[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3812108B2 - High-strength steel with excellent center characteristics and method for producing the same - Google Patents

High-strength steel with excellent center characteristics and method for producing the same Download PDF

Info

Publication number
JP3812108B2
JP3812108B2 JP34237297A JP34237297A JP3812108B2 JP 3812108 B2 JP3812108 B2 JP 3812108B2 JP 34237297 A JP34237297 A JP 34237297A JP 34237297 A JP34237297 A JP 34237297A JP 3812108 B2 JP3812108 B2 JP 3812108B2
Authority
JP
Japan
Prior art keywords
less
strength
toughness
steel
lower bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34237297A
Other languages
Japanese (ja)
Other versions
JPH11172365A (en
Inventor
知哉 藤原
秀治 岡口
昌彦 濱田
裕一 小溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34237297A priority Critical patent/JP3812108B2/en
Publication of JPH11172365A publication Critical patent/JPH11172365A/en
Application granted granted Critical
Publication of JP3812108B2 publication Critical patent/JP3812108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、900MPa以上の引張強さを有する溶接性と中心部靭性に優れる高張力鋼、とくに、天然ガスや原油輸送用ラインパイプ、各種圧力容器等に利用される高張力鋼およびその製造方法に関する。
【0002】
【従来の技術】
天然ガス、原油等を長距離輸送するパイプラインにおいて、輸送コストの低減は普遍的なニーズであり、操業圧力の上昇による輸送効率の改善が必要とされている。操業圧力を高めるには、従来の強度グレードのパイプの肉厚を増加させる方法が考えられるが、この方法では現地での溶接施工能率を低下させるとともに構造物の重量増加による施工効率の低下を生じる問題がある。これに対しパイプ素材そのものを高強度化し肉厚の増大を制限するニーズが高まっており、たとえば、米国石油協会(API)においてX80グレード鋼が規格化され実用に供されている。
【0003】
X80より高強度のラインパイプ用鋼材として、Mn含有率を高くしたX100グレード超の高強度鋼およびその製造方法が、特開平8−199292号公報、特開平8−209290号公報、特開平8−209291号公報、特開平8−269544号公報、特開平8−269545号公報、特開平8−269546号公報に開示されている。
【0004】
Mnを高めた高強度鋼は安価に高強度化することが可能であるが、Mnが2%を超えるような高強度鋼を連続鋳造法によって鋳造すると鋳片中心部へのMnの偏析が著しくなるために、特にX100グレードを超える高強度鋼では低温靱性や耐水素誘起割れ性(耐HIC性)などの特性が悪くなる。
【0005】
一方、Mnを2%以下とした高強度鋼において、近年ではCuの時効析出を利用したX100グレードを超える高強度鋼およびその製造方法が、特開平8−104922号公報、特開平8−209287号公報、特開平8−209288号公報に開示されている。しかしながら、Cuの析出強化を利用する方法によると、母材の高強度と優れた現地溶接性は得られるものの、マトリックス中に分散したCu析出物のために優れた靭性を兼ね備えるには不十分である。
【0006】
これらに対し、Mnを1.5%以下に制限して高強度鋼を製造する方法が特開平8−269542号公報に開示されている。この方法によれば、Cu含有率を0.5%以上という比較的低めに設定するにもかかわらず高強度を得ることが可能である。しかし、B含有率を0.0004%以下に制限しているために十分な焼入性を得ることができず、使用状態の鋼の靭性を左右する中心部の靭性に最も好適な下部ベイナイトとマルテンサイトの混合組織を得ることができない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、900MPa以上の引張強さを満足する溶接性と中心部特性に優れた高張力鋼を提供することにある。具体的には下記の性質を全て備える高張力鋼およびその製造方法を提供することにある。
【0008】
母材 :(1)TS≧900MPa (2)vEー40≧120J
溶接部:(1)TS≧900MPa (2)vE-20≧70J
耐HIC性:NACEの定めるTM0177溶液中での割れ率1%以下
現地溶接性:y開先溶接割れ試験において予熱なしの条件で割れなし
【0009】
【課題を解決するための手段】
本発明者らは母材の引張強さが900MPa以上の各種の鋼について実験を行い下記の事項を確認することができた。
【0010】
(a)Mnを2%以下(好ましくは1.7%未満)に抑えると、中心部の偏析を大幅に軽減することができる。その結果、中心部の耐HIC性が大幅に向上する。
【0011】
(b)Mn低下にともなう焼入性の低下、およびそれに起因する強度と靭性の低下等は、Cuの析出強化を利用することなくCr、Mo、Bの増量により補うことができ、かつ高Mn鋼に比較して一層良好な靭性を確保することができる。
【0012】
(c)上記(b)のB、Cr、Moの増量の程度は、焼入性を向上させ、全板厚にわたってつぎの金属組織が得られるようにする。すなわち、マルテンサイトと下部ベイナイトの混合組織が、体積率で90%以上となるようにし、かつ該混合組織中の下部ベイナイトの体積率を10%以上とする。
【0013】
本発明は上記事項を組み合わせて現場試作を経て完成されたもので、その要旨は下記の高張力鋼およびその製造方法にある。
【0014】
(1)質量%にて、C:0.02〜0.1%Si:0.6%以下Mn:0.2%〜2%Ni:0.2〜1.2%Ti:0.005〜0.03%Al:0.1%以下N:0.001〜0.006%B:0.0005〜0.0025%Cr:0.6%超え1.2%以下Mo:0.6%超え1.2%以下 P:0.015% 以下及び S:0.003% 以下を含有し、さらに、Cu:0.6%以下、Nb:0.1%以下、V:0.1%以下およびCa:0.006%以下のうちの1種または2種以上を含み、残部 Fe および不可避的不純物元素からなり、下部ベイナイトとマルテンサイトの混合組織の体積率が金属組織全体の90%以上、該混合組織のなかでの下部ベイナイトの体積率が10%以上であり、かつ旧オーステナイト粒のアスペクト比が3以上である引張強さが900MPa以上の中心部特性に優れた高張力鋼。
【0015】
(2)鋳片を、900〜1200℃に加熱後圧延し、オーステナイトの未再結晶温度域での累積圧下率を50%以上とし、Ar3点以上で圧延を終了し、Ar3点以上から10〜45℃/sの範囲内の冷却速度で少なくとも500℃まで冷却する上記(1)に記載する高張力鋼の製造方法。
【0016】
(3)さらに、Ac1点未満で焼戻処理を加える上記(2)の製造方法。
【0017】
上記各発明において、金属組織中にオーステナイトが残留する場合はX線回折によりその体積率を求める。そのほか、上部ベイナイト、パーライト等はピクラール等でエッチした金属面を光学顕微鏡で観察することにより下部ベイナイトおよびマルテンサイトとの混合組織と識別することができる。また、これらの組織中に生成する炭化物もそれぞれの組織内で形態的な特徴を有するので、炭化物を抽出したレプリカを2000倍程度の倍率で電子顕微鏡観察することにより識別でき、したがって下部ベイナイトとマルテンサイトの混合組織の比率を求めることができる。この体積率は10〜30視野で平均化した体積率をさす。さらに判別が困難な場合は、薄膜を電子顕微鏡により透過観察を行う。この場合には倍率が5000倍以上となるので、視野数を20〜50視野程度に増やして平均するのがよい。
【0018】
旧オーステナイト粒のアスペクト比とは、圧延方向に延伸したオーステナイト粒の径(長径)を板厚方向の径(短径)で除した値をさす。
【0019】
未再結晶温度域は再結晶が生じない温度域をさす。900MPa以上の引張強さを満たすほど合金元素を含む鋼の場合、未再結晶温度域は975℃以下Ar3点以上の温度域が該当する。累積圧下率はこの未再結晶温度域での累積圧下率をさし、(975℃での肉厚−Ar3点での肉厚)/(975℃での肉厚)をいう。
【0020】
圧延後の冷却速度および冷却停止温度等は、肉厚中心部における冷却速度および冷却停止温度等をさす。
【0021】
【発明の実際の形態】
つぎに本発明を上記のように限定した理由を詳述する。以後の説明において合金元素の含有率の「%」は「質量%」を表示する。
【0022】
1.化学組成
C:0.02〜0.1%
Cは強度上昇に有効な元素であり、本発明鋼において所望の強度を得るためには0.02%以上が必要である。しかし、0.1%を超えると鋼の靱性を劣化させるだけでなく、現地での溶接施工性を著しく劣化させるため、上限を0.1%と制限する。
【0023】
Si:0.6%以下
Siは脱酸に有効な元素であるが、0.6%を超えると溶接熱影響部(HAZ:Heat Affected Zone)の靭性を低下させるだけでなく、加工性を劣化させるため上限を0.6%とする。Si含有率は実質的に0でも良いが、Siを0にすると脱酸時にAlの損失が大きくなるので、通常は脱酸をおこなって残存する程度の含有率、例えば0.01%程度が下限として望ましい。
【0024】
Mn:0.2〜2%
Mnは強度上昇に有効な元素であり、そのためには、0.2%以上の含有率とする。しかし、2%を超えると中心部の特性が劣化するため、引張強さにおいて900MPa以上の高強度鋼を製造する場合には、Mn含有率を2%以下に制限することが必要であり、望ましくは1.7%未満に抑える必要がある。さらに望ましくは1.5%未満にするのが良い。
【0025】
Ni:0.2〜1.2%
Niは強度上昇に有効な元素であると同時に、靱性および脆性亀裂の伝播停止特性を改善する効果を有する。このためにNiは0.2%以上とする。しかし、1.2%を超えるとコストアップに見合うだけの強度上昇と靭性の改善が得られないので上限を1.2%とする。
【0026】
Ti:0.005〜0.03%
Tiはスラブ加熱時のオーステナイト結晶粒の微細化に有効な元素であり、0.005%以上とする。特にNb含有鋼の場合には、Nbによって助長される連続鋳造スラブ表面のヒビワレを抑制するのに微量Tiが有効である。0.005%以上含有することによりこのような効果を発揮する。しかしながら0.03%を超えると、TiNが粗大化しオーステナイト結晶粒の微細化効果が消滅するため、Tiの上限は0.03%とする。
【0027】
Al:0.1%以下
Alは、通常、脱酸剤として鋼に添加される。酸素と結合せずに鋼中に残留するAl、すなわちsolAlは、AlNの析出による組織の微細化作用を有しており、母材靱性の改善からも有用な元素である。上記Alは、solAlおよび酸素と結合したAlすなわちinsolAlの両方をさす。過剰なAlは酸化物等の介在物の粗大化を招き鋼の清浄度を害するため、その上限を0.1%とする。好ましい上限値は0.06%さらに好ましくは0.05%である。
【0028】
N:0.001〜0.006%
NはTiとともにTiNを形成しスラブ再加熱時および溶接時のオーステナイト粒の粗大化を抑制する作用を有する。このような効果を得るための下限値は0.001%である。一方、Nの増加はスラブ品質の劣化および固溶Nの増加によるHAZ靱性の劣化を生じるためその上限値を0.006%とする。
【0029】
B:0.0005〜0.0025%
Bは0.0005%未満では強度確保ができないので、0.0005%以上とする。一方、0.0025%を超えると靭性が劣化するため、上限を0.0025%とする。
【0030】
Cr:0.6%超え1.2%以下
Crは高Mn含有による中心部特性の劣化を回避し、かつ強度を満足させるために添加する。強度確保のためには0.6%を超えて含有させることが必要である。しかしながら1.2%を超えるとCr系の炭化物量が増加し靭性が劣化するため、上限を1.2%とする。
【0031】
Mo:0.6%超え1.2%以下
Moは、Mnを高めることなく焼入性を確保することができ、中心部特性の劣化を回避しかつ強度を満足させるので、0.6%を超える含有率とする。しかしながら1.2%を超えるとMo系の炭化物量が増加し靭性が劣化するため、上限を1.2%とする。
【0032】
本発明にかかる高張力鋼は、上記の合金元素に加えて、次のとおり、Cu、Nb、V及びCaのうちの1種または2種以上を含有させる必要がある。
Cu:0.6%以下
Cuは強度上昇に有効な元素である添加する場合には、0.2%以上の含有率とすることが望ましい。しかし、0.6%を超えると靭性が劣化するため、上限は0.6%とする。
【0033】
Nb:0.1%以下
Nbは制御圧延においてオーステナイト結晶粒の微細化に有効な元素である。添加する場合には、0.01%以上含有させることが望ましい。しかし0.1%を超えると靭性が劣化するばかりか現地での溶接施工性を著しく劣化するため、上限を0.1%とする。
【0034】
V:0.1%以下
Vは強度上昇に有効な元素であるTS900MPaを確保するために添加する場合には0.01%以上含有させるのが望ましい。しかし、0.1%を超えると靭性を劣化させるため、上限を0.1%とする。強度と靭性の両方をともに良好にするには、0.02〜0.06%程度含有させるのが望ましい。
【0035】
Ca:0.006%以下
CaはMnSの形態を制御し鋼の圧延方向と直角方向の靱性を向上させる作用がある。添加する場合には、0.0003%以上含有させるのが望ましい。一方、0.006%を超えると鋼中の非金属介在物が増加し内部欠陥の原因となるので0.006%以下とする。
【0036】
P:0.015%以下、S:0.003%以下
PやSの含有率は鋼の靱性に著しい影響を及ぼすため含有率の低減を図る必要がある。Pの低減はスラブの中心偏析を軽減するとともに、粒界での脆性破壊を低減する。SはMnSとなって鋼中に析出し、これが圧延により延伸し靱性に悪影響を及ぼす。これらの悪影響を抑制するためには、Pを0.015%以下、かつSを0.003%以下とする。
【0037】
個々の合金元素の制限に加えて本発明ではさらに炭素当量(=C+(Mn/6)+{(Cu+Ni)/15}+{(Cr+Mo+V)/5}:単位 wt% )を0.4〜0.65%の範囲に制限することが望ましい。炭素当量の制限により母材のみならずHAZにおいても下部ベイナイトとマルテンサイトの混合組織とすることができ、靱性劣化を伴うことなく広い製造範囲で所望の組織を有する鋼を得ることが可能である。炭素当量が0.4%未満の場合には焼入性の不足から母材の引張強さを900MPa以上とすることが困難となり、また、炭素当量が0.65%を超える場合には焼入性は過度に上昇しHAZ靱性および鋼板表面での靱性が劣化する場合がある。
【0038】
2.金属組織
母材の強度と靱性を同時に満たすためには下部ベイナイトとマルテンサイトの混合組織とし、両組織をあわせて体積率90%以上とする。上限は100%であってもよい。ここでいう下部ベイナイトとはラス状ベイニティックフェライト内部に同フェライトの端面と60度の角度をなす面上にセメンタイトが整列析出した組織をいう。すなわち、セメンタイトとフェライトとは当該フェライト端面において一定の方位関係を満足する。したがって、1つのベイニティックフェライト内部の析出面は1つのみである。焼戻マルテンサイトもマルテンサイトラス内部にセメンタイトが析出した組織であるが、セメンタイトの析出面に4つのバリアント(立方晶のなかで等価な4つの面)が存在することが下部ベイナイト中のセメンタイトとの相違点である。下部ベイナイトとマルテンサイトの混合組織の靱性が優れる要因は、マルテンサイトに先んじて生成する下部ベイナイトが「壁」となってオーステナイト粒を細分し、マルテンサイトの成長およびパケット(脆性破壊の破面単位に一致する)の粗大化を抑制するためである。強度を満足しつつ、靱性を向上させるためには、下部ベイナイトの体積率はマルテンサイトと下部ベイナイトの総計の10%以上とする。すなわち、マルテンサイトと下部ベイナイトの混合組織のなかでの体積率を10%以上とする。ただし、あまり下部ベイナイトの体積率が増えると引張強さが低下して900MPaを満足することができない場合があるので、混合組織中の下部ベイナイトの体積率は75%以下とすることが望ましい。
【0039】
強度を満たすことを前提に、下部ベイナイトとマルテンサイトの混合組織で靱性をより一層改善するためには、下部ベイナイトを微細に分散させることが重要である。このためには、後記するように圧延後未再結晶状態のオーステナイトから変態させる必要がある。これにより下部ベイナイトの核生成サイトが増加し、オーステナイト粒界および粒内の多くのサイトから下部ベイナイトを生成させることができる。こうした効果を出現させるために必要な未再結晶オーステナイトの扁平度はアスペクト比にして3以上必要である。ここで、オーステナイト粒のアスペクト比はオーステナイト粒の圧延方向の直径(長径)を板厚方向の直径(短径)で除した値をさす。
【0040】
3.製造方法
次に製造方法について詳説する。本製造方法において最も肝要なのは、オーステナイト粒界のみならず熱間圧延によって導入された集積転位を保存したオーステナイトの粒内からも下部ベイナイトとマルテンサイトを核生成させ、これを適当な体積率とすることである。鋳片加熱温度については、加熱時のオーステナイト結晶粒の粗大化を防止するために1200℃以下とし、一方、圧延中の結晶粒の微細化および圧延後の析出強化に有効なMo、Nb等の炭窒化物を固溶させるために900℃以上、望ましくは950℃以上とする。圧延温度については十分に管理される必要がある。オーステナイト粒内からのベイニティックフェライトを核生成させ、かつベイニティックフェライトの成長を抑えるためには高密度の転位が必要であり、そのためにはオーステナイトの未再結晶温度域で累積圧下率50%以上の圧延を行うことが必須である。一方、オーステナイトの未再結晶温度域での累積圧下率が90%を超えると機械的性質の異方性が著しくなるので、未再結晶温度域での累積圧下率は90%以下とすることが望ましい。
【0041】
Ar3点未満の温度域を緩冷却されるとき生成する上部ベイナイトを抑制するためには、Ar3点以上から一定範囲の冷却速度で冷却しなければならない。この圧延後の冷却速度は、下部ベイナイトとマルテンサイトの混合組織を上記の体積率とするために必要であり、肉厚中心部の冷却速度で10〜45℃/sの範囲とする。冷却速度が10℃/s未満の場合は上部ベイナイトが生成し、下部ベイナイトとマルテンサイトの混合組織の体積率が90%未満、とくに合金元素が低めの場合には60%未満となるので強度と靱性、アレスト性が劣化する。一方45℃/sを超えると下部ベイナイト組織が生成せずマルテンサイトのみの組織となり、靱性とアレスト性が劣化する。上記冷却速度での冷却は、少なくとも350℃まではおこなう。その後は脱水素のために徐冷してもよい。
【0042】
【実施例】
つぎに実施例により、本発明の効果について説明する。
【0043】
供試鋼板は、表1および表2に示す化学成分を有する鋼を常法により溶製し、連続鋳造し得られた鋳片を表3に示す種々の条件で圧延したもので、板厚は12〜35mmである。表1〜表2の鋼のAr3点は、500〜600℃の範囲にある。
【0044】
【表1】

Figure 0003812108
【0045】
【表2】
Figure 0003812108
【0046】
【表3】
Figure 0003812108
【0047】
これらの鋼板の板厚中心部より試験片(引張試験片: JIS Z 2201 10号、衝撃試験片:JIS Z 2202 4号)を採取し、引張試験(JIS Z 2241)および2mmVノッチシャルピー衝撃試験(JIS Z 2242)をおこなった。また、市販のフラックスと100キロハイテン用のワイヤを用いてサブマージアーク溶接による突き合わせ溶接継手についても引張試験とシャルピー衝撃試験をおこなった。
【0048】
また、現地溶接施工性を評価するために、y開先溶接割れ試験(JIS Z 3158)を行った。溶接材料は市販の100キロハイテン用SMAW(Shielded Metal Arc Welding :手溶接)の棒を用い、溶接時溶着金属に含まれる拡散性水素量が1.5cc/100gとなるように吸湿条件を一定に整えた。また、原油や天然ガスと接するので、耐HIC特性の評価をおこなった。短冊状の試験片は4点曲げ拘束治具に装着され試験片中央部に母材の降伏強さの応力がかかるように曲げが加えられ、NACEの定めるTM0177溶液中に720時間浸漬され、割れの有無が調査された。
【0049】
表4はこれら試験の結果を示す一覧表である。
【0050】
【表4】
Figure 0003812108
【0051】
本発明の限定範囲内の化学組成の鋼を用いたにもかかわらず、比較例である試験番号11、12は未再結晶域での累積圧下率が不足したためアスペクト比が3未満となった。その結果、オーステナイト粒内から下部ベイナイトが核発生しないために靭性が低くなった。また、試験番号13、14は冷却速度が小さいために本発明の限定範囲内の組織とならず、引張強さを確保できなかった。試験番号15はC含有率が高すぎ靭性が低く、16はC含有率が低すぎ引張強さを確保できなかった。試験番号17、18、19、21は、それぞれSi、Mn、Cu、Crが高いために引張強さは高いが、靭性が低い。とくにMn含有率の高い18は、中心偏析を反映してHIC特性およびy開先拘束割れ試験も好ましくない結果となった。試験番号20は、Crが少ないために下部ベイナイトとマルテンサイトの混合組織が得られず、強度が不足した。試験番号22はMoが本発明の限定範囲より低いために引張強さが低下し、23はMoが高すぎたので靭性が劣化した。試験番号24、25はそれぞれV、Nbが高いために靭性が劣化し、さらに25ではHIC特性もy開先拘束割れ試験も好ましくない結果となった。試験番号26または28は、TiまたはBが低い場合であるが、いずれの場合も引張強さが低くなった。Tiが低い場合は、NをTiによりTiNとして十分固定できず、Bの大部分がBNを形成してしまいBの焼入性向上効果が発揮されなかったと推定された。TiまたはBが過剰の試験番号27または29はともに靭性が劣化した。Alが過剰の試験番号30は靭性およびy開先拘束割れ試験の性能劣化が著しいものとなった。N含有率が低い試験番号31または高い32はともに靭性が劣化し、かつHIC特性も芳しい結果とならなかった。
【0052】
これに対して、本発明例の試験番号1〜10では900MPa以上の引張強さと−40℃でのシャルピー衝撃試験において120J以上の吸収エネルギーが得られた。また、溶接部について継手部の引張試験およびシャルピー衝撃試験についても、引張強さで900MPa以上、シャルピー衝撃試験では−20℃における吸収エネルギーが70J以上となっている。さらに現地溶接施工において予熱なしで溶接をおこなっても溶接部に割れが発生しなかった。耐HIC特性は割れ率が1%以下となった。
【0053】
【発明の効果】
本発明により、引張強さ900MPa以上を具備し、かつ中心部において靭性、耐HIC特性および溶接性の良好な高張力鋼を得ることができる。その結果、パイプラインの施工能率および輸送効率を飛躍的に改善することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel having a tensile strength of 900 MPa or more and excellent in weldability and central toughness, in particular, a high-strength steel used for natural gas and crude oil transportation line pipes, various pressure vessels, and the like, and a method for producing the same. About.
[0002]
[Prior art]
In pipelines for long-distance transportation of natural gas, crude oil, etc., reducing transportation costs is a universal need, and there is a need to improve transportation efficiency by increasing operating pressure. In order to increase the operating pressure, a method of increasing the wall thickness of the conventional strength grade pipe can be considered, but this method reduces the welding efficiency in the field and decreases the construction efficiency due to the increase in the weight of the structure. There's a problem. On the other hand, there is an increasing need to increase the strength of the pipe material itself and limit the increase in wall thickness. For example, X80 grade steel is standardized and put into practical use by the American Petroleum Institute (API).
[0003]
As a steel material for a line pipe having a higher strength than X80, a high strength steel exceeding X100 grade with a high Mn content and a production method thereof are disclosed in JP-A-8-199292, JP-A-8-209290, and JP-A-8-. No. 209291, JP-A-8-269544, JP-A-8-269545, and JP-A-8-269546.
[0004]
High-strength steel with increased Mn can be strengthened at low cost, but when high-strength steel with Mn exceeding 2% is cast by the continuous casting method, segregation of Mn at the center of the slab is remarkable. Therefore, particularly in high strength steel exceeding X100 grade, properties such as low temperature toughness and resistance to hydrogen induced cracking (HIC resistance) are deteriorated.
[0005]
On the other hand, in high strength steels with Mn of 2% or less, in recent years, high strength steels exceeding the X100 grade utilizing Cu aging precipitation and methods for producing the same are disclosed in JP-A-8-104922 and JP-A-8-209287. This is disclosed in Japanese Patent Laid-Open No. 8-209288. However, according to the method using the precipitation strengthening of Cu, although high strength of the base metal and excellent field weldability can be obtained, it is insufficient to combine excellent toughness due to Cu precipitates dispersed in the matrix. is there.
[0006]
On the other hand, a method for producing high-strength steel by limiting Mn to 1.5% or less is disclosed in JP-A-8-269542. According to this method, it is possible to obtain high strength in spite of setting the Cu content to a relatively low value of 0.5% or more. However, since the B content is limited to 0.0004% or less, sufficient hardenability cannot be obtained, and the lower bainite most suitable for the toughness of the central part that affects the toughness of the steel in use. A martensitic mixed structure cannot be obtained.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength steel excellent in weldability and center portion characteristics satisfying a tensile strength of 900 MPa or more. Specifically, it is to provide a high-strength steel having all the following properties and a method for producing the same.
[0008]
Base material: (1) TS ≧ 900 MPa (2) vE−40 ≧ 120 J
Welded part: (1) TS ≧ 900 MPa (2) vE-20 ≧ 70 J
HIC resistance: Crack rate of 1% or less in TM0177 solution specified by NACE On-site weldability: No crack in pre-heating condition in y groove weld crack test
[Means for Solving the Problems]
The present inventors conducted experiments on various steels having a base metal tensile strength of 900 MPa or more, and were able to confirm the following matters.
[0010]
(A) When Mn is suppressed to 2% or less (preferably less than 1.7%), segregation at the center can be greatly reduced. As a result, the HIC resistance at the center is greatly improved.
[0011]
(B) A decrease in hardenability due to a decrease in Mn and a decrease in strength and toughness caused by the decrease in Mn can be compensated by an increase in Cr, Mo, B without using Cu precipitation strengthening, and a high Mn Better toughness can be ensured compared to steel.
[0012]
(C) The degree of increase in B, Cr, and Mo in (b) above improves the hardenability and allows the next metal structure to be obtained over the entire thickness. That is, the mixed structure of martensite and lower bainite is set to 90% or more by volume ratio, and the volume ratio of lower bainite in the mixed structure is set to 10% or more.
[0013]
The present invention has been completed through on-site trials by combining the above matters, and the gist thereof is the following high-strength steel and its manufacturing method.
[0014]
(1) By mass% , C: 0.02 to 0.1% , Si: 0.6% or less , Mn: 0.2% to 2% , Ni: 0.2 to 1.2% , Ti: 0.005 to 0.03% , Al: 0.1% or less , N : 0.001 to 0.006% , B: 0.0005 to 0.0025% , Cr: 0.6% to 1.2% , Mo: 0.6% to 1.2% , P: 0.015% or less and S: 0.003% or less, and Cu: 0.6% or less, Nb: 0.1% or less, V: 0.1% or less and Ca: include one or more of 0.006% or less, and a balance of Fe and unavoidable impurity elements, mixing of lower bainite and martensite The volume ratio of the structure is 90% or more of the entire metal structure, the volume ratio of the lower bainite in the mixed structure is 10% or more, and the tensile strength of the prior austenite grains having an aspect ratio of 3 or more is 900 MPa or more. High-strength steel with excellent center characteristics.
[0015]
(2) the cast slab, a rolling after heating to 900 to 1200 ° C., the cumulative reduction rate in the pre-recrystallization temperature region of austenite is 50% or more, and terminates the rolling at Ar 3 point or more, Ar 3 point or more The method for producing high-tensile steel as described in (1) above, wherein the steel is cooled to at least 500 ° C. at a cooling rate in the range of 10 to 45 ° C./s.
[0016]
(3) The manufacturing method according to (2) above, wherein a tempering treatment is further performed at less than Ac 1 point.
[0017]
In each of the above inventions, when austenite remains in the metal structure, the volume ratio is obtained by X-ray diffraction. In addition, upper bainite, pearlite, and the like can be distinguished from a mixed structure with lower bainite and martensite by observing a metal surface etched with picral or the like with an optical microscope. In addition, since the carbides generated in these structures also have morphological characteristics in the respective structures, the replicas from which the carbides are extracted can be identified by observing them with an electron microscope at a magnification of about 2000 times. The ratio of the mixed organization of the site can be obtained. This volume ratio refers to the volume ratio averaged over 10 to 30 fields of view. Further, when it is difficult to discriminate, the thin film is observed with a transmission microscope. In this case, since the magnification is 5000 times or more, the number of fields of view should be increased to about 20 to 50 fields and averaged.
[0018]
The aspect ratio of prior austenite grains refers to a value obtained by dividing the diameter (major axis) of austenite grains stretched in the rolling direction by the diameter (minor axis) in the plate thickness direction.
[0019]
The non-recrystallization temperature range refers to a temperature range where recrystallization does not occur. In the case of steel containing an alloy element so as to satisfy a tensile strength of 900 MPa or more, the non-recrystallization temperature range corresponds to a temperature range of 975 ° C. or lower and Ar 3 points or higher. The cumulative rolling reduction refers to the cumulative rolling reduction in this non-recrystallization temperature region, and refers to (thickness at 975 ° C.−thickness at Ar 3 points) / (thickness at 975 ° C.).
[0020]
The cooling rate and cooling stop temperature after rolling refer to the cooling rate and cooling stop temperature at the center of the wall thickness.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next , the reason why the present invention is limited as described above will be described in detail. In the following explanation, “%” of the alloy element content rate represents “ mass %”.
[0022]
1. Chemical composition C: 0.02 to 0.1%
C is an element effective for increasing the strength, and 0.02% or more is necessary to obtain a desired strength in the steel of the present invention. However, if it exceeds 0.1%, not only the toughness of the steel is deteriorated but also the weldability at the site is remarkably deteriorated, so the upper limit is limited to 0.1%.
[0023]
Si: 0.6% or less Si is an effective element for deoxidation, but if it exceeds 0.6%, not only will the toughness of the heat affected zone (HAZ) be reduced, but workability will also be degraded. Therefore, the upper limit is made 0.6%. The Si content may be substantially 0, but if Si is set to 0, the loss of Al becomes large during deoxidation. Therefore, the content that normally remains after deoxidation, for example, about 0.01% is the lower limit. As desirable.
[0024]
Mn: 0.2-2%
Mn is an element effective for increasing the strength, and for that purpose, the content is made 0.2% or more. However, when the content exceeds 2%, the properties of the central portion deteriorate, so when producing a high strength steel having a tensile strength of 900 MPa or more, it is necessary to limit the Mn content to 2% or less. Needs to be less than 1.7%. More preferably, the content is less than 1.5%.
[0025]
Ni: 0.2-1.2%
Ni is an element effective for increasing the strength, and at the same time has an effect of improving the toughness and the propagation stop property of the brittle crack. For this reason, Ni is 0.2% or more. However, if it exceeds 1.2%, an increase in strength and improvement in toughness commensurate with the cost increase cannot be obtained, so the upper limit is made 1.2%.
[0026]
Ti: 0.005 to 0.03%
Ti is an element effective for refining austenite crystal grains during slab heating, and is made 0.005% or more. In particular, in the case of Nb-containing steel, a small amount of Ti is effective for suppressing cracks on the surface of the continuously cast slab promoted by Nb. Such an effect is exhibited by containing 0.005% or more. However, if it exceeds 0.03%, TiN becomes coarse and the effect of refining austenite crystal grains disappears, so the upper limit of Ti is made 0.03%.
[0027]
Al: 0.1% or less Al is usually added to steel as a deoxidizer. Al that remains in the steel without being bonded to oxygen, that is, solAl, has an effect of refining the structure due to precipitation of AlN, and is also a useful element from the viewpoint of improving the base material toughness. The Al refers to both solAl and Al combined with oxygen, that is, insolAl. Excessive Al invites coarsening of inclusions such as oxides and harms the cleanliness of the steel, so the upper limit is made 0.1%. A preferable upper limit is 0.06%, more preferably 0.05%.
[0028]
N: 0.001 to 0.006%
N forms TiN together with Ti and has an effect of suppressing the coarsening of austenite grains during slab reheating and welding. The lower limit for obtaining such an effect is 0.001%. On the other hand, an increase in N causes deterioration in slab quality and deterioration in HAZ toughness due to an increase in solid solution N, so the upper limit is set to 0.006%.
[0029]
B: 0.0005 to 0.0025%
If B is less than 0.0005%, strength cannot be ensured, so 0.0005% or more. On the other hand, if it exceeds 0.0025%, the toughness deteriorates, so the upper limit is made 0.0025%.
[0030]
Cr: 0.6% to 1.2% or less Cr is added in order to avoid deterioration of the center portion characteristics due to the high Mn content and to satisfy the strength. In order to ensure strength, it is necessary to contain more than 0.6%. However, if it exceeds 1.2%, the amount of Cr-based carbide increases and the toughness deteriorates, so the upper limit is made 1.2%.
[0031]
Mo: More than 0.6% and 1.2% or less Mo can ensure hardenability without increasing Mn, avoid deterioration of center part characteristics and satisfy strength, so 0.6% The content rate exceeds. However, if it exceeds 1.2%, the amount of Mo-based carbide increases and the toughness deteriorates, so the upper limit is made 1.2%.
[0032]
The high-tensile steel according to the present invention needs to contain one or more of Cu, Nb, V and Ca as follows in addition to the above alloy elements.
Cu: 0.6% or less
Cu is an element effective for increasing the strength . When added, the content is preferably 0.2% or more. However, if it exceeds 0.6%, the toughness deteriorates, so the upper limit is made 0.6%.
[0033]
Nb: 0.1% or less
Nb is an element effective for refinement of austenite crystal grains in controlled rolling . If added, it is desirable Rukoto be contained 0.01% or more. However, if it exceeds 0.1%, not only the toughness is deteriorated but also the weldability at the site is remarkably deteriorated, so the upper limit is made 0.1%.
[0034]
V: 0.1% or less
V is an element effective for increasing the strength . When added to ensure TS900MPa is desirably Ru is free Yes 0.01% or more. However, if it exceeds 0.1%, the toughness deteriorates, so the upper limit is made 0.1%. In order to improve both strength and toughness, it is desirable to contain about 0.02 to 0.06%.
[0035]
Ca: 0.006% or less
Ca has the effect of controlling the form of MnS and improving the toughness in the direction perpendicular to the rolling direction of the steel . When added, it is desirable to contain 0.0003% or more. On the other hand, if it exceeds 0.006%, nonmetallic inclusions in the steel increase and cause internal defects, so the content is made 0.006% or less.
[0036]
P: 0.015% or less, S: 0.003% or less The content of P or S significantly affects the toughness of the steel, so it is necessary to reduce the content. The reduction of P reduces the center segregation of the slab and reduces brittle fracture at the grain boundary. S becomes MnS and precipitates in the steel, which is stretched by rolling and adversely affects toughness. In order to suppress these adverse effects, P is made 0.015% or less and S is made 0.003% or less.
[0037]
In addition to the limitation of individual alloy elements, the present invention further increases the carbon equivalent (= C + (Mn / 6) + {(Cu + Ni) / 15} + {(Cr + Mo + V) / 5}: unit wt%) Is preferably limited to a range of 0.4 to 0.65%. By limiting the carbon equivalent, not only the base material but also HAZ can have a mixed structure of lower bainite and martensite, and it is possible to obtain a steel having a desired structure in a wide production range without accompanying toughness deterioration. . If the carbon equivalent is less than 0.4%, it becomes difficult to make the tensile strength of the base material 900 MPa or more due to insufficient hardenability, and if the carbon equivalent exceeds 0.65%, it is hardened. The properties may increase excessively and the HAZ toughness and the toughness on the steel sheet surface may deteriorate.
[0038]
2. In order to satisfy the strength and toughness of the metal structure base material at the same time, a mixed structure of lower bainite and martensite is used. The upper limit may be 100%. The term “lower bainite” as used herein refers to a structure in which cementite is aligned and deposited on a surface that forms an angle of 60 degrees with the end face of the ferrite inside the lath-shaped bainitic ferrite. That is, cementite and ferrite satisfy a certain orientation relationship at the ferrite end face. Therefore, there is only one precipitation surface inside one bainitic ferrite. Tempered martensite is also a structure in which cementite is precipitated inside martensite lath, but the fact that there are four variants (four equivalent surfaces in the cubic) on the cementite precipitation surface is the same as cementite in the lower bainite. It is a difference. The reason why the toughness of the mixed structure of lower bainite and martensite is superior is that the lower bainite formed prior to martensite becomes a “wall” to subdivide the austenite grains, and the growth and packet of martensite (the fracture unit of brittle fracture). This is for suppressing the coarsening of the same. In order to improve the toughness while satisfying the strength, the volume fraction of the lower bainite is 10% or more of the total of martensite and lower bainite. That is, the volume ratio in the mixed structure of martensite and lower bainite is set to 10% or more. However, if the volume fraction of the lower bainite increases too much, the tensile strength may decrease and 900 MPa may not be satisfied. Therefore, the volume fraction of the lower bainite in the mixed structure is desirably 75% or less.
[0039]
In order to further improve toughness in the mixed structure of lower bainite and martensite on the premise of satisfying the strength, it is important to finely disperse the lower bainite. For this purpose, as described later, it is necessary to transform from austenite in an unrecrystallized state after rolling. As a result, the nucleation sites of the lower bainite increase, and the lower bainite can be generated from the austenite grain boundaries and many sites within the grains. The flatness of non-recrystallized austenite necessary for causing such an effect is required to be 3 or more in terms of aspect ratio. Here, the aspect ratio of the austenite grain refers to a value obtained by dividing the diameter (major axis) in the rolling direction of the austenite grain by the diameter (minor axis) in the plate thickness direction.
[0040]
3. Manufacturing method Next, the manufacturing method will be described in detail. The most important thing in this production method is to nucleate lower bainite and martensite not only from the austenite grain boundaries but also from the inside of the austenite grains in which the accumulated dislocations introduced by hot rolling are preserved, and this is set to an appropriate volume ratio. That is. The slab heating temperature is set to 1200 ° C. or less in order to prevent coarsening of austenite crystal grains during heating. On the other hand, Mo, Nb, etc. effective for refinement of crystal grains during rolling and precipitation strengthening after rolling. In order to dissolve carbonitride, the temperature is set to 900 ° C. or higher, desirably 950 ° C. or higher. The rolling temperature needs to be sufficiently controlled. In order to nucleate bainitic ferrite from within the austenite grains and to suppress the growth of bainitic ferrite, high-density dislocations are necessary. For this purpose, a cumulative reduction ratio of 50 in the austenite non-recrystallization temperature range is required. % Or more rolling is essential. On the other hand, if the cumulative reduction ratio in the non-recrystallization temperature range of austenite exceeds 90%, the anisotropy of the mechanical properties becomes remarkable, so the cumulative reduction ratio in the non-recrystallization temperature range may be 90% or less. desirable.
[0041]
In order to suppress the upper bainite generated when the temperature range below the Ar 3 point is slowly cooled, the cooling must be performed at a cooling rate within a certain range from the Ar 3 point or more. The cooling rate after rolling is necessary to make the mixed structure of lower bainite and martensite at the volume ratio described above, and the cooling rate at the center of the thickness is in the range of 10 to 45 ° C./s. When the cooling rate is less than 10 ° C./s, upper bainite is formed, and the volume fraction of the mixed structure of lower bainite and martensite is less than 90%, particularly less than 60% when the alloying element is low. Toughness and arrestability deteriorate. On the other hand, when it exceeds 45 ° C./s, the lower bainite structure is not generated, and the structure is composed of only martensite, and the toughness and arrestability deteriorate. Cooling at the cooling rate is performed up to at least 350 ° C. Thereafter, it may be gradually cooled for dehydrogenation.
[0042]
【Example】
Next, the effects of the present invention will be described with reference to examples.
[0043]
The test steel plate was prepared by melting steels having the chemical components shown in Tables 1 and 2 by a conventional method, and rolling slabs obtained by continuous casting under various conditions shown in Table 3. 12-35 mm. The Ar 3 points of the steels in Tables 1 and 2 are in the range of 500 to 600 ° C.
[0044]
[Table 1]
Figure 0003812108
[0045]
[Table 2]
Figure 0003812108
[0046]
[Table 3]
Figure 0003812108
[0047]
Test pieces (tensile test piece: JIS Z 2201 No. 10, impact test piece: JIS Z 2202 No. 4) are collected from the center of the thickness of these steel plates, and are subjected to tensile test (JIS Z 2241) and 2 mm V notch Charpy impact test ( JIS Z 2242). In addition, a tensile test and a Charpy impact test were performed on a butt-welded joint by submerged arc welding using a commercially available flux and a wire for 100 kg high tension.
[0048]
Moreover, in order to evaluate on-site welding workability, a y-groove weld cracking test (JIS Z 3158) was performed. Welding material is a commercially available 100 km high strength SMAW (Shielded Metal Arc Welding: manual welding) rod, and moisture absorption conditions are kept constant so that the amount of diffusible hydrogen contained in the weld metal during welding is 1.5 cc / 100 g. Arranged. In addition, since it is in contact with crude oil and natural gas, the HIC resistance was evaluated. The strip-shaped test piece is mounted on a 4-point bending restraint jig, bent so that the stress of the yield strength of the base material is applied to the center of the test piece, immersed in TM0177 solution specified by NACE for 720 hours, and cracked. The presence or absence of was investigated.
[0049]
Table 4 is a list showing the results of these tests.
[0050]
[Table 4]
Figure 0003812108
[0051]
Despite the use of steel having a chemical composition within the limited range of the present invention, the test numbers 11 and 12 as comparative examples had an aspect ratio of less than 3 because the cumulative rolling reduction in the non-recrystallized region was insufficient. As a result, the toughness was lowered because the lower bainite did not nucleate from within the austenite grains. Moreover, since test numbers 13 and 14 had a low cooling rate, the structures within the limited range of the present invention were not obtained, and the tensile strength could not be secured. In Test No. 15, the C content was too high and the toughness was low, and in C, the C content was too low to ensure the tensile strength. Test Nos. 17, 18, 19, and 21 have high tensile strength due to high Si, Mn, Cu, and Cr, respectively, but low toughness. In particular, 18 having a high Mn content reflects the central segregation, and the HIC characteristics and the y-groove constrained cracking test also show undesirable results. In Test No. 20, since there was little Cr, a mixed structure of lower bainite and martensite was not obtained, and the strength was insufficient. In Test No. 22, Mo was lower than the limited range of the present invention, so the tensile strength decreased. In 23, Mo was too high, so the toughness deteriorated. In Test Nos. 24 and 25, V and Nb were high, so that the toughness was deteriorated. Further, in 25, the HIC characteristics and the y-groove constraint cracking test were not preferable. Test No. 26 or 28 was when Ti or B was low, but in either case the tensile strength was low. When Ti was low, it was presumed that N could not be sufficiently fixed as TiN by Ti, and most of B formed BN and the effect of improving the hardenability of B was not exhibited. Both test numbers 27 and 29 with excessive Ti or B deteriorated toughness. The test number 30 with excessive Al was markedly deteriorated in toughness and performance in the y-groove constraint crack test. In both test numbers 31 and 32 having a low N content, the toughness deteriorated and the HIC characteristics were not satisfactory.
[0052]
On the other hand, in the test numbers 1 to 10 of the inventive examples, a tensile strength of 900 MPa or more and an absorbed energy of 120 J or more were obtained in a Charpy impact test at −40 ° C. In addition, regarding the welded portion, the tensile test and the Charpy impact test of the joint portion have a tensile strength of 900 MPa or more, and the Charpy impact test has an absorbed energy at −20 ° C. of 70 J or more. Furthermore, no cracks occurred in the weld even when welding was performed without preheating in the field welding. As for the HIC resistance, the cracking rate was 1% or less.
[0053]
【The invention's effect】
According to the present invention, a high-tensile steel having a tensile strength of 900 MPa or more and having good toughness, HIC resistance, and weldability at the center can be obtained. As a result, it has become possible to dramatically improve the construction efficiency and transportation efficiency of the pipeline.

Claims (3)

質量%にて、C:0.02〜0.1%Si:0.6%以下Mn:0.2%〜2%Ni:0.2〜1.2%Ti:0.005〜0.03%Al:0.1%以下N:0.001〜0.006%B:0.0005〜0.0025%Cr:0.6%超え1.2%以下Mo:0.6%超え1.2%以下 P:0.015% 以下及び S:0.003% 以下を含有し、さらに、Cu:0.6%以下、Nb:0.1%以下、V:0.1%以下およびCa:0.006%以下のうちの1種または2種以上を含み、残部 Fe および不可避的不純物元素からなり、下部ベイナイトとマルテンサイトの混合組織の体積率が金属組織全体の90%以上、該混合組織のなかでの下部ベイナイトの体積率が10%以上であり、かつ旧オーステナイト粒のアスペクト比が3以上であることを特徴とする引張強さが900MPa以上の中心部特性に優れた高張力鋼。 In mass% , C: 0.02 to 0.1% , Si: 0.6% or less , Mn: 0.2% to 2% , Ni: 0.2 to 1.2% , Ti: 0.005 to 0.03% , Al: 0.1% or less , N: 0.001 to Contains 0.006% , B: 0.0005-0.0025% , Cr: 0.6% to 1.2% , Mo: 0.6% to 1.2% , P: 0.015% or less and S: 0.003% or less, and Cu: 0.6% or less , Nb: 0.1% or less, V: 0.1% or less and Ca: 0.006% or less, including the balance Fe and inevitable impurity elements , the volume of the mixed structure of lower bainite and martensite The tensile strength is characterized in that the ratio is 90% or more of the entire metal structure, the volume ratio of the lower bainite in the mixed structure is 10% or more, and the aspect ratio of the prior austenite grains is 3 or more. High-strength steel with excellent center characteristics of 900 MPa or more. 鋳片を、900〜1200℃に加熱後圧延し、オーステナイトの未再結晶温度域での累積圧下率を50%以上とし、Ar3点以上で圧延を終了し、Ar3点以上から10〜45℃/sの範囲内の冷却速度で少なくとも500℃まで冷却することを特徴とする請求項1に記載する高張力鋼の製造方法。The slab, from rolled after heating to 900 to 1200 ° C., the cumulative reduction rate in the pre-recrystallization temperature region of austenite is 50% or more, and terminates the rolling at Ar 3 point or more, Ar 3 point or more 10 to 45 The method for producing high-strength steel according to claim 1, wherein the steel is cooled to at least 500 ° C at a cooling rate in the range of ° C / s. さらに、Ac1点未満で焼戻処理を加えることを特徴とする請求項2に記載する製造方法。Furthermore, a tempering process is added at less than Ac 1 point, The manufacturing method of Claim 2 characterized by the above-mentioned.
JP34237297A 1997-12-12 1997-12-12 High-strength steel with excellent center characteristics and method for producing the same Expired - Fee Related JP3812108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34237297A JP3812108B2 (en) 1997-12-12 1997-12-12 High-strength steel with excellent center characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34237297A JP3812108B2 (en) 1997-12-12 1997-12-12 High-strength steel with excellent center characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11172365A JPH11172365A (en) 1999-06-29
JP3812108B2 true JP3812108B2 (en) 2006-08-23

Family

ID=18353227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34237297A Expired - Fee Related JP3812108B2 (en) 1997-12-12 1997-12-12 High-strength steel with excellent center characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3812108B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968011B2 (en) 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP5055774B2 (en) * 2005-03-17 2012-10-24 Jfeスチール株式会社 A steel plate for line pipe having high deformation performance and a method for producing the same.
JP4868762B2 (en) * 2005-03-31 2012-02-01 株式会社神戸製鋼所 High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
CA2620069C (en) * 2005-08-22 2012-01-03 Sumitomo Metal Industries, Ltd. Seamless steel pipe for line pipe and a process for its manufacture
CN1330786C (en) * 2005-12-27 2007-08-08 东北大学 Strength of extension 780 MPa grade complex phase steel plate and mfg. method thereof
JP4848966B2 (en) * 2007-01-29 2011-12-28 住友金属工業株式会社 Thick-wall high-tensile steel plate and manufacturing method thereof
EP2128288B1 (en) * 2007-01-31 2013-10-09 JFE Steel Corporation High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP5439819B2 (en) * 2009-01-09 2014-03-12 Jfeスチール株式会社 High-strength steel material with excellent fatigue characteristics and method for producing the same
JP5609383B2 (en) * 2009-08-06 2014-10-22 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
BR112013010765B1 (en) * 2010-11-05 2018-12-18 Nippon Steel & Sumitomo Metal Corporation High strength steel plate and production method thereof
JP6582590B2 (en) * 2015-06-17 2019-10-02 日本製鉄株式会社 Steel sheet for LPG storage tank and method for producing the same
CA3048358C (en) 2017-01-25 2022-06-07 Jfe Steel Corporation Hot-rolled steel sheet for coiled tubing

Also Published As

Publication number Publication date
JPH11172365A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP3545770B2 (en) High tensile steel and method for producing the same
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP3387371B2 (en) High tensile steel excellent in arrestability and weldability and manufacturing method
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP3812108B2 (en) High-strength steel with excellent center characteristics and method for producing the same
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3244984B2 (en) High strength linepipe steel with low yield ratio and excellent low temperature toughness
JP3817887B2 (en) High toughness high strength steel and method for producing the same
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP3344305B2 (en) High-strength steel sheet for line pipe excellent in resistance to hydrogen-induced cracking and method for producing the same
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP3785376B2 (en) Manufacturing method of steel pipe and steel plate for steel pipe excellent in weld heat affected zone toughness and deformability
JP2003306749A (en) Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
JPH0649898B2 (en) Method for producing low yielding high yield point steel with excellent toughness in the heat affected zone
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
JP3244986B2 (en) Weldable high strength steel with excellent low temperature toughness
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JP3244981B2 (en) Weldable high-strength steel with excellent low-temperature toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3244987B2 (en) High strength linepipe steel with low yield ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees