3819307 B2 JP3819307 B2 JP 3819307B2 JP 2002056786 A JP2002056786 A JP 2002056786A JP 2002056786 A JP2002056786 A JP 2002056786A JP 3819307 B2 JP3819307 B2 JP 3819307B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- flow rate
- secondary pressure
- gas flow
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Feeding And Controlling Fuel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ガスコンロ等のガス器具に使用されるガス流量制御装置に関する。
【0002】
【従来の技術】
この種のガス流量制御装置は、例えば、特開2001−56118号が知られ、例えば、ガスコンロに設けたガスバーナーの火力を調節する際に、ガスバーナーの設定火力の変化を少なくするのに使用される。
【0003】
この場合、ガス流量制御装置は、ガスバーナーの混合管に接続されたガス噴射ノズルに連なるガス通路に、該ガス通路の開度を変更する絞り部を設けた流量調節手段であるモータ駆動式のガスバルブと、該ガスバルブとガス噴射ノズルとの間に設けたガス通路内の二次圧を検出する二次圧検出手段である圧力センサとを有する。
【0004】
そして、ガスコンロの作動を制御するマイコンによって、圧力センサで検出した二次圧が、予めマイコンに記憶させた目標二次圧に一致するようにモータを制御して絞り部の開度を調節して設定火力の変化を少なくする。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のものでは、ガス通路内の一次圧が変動して低くなることでガスバルブの開度が最大であるときの二次圧が低くなった場合、その二次圧と目標二次圧とが一致するガスバルブの開度以上に開度を変えてもガスバーナーの火力が変更できない。このため、設定火力相互間の火力幅が不均一になり、ガス器具の使い勝手が悪くなるという問題があった。
【0006】
また、上記のものでは、モータを制御して火力調節する毎に、マイコンのCPUが圧力センサの検出結果からモータの制御ポジションを算出する処理と、ガスバルブの開度調節のためのモータの駆動制御処理とを同時に行うので、CPUの負荷が大きくなる。このため、特に、調理者の利便性を高めるため器具の作動を電子制御するガスコンロでは、演算処理能力の高いCPUが必要になり、コスト高を招くという問題があった。
【0007】
そこで、本発明は、上記問題点に鑑み、演算処理能力の高いCPUを必要とせず、その上、一次圧が変化した場合でもガスバーナーの設定火力相互間の火力幅を均等にできるガス流量制御装置を提供することを課題とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、ガス噴射ノズルに連なるガス通路に、該ガス噴射ノズルへの燃料ガスのガス流量を調節する流量調節手段と、該流量調節手段の下流側における燃料ガスの二次圧を検出する二次圧検出手段とを設け、該流量調節手段は、ガス通路の開度を変更してガスバーナーの設定火力を定める最小ガス流量から最大ガス流量までのガス流量に対応する二次圧を増減する絞り部を有するガス流量制御装置において、前記流量調節手段を介してガス通路に燃料ガスを流し、前記二次圧検出手段によって二次圧を検出し、該検出した二次圧が各設定火力を定めるガス流量に対応する二次圧になるように絞り部の開度を補正し、補正後の絞り部の開度でガスバーナーの火力調節を行うものであって、前記二次圧の検出を、絞り部の開度を変更して最小ガス流量で有る最小開度及び最大ガス流量で有る最大開度についてそれぞれ行い、両開度において測定された二次圧から中間の火力における二次圧と開度とを算出すると共に、最大開度で検出した二次圧が予め設定された初期二次圧より高くなると、検出した二次圧ではなく初期二次圧を用いて中間の火力における二次圧と開度とを算出することを特徴とする。
【0009】
本発明によれば、ガス通路に燃料ガスを流すと、流量調節手段により流量調節された燃料ガスがガス噴射ノズルに流れる。この場合、二次圧検出手段が、流量調節手段とガス噴射ノズルとの間におけるガス通路内の燃料ガスの二次圧を検出し、検出した二次圧から、ガスバーナーの各設定火力を定めるガス流量に対応する絞り部の開度を補正する。そして、各ガスバーナーの火力は、補正後の絞り部の開度に応じて調節される。
【0010】
この場合、前記二次圧の検出を、例えば、絞り部の開度を変更して最小ガス流量で有る最小開度及び最大ガス流量で有る最大開度について行うようにするのがよい。
【0011】
また、絞り部の開度が最大における二次圧を検出して補正する場合、一次圧が変動して高くなることで高くなった二次圧に基づいて補正したのでは、必要以上にガスバーナー火力が高くなることが考えられる。
【0012】
この場合、前記二次圧の検出を、絞り部の開度を変更して最大ガス流量で有る最大開度について行い、検出した二次圧が予め設定された初期二次圧より高くなると、検出した二次圧ではなく該初期二次圧から絞り部の開度を補正すればよい。
【0013】
また、二次圧検出手段により検出した二次圧に基づいて絞り部の開度を補正する場合、二次圧検出手段の特性が経時変化して、例えば、通常より二次圧を高く表示するようになれば、上記と同様、必要以上にガスバーナーの火力が高くなる等の不都合が生じる。
【0014】
この場合、前記検出した二次圧が、所定の圧力範囲から外れていると前記二次圧検出手段の故障を警告するようにすればよい。
【0015】
尚、前記流量調節手段が閉止機能を有するようにするのがよい。
【0016】
この場合、前記二次圧検出手段とガス噴射ノズルとの間に開閉弁を設け、ガス噴射ノズルへの燃料ガスの供給を停止する際、流量調節手段より前に開閉弁を閉弁し、前記検出手段による圧力低下速度を検出するようにすれば、二次圧検出手段等からのガス漏れの発生が判断できる。
【0017】
【発明の実施の形態】
図1及び図2を参照して、1は、本発明のガス流量制御装置である。ガス流量制御装置1は、例えば、ガスコンロに設けたガスバーナーの混合管に接続されたガス噴射ノズル(図示せず)に連なるガス通路11を備えた装置本体12を有する。装置本体12の一端の下面には、ガス噴射ノズルへの燃料ガスのガス流量を調節する流量調節手段であるガスバルブ2が設けられている。
【0018】
ガスバルブ2は、内部通路21を有するバルブケーシング22を有し、バルブケーシング22の側面にはガス流入口23が開設され、ガス流入口23は、内部通路21を介してガス通路11に通じるバルブケーシング22の上面のガス流出口24に連通する。
【0019】
バルブケーシング22の下面には、回転各検出手段31を有するステッピングモータ、ギアドモータ等のモータ3が連結され、モータ3の回転軸32の一端はシール材33を介して内部通路21に突出している。
【0020】
内部通路21には、ガス流出口23の上流側に位置して回転軸32の一端に連結された回転ディスク4と、該回転ディスク4の上方に位置してバルブケーシング22に嵌着された固定ディスク5とが設けられている。回転ディスク4と固定ディスク5とは内部通路21の通路面積の開度を変更する絞り部を構成する。
【0021】
図2に示すように、固定ディスク5には、第1連通孔である5個の孔51、52、53、54、55が、相互に開口面積を相違させて同一円周上に連続して設けられている。一方、回転ディスク4には、回転軸32が所定の角度回転すると第1連通孔の各孔51、52、53、54、55に一致して内部通路21を介してガス流入口23とガス流出部24との連通を許容する1個の楕円形第2連通孔41が開設されている。
【0022】
ここで、ガスバーナーの火炎が消えない程度の最小ガス流量は、使用する燃料ガスの種類に応じて相違する。このため、使用する燃料ガスの種類の異なるガス器具ごとに最小ガス流量を設定できるようにする必要がある。
【0023】
本実施の形態では、第1連通孔の第1孔51とガス通路11とを連通するパイパス通路13を装置本体12に設けると共に、バイパス通路13に最小ガス流量を設定するオリフィス14を挿設した。
【0024】
そして、第2連通孔41が第1連通孔のいずれの孔51、52、53、54、55にも一致しないと内部通路21が閉止され、ガス通路11への燃料ガスの供給が停止される(図2(a)参照)。他方で、モータ3を駆動して回転ディスク4を回転させ、第2連通孔41を、第1連通孔51、52、53、53、54、55のいずれかに一致させることで開度を変更してガス流量が調節される。
【0025】
ここで、調理者の利便性を高めるため作動が電子制御されたガスコンロでは、ガスバーナーの火力調節が、例えばコンロ正面の操作パネルに設けたライトタッチスイッチによって行われる。この場合、ガスバルブ2は、例えば、ガスバーナーの火力を火力1から火力5までの5段階に設定できるように制御される。
【0026】
本実施の形態では、ライトタッチスイッチを押して火力1にすると、モータ3を駆動して回転軸32を一方に回転させ、第2連通孔41を第1連通孔の第1孔51に一致させる。この場合、ガスバーナーの火炎が消えない程度の最小ガス流量が流れる(図2(b)参照)。
【0027】
次に、タッチスイッチを押して火力2に設定すると、モータ3を駆動して回転軸32が一方に回転させ、第2連通孔41を、第1連通孔の第1孔51及び第2孔52に一致させる。この場合、ガス通路11への燃料ガスの流量は、第1連通孔の第1孔51及び第2孔52と第2連通孔41とが一致する面積に応じて変更できる(図2(c)参照)。
【0028】
そして、火力3で、第2連通孔41を第1連通孔の第2孔52及び第3孔53に(図2(d)参照)、火力4では第2連通孔41を第1連通孔の第3孔53及び第4孔54に(図2(e)参照)、火力5では、第2連通孔41を第1連通孔の第4孔54及び第5孔55(図2(f)参照)に一致させる。この場合もまた、第2連通孔41が一致する第1連通孔の各孔51乃至55の面積を変更することでガス流量が調節できる。
【0029】
ここで、初期状態では、ガスバルブ2の開度(設定火力)は次のように調節されている。即ち、後述の圧力センサ6によって、最小ガス流量(火力1)におけるガス通路11の燃料ガスの圧力(以下、「二次圧」という)と、最大ガス流量(火力5)における二次圧とをそれぞれ検出する。
【0030】
これらの二次圧を4等分して火力2、火力3及び火力4に対応する二次圧を算出し、圧力センサ6の検出値がそれらの二次圧になるようにモータ3を駆動して回転ディスク4を回転させてガスバルブ2の開度(ガス流量)が調節されている。
【0031】
この場合、調節されたモータ3の回転軸32の回転角を回転角検出手段31で検出すると共に、その時の各火力における回転角と二次圧とを初期値としてガスコンロの作動を制御するマイコンに記憶させている。
【0032】
尚、確実なガスバーナーの着火のため、ガス流量が最大となる火力5の位置までモータ3によって回転軸32を回転させて点火操作するのがよい。
【0033】
また、ガス通路11には、該ガス通路11内の二次圧を検出する圧力センサ6が設けられている。圧力センサ6は、ガス通路11から垂直方向に設けた分岐路11aにシール材61を介して挿設したロッド62を有し、該ロッド62の一端に樹脂製の薄板(図示せず)が連結されている。そして、ガス通路11に燃料ガスを流すと、二次圧でロッド11が上方に押され、その時の薄板11の歪量を該薄板に付設した歪ゲージで検出して二次圧が検出される。
【0034】
ところで、ガス流量制御装置1では、ガスバルブ2の上流側における燃料ガスの元圧(以下、「一次圧」という)が変動すると設定火力が変化する。この場合、マイコンに記憶させた初期二次圧に一致するように、圧力センサ6で検出した二次圧からフィードバック制御してモータ3を介して回転軸32の回転角を調節することで設定火力を調節することもできるが、これでは、次のような不具合が生じる。
【0035】
即ち、図3を参照して、ガス通路11内の一次圧が変動して低くなってガス通路11内の二次圧が低くなると(実線)、その二次圧と初期二次圧(点線)とが一致する点Bから、第2連通孔41と第1連通孔との一致する面積を増加させてもガスバーナーの火力は変化しないという問題があった。
【0036】
本実施の形態では、ガスバルブ2を介してガス通路11に燃料ガスを流した場合に、圧力センサ6で二次圧を検出し、該二次圧に応じてガスバルブ2の絞り部の開度を補正することとした。
【0037】
図4を参照して、ガスバルブ2の絞り部の開度の補正について説明する。図2(f)に示す最大ガス流量(火力5)となる位置までモータ3を駆動して回転ディスク4を回転させ、点火操作を行う。その際、圧力センサ6でガス通路11内の二次圧を検出する。
【0038】
例えば、一次圧の低下により圧力センサ6で検出した二次圧が初期二次圧より低くなると(点線1)、図2(b)に示す最小ガス流量(火力1)となる位置までモータ3を駆動して回転ディスク4を回転させ、その時の二次圧を検出する。
【0039】
検出した最大ガス流量及び最小ガス流量における二次圧をマイコンに記憶させると共に、該マイコンによってこれらの二次圧の差圧を4等分して火力2、火力3及び火力4に対応する二次圧を求め、これらの各二次圧とその時の回転軸32の回転角を算出して記憶させることで開度の補正を行う。
【0040】
これにより、一次圧の低下により二次圧が初期二次圧より低くなっても、最大ガス流量及び最小ガス流量との間の二次圧から各段階の火力を補正するので、設定火力相互間の火力幅が均等になる。
【0041】
他方で、例えば一次圧の上昇により、圧力センサ6で検出した二次圧が初期二次圧より高くなった場合(点線2)、この二次圧に基づいて補正したのでは、特に火力5での火力が必要以上に大きくなる場合がある。
【0042】
この場合、図2(b)に示す最小ガス流量(火力1)となる位置までモータ3を駆動して回転ディスク4を回転させ、その時の二次圧を検出する。
【0043】
検出した最小ガス流量における二次圧と最大ガス流量における初期二次圧とをマイコンに記憶させると共に、該マイコンによってこれらの二次圧の差圧を4等分して火力2、火力3及び火力4に対応する二次圧を求め、これらの各二次圧とその時の回転軸32の回転角を算出して記憶させることで開度の補正を行う。これにより、図4に示す領域Aを使用しないのでガスバーナーの火力が必要以上に大きくならない。
【0044】
また、本実施の形態のガス流量制御装置1では、火力調節時に、補正したデータに基づいてモータ3の回転軸32の回転角を制御するだけであるので、火力調節する毎に、圧力センサ6の検出値からモータ3の回転軸32の回転角を算出する処理と、モータ3の駆動制御処理とを同時に行うものに比べてCPUに負荷が加わらない。
【0045】
尚、ガスバーナーの点火操作時に、圧力センサ6で検出した二次圧が、所定の圧力範囲から外れていると、マイコンによって圧力センサ6の故障を判断し、それを警告するようにしてもよい。
【0046】
また、図1に示すように、圧力センサ6の下流側のガス通路11に電磁開閉弁7を設けてもよい。この場合、ガスバーナーを消火する際に、該電磁開閉弁7を閉弁した後、ガスバルブ2とを閉止してガス通路を密閉し、その時の圧力センサ6による圧力低下速度を検出するようにすれば、圧力センサ6等からのガス漏れの発生が判断できてよい。
【0047】
尚、本実施の形態では、圧力センサ6の下流側のガス通路11に電磁安全弁7を設けたが、これに限定されるのではなく、例えば、図5に示すように電磁安全弁に変えて公知のセーフティバルブ8を設けてもよい。
【0048】
また、本実施の形態では、圧力センサ6の下流側のガス通路11に電磁安全弁7を設けると共に、圧力センサ6の上流側にガスバルブ2を設けたが、これに限定されるものではなく、図6に示すようにガスバルブ2の上流側に電磁安全弁7を設けてもよい。
【0049】
また、図6に示すように、回転軸の回転を制限するストッパ9を設けてもよい。
【0050】
【発明の効果】
以上説明したように、本発明のガス流量制御装置では、演算処理能力の高いCPUを必要とせず、その上、一次圧が変化した場合でもガスバーナーの設定火力相互間の火力幅を均等にできるという効果を奏する。
【図面の簡単な説明】
【図1】本発明のガス流量制御装置を説明する断面図
【図2】(a)乃至(f)は、ガスバルブによる流量調節を説明する図
【図3】一次圧が変動したときのガス流量調節を説明するグラフ
【図4】本発明のガス流量制御装置による設定火力の補正を説明するグラフ
【図5】他の実施の形態にかかるガス流量制御装置を説明する断面図
【図6】他の実施の形態にかかるガス流量制御装置を説明する断面図
【図7】他の実施の形態にかかるガス流量制御装置を説明する断面図
【符号の説明】
1 ガス流量制御装置
11 ガス通路
2 ガスバルブ
4 回転ディスク
5 固定ディスク
6 圧力センサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas flow rate control device used for a gas appliance such as a gas stove.
[0002]
[Prior art]
This type of gas flow rate control device is known, for example, from Japanese Patent Laid-Open No. 2001-56118, and is used, for example, to reduce the change in the setting power of the gas burner when adjusting the heating power of the gas burner provided in the gas stove. Is done.
[0003]
In this case, the gas flow rate control device is a motor-driven type which is a flow rate adjusting means provided with a throttle part for changing the opening degree of the gas passage in the gas passage connected to the gas injection nozzle connected to the mixing pipe of the gas burner. A gas valve, and a pressure sensor which is a secondary pressure detecting means for detecting a secondary pressure in a gas passage provided between the gas valve and the gas injection nozzle.
[0004]
Then, the microcomputer that controls the operation of the gas stove controls the motor so that the secondary pressure detected by the pressure sensor matches the target secondary pressure stored in advance in the microcomputer, and adjusts the opening of the throttle section. Reduce changes in set firepower.
[0005]
[Problems to be solved by the invention]
However, in the above case, when the secondary pressure when the opening of the gas valve is maximum due to fluctuation and lowering of the primary pressure in the gas passage, the secondary pressure and the target secondary pressure The heating power of the gas burner cannot be changed even if the opening is changed beyond the opening of the gas valve that matches. For this reason, there has been a problem that the heating power width between the set heating powers becomes non-uniform, and the usability of the gas appliance becomes worse.
[0006]
Moreover, in the above, every time the motor is controlled by controlling the motor, the CPU of the microcomputer calculates the control position of the motor from the detection result of the pressure sensor, and the motor drive control for adjusting the opening of the gas valve Since processing is performed simultaneously, the load on the CPU increases. For this reason, in particular, a gas stove that electronically controls the operation of the utensil in order to enhance the convenience of the cooker requires a CPU with a high arithmetic processing capability, resulting in a high cost.
[0007]
Therefore, in view of the above problems, the present invention does not require a CPU having a high processing capacity, and in addition, even when the primary pressure changes, the gas flow rate control capable of equalizing the thermal power width between the set thermal powers of the gas burner. It is an object to provide an apparatus.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a flow rate adjusting means for adjusting the gas flow rate of the fuel gas to the gas injection nozzle and a secondary pressure of the fuel gas downstream of the flow rate adjusting means are provided in the gas passage connected to the gas injection nozzle. A secondary pressure detecting means for detecting the secondary pressure, and the flow rate adjusting means changes the opening of the gas passage to determine the set thermal power of the gas burner, and the secondary pressure corresponding to the gas flow rate from the minimum gas flow rate to the maximum gas flow rate. in the gas flow control device having a throttle portion for increasing or decreasing a flow of fuel gas to the gas passage through the flow rate control means, wherein the detecting the secondary pressure by a secondary pressure detecting means, the secondary pressure the detected each The opening of the throttle is corrected so that the secondary pressure corresponds to the gas flow rate that determines the set thermal power, and the heating power of the gas burner is adjusted with the corrected opening of the throttle , and the secondary pressure Detection of the throttle opening In addition, the minimum opening with the minimum gas flow and the maximum opening with the maximum gas flow are performed respectively, and the secondary pressure and opening in the intermediate thermal power are calculated from the secondary pressure measured at both openings. When the secondary pressure detected at the maximum opening is higher than the preset initial secondary pressure, the secondary pressure and opening at the intermediate thermal power are calculated using the initial secondary pressure instead of the detected secondary pressure. characterized in that it.
[0009]
According to the present invention, when the fuel gas is caused to flow through the gas passage, the fuel gas whose flow rate is adjusted by the flow rate adjusting means flows to the gas injection nozzle. In this case, the secondary pressure detecting means detects the secondary pressure of the fuel gas in the gas passage between the flow rate adjusting means and the gas injection nozzle, and determines each set thermal power of the gas burner from the detected secondary pressure. The throttle opening corresponding to the gas flow rate is corrected. And the thermal power of each gas burner is adjusted according to the opening degree of the throttle part after correction.
[0010]
In this case, the detection of the secondary pressure, for example, it is preferable to perform the maximum opening there in minimum opening and maximum gas flow rate is minimal gas flow rate by changing the opening degree of the throttle portion.
[0011]
In addition, when detecting and correcting the secondary pressure at the maximum opening of the throttle part, if the correction is based on the secondary pressure that is increased due to the fluctuation of the primary pressure, the gas burner is more than necessary. It is thought that firepower becomes high.
[0012]
In this case, the detection of the secondary pressure is performed for maximum opening there at a maximum gas flow rate by changing the opening degree of the throttle portion, the detected secondary pressure is higher than the preset initial secondary pressure, detected What is necessary is just to correct | amend the opening degree of a throttle | throttle part from this initial secondary pressure instead of the made secondary pressure.
[0013]
Further, when the opening of the throttle portion is corrected based on the secondary pressure detected by the secondary pressure detecting means, the characteristics of the secondary pressure detecting means change with time, for example, the secondary pressure is displayed higher than usual. If it becomes like this, inconveniences such as an unnecessarily high heating power of the gas burner occur.
[0014]
In this case, if the detected secondary pressure is out of a predetermined pressure range, a warning of the failure of the secondary pressure detection means may be issued.
[0015]
It is preferable that the flow rate adjusting means has a closing function.
[0016]
In this case, an on-off valve is provided between the secondary pressure detecting means and the gas injection nozzle, and when the supply of the fuel gas to the gas injection nozzle is stopped, the on-off valve is closed before the flow rate adjusting means, By detecting the pressure drop rate by the detecting means, it is possible to determine the occurrence of gas leakage from the secondary pressure detecting means or the like.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2, reference numeral 1 denotes a gas flow rate control device of the present invention. The gas flow rate control device 1 includes, for example, a device main body 12 including a gas passage 11 connected to a gas injection nozzle (not shown) connected to a mixing tube of a gas burner provided in a gas stove. A gas valve 2 that is a flow rate adjusting means for adjusting the gas flow rate of the fuel gas to the gas injection nozzle is provided on the lower surface of one end of the apparatus main body 12.
[0018]
The gas valve 2 has a valve casing 22 having an internal passage 21, and a gas inlet 23 is opened on a side surface of the valve casing 22, and the gas inlet 23 communicates with the gas passage 11 through the internal passage 21. 22 communicates with the gas outlet 24 on the top surface.
[0019]
A motor 3 such as a stepping motor or a geared motor having rotation detecting means 31 is connected to the lower surface of the valve casing 22, and one end of a rotating shaft 32 of the motor 3 protrudes into the internal passage 21 via a seal material 33.
[0020]
The internal passage 21 is positioned upstream of the gas outlet 23 and is connected to one end of a rotary shaft 32, and is fixed above the rotary disk 4 and fitted to the valve casing 22. A disk 5 is provided. The rotating disk 4 and the fixed disk 5 constitute a throttle portion that changes the opening degree of the passage area of the internal passage 21.
[0021]
As shown in FIG. 2, the fixed disk 5 has five holes 51, 52, 53, 54, and 55 that are the first communication holes continuously on the same circumference with different opening areas. Is provided. On the other hand, when the rotary shaft 32 is rotated by a predetermined angle, the rotary disc 4 coincides with the holes 51, 52, 53, 54, 55 of the first communication hole and flows out of the gas inlet 23 and the gas through the internal passage 21. One oval second communication hole 41 that allows communication with the portion 24 is provided.
[0022]
Here, the minimum gas flow rate at which the flame of the gas burner does not disappear differs depending on the type of fuel gas used. For this reason, it is necessary to be able to set the minimum gas flow rate for each gas appliance having different types of fuel gas to be used.
[0023]
In the present embodiment, a bypass passage 13 that connects the first hole 51 of the first communication hole and the gas passage 11 is provided in the apparatus main body 12, and an orifice 14 that sets a minimum gas flow rate is inserted in the bypass passage 13. .
[0024]
If the second communication hole 41 does not coincide with any of the first communication holes 51, 52, 53, 54, 55, the internal passage 21 is closed and the supply of fuel gas to the gas passage 11 is stopped. (See FIG. 2 (a)). On the other hand, the opening degree is changed by driving the motor 3 to rotate the rotating disk 4 and making the second communication hole 41 coincide with one of the first communication holes 51, 52, 53, 53, 54, 55. Thus, the gas flow rate is adjusted.
[0025]
Here, in the gas stove whose operation is electronically controlled in order to enhance the convenience of the cooker, the heating power of the gas burner is adjusted by, for example, a light touch switch provided on the operation panel on the front of the stove. In this case, the gas valve 2 is controlled so that, for example, the heating power of the gas burner can be set in five stages from the heating power 1 to the heating power 5.
[0026]
In the present embodiment, when the light touch switch is pressed and the heating power is 1, the motor 3 is driven to rotate the rotating shaft 32 in one direction so that the second communication hole 41 coincides with the first hole 51 of the first communication hole. In this case, the minimum gas flow rate is such that the flame of the gas burner does not disappear (see FIG. 2B).
[0027]
Next, when the touch switch is pressed to set the heating power 2, the motor 3 is driven to rotate the rotating shaft 32 in one direction, and the second communication hole 41 is changed to the first hole 51 and the second hole 52 of the first communication hole. Match. In this case, the flow rate of the fuel gas to the gas passage 11 can be changed according to the area where the first hole 51 and the second hole 52 of the first communication hole coincide with the second communication hole 41 (FIG. 2C). reference).
[0028]
Then, with the thermal power 3, the second communication hole 41 is changed to the second hole 52 and the third hole 53 of the first communication hole (see FIG. 2D), and with the thermal power 4, the second communication hole 41 is changed to the first communication hole. In the third hole 53 and the fourth hole 54 (see FIG. 2E), in the case of the thermal power 5, the second communication hole 41 is replaced with the fourth hole 54 and the fifth hole 55 of the first communication hole (see FIG. 2F). ) To match. Also in this case, the gas flow rate can be adjusted by changing the area of each of the holes 51 to 55 of the first communication hole where the second communication holes 41 coincide.
[0029]
Here, in the initial state, the opening degree (set thermal power) of the gas valve 2 is adjusted as follows. That is, the pressure sensor 6 described later determines the pressure of the fuel gas in the gas passage 11 at the minimum gas flow rate (thermal power 1) (hereinafter referred to as “secondary pressure”) and the secondary pressure at the maximum gas flow rate (thermal power 5). Detect each.
[0030]
These secondary pressures are divided into four equal parts to calculate secondary pressures corresponding to thermal power 2, thermal power 3 and thermal power 4, and the motor 3 is driven so that the detected value of the pressure sensor 6 becomes the secondary pressure. Thus, the opening degree (gas flow rate) of the gas valve 2 is adjusted by rotating the rotating disk 4.
[0031]
In this case, the rotation angle of the adjusted rotating shaft 32 of the motor 3 is detected by the rotation angle detecting means 31, and the microcomputer that controls the operation of the gas stove with the rotation angle and the secondary pressure at each heating power at that time as initial values. I remember it.
[0032]
In order to reliably ignite the gas burner, it is preferable to perform the ignition operation by rotating the rotating shaft 32 by the motor 3 to the position of the thermal power 5 at which the gas flow rate becomes maximum.
[0033]
The gas passage 11 is provided with a pressure sensor 6 that detects a secondary pressure in the gas passage 11. The pressure sensor 6 has a rod 62 inserted through a seal material 61 into a branch passage 11 a provided in a vertical direction from the gas passage 11, and a resin thin plate (not shown) is connected to one end of the rod 62. Has been. When the fuel gas flows through the gas passage 11, the rod 11 is pushed upward by the secondary pressure, and the secondary pressure is detected by detecting the amount of strain of the thin plate 11 at that time with a strain gauge attached to the thin plate. .
[0034]
By the way, in the gas flow rate control device 1, the set thermal power changes when the original pressure (hereinafter referred to as “primary pressure”) of the fuel gas on the upstream side of the gas valve 2 fluctuates. In this case, the set thermal power is adjusted by adjusting the rotation angle of the rotary shaft 32 via the motor 3 by feedback control from the secondary pressure detected by the pressure sensor 6 so as to match the initial secondary pressure stored in the microcomputer. However, this causes the following problems.
[0035]
That is, referring to FIG. 3, when the primary pressure in the gas passage 11 fluctuates and becomes low and the secondary pressure in the gas passage 11 becomes low (solid line), the secondary pressure and the initial secondary pressure (dotted line). There is a problem in that the heating power of the gas burner does not change even if the area where the second communication hole 41 and the first communication hole match is increased from the point B where the
[0036]
In the present embodiment, when the fuel gas flows through the gas passage 11 via the gas valve 2, the secondary pressure is detected by the pressure sensor 6, and the opening of the throttle portion of the gas valve 2 is adjusted according to the secondary pressure. I decided to correct it.
[0037]
With reference to FIG. 4, correction of the opening of the throttle portion of the gas valve 2 will be described. The motor 3 is driven to the position where the maximum gas flow rate (thermal power 5) shown in FIG. At this time, the secondary pressure in the gas passage 11 is detected by the pressure sensor 6.
[0038]
For example, when the secondary pressure detected by the pressure sensor 6 becomes lower than the initial secondary pressure due to a decrease in the primary pressure (dotted line 1), the motor 3 is moved to a position where the minimum gas flow rate (thermal power 1) shown in FIG. The rotary disk 4 is driven to rotate, and the secondary pressure at that time is detected.
[0039]
The detected secondary pressure at the maximum gas flow rate and the minimum gas flow rate is stored in the microcomputer, and the differential pressure between these secondary pressures is equally divided into four by the microcomputer to correspond to the thermal power 2, thermal power 3, and thermal power 4. The pressure is calculated, and each secondary pressure and the rotation angle of the rotating shaft 32 at that time are calculated and stored, thereby correcting the opening degree.
[0040]
As a result, even if the secondary pressure becomes lower than the initial secondary pressure due to a decrease in the primary pressure, the thermal power of each stage is corrected from the secondary pressure between the maximum gas flow rate and the minimum gas flow rate. The firepower width is even.
[0041]
On the other hand, for example, when the secondary pressure detected by the pressure sensor 6 becomes higher than the initial secondary pressure due to an increase in the primary pressure (dotted line 2), the correction based on this secondary pressure is particularly The firepower of may increase more than necessary.
[0042]
In this case, the motor 3 is driven to the position where the minimum gas flow rate (thermal power 1) shown in FIG. 2B is reached to rotate the rotating disk 4, and the secondary pressure at that time is detected.
[0043]
The detected secondary pressure at the minimum gas flow rate and the initial secondary pressure at the maximum gas flow rate are stored in a microcomputer, and the differential pressure between these secondary pressures is equally divided into four by the microcomputer, the thermal power 2, the thermal power 3, and the thermal power The secondary pressure corresponding to 4 is obtained, and each secondary pressure and the rotation angle of the rotating shaft 32 at that time are calculated and stored, thereby correcting the opening degree. Thus, no larger than necessary thermal gas burner not using the region A shown in FIG.
[0044]
Further, in the gas flow rate control device 1 of the present embodiment, since the rotation angle of the rotating shaft 32 of the motor 3 is only controlled based on the corrected data at the time of adjusting the heating power, the pressure sensor 6 is adjusted every time the heating power is adjusted. Compared with the case where the process of calculating the rotation angle of the rotating shaft 32 of the motor 3 from the detected value and the drive control process of the motor 3 are performed simultaneously, no load is applied to the CPU.
[0045]
If the secondary pressure detected by the pressure sensor 6 is out of a predetermined pressure range during the ignition operation of the gas burner, the microcomputer may determine that the pressure sensor 6 has failed and warn about it. .
[0046]
In addition, as shown in FIG. 1, an electromagnetic on-off valve 7 may be provided in the gas passage 11 on the downstream side of the pressure sensor 6. In this case, when the gas burner is extinguished, the electromagnetic on-off valve 7 is closed, then the gas valve 2 is closed to seal the gas passage, and the pressure drop rate by the pressure sensor 6 at that time is detected. For example, it may be possible to determine the occurrence of gas leakage from the pressure sensor 6 or the like.
[0047]
In this embodiment, the electromagnetic safety valve 7 is provided in the gas passage 11 on the downstream side of the pressure sensor 6. However, the present invention is not limited to this. For example, as shown in FIG. A safety valve 8 may be provided.
[0048]
In the present embodiment, the electromagnetic safety valve 7 is provided in the gas passage 11 on the downstream side of the pressure sensor 6 and the gas valve 2 is provided on the upstream side of the pressure sensor 6. However, the present invention is not limited to this. As shown in FIG. 6, an electromagnetic safety valve 7 may be provided upstream of the gas valve 2.
[0049]
Moreover, as shown in FIG. 6, you may provide the stopper 9 which restrict | limits rotation of a rotating shaft.
[0050]
【The invention's effect】
As described above, the gas flow rate control device of the present invention does not require a CPU with high calculation processing capacity, and furthermore, even when the primary pressure changes, the thermal power width between the set thermal powers of the gas burner can be made uniform. There is an effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a gas flow rate control device according to the present invention. FIGS. 2A to 2F are diagrams illustrating flow rate adjustment by a gas valve. FIG. 3 is a flow rate of gas when a primary pressure fluctuates. FIG. 4 is a graph illustrating adjustment of the set thermal power by the gas flow control device of the present invention. FIG. 5 is a cross-sectional view illustrating a gas flow control device according to another embodiment. FIG. 7 is a cross-sectional view illustrating a gas flow control device according to another embodiment. FIG. 7 is a cross-sectional view illustrating a gas flow control device according to another embodiment.
1 Gas flow control device 11 Gas passage 2 Gas valve 4 Rotating disk 5 Fixed disk 6 Pressure sensor
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056786A JP3819307B2 (en) | 2002-03-04 | 2002-03-04 | Gas flow control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002056786A JP3819307B2 (en) | 2002-03-04 | 2002-03-04 | Gas flow control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003254534A JP2003254534A (en) | 2003-09-10 |
JP3819307B2 true JP3819307B2 (en) | 2006-09-06 |
Family
ID=28667211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002056786A Expired - Fee Related JP3819307B2 (en) | 2002-03-04 | 2002-03-04 | Gas flow control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3819307B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014061441A1 (en) | 2012-10-15 | 2014-04-24 | 株式会社ミクニ | Gas control valve, and disk component using same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4160522B2 (en) * | 2004-03-11 | 2008-10-01 | リンナイ株式会社 | Electric valve device |
JP4064936B2 (en) * | 2004-03-11 | 2008-03-19 | リンナイ株式会社 | Gas stove |
DE102009047914A1 (en) | 2009-09-18 | 2011-03-31 | E.G.O. Elektro-Gerätebau GmbH | Rotor disc, rotor disc valve and valve device |
DE102010006276A1 (en) * | 2010-01-25 | 2011-07-28 | E.G.O. Elektro-Gerätebau GmbH, 75038 | Two-circuit burner system and method of operating such a dual-circuit burner system |
DE102011005511B4 (en) | 2011-03-14 | 2012-09-27 | E.G.O. Elektro-Gerätebau GmbH | Method for controlling a gas valve system for a gas burner and gas cooking appliance with a gas burner with such a gas valve system |
JP6686537B2 (en) * | 2016-03-03 | 2020-04-22 | 三浦工業株式会社 | Combustion control mechanism of gas boiler |
JP2021021560A (en) * | 2019-07-30 | 2021-02-18 | リンナイ株式会社 | Fire power control device for cooking stove burner |
-
2002
- 2002-03-04 JP JP2002056786A patent/JP3819307B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014061441A1 (en) | 2012-10-15 | 2014-04-24 | 株式会社ミクニ | Gas control valve, and disk component using same |
TWI632326B (en) * | 2012-10-15 | 2018-08-11 | 三國股份有限公司 | Gas control valve and disk component used in the gas control valve |
Also Published As
Publication number | Publication date |
---|---|
JP2003254534A (en) | 2003-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3819307B2 (en) | Gas flow control device | |
JP4713520B2 (en) | Combustion equipment | |
JP3750061B2 (en) | Gas flow control device | |
JP2004069147A (en) | Gas flow rate control device | |
JP4187755B2 (en) | Gas flow control device | |
JP3750062B2 (en) | Gas flow control device | |
JP3182101B2 (en) | Fan control device for combustion equipment | |
JP3646367B2 (en) | Combustion device control device | |
JP3366394B2 (en) | Combustion device and combustion control method | |
KR0153711B1 (en) | Combustion apparatus | |
JPH0532652B2 (en) | ||
JP3569400B2 (en) | Flow control device | |
US20210364192A1 (en) | Combustion device | |
JP3133724B2 (en) | Ventilation control device for combustion | |
JP2771944B2 (en) | Combustion equipment | |
KR0153701B1 (en) | Gas pressure controlling method for a gas boiler | |
JP3769660B2 (en) | Water heater | |
JPH0735348A (en) | Combustion apparatus | |
KR0153715B1 (en) | Burner | |
JPH0745930B2 (en) | Air-fuel ratio controller for gas combustion equipment | |
JPH07190342A (en) | Combustion equipment | |
KR0170179B1 (en) | Burner | |
JPH11108346A (en) | Combustor | |
JPH02161255A (en) | Heating control device for hot water supplying device | |
JPH04309713A (en) | Multi gas combustion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3819307 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100623 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110623 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120623 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130623 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |