[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3810593B2 - Biomass carbonization apparatus and carbonization method - Google Patents

Biomass carbonization apparatus and carbonization method Download PDF

Info

Publication number
JP3810593B2
JP3810593B2 JP23144899A JP23144899A JP3810593B2 JP 3810593 B2 JP3810593 B2 JP 3810593B2 JP 23144899 A JP23144899 A JP 23144899A JP 23144899 A JP23144899 A JP 23144899A JP 3810593 B2 JP3810593 B2 JP 3810593B2
Authority
JP
Japan
Prior art keywords
carbonization
chamber
biomass
gas combustion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23144899A
Other languages
Japanese (ja)
Other versions
JP2001055580A (en
Inventor
到 梅田
英明 林
一郎 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP23144899A priority Critical patent/JP3810593B2/en
Publication of JP2001055580A publication Critical patent/JP2001055580A/en
Application granted granted Critical
Publication of JP3810593B2 publication Critical patent/JP3810593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可燃性廃棄物、特に山林伐採物やワラ、紙ごみなどのバイオマスを炭化させるバイオマスの炭化装置及び炭化方法に関し、特にバイオマスを炭化させて再利用或いは生物不活性化すると共に、ダイオキシンなどの有害物質の放出対策技術を有し、山林、農耕地、集落、その他排水路や排水機場に排出集積される不定期流出廃棄物の炭化に好ましいバイオマスの炭化装置及び炭化方法に関するものである。また、本発明は、畜糞、排水機場沈殿物等の有機性廃棄物の炭化にも利用できる。
【0002】
【従来の技術】
廃棄物処理はダイオキシンの問題を機に焼却に代わる技術が模索され、都市における大型処理施設では部分燃焼によるガス化+溶融燃焼による高温熱分解による方法が主流となりつつある。
【0003】
しかしながら、小型の処理装置においては、部分燃焼による全量ガス化は施設規模的に適用が困難とされている。特に、農村集落の排水路や排水機場に集積する流出ゴミや、伐採物、収穫時のワラや茎部その他のバイオマスは、降雨時や収穫作業時等に不定期且つ大量に発生し、移送するにも困難を生じるものの、通常は処理量が少ない。そのためこのような地域での廃棄物処理に大規模の連続処理施設を維持することは現実的でない。
【0004】
一方、近年可燃廃棄物の再利用形態として炭化が注目されており、固形燃料の他、水質浄化材、土壌改良材などとして利用されている。更に、炭化した物はガスと違って、ストックが容易である。又炭化は全量ガス化ほどのエネルギーや施設を要せず、小型処理やバッチ式の処理で対応に向いている。前記農村集落での利用にも効果が期待できる。
【0005】
従来、間伐材や、廃材などの再資源化利用として炭が有効に利用されてきたが、近年の生活様式、農林業の近代化により、原料であるバイオマスが、純良な状態で得ることは稀となっている。特に、流出ごみや集落の廃棄物などの資源化方法として炭化を考える場合には、ロープ、マルチ、ビニールシート片などの夾雑物から生じる酸性物、ダイオキシン類などの発生が否定できない。このため、単なる不完全焼却である炭化技術はそのままで使用することはできない。また、畜糞や汚泥などは醗酵による利用はあったが、資源としての利用は進んでいなかった。
【0006】
このため、炭化炉に触媒分解装置や、高温焼却炉や溶融炉などの高温処理施設を付帯させることや炭化室の気密化や熱再利用等の観点からロータリーキルン等の外熱型炭化装置の適用が提案されている。しかしながら、これらも元来は都市廃棄物処理の方法を転用するもので大量連続的な廃棄物発生が前提とならざるを得ない。
【0007】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたもので、小規模ながら不定期的に大量に発生する可燃物廃棄物、例えば、植物体、畜糞、底泥、汚泥等の有機性廃棄物となるバイオマスの炭化技術であって、小規模で、ダイオキシン類の有害物の放出を防止乃至抑制し、安全にストック可能な燃料や水質浄化材、土壌改良材として有用な植物質炭を得ることができるバイオマスの炭化装置及び炭化方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記問題点を解決するため請求項1に記載の発明は、室内の発熱でバイオマスを炭化するバッチ式の炭化室を下部に、該炭化室から排出される揮発成分を含む気流を自己燃焼させるガス燃焼室を上部に配置したバイオマスの炭化装置であって、ガス燃焼室にガス燃焼温度を検出する温度検出手段を配備し、ガス燃焼室とバッチ式の炭化室のそれぞれに燃焼空気を供給する燃焼空気供給手段を配置し、バッチ式の炭化室とガス燃焼室の間に該炭化室からガス燃焼室に流入する気流を遮断できるダンパ機構を設け、温度検出手段の出力によりダンパ機構を制御するように構成したことを特徴とする。
【0009】
上記のように炭化室をバッチ式とすることにより、不定期的に発生するバイオマスの炭化処理に有利となる。また、炭化装置を炭化室とガス燃焼室の2段構成とするので、後段のガス燃焼室の高温化が可能となり、ダイオキシン等の有害物質の排出抑制に効果的である。また、炭化室を下部にガス燃焼室を上部に配置することにより、炭化室で発生する揮発成分を含む気流をガス燃焼室に導くために特別の誘装置が不要で、且つ装置をコンパクトにすることが可能となり、更にガス燃焼室で発生する溶融物等を自然流下で回収できるので、回収が容易となる。また、ガス燃焼室と炭化室のそれぞれに燃焼空気を供給する燃焼空気供給手段を配置し、炭化室とガス燃焼室の間に該炭化室からガス燃焼室に流入する気流を遮断できるダンパ機構を設け、温度検出手段の出力によりダンパ機構を制御すると共に、炭化室に供給する空気を制御するので、バイオマスの炭化を効率良く行うことができる。
【0012】
また、請求項に記載の発明は、請求項に記載のバイオマスの炭化装置において、炭化室に散水装置を設け、温度検出手段の出力により散水装置を制御して散水するように構成したことを特徴とする。
【0013】
上記のように、ガス燃焼室に設けた温度検出手段の出力により散水装置を制御し、散水を行うので、揮発成分がなくなった後の炭化室内温度を効果的に下げることができるから、バイオマスの炭化をより効率良く行うことができる。
【0014】
また、請求項に記載の発明は、バッチ式の炭化室でバイオマスを炭化する炭化工程と、該炭化工程から排出される揮発成分を含む気流をガス燃焼室に導き自己燃焼させるガス燃焼工程を有するバイオマスの炭化方法であって、ガス燃焼工程の温度が所定値に昇温し、該ガス燃焼工程の温度が一旦、該所定温度を維持できなくなった時点で、バッチ式の炭化室から前記ガス燃焼室に導く気流を遮断すると共に、炭化工程における燃焼空気を減少又は遮断し、或いは前記炭化工程の燃焼温度を低下させてバイオマスの炭化を行うことを特徴とする。
【0015】
なお、炭化炉での炭化工程に先立ち炭化原料を分別・前処理しておくことが望ましい。例えば、排水機場に集積する廃棄物の前処理を例にとれば、先ず炭化物原料と非炭化物原料の分別、ついでバイオマスと沈殿物等の有機性廃棄物の分別を行う。この内バイオマスは破砕等によりサイズの均一化を図ることができる。また、有機性廃棄物については、整形したうえで炭化に供することができる。具体的にはラック等に該有機物を収納し、炭化炉内に置けばよい。バイオマスと有機物はその性状と量により同時に炭化室においてもよく、別々に炭化することもできる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図1は本発明に係るバイオマスの炭化装置の一概略構成例を示す図である。本炭化装置は図示するように、室内の発熱でバイオマスを炭化するバッチ式の炭化室10を下部に、該炭化室10から排出される揮発成分を含む気流を自己燃焼させるガス燃焼室20を上部に配置した構成である。
【0017】
炭化室10とガス燃焼室20は、該炭化室10から排出される揮発成分を含む気流が通る通路30で接続され、該通路30にはダンパ機構31が配置されている。炭化室10の上部には散水装置11が配置され、バイオマスを搬入する搬入口14の近傍にはバーナ12が設けられている。また、炭化室10にはブロワ13から燃焼用空気が供給されるようになっている。
【0018】
ガス燃焼室20にはバーナ21を設けると共に、ガス燃焼温度を検出する温度検出手段22を設けている。また、ガス燃焼室20にはブロワ23から燃焼空気が供給されるようになっている。また、ガス燃焼室20は燃焼排ガスを大気に放出するための煙突24が設けられている。
【0019】
上記構成の炭化装置において、バイオマスを炭化室10に搬入し、該炭化室10内を該バイオマスで充満させる。ダンパ機構31により炭化室10とガス燃焼室20を結ぶ通路30を開放する。この状態でブロワ13により炭化室10内に空気を送り、バーナ12でバイオマスに着火する。これにより、炭化室10内の、例えば木質バイオマスは燃焼し、熱分解により発生した揮発成分はガス燃焼室20に流入し、ここでブロワ23から吹き込まれる空気と混合し、バーナ21で着火することにより燃焼する。
【0020】
炭化室10からの揮発成分がなくなった時、ダンパ機構31により通路30を閉じて、炭化室10とガス燃焼室20を遮断し、ブロワ13を停止し炭化室10への空気の供給を停止する。これにより、炭化室10内のバイオマスの炭化が形成される。また、本炭化装置では炭化室10から揮発成分の排出がなくなったら、散水装置11でバイオマスに散水し、燃焼を停止させる。
【0021】
図2は上記炭化装置で木材からなる廃パレットの炭化処理を行った場合の炭化室10内の温度変化とガス燃焼室20内の温度変化を示す図である。図2において、aはガス燃焼室20の温度変化を、bは炭化室10の温度変化をそれぞれ示す。炭化室10内のバイオマスに着火すると、該バイオマスから発生する揮発成分はガス燃焼室20に流入する。バーナ21による予熱によりガス燃焼室20の温度を500℃前後まで上昇させたところで、自然にガス化燃焼を開始する。炭化室10内の廃パレットのガス化燃焼により、炭化室10内の温度は除々に昇温し、600℃前後まで上昇すると共に、発生した揮発成分がガス燃焼室20に流入する。
【0022】
ガス燃焼室20内の温度も着火から揮発成分の燃焼により、800℃前後(最高912℃)まで上昇する。炭化室10からの揮発成分の流入がなくなると、800℃前後から温度が下がり始めるので、この温度が下がり始める点cを揮発成分がなくなった時として、ブロワ13を停止して炭化室10への燃焼空気の供給を遮断すると共に、ダンパ機構31により通路30を閉じる。これにより所定時間の後燃焼後に散水装置11から散水し、炭化された廃パレットを冷却する。ここで、燃焼空気の供給を遮断しないと図2の破線dで示すように炭化室10内の温度は上昇し、廃棄パレットは燃焼し灰となる。
【0023】
図3は上記廃パレットの炭化物(試験炭)と市販のバーベキュー用の炭(市販炭)との強熱減量を比較して検討した結果を示す図である。試験炭の強熱減量は94.85%であるのに対して、市販炭は96.22%であり、試験炭は市販炭と比較し、強熱減量に関しては遜色がないことが確認された。
【0024】
図4は本発明に係るバイオマスの炭化装置の他の概略構成を示す図である。図4において、ガス燃焼室20の底面が該ガス燃焼室20と炭化室10を接続する通路30に向かって下向きに傾斜している。そして通路30の下方には煤塵受け15が配置されている。このように構成することにより、ガス燃焼室20からの溶融物やスラグや煤塵が煤塵受け15に落下するから、溶融物やスラグや煤塵の回収が容易になる。
【0025】
図5は本発明に係るバイオマスの炭化装置の他の概略構成を示す図である。図5において、ガス燃焼室20の底面が煙突24に向かって下向きに傾斜している。また、煙突24の下方にはスラグや煤塵を取り出す取出し口40、煤塵受け41が配置されている。このように構成することにより、ガス燃焼室20からの溶融物やスラグや煤塵が煤塵受け41に落下するから、溶融物やスラグや煤塵の回収が容易になる。
【0026】
通常の焼却炉の場合、固定化された炭素を後燃焼で完全に焼却してしまうが、上記実施形態例の炭化装置では、炭化室10内のバイオマスの揮発成分が無くなったことを温度検出手段22で検出し、ダンパ機構31で通路30を閉じて炭化室10とガス燃焼室20を遮断すると共に、ブロワ13を停止し炭化室10内への燃焼空気の供給を停止し、更に散水装置11で散水し、バイオマスの燃焼を自動的に止めている。
【0027】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、バイオマスを炭化するバッチ式の炭化室を下部に、該炭化室から排出される揮発成分を含む気流を自己燃焼させるガス燃焼室を上部に配置したので、下記の優れた効果が得られる。
【0028】
(1)炭化室をバッチ式とすることにより、不定期的に発生するバイオマスの炭化処理に有利となる。
【0029】
(2)炭化装置を炭化室とガス燃焼室の2段構成とするので、後段のガス燃焼室の高温化が可能となり、ダイオキシン等の有害物質の排出抑制に効果的である。
【0030】
(3)炭化室を下部にガス燃焼室を上部に配置することにより、炭化室で発生する揮発成分を含む気流をガス燃焼室に導くために特別の誘因装置が不要で、且つ装置をコンパクトにすることが可能となり、更にガス燃焼室で発生する溶融物等を自然流下で回収できるので、回収が容易となる。
【0031】
また、ガス燃焼室と炭化室のそれぞれに燃焼空気を供給する燃焼空気供給手段を配置し、炭化室とガス燃焼室の間に該炭化室からガス燃焼室に流入する気流を遮断できるダンパ機構を設け、ガス燃焼室に設けた温度検出手段の出力によりダンパ機構を制御すると共に、炭化室に供給する空気を制御するので、上記(1)乃至(3)の効果に加え、バイオマスの炭化を効率良く行うことができる炭化装置を提供できる。
【0032】
請求項に記載の発明によれば、ガス燃焼室に設けた温度検出手段の出力により散水装置を制御し、散水を行なうので、揮発成分がなくなった後の炭化室温度を効果的に下げることができるから、バイオマスの炭化をより効率良く行うことができる炭化装置を提供できる。
【0033】
請求項に記載の発明によれば、ガス燃焼工程の温度が所定値に昇温し、該ガス燃焼工程の温度が一旦、該所定温度を維持できなくなった時点で、バッチ式の炭化室からガス燃焼室に導く気流を遮断すると共に、炭化工程における燃焼空気を減少又は遮断し、或いは炭化工程の燃焼温度を低下させてバイオマスの炭化を行うので、ダイオキシン類の有害物の放出を防止乃至抑制しながら、安全にストック可能な燃料や水質浄化材、土壌改良材として有用な植物質炭を得ることができるバイオマス炭化方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係るバイオマスの炭化装置の概略構成を示す図である。
【図2】本発明に係る炭化装置で廃パレットの炭化処理を行った場合の炭化室内の温度変化とガス燃焼室内の温度変化を示す図である。
【図3】本発明に係る炭化装置で得られた廃パレットの炭化物(試験炭)と市販のバーベキュー用の炭(市販炭)との強熱減量を比較した結果を示す図である。
【図4】本発明に係るバイオマスの炭化装置の他の概略構成を示す図である。
【図5】本発明に係るバイオマスの炭化装置の他の概略構成を示す図である。
【符号の説明】
10 炭化室
11 散水装置
12 バーナ
13 ブロワ
14 搬入口
15 煤塵受け
20 ガス燃焼室
21 バーナ
22 温度検出手段
23 ブロワ
24 煙突
25 燃焼室底面
30 通路
31 ダンパ機構
40 取出し口
41 煤塵受け
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbonization apparatus and a carbonization method for carbonizing combustible waste, in particular, biomass such as forested forests, straw, paper waste, and the like, and in particular, carbonizing the biomass to reuse or inactivate dioxins, etc. The present invention relates to a carbonization apparatus and a carbonization method for biomass which are suitable for carbonization of mountainous forests, agricultural land, villages, and other irregularly discharged waste discharged and accumulated in drainage canals and drainage stations. Moreover, this invention can be utilized also for carbonization of organic wastes, such as livestock droppings and a drainage machine deposit.
[0002]
[Prior art]
As for waste treatment, technology to replace incineration has been sought due to the problem of dioxins, and in large-scale treatment facilities in cities, gasification by partial combustion and high-temperature thermal decomposition by melting combustion are becoming mainstream.
[0003]
However, in a small processing apparatus, full gasification by partial combustion is difficult to apply on a facility scale. In particular, spilled garbage collected in drainage canals and drainage stations in rural villages, felled products, straws and stems and other biomass during harvesting are generated and transported irregularly and in large quantities during rainfall and harvesting operations. However, the processing amount is usually small. Therefore, it is not realistic to maintain a large-scale continuous treatment facility for waste treatment in such areas.
[0004]
On the other hand, in recent years, carbonization has attracted attention as a reusable form of combustible waste, and is used as a water purification material, a soil improvement material and the like in addition to solid fuel. Furthermore, unlike carbon, carbonized materials are easy to stock. Carbonization does not require as much energy and facilities as gasification, and is suitable for small processing and batch processing. The effect can also be expected for use in the rural village.
[0005]
Conventionally, charcoal has been used effectively as a resource for recycling thinned wood, waste wood, etc., but it is rare that biomass as a raw material can be obtained in a pure state due to modern lifestyles and modernization of agriculture and forestry. It has become. In particular, when carbonization is considered as a resource recycling method such as spilled waste and village waste, the generation of acid and dioxins generated from contaminants such as rope, mulch, and vinyl sheet pieces cannot be denied. For this reason, the carbonization technique which is mere incomplete incineration cannot be used as it is. Moreover, although animal dung, sludge, etc. were used by fermentation, the use as resources was not progressing.
[0006]
For this reason, application of external heating type carbonization equipment such as rotary kilns from the viewpoint of attaching high temperature treatment facilities such as catalytic cracking equipment, high temperature incinerators and melting furnaces to the carbonization furnace, and airtightening and heat reuse of the carbonization chamber Has been proposed. However, these are originally diverted from the municipal waste treatment method, and a large amount of continuous waste generation must be assumed.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described points, and is a biomass that becomes a combustible waste that is generated in large quantities irregularly on a small scale, for example, organic waste such as plant bodies, livestock dung, bottom mud, sludge, etc. Is a small-scale biomass that can prevent or control the release of dioxin harmful substances and can be used as a safe stockable fuel, water purification material, and soil-improving plant-based charcoal. An object of the present invention is to provide a carbonization apparatus and a carbonization method.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the invention according to claim 1 is a gas that self-combusts an air stream containing a volatile component discharged from the carbonization chamber at a lower portion of a batch type carbonization chamber that carbonizes biomass by heat generation in the room. A biomass carbonization device with a combustion chamber located in the upper part, with a temperature detection means that detects the gas combustion temperature in the gas combustion chamber, and combustion that supplies combustion air to each of the gas combustion chamber and the batch-type carbonization chamber An air supply means is arranged, and a damper mechanism is provided between the batch-type carbonization chamber and the gas combustion chamber to block an airflow flowing from the carbonization chamber into the gas combustion chamber, and the damper mechanism is controlled by the output of the temperature detection means. characterized by being configured to.
[0009]
By using a batch type carbonization chamber as described above, it is advantageous for carbonization treatment of biomass that occurs irregularly. In addition, since the carbonization apparatus has a two-stage configuration including a carbonization chamber and a gas combustion chamber, it is possible to increase the temperature of the gas combustion chamber in the subsequent stage, which is effective in suppressing discharge of harmful substances such as dioxins. Further, by disposing the gas combustion chamber at the top of the coking chamber at the bottom, the air flow containing a volatile component generated in the carbonization chamber requires no special induction drawing device for directing the gas combustion chamber, and the apparatus compact In addition, since the melt generated in the gas combustion chamber can be recovered under a natural flow, recovery is facilitated. In addition, a damper air supply means for supplying combustion air to each of the gas combustion chamber and the carbonization chamber is disposed, and a damper mechanism that can block an air flow flowing from the carbonization chamber to the gas combustion chamber between the carbonization chamber and the gas combustion chamber. Since the damper mechanism is controlled by the output of the temperature detection means and the air supplied to the carbonization chamber is controlled, carbonization of biomass can be performed efficiently.
[0012]
In addition, the invention according to claim 2 is configured such that in the biomass carbonization apparatus according to claim 1 , a watering device is provided in the carbonization chamber, and the watering device is controlled by the output of the temperature detection means. It is characterized by.
[0013]
As described above, the sprinkler is controlled by the output of the temperature detecting means provided in the gas combustion chamber, and watering is performed, so that the temperature of the carbonization chamber after the volatile components are eliminated can be effectively reduced. Carbonization can be performed more efficiently.
[0014]
The invention according to claim 3 includes a carbonization step for carbonizing biomass in a batch-type carbonization chamber, and a gas combustion step for self-combusting an air stream containing volatile components discharged from the carbonization step to the gas combustion chamber. A method of carbonizing biomass having a gas combustion process at a temperature raised to a predetermined value, and once the temperature of the gas combustion process can no longer maintain the predetermined temperature, the gas is discharged from a batch-type carbonization chamber. While blocking the airflow which leads to a combustion chamber, the combustion air in a carbonization process is reduced or interrupted, or the combustion temperature of the said carbonization process is lowered, and biomass carbonization is performed.
[0015]
It is desirable to separate and pretreat the carbonized raw material prior to the carbonization step in the carbonization furnace. For example, taking the pretreatment of waste accumulated in a drainage station as an example, first, separation of carbide raw materials and non-carbide raw materials, and then separation of organic wastes such as biomass and sediment. The biomass can be made uniform in size by crushing or the like. Moreover, about organic waste, after shaping | molding, it can use for carbonization. Specifically, the organic matter may be stored in a rack or the like and placed in a carbonization furnace. Biomass and organic matter may be in the carbonization chamber at the same time depending on their properties and quantity, or they can be carbonized separately.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration example of a biomass carbonization apparatus according to the present invention. As shown in the figure, the carbonization apparatus has a batch-type carbonization chamber 10 that carbonizes biomass by heat generated in the room at the bottom, and a gas combustion chamber 20 that self-combusts an airflow containing volatile components discharged from the carbonization chamber 10 at the top. It is the composition arranged in.
[0017]
The carbonization chamber 10 and the gas combustion chamber 20 are connected by a passage 30 through which an air flow containing volatile components discharged from the carbonization chamber 10 passes. A damper mechanism 31 is disposed in the passage 30. A watering device 11 is disposed in the upper part of the carbonization chamber 10, and a burner 12 is provided in the vicinity of the carry-in port 14 for carrying in biomass. The combustion chamber 10 is supplied with combustion air from a blower 13.
[0018]
The gas combustion chamber 20 is provided with a burner 21 and temperature detecting means 22 for detecting the gas combustion temperature. In addition, combustion air is supplied from the blower 23 to the gas combustion chamber 20. The gas combustion chamber 20 is provided with a chimney 24 for releasing combustion exhaust gas to the atmosphere.
[0019]
In the carbonization apparatus having the above configuration, the biomass is carried into the carbonization chamber 10 and the carbonization chamber 10 is filled with the biomass. A passage 30 connecting the carbonization chamber 10 and the gas combustion chamber 20 is opened by the damper mechanism 31. In this state, air is sent into the carbonization chamber 10 by the blower 13, and the biomass is ignited by the burner 12. Thereby, for example, woody biomass in the carbonization chamber 10 is combusted, and volatile components generated by thermal decomposition flow into the gas combustion chamber 20 where they are mixed with the air blown from the blower 23 and ignited by the burner 21. To burn.
[0020]
When the volatile component from the carbonization chamber 10 is exhausted, the passage 30 is closed by the damper mechanism 31, the carbonization chamber 10 and the gas combustion chamber 20 are shut off, the blower 13 is stopped, and the supply of air to the carbonization chamber 10 is stopped. . Thereby, carbonization of the biomass in the carbonization chamber 10 is formed. Moreover, in this carbonization apparatus, if discharge | emission of a volatile component from the carbonization chamber 10 is lose | eliminated, it will sprinkle into biomass with the water sprinkler 11, and will stop combustion.
[0021]
FIG. 2 is a diagram showing a temperature change in the carbonization chamber 10 and a temperature change in the gas combustion chamber 20 when a carbonization process is performed on a waste pallet made of wood with the carbonization apparatus. In FIG. 2, “a” indicates a temperature change in the gas combustion chamber 20, and “b” indicates a temperature change in the carbonization chamber 10. When the biomass in the carbonization chamber 10 is ignited, volatile components generated from the biomass flow into the gas combustion chamber 20. When the temperature of the gas combustion chamber 20 is raised to around 500 ° C. by preheating by the burner 21, gasification combustion starts naturally. Due to the gasification combustion of the waste pallet in the carbonization chamber 10, the temperature in the carbonization chamber 10 gradually rises to about 600 ° C., and the generated volatile components flow into the gas combustion chamber 20.
[0022]
The temperature in the gas combustion chamber 20 also rises to around 800 ° C. (maximum 912 ° C.) by ignition and combustion of volatile components. When the inflow of volatile components from the carbonization chamber 10 ceases, the temperature starts to decrease from around 800 ° C., so that the point c at which this temperature begins to decrease is regarded as the time when the volatile components are exhausted, and the blower 13 is stopped to enter the carbonization chamber 10. The supply of the combustion air is shut off and the passage 30 is closed by the damper mechanism 31. In this way, water is sprinkled from the sprinkler 11 after a predetermined time after combustion, and the carbonized waste pallet is cooled. Here, if the supply of combustion air is not shut off, the temperature in the carbonization chamber 10 rises as shown by the broken line d in FIG. 2, and the waste pallet burns to become ash.
[0023]
FIG. 3 is a diagram showing the results of a comparison of ignition loss between the above-mentioned waste pallet carbide (test charcoal) and commercially available barbecue charcoal (commercial charcoal). The ignition loss of the test charcoal is 94.85%, whereas that of the commercial charcoal is 96.22%. Compared with the commercial charcoal, it was confirmed that the test charcoal has no inferiority in terms of the ignition loss. .
[0024]
FIG. 4 is a diagram showing another schematic configuration of the biomass carbonization apparatus according to the present invention. In FIG. 4, the bottom surface of the gas combustion chamber 20 is inclined downward toward the passage 30 connecting the gas combustion chamber 20 and the carbonization chamber 10. A dust receiver 15 is disposed below the passage 30. By comprising in this way, since the melt, slag, and soot from the gas combustion chamber 20 fall to the soot receiver 15, collection | recovery of a melt, slag, and soot becomes easy.
[0025]
FIG. 5 is a diagram showing another schematic configuration of the biomass carbonization apparatus according to the present invention. In FIG. 5, the bottom surface of the gas combustion chamber 20 is inclined downward toward the chimney 24. Further, an extraction port 40 for taking out slag and dust and a dust receiver 41 are arranged below the chimney 24. By comprising in this way, since the melt, slag, and soot from the gas combustion chamber 20 fall in the soot receiver 41, collection | recovery of a melt, slag, and soot becomes easy.
[0026]
In the case of a normal incinerator, the fixed carbon is completely incinerated by post-combustion. However, in the carbonization apparatus of the above-described embodiment, the temperature detection means indicates that the volatile components of biomass in the carbonization chamber 10 have disappeared. 22, the passage 30 is closed by the damper mechanism 31 to shut off the carbonization chamber 10 and the gas combustion chamber 20, the blower 13 is stopped, the supply of combustion air into the carbonization chamber 10 is stopped, and the watering device 11 is further stopped. Water is sprayed and biomass combustion is automatically stopped.
[0027]
【The invention's effect】
As described above, according to the first aspect of the present invention, the batch-type carbonization chamber for carbonizing biomass is disposed in the lower portion, and the gas combustion chamber for self-combusting the airflow containing the volatile components discharged from the carbonization chamber is provided. Since it is arranged at the top, the following excellent effects can be obtained.
[0028]
(1) By making a carbonization chamber into a batch type, it becomes advantageous for carbonization treatment of biomass generated irregularly.
[0029]
(2) Since the carbonization apparatus has a two-stage configuration including a carbonization chamber and a gas combustion chamber, it is possible to increase the temperature of the gas combustion chamber in the subsequent stage, and it is effective for suppressing emission of harmful substances such as dioxins.
[0030]
(3) By arranging the gas combustion chamber in the lower part and the gas combustion chamber in the upper part, no special incentive device is required to guide the air stream containing the volatile components generated in the carbonization chamber to the gas combustion chamber, and the device is made compact. In addition, since the melt generated in the gas combustion chamber can be recovered under a natural flow, recovery is facilitated.
[0031]
Also, place the combustion air supply means for supplying combustion air to each of the coking chamber and the gas combustion chamber, a damper mechanism that can block the air flow flowing into the gas combustion chamber from the coking chamber during the coking chamber and the gas combustion chamber Since the damper mechanism is controlled by the output of the temperature detection means provided in the gas combustion chamber and the air supplied to the carbonization chamber is controlled, the carbonization of biomass is efficiently performed in addition to the effects (1) to (3) above. The carbonization apparatus which can be performed well can be provided.
[0032]
According to the second aspect of the present invention, the sprinkler is controlled by the output of the temperature detecting means provided in the gas combustion chamber, and the sprinkling is performed, so that the temperature of the carbonization chamber after the volatile components are eliminated can be effectively reduced. Therefore, the carbonization apparatus which can perform carbonization of biomass more efficiently can be provided.
[0033]
According to the invention described in claim 3, the temperature of the gas combustion process is heated to a predetermined value, the temperature of the gas combustion process once, when it becomes impossible to maintain the predetermined temperature, the carbonization chamber of a batch The flow of air to the gas combustion chamber is cut off, and the combustion air in the carbonization process is reduced or cut off, or the combustion temperature in the carbonization process is lowered to carbonize the biomass, thereby preventing or suppressing the release of dioxin harmful substances. On the other hand, it is possible to provide a biomass carbonization method capable of obtaining vegetable charcoal useful as a fuel, water purification material, and soil improvement material that can be safely stocked.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a biomass carbonization apparatus according to the present invention.
FIG. 2 is a diagram showing a temperature change in a carbonization chamber and a temperature change in a gas combustion chamber when the carbonization apparatus according to the present invention carbonizes a waste pallet.
FIG. 3 is a diagram showing a result of comparison of ignition loss between waste pallet carbide (test charcoal) obtained by the carbonization apparatus according to the present invention and commercially available barbecue charcoal (commercial charcoal).
FIG. 4 is a diagram showing another schematic configuration of the biomass carbonization apparatus according to the present invention.
FIG. 5 is a diagram showing another schematic configuration of the biomass carbonization apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Carbonization chamber 11 Sprinkler 12 Burner 13 Blower 14 Carry-in inlet 15 Dust receiver 20 Gas combustion chamber 21 Burner 22 Temperature detection means 23 Blower 24 Chimney 25 Combustion chamber bottom surface 30 Passage 31 Damper mechanism 40 Extraction port 41 Dust receiver 41

Claims (3)

室内の発熱でバイオマスを炭化するバッチ式の炭化室を下部に、該炭化室から排出される揮発成分を含む気流を自己燃焼させるガス燃焼室を上部に配置したバイオマスの炭化装置であって、
前記ガス燃焼室にガス燃焼温度を検出する温度検出手段を配備し、
前記ガス燃焼室と前記バッチ式の炭化室のそれぞれに燃焼空気を供給する燃焼空気供給手段を配置し、
前記バッチ式の炭化室と前記ガス燃焼室の間に該炭化室からガス燃焼室に流入する気流を遮断できるダンパ機構を設け、
前記温度検出手段の出力により前記ダンパ機構を制御するように構成したことを特徴とするバイオマスの炭化装置。
A biomass carbonization device in which a batch-type carbonization chamber that carbonizes biomass with heat generated in a room is disposed at the bottom, and a gas combustion chamber that self-combusts an airflow containing volatile components discharged from the carbonization chamber is disposed at the top ,
A temperature detecting means for detecting a gas combustion temperature in the gas combustion chamber;
Combustion air supply means for supplying combustion air to each of the gas combustion chamber and the batch type carbonization chamber is disposed,
A damper mechanism is provided between the batch-type carbonization chamber and the gas combustion chamber to block an airflow flowing from the carbonization chamber to the gas combustion chamber,
A biomass carbonization apparatus configured to control the damper mechanism by an output of the temperature detection means .
請求項に記載のバイオマスの炭化装置において、
前記炭化室に散水装置を設け、
前記温度検出手段の出力により前記散水装置を制御して散水するように構成したことを特徴とするバイオマスの炭化装置。
The biomass carbonization apparatus according to claim 1 ,
A watering device is provided in the carbonization chamber,
A biomass carbonization apparatus configured to spray water by controlling the water spray apparatus according to an output of the temperature detection means.
バッチ式の炭化室でバイオマスを炭化する炭化工程と、該炭化工程から排出される揮発成分を含む気流をガス燃焼室に導き自己燃焼させるガス燃焼工程を有するバイオマスの炭化方法であって、
前記ガス燃焼工程の温度が所定値に昇温し、該ガス燃焼工程の温度が一旦、該所定温度を維持できなくなった時点で、前記バッチ式の炭化室から前記ガス燃焼室に導く気流を遮断すると共に、前記炭化工程における燃焼空気を減少又は遮断し、或いは前記炭化工程の燃焼温度を低下させてバイオマスの炭化を行うことを特徴とするバイオマスの炭化方法。
A carbonization method of biomass having a carbonization step of carbonizing biomass in a batch-type carbonization chamber, and a gas combustion step in which an air stream containing volatile components discharged from the carbonization step is guided to the gas combustion chamber and self-combusted,
When the temperature of the gas combustion process rises to a predetermined value and the temperature of the gas combustion process cannot once maintain the predetermined temperature, the air flow leading from the batch type carbonization chamber to the gas combustion chamber is shut off. In addition, a biomass carbonization method is characterized in that the combustion air in the carbonization step is reduced or blocked, or the combustion temperature in the carbonization step is lowered to carbonize the biomass.
JP23144899A 1999-08-18 1999-08-18 Biomass carbonization apparatus and carbonization method Expired - Fee Related JP3810593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23144899A JP3810593B2 (en) 1999-08-18 1999-08-18 Biomass carbonization apparatus and carbonization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23144899A JP3810593B2 (en) 1999-08-18 1999-08-18 Biomass carbonization apparatus and carbonization method

Publications (2)

Publication Number Publication Date
JP2001055580A JP2001055580A (en) 2001-02-27
JP3810593B2 true JP3810593B2 (en) 2006-08-16

Family

ID=16923696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23144899A Expired - Fee Related JP3810593B2 (en) 1999-08-18 1999-08-18 Biomass carbonization apparatus and carbonization method

Country Status (1)

Country Link
JP (1) JP3810593B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679084B2 (en) 2002-10-09 2005-08-03 株式会社神戸製鋼所 Method for producing molten metal raw material and method for producing molten metal
JP6105420B2 (en) * 2013-07-18 2017-03-29 株式会社三育 Magnetic combustion apparatus, carbonization apparatus, and carbonization method using the same
CN115156261B (en) * 2022-07-28 2023-12-22 重庆交通大学 Movable hydrothermal carbonization kitchen garbage treatment equipment

Also Published As

Publication number Publication date
JP2001055580A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
CN105366896B (en) A kind of equipment and technique of sludge gasification melting circular treatment
CN106482117B (en) Domestic garbage pyrolysis processing method and processing device
CN103658157B (en) Solid waste homogeneous modification gasification clean electric power generation processing method
CN103934254B (en) A kind of system and method for cement kiln associated treatment domestic waste
CN106493148A (en) A kind of solid organic castoff gasification and melting circulating disposal process
CZ283211B6 (en) Process and apparatus for heat treatment of waste
CN206582853U (en) Small-sized domestic garbage pyrolysis stove
CN102294340B (en) Harmless treatment system for city refuse burning, and method thereof
CN102145343A (en) Integrated garbage treatment and utilization method for effectively controlling dioxin
CN109579017A (en) A kind of small rural refuse pyrolysis gasification burning treatment process
CN202224433U (en) Refuse treatment system unit capable of effectively restraining dioxin
CN106642134A (en) Method and system for combined treatment of household rubbish and fly ash
CN108302541A (en) Refuse pyrolysis gasification comprehensive Treatment process
CN111156529A (en) Method and system for preparing fuel incineration hazardous waste from domestic sludge
CN112161273B (en) Harmless treatment device and method for household garbage
CN112066384A (en) Straw household garbage waste bundling and pyrolysis cooperative treatment method
CN207514918U (en) A kind of rubbish cooperates with incinerating and treating device with semi-dry sludge
US7736512B2 (en) Method for the production of natural energy from waste
JP3810593B2 (en) Biomass carbonization apparatus and carbonization method
CN1793731A (en) Garbage incinerator device using backfire method
CN208536005U (en) Domestic garbage treating system
CN214664441U (en) Classified dry garbage pyrolysis and staged combustion system
CN202766491U (en) Rubbish dry distillation, pyrolyzation, gasification and power generation system
CN102147114A (en) House refuse thermal pyrolysis device
CN108151024A (en) A kind of solid waste substance treating method and processing system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees