[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3817844B2 - Hybrid electric vehicle cooling system - Google Patents

Hybrid electric vehicle cooling system Download PDF

Info

Publication number
JP3817844B2
JP3817844B2 JP17996197A JP17996197A JP3817844B2 JP 3817844 B2 JP3817844 B2 JP 3817844B2 JP 17996197 A JP17996197 A JP 17996197A JP 17996197 A JP17996197 A JP 17996197A JP 3817844 B2 JP3817844 B2 JP 3817844B2
Authority
JP
Japan
Prior art keywords
cooling
cooling circuit
engine
water temperature
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17996197A
Other languages
Japanese (ja)
Other versions
JPH1122466A (en
Inventor
悟 今別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17996197A priority Critical patent/JP3817844B2/en
Publication of JPH1122466A publication Critical patent/JPH1122466A/en
Application granted granted Critical
Publication of JP3817844B2 publication Critical patent/JP3817844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、エンジンにより駆動される発電機を搭載し、この発電機により発電された電力と搭載されたバッテリに蓄えられた電力の少なくとも一方によりモータを駆動し、走行するハイブリッド型電気自動車に関し、特にエンジンの冷却とモータの制御部の冷却に関する。
【0002】
【従来の技術】
近年、環境問題に配慮して排気ガスを排出しない電気自動車が注目されているが、車載するバッテリの性能が未だ十分とはいえず、十分な最高速度や航続距離が得られていない。この問題を補うために、エンジンにより駆動される発電機を車両に搭載し、この発電機により発電された電力と、車載されたバッテリに蓄えられた電力の少なくとも一方によりモータを駆動し、走行するハイブリッド型電気自動車が開発されている。
【0003】
この種のハイブリッド型電気自動車では、発電用のエンジンを冷却する冷却水温と、モータを制御する制御部を冷却する冷却水温の設定温度が異なり、さらに、エンジンからの発熱量とモータ制御部からの発熱量が異なるため、エンジンを冷却する冷却回路とモータ制御部を冷却する冷却回路を独立に設ける必要があった。
【0004】
なお、ガソリン車両等において、冷却能力の異なる複数の冷却回路を持つ先行技術として、特開平6ー81648号公報がある。
【0005】
【発明が解決しようとする課題】
ところで、独立した冷却回路を持つハイブリッド型電気自動車では、モータの駆動による走行中は、モータ制御部からの発熱が常時生じるため、モータ制御部を冷却する冷却水の温度は冷却回路によって略一定に保たれる。
【0006】
しかし、その一方発電用のエンジンは、駆動用のモータの電源となるバッテリの端子電圧が所定値以下になると発電機を駆動し、バッテリの端子電圧が回復すると停止するため、エンジンの稼働は断続的となり、エンジンを冷却する冷却水の温度は車両の運転状態やエンジンの稼働状況に応じて変化する。このエンジンの冷却水温が低いときは、エンジン内の各摺動部の油膜温度も低く、オイルの粘性も大きく、そのためエンジンの摩擦損失が大きくなり、エンジンの発電効率を低下させるという問題がある。
【0007】
なお、特開平6ー81648号公報の冷却装置は、ラジエータを3分割し、エンジンのウォータポンプの吐出圧と、水冷インタークーラの電動ウォータポンプの吐出圧の差を利用し、エンジンの負荷に応じて駆動される切換弁を用いて、3分割されたラジエータ内の流路を切換え、エンジンの冷却水温と水冷インタークーラの水温を制御するものである。この場合、制御による冷却系の流路の切換えはラジエータ部のみであり、エンジンの停止時にエンジン側の冷却回路を通水することはできない。したがって、エンジンの稼働が断続的なハイブリッド型電気自動車にあって、エンジンの冷却水温が低いときに、エンジンの発電効率を高めることはできない。
【0008】
この発明は、ハイブリッド型電気自動車において、駆動モータの制御部の発熱をエンジンに付与可能にして、エンジンの始動性を向上すると共に、エンジンの発電効率を向上することを目的としている。
【0009】
【課題を解決するための手段】
第1の発明は、駆動モータにより走行可能なハイブリッド型電気自動車であって、第1ラジエータが設けられ、エンジンを冷却する第1冷却回路と、前記駆動モータを制御する制御部を冷却する第2ラジエータが設けられた第2冷却回路と、前記第1冷却回路内の水温を検出する第1の水温センサと、前記第2冷却回路内の水温を検出する第2の水温センサと、前記第1冷却回路内及び前記第2冷却回路内の水温が所定値より低いとき、前記第1冷却回路と前記第2冷却回路を繋ぎ、前記第1ラジエータ及び前記第2ラジエータへの流路を遮断し、前記第1冷却回路と前記第2冷却回路で冷却水を循環させるバイパス通路と、を備える。
【0010】
第2の発明は、駆動モータにより走行可能なハイブリッド型電気自動車であって、第1ラジエータが設けられ、エンジンを冷却する第1冷却回路と、前記駆動モータを制御する制御部を冷却する第2ラジエータが設けられた第2冷却回路と、前記第1冷却回路内の水温を検出する第1の水温センサと、前記第2冷却回路内の水温を検出する第2の水温センサと、前記第1冷却回路内の水温が所定値より低く、前記第2冷却回路内の水温が所定値より高いとき、前記第1冷却回路と前記第2冷却回路を繋ぎ、前記第1ラジエータへの流路を遮断し、前記第1冷却回路と前記第2冷却回路で前記第2ラジエータを経由して冷却水を循環させるバイパス通路と、を備える。
【0011】
第3の発明は、第1、第2の発明において、前記ハイブリッド型電気自動車に、前記駆動モータの電源となる充放電可能なバッテリと、前記バッテリに充電する発電機と、前記発電機を駆動するエンジンとを備える
【0012】
第4の発明は、車両を駆動する駆動モータと、前記駆動モータの電源となる充放電可能なバッテリと、前記バッテリに充電する発電機と、前記発電機を駆動するエンジンと、を備えるハイブリッド型電気自動車であって、前記エンジンのシリンダヘッド部を冷却する第1ラジエータが設けられた第1冷却回路と、前記駆動モータを制御する制御部を冷却する第2ラジエータが設けられた第2冷却回路と、前記第1冷却回路内の水温を検出する第1の水温センサと、前記第1冷却回路内の水温が所定値より低いとき、前記第1ラジエータへの流路を遮断し、前記第1冷却回路と前記第2冷却回路で冷却水を循環させる前記エンジンの冷却水路出口側と前記第2ラジエータの冷却水路入口側を繋ぐ第1バイパス通路と、前記エンジンのシリンダブロック部と前記制御部の冷却水路出口側を繋ぐ第2バイパス通路と、を備える
【0013】
【発明の効果】
第1の発明では、駆動モータの制御部の第2冷却回路内を流れる冷却水を、バイパス通路によりエンジンの第1冷却回路内に導き、第1ラジエータ及び第2ラジエータへの流路を遮断することで、第1冷却回路内の冷却水温を上昇させることができる。
【0014】
第2の発明では、駆動モータの制御部の第2冷却回路内を流れる冷却水を、バイパス通路によりエンジンの第1冷却回路内に導き、第1ラジエータへの流路を遮断することで、第1冷却回路内の冷却水温を上昇させることができると共に、駆動モータの制御部の水温を適正温度に保つことができる。
【0015】
第3の発明では、駆動モータの制御部の第2冷却回路内を流れる冷却水を、バイパス通路によりエンジンの第1冷却回路内に導くことで、第1冷却回路内の水温を上昇させることができる。したがって、エンジン内部の摺動部の油膜温度を上昇させることができ、エンジンの稼働にかかわらず、エンジンの始動性と発電効率を向上させることができる。
【0016】
第4の発明では、駆動モータの制御部の第2冷却回路内を流れる冷却水を、バイパス通路によりエンジンの第1冷却回路内に導くことで、第1冷却回路内の水温を上昇させることができる。したがって、摺動部の多いシリンダブロック部の水温を上昇できるので、その摺動部の油膜温度の上昇により摩擦損失を低減でき、エンジンの稼働にかかわらず、エンジンの始動性と発電効率をより向上させることができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1は、第1の実施の形態のハイブリッド型電気自動車の冷却装置を示す。車両の駆動用モータ10は、例えば3相誘導電動機からなり、図示していない車両の駆動輪を駆動するようになっている。この駆動用モータ10は、基本的には図示していないバッテリの電力によって駆動されるものであり、バッテリの直流電圧を3相交流電圧に変換する変換器およびその速度制御を行うモータ駆動制御装置からなる制御部(以下、モータ制御部と言う)11を備えている。
【0020】
エンジン12は、例えばガソリンエンジンからなり、発電機13を駆動するようになっている。発電機13は、駆動によって基本的にはバッテリに充電するようになっている。
【0021】
エンジン12およびモータ制御部11は、各々を冷却する第1冷却回路14および第2冷却回路15を備えている。
【0022】
エンジンを冷却する第1冷却回路14は、第1ラジエータ16と、エンジン12により駆動されるウォータポンプ17と、配管系からなる。ウォータポンプ17の出口部はエンジン12の冷却水路入口部に設けられる。配管系の途中には、冷却水温が低いときに、エンジン12を通過した冷却水が第1ラジエータ16に流れないように第1ラジエータ16への通路を閉じてバイパス通路18に導き、冷却水温が設定温度(例えば、80℃)以上になると、徐々に第1ラジエータ16への通路を開きバイパス通路18を閉じて冷却水を第1ラジエータ16に導く第1サーモスタット19が設けられる。また、エンジン12の冷却水路出口部に冷却水温を検出する第1水温センサ20が設置される。
【0023】
モータ制御部11を冷却する第2冷却回路15は、電動ウォータポンプ21と、第2ラジエータ22と、配管系からなる。電動ウォータポンプ21の出口部はモータ制御部11の冷却水路入口部に設けられる。モータ制御部11の冷却水路出口部に冷却水温を検出する第2水温センサ23が設置される。
【0024】
そして、第1冷却回路14には、エンジン12の冷却水路出口側と、第1ラジエータ16のバイパス通路18もしくは該バイパス通路18を開閉する第1サーモスタット19との間に、流路の第1切換手段(例えば、三方電磁弁)24が設けられ、第1切換手段24から、第2冷却回路15の電動ウォータポンプ21の入口部と、第2ラジエータ22の冷却水路入口側とに、それぞれ分岐路25,26を介してつながる第1バイパス通路27が設けられる。第1切換手段24により、エンジン12の冷却水路出口側が、第1サーモスタット19側と、第1バイパス通路27とに切換、接続される。第1バイパス通路27には、分岐路25,26上流の冷却水温が低いときに、分岐路25を開き分岐路26を閉じ、その冷却水温が設定温度以上になると、次第に分岐路25を閉じ分岐路26を開く第2サーモスタット28が設けられる。
【0025】
第2冷却回路15には、モータ制御部11の冷却水路出口側(前記分岐路26の接続部よりも上流側)に流路の第2切換手段(例えば、三方電磁弁)29が設けられ、第2切換手段29から、第1冷却回路14のウォータポンプ17の入口部(ウォータポンプ17の入口部と第1ラジエータ16の間であれば良い)につながる第2バイパス通路30が設けられる。
【0026】
一方、前記第1水温センサ20、第2水温センサ23の検出信号は、エンジン12の運転状態検出手段の検出信号と共に、冷却回路を制御する制御装置(制御手段)35に入力される。
【0027】
この制御装置35により、第1水温センサ20、第2水温センサ23、運転状態検出手段の検出信号に基づき、前記第1切換手段24、第2切換手段29の駆動が制御される。
【0028】
なお、第1ラジエータ16、第2ラジエータ22の冷却ファンは、図示されない。
【0029】
次に、このハイブリッド型電気自動車の冷却装置の作用を説明する。
【0030】
まず、エンジン12およびモータ制御部11の冷却回路の水温について説明する。車両走行時、モータ10を駆動するため、モータ制御部11内では、バッテリの直流電圧を3相交流電圧に変換する変換器およびその速度制御を行うモータ駆動制御装置からの発熱により、モータ制御部11を冷却する第2冷却回路15内の水温は上昇する。ここで、モータ制御部15は電子機器であるため、第2冷却回路15内の水温はある一定温度(例えば、50〜70℃)以下に保つ必要がある。
【0031】
一方、バッテリの端子電圧が設定値以下となり、発電機13の駆動のためエンジン12が稼働した場合、エンジン12からの発熱により、エンジン12を冷却する第1冷却回路14内の水温も上昇する。このとき、エンジン12内の摺動部を滑らかにして、摩擦損失を減少させ、エンジン12の燃焼効率を上げるには、冷却水温を高め(例えば、100℃)に保つ必要がある。しかしながら、発電機13用のエンジン12は常時稼働ではないため、車両走行中や停止時を含めたエンジン12の停止時には、第1冷却回路14内の水温は、走行風や車両停止時のエンジンルーム内雰囲気温度により低下し、エンジン12の停止が長時間にわたる場合、外気温と略同じとなる。
【0032】
本冷却装置は、モータ制御部11の第2冷却回路15内の水温によって、エンジン12の第1冷却回路14内の水温を上昇させるものである。
【0033】
以下、本冷却装置の制御動作内容を図2のフローチャート、図3〜図5の動作状態図に基づいて説明する。
【0034】
図2において、ステップ1でハイブリッド型電気自動車の電源スイッチがONとなると、エンジン12のエンジンスイッチ(運転状態検出手段)のON−OFF状態からエンジン12の稼働状態と、第1水温センサ20からの水温Twと、第2水温センサ23からの水温Teとを検出する。
【0035】
バッテリが十分に充電された状態で、車両走行開始直後、すなわち第1水温センサ20からの水温Twがモータ制御部11の冷却水温の上限温度より低い切換手段設定温度Te0(例えば、上限温度より5℃低い温度)より低く、エンジン12が停止しており、また第2水温センサ23からの水温Teが前記切換手段設定温度Te0より低い場合、ステップ2,3,4からステップ6へ進み、冷却回路パターン2を形成する。
【0036】
この冷却回路パターン2では、図3のようにモータ制御部11の冷却水路出口からの冷却水は、第2切換手段29により、流路を第2バイパス通路30へ切換えられ、第2ラジエータ22への流路は遮断される。エンジン12の冷却水路出口からの冷却水は、第1切換手段24により、流路を第1バイパス通路27へ切換えられ、第1ラジエータ16および第1サーモスタット19への流路は遮断される。第1バイパス通路27に流れ込む冷却水は、切換温度が前記切換手段設定温度Te0と同じに設定された第2サーモスタット28により、分岐路25を介して電動ウォータポンプ21の入口側へ導かれる。したがって、モータ制御部11を冷却した冷却水は、エンジン12の内部を通過し、ラジエータを経由せず、モータ制御部11へ循環される。
【0037】
この結果、モータ制御部11で温められた冷却水がエンジン12内部を流れることで、エンジン12内部を温め、エンジン12内部温度が一定に保たれることになる。このため、バッテリ端子電圧が設定値より低くなり、エンジン12が始動する場合、エンジン12内部の温度が上昇しているため、始動性が良くなり、かつエンジン12内部の摺動部の油膜温度の上昇に伴うオイルの粘性の低下により、摺動部での摩擦損失が低下することで、エンジン12の燃焼効率、発電効率が向上する。さらには、図示していない車室暖房用のヒータ配管をエンジン12本体のみに接続することが可能となり、ヒータへの冷却水温度も早期に上昇させることができ、寒冷地におけるヒータ性能も向上させることができる。
【0038】
また、車両走行開始直後でバッテリ端子電圧が設定値より低く、エンジン12が稼働した状態であるが、第1水温センサ20からの水温Twが前記切換手段設定温度Te0より低く、また第2水温センサ23からの水温Teがその水温Twより高く、かつ前記切換手段設定温度Te0より低い場合、ステップ2,3,5からステップ6へ進み、上記と同様の冷却回路パターン2を形成する。
【0039】
この場合、上記の効果をさらに向上させることに加えて、モータ制御部11に比べて発熱量の大きいエンジン12からの発熱量による水温上昇に対しても、第1切換手段24と第2切換手段29の流路切換制御を行う十分な時間が確保されるため、切換手段設定温度Te0以上の水温となる冷却水の、モータ制御部11への流入を抑制できる。
【0040】
次に、バッテリが十分に充電され、エンジン12が稼働せずに車両が走行している状態で、第1水温センサ20からの水温Twが前記切換手段設定温度Te0以下で、第2水温センサ23からの水温Teが前記切換手段設定温度Te0より高くなった場合、ステップ2,3,4からステップ7へ進み、冷却回路パターン3を形成する。
【0041】
この冷却回路パターン3では、第1切換手段24と第2切換手段29の制御は冷却回路パターン2と同じであるが、図4のように第1バイパス通路25を流れる水温が第2サーモスタット28の切換温度以上となるため、第1バイパス通路27の分岐路26が開かれ、第1バイパス通路27に流れ込む冷却水は、分岐路26を介して第2ラジエータ22の冷却水路入口側へ導かれる。したがって、モータ制御部11を冷却した冷却水は、エンジン12の内部を通過し、第2ラジエータ22を経由して、モータ制御部11へ循環される。
【0042】
この場合、冷却回路パターン2と同様に、モータ制御部11で温められた冷却水がエンジン12の内部を流れることで、エンジン12内部を温めることになる。エンジン12に与える効果は、冷却回路パターン2と同じである。さらに、冷却回路パターン3の場合、モータ制御部11で受熱した熱量をエンジン11本体に与えることで、第2ラジエータ22への負荷を低減する。これにより、第2ラジエータ22を通過する冷却水温が低下することで、ラジエータ通過風温を低下させ、エンジンルーム内の雰囲気温度を低下させることになる。
【0043】
次に、バッテリ端子電圧が設定値より低く、エンジン12が稼働した状態で、第2水温センサ23の水温Teが第1水温センサ20の水温Twより低いか、前記切換手段設定温度Te0より高い場合、ステップ2,3,5からステップ8へ、さらにエンジン12の稼働の有無にかかわらず、第1水温センサ20の水温Twが前記切換手段設定温度Te0以上の場合、ステップ2からステップ8へ、それぞれ進み、冷却回路パターン1を形成する。
【0044】
冷却回路パターン1では、図5のようにモータ制御部11の冷却水路出口からの冷却水は、第2切換手段29により、流路を第2ラジエータ22側へ切換えられ、第2バイパス通路30への流路は遮断される。エンジン12の冷却水路出口からの冷却水は、第1切換手段24により、流路を第1ラジエータ16側へ切換えられ、第1バイパス通路27への流路は遮断される。したがって、モータ制御部11を冷却する冷却回路15と、エンジン12を冷却する冷却回路14は完全に独立される。
【0045】
この場合、エンジン12とモータ制御部11で受熱した熱量は、各々の冷却回路14,15に設けられたラジエータ16,22で放熱することで、独立した水温に制御されることになり、エンジン16を冷却する冷却水の、モータ制御部11を冷却する冷却水への影響、すなわちモータ制御部11の冷却水温を上昇させる心配はない。
【0046】
図6は、第2の実施の形態のハイブリッド型電気自動車の冷却装置を示す。この冷却装置は、第2切換手段29からエンジン11の第1冷却回路14への第2バイパス通路と、エンジン12により駆動されるウォータポンプ17の設置位置以外の構成は、第1の実施の形態と同じである。なお、第1の実施の形態と同じ構成の部分には、同符号を付してある。
【0047】
エンジン12を冷却する第1冷却回路14において、第1ラジエータ16からの流路をエンジン12のシリンダヘッド部40に接続すると共に、そのシリンダヘッド部40の冷却水路入口部にウォータポンプ17が、シリンダヘッド部40にウォータポンプ17の出口部を向けて設けられる。モータ制御部11からの第2バイパス通路41はエンジン12のシリンダブロック部42に接続される。制御動作は第1の実施の形態と同じである。
【0048】
この冷却装置では、バッテリ端子電圧が設定値より低く、エンジン12が稼働した場合に、エンジン12駆動のウォータポンプ17からの冷却水をシリンダヘッド部40のみに流すため、シリンダブロック部42の冷却水の流れを抑制し、シリンダブロック部42からの受熱量は、冷却水の自然対流によりシリンダヘッド部40側へ伝わることで、シリンダブロック部42の水温を上昇させる。これによって、シリンダブロック部42の摺動部の油膜温度が上昇し、摩擦損失が低減され、エンジン12の燃焼効率、発電効率が向上する。
【0049】
また、第2切換手段29により、第2冷却回路15の流路が第2バイパス通路41に切換えられ、モータ制御部11を冷却する冷却水がエンジン12のシリンダブロック部42に流れ込む場合、第1の実施の形態に対して、ウォータポンプ17を経由しないため、ウォータポンプ17による抵抗がなくなり、冷却水の流速低下が抑制される。さらに、モータ制御部11からの冷却水は、シリンダブロック部42に流入するため、冷却水によるエンジン12の温度上昇は摺動部の多いシリンダブロック部42となり、これによってシリンダブロック部42の摺動部の油膜温度が上昇し、摩擦損失が低減され、第1の実施の形態よりエンジン12の燃焼効率、発電効率が向上する。
【図面の簡単な説明】
【図1】第1の実施の形態を示す構成図である。
【図2】制御動作内容を示すフローチャートである。
【図3】動作状態図である。
【図4】動作状態図である。
【図5】動作状態図である。
【図6】第2の実施の形態を示す構成図である。
【符号の説明】
10 駆動用モータ
11 モータ制御部
12 エンジン
13 発電機
14 第1冷却回路
15 第2冷却回路
16 第1ラジエータ
17 ウォータポンプ
18 バイパス通路
19 第1サーモスタット
20 第1水温センサ
21 電動ウォータポンプ
22 第2ラジエータ
23 第2水温センサ
24 第1切換手段
25,26 分岐路
27 第1バイパス通路
28 第2サーモスタット
29 第2切換手段
30 第2バイパス通路
35 制御装置
40 シリンダヘッド部
41 第2バイパス通路
42 シリンダブロック部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hybrid electric vehicle that includes a generator driven by an engine, drives a motor by at least one of electric power generated by the generator and electric power stored in an installed battery, and travels. In particular, it relates to engine cooling and motor controller cooling.
[0002]
[Prior art]
In recent years, attention has been paid to electric vehicles that do not emit exhaust gas in consideration of environmental problems. However, the performance of a battery mounted on the vehicle is not yet sufficient, and sufficient maximum speed and cruising distance have not been obtained. In order to make up for this problem, a generator driven by an engine is mounted on the vehicle, and the motor is driven by at least one of the electric power generated by the generator and the electric power stored in the battery mounted on the vehicle. Hybrid electric vehicles are being developed.
[0003]
In this type of hybrid electric vehicle, the cooling water temperature that cools the engine for power generation is different from the set temperature of the cooling water temperature that cools the control unit that controls the motor. Further, the amount of heat generated from the engine and the motor control unit Since the calorific values are different, it is necessary to provide a cooling circuit for cooling the engine and a cooling circuit for cooling the motor control unit independently.
[0004]
JP-A-6-81648 discloses a prior art having a plurality of cooling circuits having different cooling capacities in gasoline vehicles or the like.
[0005]
[Problems to be solved by the invention]
By the way, in a hybrid electric vehicle having an independent cooling circuit, heat generated from the motor control unit is always generated during driving by driving the motor. Therefore, the temperature of the cooling water for cooling the motor control unit is made substantially constant by the cooling circuit. Kept.
[0006]
However, the engine for power generation, on the other hand, drives the generator when the terminal voltage of the battery serving as the power source for the driving motor falls below a predetermined value, and stops when the terminal voltage of the battery recovers. The temperature of the cooling water that cools the engine changes according to the driving state of the vehicle and the operating state of the engine. When the cooling water temperature of the engine is low, there is a problem that the oil film temperature of each sliding portion in the engine is low, the viscosity of the oil is large, the friction loss of the engine is increased, and the power generation efficiency of the engine is lowered.
[0007]
The cooling device disclosed in JP-A-6-81648 divides the radiator into three parts and uses the difference between the discharge pressure of the water pump of the engine and the discharge pressure of the electric water pump of the water-cooled intercooler, depending on the engine load. The flow path in the radiator divided into three is switched by using a switching valve that is driven in this manner, and the cooling water temperature of the engine and the water temperature of the water cooling intercooler are controlled. In this case, switching of the cooling system flow path by control is performed only by the radiator section, and water cannot be passed through the engine-side cooling circuit when the engine is stopped. Therefore, in a hybrid electric vehicle with intermittent engine operation, the power generation efficiency of the engine cannot be increased when the engine coolant temperature is low.
[0008]
An object of the present invention is to improve the startability of an engine and improve the power generation efficiency of an engine in a hybrid electric vehicle by allowing heat generated by a control unit of a drive motor to be applied to the engine .
[0009]
[Means for Solving the Problems]
A first aspect of the invention is a hybrid electric vehicle that can be driven by a drive motor, and is provided with a first radiator, and a second cooling unit that cools a first cooling circuit that cools the engine and a control unit that controls the drive motor. A second cooling circuit provided with a radiator, a first water temperature sensor for detecting a water temperature in the first cooling circuit, a second water temperature sensor for detecting a water temperature in the second cooling circuit, and the first When the water temperature in the cooling circuit and the second cooling circuit is lower than a predetermined value, the first cooling circuit and the second cooling circuit are connected, and the flow path to the first radiator and the second radiator is shut off, A bypass passage for circulating cooling water in the first cooling circuit and the second cooling circuit.
[0010]
A second invention is a hybrid electric vehicle that can be driven by a drive motor, and is provided with a first radiator , and a second cooling circuit that cools a first cooling circuit that cools the engine and a control unit that controls the drive motor. A second cooling circuit provided with a radiator, a first water temperature sensor for detecting a water temperature in the first cooling circuit, a second water temperature sensor for detecting a water temperature in the second cooling circuit, and the first When the water temperature in the cooling circuit is lower than a predetermined value and the water temperature in the second cooling circuit is higher than a predetermined value, the first cooling circuit and the second cooling circuit are connected and the flow path to the first radiator is blocked. And a bypass passage for circulating cooling water through the second radiator in the first cooling circuit and the second cooling circuit.
[0011]
According to a third invention, in the first and second inventions, the hybrid electric vehicle includes a chargeable / dischargeable battery serving as a power source for the drive motor, a generator for charging the battery, and the generator driven. obtain Bei and the engine to be.
[0012]
4th invention is a hybrid type provided with the drive motor which drives a vehicle, the battery which can be charged / discharged used as the power supply of the drive motor, the generator which charges the battery, and the engine which drives the generator A first cooling circuit provided with a first radiator for cooling a cylinder head portion of the engine, and a second cooling circuit provided with a second radiator for cooling a control unit for controlling the drive motor. And a first water temperature sensor for detecting the water temperature in the first cooling circuit, and when the water temperature in the first cooling circuit is lower than a predetermined value, the flow path to the first radiator is shut off, and the first A first bypass passage connecting a cooling water passage outlet side of the engine for circulating cooling water in the cooling circuit and the second cooling circuit and a cooling water passage inlet side of the second radiator; and a cylinder block of the engine Tsu comprises click portion and a second bypass passage that connects the cooling water channel outlet side of the control unit.
[0013]
【The invention's effect】
In the first invention, the cooling water flowing in the second cooling circuit of the control unit of the drive motor is guided into the first cooling circuit of the engine by the bypass passage, and the flow paths to the first radiator and the second radiator are blocked. Thus, the cooling water temperature in the first cooling circuit can be raised.
[0014]
In the second aspect of the invention, the cooling water flowing in the second cooling circuit of the control unit of the drive motor is guided into the first cooling circuit of the engine by the bypass passage, and the flow path to the first radiator is shut off. The cooling water temperature in one cooling circuit can be raised, and the water temperature of the controller of the drive motor can be kept at an appropriate temperature.
[0015]
In 3rd invention, the water temperature in a 1st cooling circuit can be raised by guide | inducing the cooling water which flows in the 2nd cooling circuit of the control part of a drive motor in a 1st cooling circuit of an engine by a bypass channel. it can. Therefore, the oil film temperature of the sliding part inside the engine can be raised, and the engine startability and power generation efficiency can be improved regardless of the operation of the engine.
[0016]
In 4th invention, the water temperature in the 1st cooling circuit can be raised by guide | inducing the cooling water which flows in the 2nd cooling circuit of the control part of a drive motor in the 1st cooling circuit of an engine by a bypass channel. it can. Therefore, the water temperature of the cylinder block with many sliding parts can be raised, so the friction loss can be reduced by increasing the oil film temperature of the sliding parts, and the engine startability and power generation efficiency are improved regardless of engine operation. Can be made.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 shows a cooling device for a hybrid electric vehicle according to a first embodiment. The vehicle drive motor 10 is composed of, for example, a three-phase induction motor, and drives vehicle drive wheels (not shown). This drive motor 10 is basically driven by the power of a battery (not shown), a converter that converts the DC voltage of the battery into a three-phase AC voltage, and a motor drive control device that controls the speed of the converter. The control part (henceforth a motor control part) 11 which consists of is provided.
[0020]
The engine 12 is a gasoline engine, for example, and drives the generator 13. The generator 13 is basically configured to charge a battery by driving.
[0021]
The engine 12 and the motor control unit 11 include a first cooling circuit 14 and a second cooling circuit 15 that cool each of them.
[0022]
The first cooling circuit 14 for cooling the engine includes a first radiator 16, a water pump 17 driven by the engine 12, and a piping system. The outlet of the water pump 17 is provided at the inlet of the cooling water channel of the engine 12. In the middle of the piping system, when the cooling water temperature is low, the passage to the first radiator 16 is closed so that the cooling water that has passed through the engine 12 does not flow to the first radiator 16 and led to the bypass passage 18. When the temperature reaches a set temperature (for example, 80 ° C.) or higher, a first thermostat 19 is provided that gradually opens the passage to the first radiator 16, closes the bypass passage 18, and guides the cooling water to the first radiator 16. A first water temperature sensor 20 that detects the cooling water temperature is installed at the cooling water channel outlet of the engine 12.
[0023]
The second cooling circuit 15 that cools the motor control unit 11 includes an electric water pump 21, a second radiator 22, and a piping system. The outlet of the electric water pump 21 is provided at the cooling water channel inlet of the motor controller 11. A second water temperature sensor 23 for detecting the cooling water temperature is installed at the cooling water channel outlet of the motor control unit 11.
[0024]
The first cooling circuit 14 includes a first switching of the flow path between the cooling water channel outlet side of the engine 12 and the bypass passage 18 of the first radiator 16 or the first thermostat 19 that opens and closes the bypass passage 18. Means (for example, a three-way solenoid valve) 24 are provided. The first switching means 24 branches to the inlet portion of the electric water pump 21 of the second cooling circuit 15 and the inlet side of the cooling water passage of the second radiator 22 respectively. A first bypass passage 27 that is connected via 25 and 26 is provided. The first switching means 24 switches and connects the coolant channel outlet side of the engine 12 to the first thermostat 19 side and the first bypass passage 27. In the first bypass passage 27, when the cooling water temperature upstream of the branch passages 25 and 26 is low, the branch passage 25 is opened and the branch passage 26 is closed, and when the cooling water temperature exceeds the set temperature, the branch passage 25 is gradually closed and branched. A second thermostat 28 is provided that opens the path 26.
[0025]
The second cooling circuit 15 is provided with second switching means (for example, a three-way solenoid valve) 29 on the outlet side of the cooling water passage of the motor control unit 11 (upstream side of the connecting portion of the branch passage 26). A second bypass passage 30 connected from the second switching means 29 to the inlet of the water pump 17 of the first cooling circuit 14 (which may be between the inlet of the water pump 17 and the first radiator 16) is provided.
[0026]
On the other hand, the detection signals of the first water temperature sensor 20 and the second water temperature sensor 23 are input to a control device (control means) 35 that controls the cooling circuit together with the detection signal of the operation state detection means of the engine 12.
[0027]
The control device 35 controls the driving of the first switching means 24 and the second switching means 29 based on detection signals from the first water temperature sensor 20, the second water temperature sensor 23, and the operating state detection means.
[0028]
Note that the cooling fans of the first radiator 16 and the second radiator 22 are not shown.
[0029]
Next, the operation of the cooling device for the hybrid electric vehicle will be described.
[0030]
First, the water temperature of the cooling circuit of the engine 12 and the motor control unit 11 will be described. In order to drive the motor 10 when the vehicle travels, in the motor control unit 11, the motor control unit 11 generates heat from the converter that converts the DC voltage of the battery into a three-phase AC voltage and the motor drive control device that controls the speed of the converter. The water temperature in the second cooling circuit 15 for cooling 11 rises. Here, since the motor control unit 15 is an electronic device, the water temperature in the second cooling circuit 15 needs to be kept below a certain constant temperature (for example, 50 to 70 ° C.).
[0031]
On the other hand, when the battery terminal voltage becomes equal to or lower than the set value and the engine 12 is operated to drive the generator 13, the water temperature in the first cooling circuit 14 that cools the engine 12 also rises due to heat generated from the engine 12. At this time, in order to smooth the sliding portion in the engine 12 to reduce friction loss and increase the combustion efficiency of the engine 12, it is necessary to keep the cooling water temperature high (for example, 100 ° C.). However, since the engine 12 for the generator 13 is not always in operation, the water temperature in the first cooling circuit 14 is low when the engine 12 is stopped including when the vehicle is running or when it is stopped. When the engine 12 is lowered due to the temperature of the internal atmosphere and the engine 12 is stopped for a long time, it is substantially the same as the outside air temperature.
[0032]
This cooling device increases the water temperature in the first cooling circuit 14 of the engine 12 by the water temperature in the second cooling circuit 15 of the motor control unit 11.
[0033]
Hereinafter, the control operation content of the cooling device will be described based on the flowchart of FIG. 2 and the operation state diagrams of FIGS.
[0034]
In FIG. 2, when the power switch of the hybrid electric vehicle is turned on in step 1, the engine switch (operating state detection means) of the engine 12 is switched from the ON-OFF state to the operating state of the engine 12 and from the first water temperature sensor 20. The water temperature Tw and the water temperature Te from the second water temperature sensor 23 are detected.
[0035]
In a state in which the battery is sufficiently charged, immediately after the vehicle starts running, that is, the switching means set temperature Te0 (for example, 5% higher than the upper limit temperature) where the water temperature Tw from the first water temperature sensor 20 is lower than the upper limit temperature of the cooling water temperature of the motor controller When the engine 12 is stopped and the water temperature Te from the second water temperature sensor 23 is lower than the switching means set temperature Te0, the process proceeds from step 2, 3, 4 to step 6, and the cooling circuit Pattern 2 is formed.
[0036]
In this cooling circuit pattern 2, as shown in FIG. 3, the cooling water from the cooling water channel outlet of the motor control unit 11 is switched to the second bypass passage 30 by the second switching means 29, and to the second radiator 22. The flow path is blocked. The cooling water from the cooling water passage outlet of the engine 12 is switched to the first bypass passage 27 by the first switching means 24, and the flow paths to the first radiator 16 and the first thermostat 19 are blocked. The cooling water flowing into the first bypass passage 27 is guided to the inlet side of the electric water pump 21 via the branch path 25 by the second thermostat 28 whose switching temperature is set to be the same as the switching means set temperature Te0. Therefore, the cooling water that has cooled the motor control unit 11 passes through the inside of the engine 12 and is circulated to the motor control unit 11 without passing through the radiator.
[0037]
As a result, the cooling water heated by the motor control unit 11 flows inside the engine 12, so that the inside of the engine 12 is warmed and the internal temperature of the engine 12 is kept constant. For this reason, when the battery terminal voltage becomes lower than the set value and the engine 12 starts, the temperature inside the engine 12 rises, so the startability is improved and the oil film temperature of the sliding portion inside the engine 12 is improved. Due to the decrease in the viscosity of the oil accompanying the increase, the friction loss at the sliding portion decreases, so that the combustion efficiency and power generation efficiency of the engine 12 are improved. Furthermore, a heater pipe (not shown) for heating the passenger compartment can be connected only to the main body of the engine 12, the temperature of the cooling water to the heater can be raised at an early stage, and the performance of the heater in a cold region is improved. be able to.
[0038]
In addition, the battery terminal voltage is lower than the set value immediately after the vehicle starts running, and the engine 12 is in operation. The water temperature Tw from the first water temperature sensor 20 is lower than the switching means set temperature Te0, and the second water temperature sensor. When the water temperature Te from 23 is higher than the water temperature Tw and lower than the switching means set temperature Te0, the process proceeds from step 2, 3, 5 to step 6 to form the cooling circuit pattern 2 similar to the above.
[0039]
In this case, in addition to further improving the above-described effect, the first switching means 24 and the second switching means also against the water temperature rise due to the heat generation amount from the engine 12 having a larger heat generation amount than the motor control unit 11. Since sufficient time for performing the 29 flow path switching control is secured, it is possible to suppress the inflow of the cooling water having a water temperature equal to or higher than the switching means set temperature Te0 to the motor control unit 11.
[0040]
Next, in a state in which the battery is sufficiently charged and the vehicle is running without the engine 12 running, the water temperature Tw from the first water temperature sensor 20 is equal to or lower than the switching means set temperature Te0, and the second water temperature sensor 23. When the water temperature Te is higher than the switching means set temperature Te0, the process proceeds from step 2, 3, 4 to step 7, and the cooling circuit pattern 3 is formed.
[0041]
In this cooling circuit pattern 3, the control of the first switching means 24 and the second switching means 29 is the same as in the cooling circuit pattern 2, but the water temperature flowing through the first bypass passage 25 is the same as that of the second thermostat 28 as shown in FIG. 4. Since the temperature is higher than the switching temperature, the branch passage 26 of the first bypass passage 27 is opened, and the cooling water flowing into the first bypass passage 27 is guided to the cooling water passage inlet side of the second radiator 22 via the branch passage 26. Therefore, the cooling water that has cooled the motor control unit 11 passes through the inside of the engine 12 and is circulated to the motor control unit 11 via the second radiator 22.
[0042]
In this case, similarly to the cooling circuit pattern 2, the inside of the engine 12 is warmed by the cooling water warmed by the motor control unit 11 flowing inside the engine 12. The effect given to the engine 12 is the same as that of the cooling circuit pattern 2. Furthermore, in the case of the cooling circuit pattern 3, the amount of heat received by the motor control unit 11 is given to the main body of the engine 11, thereby reducing the load on the second radiator 22. As a result, the temperature of the cooling water passing through the second radiator 22 is lowered, so that the radiator passing air temperature is lowered and the ambient temperature in the engine room is lowered.
[0043]
Next, when the battery terminal voltage is lower than the set value and the engine 12 is operating, the water temperature Te of the second water temperature sensor 23 is lower than the water temperature Tw of the first water temperature sensor 20 or higher than the switching means set temperature Te0. Steps 2, 3, and 5 to Step 8, and regardless of whether the engine 12 is operating or not, if the water temperature Tw of the first water temperature sensor 20 is equal to or higher than the switching means set temperature Te0, Step 2 to Step 8, respectively. Then, the cooling circuit pattern 1 is formed.
[0044]
In the cooling circuit pattern 1, the cooling water from the cooling water channel outlet of the motor control unit 11 is switched to the second radiator 22 side by the second switching means 29 as shown in FIG. The flow path is blocked. The cooling water from the cooling water channel outlet of the engine 12 is switched to the first radiator 16 side by the first switching means 24 and the flow path to the first bypass passage 27 is blocked. Therefore, the cooling circuit 15 for cooling the motor control unit 11 and the cooling circuit 14 for cooling the engine 12 are completely independent.
[0045]
In this case, the amount of heat received by the engine 12 and the motor control unit 11 is controlled to an independent water temperature by dissipating heat by the radiators 16 and 22 provided in the respective cooling circuits 14 and 15. There is no concern that the cooling water for cooling the cooling water for cooling the motor control unit 11, that is, the temperature of the cooling water for the motor control unit 11 is increased.
[0046]
FIG. 6 shows a cooling device for a hybrid electric vehicle according to the second embodiment. This cooling apparatus has the same configuration as that of the first embodiment except for the second bypass passage from the second switching means 29 to the first cooling circuit 14 of the engine 11 and the installation position of the water pump 17 driven by the engine 12. Is the same. In addition, the same code | symbol is attached | subjected to the part of the same structure as 1st Embodiment.
[0047]
In the first cooling circuit 14 for cooling the engine 12, the flow path from the first radiator 16 is connected to the cylinder head portion 40 of the engine 12, and the water pump 17 is connected to the cooling water channel inlet of the cylinder head portion 40. It is provided with the outlet portion of the water pump 17 facing the head portion 40. The second bypass passage 41 from the motor control unit 11 is connected to the cylinder block unit 42 of the engine 12. The control operation is the same as in the first embodiment.
[0048]
In this cooling device, when the battery terminal voltage is lower than the set value and the engine 12 is operated, the cooling water from the water pump 17 driven by the engine 12 is allowed to flow only to the cylinder head portion 40. The amount of heat received from the cylinder block portion 42 is transmitted to the cylinder head portion 40 side by natural convection of the cooling water, thereby raising the water temperature of the cylinder block portion 42. Thereby, the oil film temperature of the sliding part of the cylinder block part 42 rises, friction loss is reduced, and the combustion efficiency and power generation efficiency of the engine 12 are improved.
[0049]
Further, when the second switching means 29 switches the flow path of the second cooling circuit 15 to the second bypass passage 41 and the cooling water for cooling the motor control unit 11 flows into the cylinder block portion 42 of the engine 12, In contrast to this embodiment, since the water pump 17 is not routed, resistance by the water pump 17 is eliminated, and a decrease in the flow rate of the cooling water is suppressed. Furthermore, since the cooling water from the motor control unit 11 flows into the cylinder block portion 42, the temperature rise of the engine 12 due to the cooling water becomes the cylinder block portion 42 with many sliding portions, and thereby the sliding of the cylinder block portion 42 The oil film temperature of the part rises, the friction loss is reduced, and the combustion efficiency and power generation efficiency of the engine 12 are improved compared to the first embodiment.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment;
FIG. 2 is a flowchart showing the contents of a control operation.
FIG. 3 is an operational state diagram.
FIG. 4 is an operation state diagram.
FIG. 5 is an operation state diagram.
FIG. 6 is a configuration diagram showing a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Drive motor 11 Motor control part 12 Engine 13 Generator 14 1st cooling circuit 15 2nd cooling circuit 16 1st radiator 17 Water pump 18 Bypass passage 19 1st thermostat 20 1st water temperature sensor 21 Electric water pump 22 2nd radiator 23 Second water temperature sensor 24 First switching means 25, 26 Branch path 27 First bypass passage 28 Second thermostat 29 Second switching means 30 Second bypass passage 35 Controller 40 Cylinder head portion 41 Second bypass passage 42 Cylinder block portion

Claims (4)

駆動モータにより走行可能なハイブリッド型電気自動車であって、
第1ラジエータが設けられ、エンジンを冷却する第1冷却回路と、
前記駆動モータを制御する制御部を冷却する第2ラジエータが設けられた第2冷却回路と、
前記第1冷却回路内の水温を検出する第1の水温センサと、
前記第2冷却回路内の水温を検出する第2の水温センサと、
前記第1冷却回路内及び前記第2冷却回路内の水温が所定値より低いとき、前記第1冷却回路と前記第2冷却回路を繋ぎ、前記第1ラジエータ及び前記第2ラジエータへの流路を遮断し、前記第1冷却回路と前記第2冷却回路で冷却水を循環させるバイパス通路と、
を備えることを特徴とするハイブリッド型電気自動車の冷却装置。
A hybrid electric vehicle that can be driven by a drive motor,
A first radiator provided with a first cooling circuit for cooling the engine ;
A second cooling circuit provided with a second radiator for cooling the control unit for controlling the drive motor;
A first water temperature sensor for detecting a water temperature in the first cooling circuit;
A second water temperature sensor for detecting a water temperature in the second cooling circuit;
When the water temperature in the first cooling circuit and the second cooling circuit is lower than a predetermined value, the first cooling circuit and the second cooling circuit are connected, and a flow path to the first radiator and the second radiator is provided. A bypass passage that shuts off and circulates cooling water in the first cooling circuit and the second cooling circuit;
A cooling apparatus for a hybrid electric vehicle, comprising:
駆動モータにより走行可能なハイブリッド型電気自動車であって、
第1ラジエータが設けられ、エンジンを冷却する第1冷却回路と、
前記駆動モータを制御する制御部を冷却する第2ラジエータが設けられた第2冷却回路と、
前記第1冷却回路内の水温を検出する第1の水温センサと、
前記第2冷却回路内の水温を検出する第2の水温センサと、
前記第1冷却回路内の水温が所定値より低く、前記第2冷却回路内の水温が所定値より高いとき、前記第1冷却回路と前記第2冷却回路を繋ぎ、前記第1ラジエータへの流路を遮断し、前記第1冷却回路と前記第2冷却回路で前記第2ラジエータを経由して冷却水を循環させるバイパス通路と、
を備えることを特徴とするハイブリッド型電気自動車の冷却装置。
A hybrid electric vehicle that can be driven by a drive motor,
A first radiator provided with a first cooling circuit for cooling the engine ;
A second cooling circuit provided with a second radiator for cooling the control unit for controlling the drive motor;
A first water temperature sensor for detecting a water temperature in the first cooling circuit;
A second water temperature sensor for detecting a water temperature in the second cooling circuit;
When the water temperature in the first cooling circuit is lower than a predetermined value and the water temperature in the second cooling circuit is higher than a predetermined value, the first cooling circuit and the second cooling circuit are connected to flow to the first radiator. A bypass passage that shuts off a passage and circulates cooling water through the second radiator in the first cooling circuit and the second cooling circuit;
A cooling apparatus for a hybrid electric vehicle, comprising:
前記ハイブリッド型電気自動車に、
前記駆動モータの電源となる充放電可能なバッテリと、
前記バッテリに充電する発電機と、
前記発電機を駆動するエンジンと
を備えることを特徴とする請求項1または2に記載のハイブリッド型電気自動車の冷却装置。
In the hybrid electric vehicle,
A chargeable / dischargeable battery serving as a power source for the drive motor;
A generator for charging the battery;
An engine that drives the generator ;
Cooling device for a hybrid electric vehicle according to claim 1 or 2, characterized in that to obtain Bei a.
車両を駆動する駆動モータと、
前記駆動モータの電源となる充放電可能なバッテリと、
前記バッテリに充電する発電機と、
前記発電機を駆動するエンジンと、
を備えるハイブリッド型電気自動車であって、
前記エンジンのシリンダヘッド部を冷却する第1ラジエータが設けられた第1冷却回路と、
前記駆動モータを制御する制御部を冷却する第2ラジエータが設けられた第2冷却回路と、
前記第1冷却回路内の水温を検出する第1の水温センサと、
前記第1冷却回路内の水温が所定値より低いとき、
前記第1ラジエータへの流路を遮断し、前記第1冷却回路と前記第2冷却回路で冷却水を循環させる
前記エンジンの冷却水路出口側と前記第2ラジエータの冷却水路入口側を繋ぐ第1バイパス通路と、
前記エンジンのシリンダブロック部と前記制御部の冷却水路出口側を繋ぐ第2バイパス通路と、
を備えることを特徴とするハイブリッド型電気自動車の冷却装置。
A drive motor for driving the vehicle;
A chargeable / dischargeable battery serving as a power source for the drive motor;
A generator for charging the battery;
An engine that drives the generator;
A hybrid electric vehicle comprising:
A first cooling circuit provided with a first radiator for cooling the cylinder head portion of the engine;
A second cooling circuit provided with a second radiator for cooling the control unit for controlling the drive motor;
A first water temperature sensor for detecting a water temperature in the first cooling circuit;
When the water temperature in the first cooling circuit is lower than a predetermined value,
The flow path to the first radiator is blocked, and the cooling water is circulated by the first cooling circuit and the second cooling circuit. The first connecting the cooling water channel outlet side of the engine and the cooling water channel inlet side of the second radiator. A bypass passage,
A second bypass passage connecting a cylinder block portion of the engine and a cooling water passage outlet side of the control portion;
A cooling apparatus for a hybrid electric vehicle, comprising:
JP17996197A 1997-07-04 1997-07-04 Hybrid electric vehicle cooling system Expired - Fee Related JP3817844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17996197A JP3817844B2 (en) 1997-07-04 1997-07-04 Hybrid electric vehicle cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17996197A JP3817844B2 (en) 1997-07-04 1997-07-04 Hybrid electric vehicle cooling system

Publications (2)

Publication Number Publication Date
JPH1122466A JPH1122466A (en) 1999-01-26
JP3817844B2 true JP3817844B2 (en) 2006-09-06

Family

ID=16075007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17996197A Expired - Fee Related JP3817844B2 (en) 1997-07-04 1997-07-04 Hybrid electric vehicle cooling system

Country Status (1)

Country Link
JP (1) JP3817844B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147995A1 (en) * 2013-03-18 2014-09-25 株式会社デンソー Heat management system for vehicle
JP2015086794A (en) * 2013-10-31 2015-05-07 富士重工業株式会社 Exhaust heat recovery system of engine

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357541B1 (en) * 1999-06-07 2002-03-19 Mitsubishi Heavy Industries, Ltd. Circulation apparatus for coolant in vehicle
JP2001241327A (en) * 2000-02-28 2001-09-07 Toyota Motor Corp Abnormality detecting device for thermostat and abnormality detecting method
US6607142B1 (en) * 2000-11-02 2003-08-19 Ford Motor Company Electric coolant pump control strategy for hybrid electric vehicles
JP3876793B2 (en) * 2002-08-12 2007-02-07 トヨタ自動車株式会社 Multiple cooling system
JP2004218600A (en) * 2003-01-17 2004-08-05 Hitachi Unisia Automotive Ltd Cooling system for hybrid vehicle
JP4185782B2 (en) * 2003-02-13 2008-11-26 トヨタ自動車株式会社 Vehicle drive device
JP2004346831A (en) * 2003-05-22 2004-12-09 Denso Corp Cooling system for vehicle
JP3956945B2 (en) * 2004-02-13 2007-08-08 トヨタ自動車株式会社 Cooling system
JP2005299469A (en) * 2004-04-09 2005-10-27 Toyota Motor Corp Warmup control device for hybrid vehicle
FR2890606B1 (en) * 2005-09-13 2008-11-07 Renault Sas METHOD FOR CONTROLLING A MOTOR POWERTRAIN COMPRISING TWO COOLING CIRCUITS
JP5165250B2 (en) * 2007-01-11 2013-03-21 住友建機株式会社 Construction machine cooling system
DE102007005391A1 (en) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Radiator arrangement for a drive train of a motor vehicle
JP4958637B2 (en) * 2007-05-26 2012-06-20 三洋電機株式会社 Hybrid car
JP2011031672A (en) * 2009-07-30 2011-02-17 Honda Motor Co Ltd Device for controlling vehicle
JP5527896B2 (en) * 2010-12-28 2014-06-25 日立建機株式会社 Hybrid work equipment cooling system
JP2012154092A (en) * 2011-01-26 2012-08-16 Kobelco Contstruction Machinery Ltd Hybrid construction machine
FR2973743A1 (en) * 2011-04-06 2012-10-12 Peugeot Citroen Automobiles Sa Vehicle i.e. hybrid vehicle, has low temperature cooling circuit for cooling electrical traction chain via low temperature radiator, where valves couple low temperature cooling circuit with high temperature cooling circuit
FR2978703B1 (en) * 2011-08-04 2013-08-30 Peugeot Citroen Automobiles Sa SYSTEM FOR REGULATING THE TEMPERATURE OF A HYBRID VEHICLE TRACTION CHAIN WITH MEANS OF COUPLING BETWEEN TEMPERATURE CONTROL CIRCUITS
JP2013035504A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Cooling device of hybrid vehicle
CN104890500A (en) * 2014-12-15 2015-09-09 吉林大学 Plug-in hybrid electric vehicle cooling system
JP6662031B2 (en) * 2015-12-24 2020-03-11 三菱自動車工業株式会社 Cooling system
JP6279050B2 (en) * 2016-10-21 2018-02-14 三菱電機株式会社 Vehicle system
JP6483654B2 (en) * 2016-12-14 2019-03-13 本田技研工業株式会社 Vehicle cooling device
FR3061110B1 (en) * 2016-12-26 2019-05-03 Renault S.A.S. METHOD FOR CONTROLLING A COOLING SYSTEM FOR A HYBRID VEHICLE HAVING A COOLANT TRANSFER CIRCUIT
CN107472002B (en) * 2017-08-16 2023-05-26 合肥凯斯迪尔电子科技有限公司 Hybrid power heat dissipation system
CN109421514A (en) * 2017-09-01 2019-03-05 比亚迪股份有限公司 The cooling system and hybrid vehicle of hybrid vehicle
JP2019127201A (en) 2018-01-26 2019-08-01 トヨタ自動車株式会社 Cooling device of vehicle
CN108859735B (en) * 2018-05-30 2020-07-24 吉利汽车研究院(宁波)有限公司 Cooling system and cooling method for hybrid vehicle
CN109572486B (en) * 2018-11-27 2020-12-01 安徽江淮汽车集团股份有限公司 Thermal management system and control method for power battery of hybrid electric vehicle
JP7042362B2 (en) * 2018-12-21 2022-03-28 本田技研工業株式会社 Temperature control circuit
CN109830779A (en) * 2019-02-25 2019-05-31 吉林大学 A kind of battery thermal management system for realizing that battery cell equilibrium is cooling or heats
JP2023062212A (en) * 2020-03-23 2023-05-08 日立Astemo株式会社 Hybrid control device and method for controlling hybrid control device
CN111585395B (en) * 2020-05-01 2021-10-15 东风汽车集团有限公司 Control method of double-motor oil cooling control system of electric automobile
CN111614209A (en) * 2020-07-10 2020-09-01 合肥巨一动力系统有限公司 Automatic temperature-adjusting heat-dissipating water channel applied to electric drive system
CN115263519B (en) * 2022-08-19 2024-08-13 中国第一汽车股份有限公司 Hybrid engine thermal management system, control method and vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9116661D0 (en) * 1991-08-01 1991-09-18 The Technology Partnership Ltd Vehicle cooling system
JPH05131848A (en) * 1991-11-15 1993-05-28 Toyota Motor Corp Hybrid car driving system control device
JP3422036B2 (en) * 1992-07-13 2003-06-30 株式会社デンソー Vehicle cooling system
JPH07253020A (en) * 1994-03-15 1995-10-03 Mitsubishi Motors Corp Engine cooling device for hybrid vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147995A1 (en) * 2013-03-18 2014-09-25 株式会社デンソー Heat management system for vehicle
JP2014181574A (en) * 2013-03-18 2014-09-29 Denso Corp Thermal management system for vehicle
JP2015086794A (en) * 2013-10-31 2015-05-07 富士重工業株式会社 Exhaust heat recovery system of engine

Also Published As

Publication number Publication date
JPH1122466A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3817844B2 (en) Hybrid electric vehicle cooling system
JP4474780B2 (en) Hybrid electric vehicle cooling system
CN109572486B (en) Thermal management system and control method for power battery of hybrid electric vehicle
KR101144078B1 (en) Thermal management system and method for hybrid electric vehicle
US9096207B2 (en) Hybrid vehicle powertrain cooling system
JP7102413B2 (en) How to drive a hybrid vehicle cooling system with a coolant transfer circuit
JPH03500795A (en) Apparatus and method for engine cooling
JPH05131848A (en) Hybrid car driving system control device
JP4069893B2 (en) Thermoelectric generator
JP4114535B2 (en) Thermoelectric generator
JP2000073763A (en) Cooling system of hybrid powered automatic
CN108437779B (en) Engine cooling system, vehicle and engine cooling method
JP4114640B2 (en) Thermoelectric generator
JP2000274240A (en) Cooling device for hybrid vehicle
CN113530661B (en) Cooling system
JP3756502B2 (en) Hybrid vehicle cooling system
JP2006051852A (en) Heating system for hybrid vehicle
JP3373770B2 (en) Hybrid electric vehicle cooling system
KR100622735B1 (en) Universal cooling system of fuel cell vehicle
JP3075289B2 (en) Engine cooling device
SE544219C2 (en) Thermal Management System, Powertrain, and Vehicle
US20210276454A1 (en) Battery temperature control system
JP2016112933A (en) Warming-up device for vehicular battery
JP2005101349A (en) Cooling structure of inverter
CN212337426U (en) High-efficient thoughtlessly moves engine cooling system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees