[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3809749B2 - Nitride semiconductor light emitting device - Google Patents

Nitride semiconductor light emitting device Download PDF

Info

Publication number
JP3809749B2
JP3809749B2 JP30098399A JP30098399A JP3809749B2 JP 3809749 B2 JP3809749 B2 JP 3809749B2 JP 30098399 A JP30098399 A JP 30098399A JP 30098399 A JP30098399 A JP 30098399A JP 3809749 B2 JP3809749 B2 JP 3809749B2
Authority
JP
Japan
Prior art keywords
layer
type
nitride semiconductor
thickness
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30098399A
Other languages
Japanese (ja)
Other versions
JP2000091635A (en
Inventor
成人 岩佐
慎一 長濱
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP30098399A priority Critical patent/JP3809749B2/en
Publication of JP2000091635A publication Critical patent/JP2000091635A/en
Application granted granted Critical
Publication of JP3809749B2 publication Critical patent/JP3809749B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は窒化物半導体(InXAlYGa1-X-YN、0≦X、0≦Y、X+Y≦1)よりなるLED素子に関する。
【0002】
【従来の技術】
可視LEDには、従来より赤色LEDと黄緑色LEDとが実用化されていたが、最近、窒化物半導体で青色LED、青緑色LEDが開発されたことにより、初めてB、G、R3色を用いたフルカラーLEDディスプレイが出現した。
【0003】
しかし、今の緑色LEDは発光波長が560nm付近の黄緑色領域にあり、520nm付近の純緑色のLEDではないため色再現領域が狭い。しかも青色LED、赤色LEDの明るさに対して、1/10以下しかないため、ホワイトバランスを取るためには黄緑色LEDの数を増やさなければならないという欠点があった。これを解決するには最低でも光度2cd以上の純緑色LEDが必要である。
【0004】
我々はその問題を解決できる純緑色に発光する高輝度なLEDを開発し、既に発表した(Jpn.J.Appl.Phys. Vol.34 (1995) pp.L797-L799)。図2にそのLEDの構造を示す。21はサファイアよりなる基板、22は膜厚30nmのGaNよりなるバッファ層、23は4μm厚のSiドープn型GaN層、24は0.1μm厚のSiドープn型Al0.1Ga0.9N層、25は50nm厚のSiドープn型In0.05Ga0.95N層、26は2nm厚のノンドープIn0.43Ga0.57N活性層、27は0.1μm厚のMgドープp型Al0.1Ga0.9N層、28は0.5μm厚のMgドープp型GaN層である。このLEDは単一量子井戸(SQW)構造の活性層を有しており、順方向電流20mAにおいて、主発光波長525nm、発光出力1mW、指向角10゜のレンズ形状を有する樹脂でモールドした際の光度は4cdである。このLEDが開発されたことにより、G、B、R各一個ずつで一画素が構成でき、色再現領域が広いディスプレイが実現できるようになった。
【0005】
【発明が解決しようとする課題】
しかしながら、前記構造のLEDは複雑な積層構造を有しているので、窒化物半導体の成長工程が煩雑である。従って本発明の目的とするところは、最小限の窒化物半導体の積層構造で、高輝度なLED等の発光素子を実現することにある。
【0006】
【課題を解決するための手段】
本発明の窒化物半導体LEDは、基板上に、少なくとも、b値が0.05以下のn型AlGa1−bNからなる電流注入層兼キャリア閉じ込め層と、7nm以下の膜厚のInGa1−xN(0<X<1)井戸層を含む量子井戸構造を有する活性層と、y値が0.05以上のp型AlGa1−yNからなるp型クラッド層とをこの順に有する積層構造を有することを特徴とする。なお、本発明において、InGaN、AlGaN、GaN等は必ずしも三元混晶のみ、二元混晶のみの窒化物半導体を指すのではなく、例えばInGaNではInGaNの作用を変化させない範囲で微量のAl、その他の不純物を含んでいても本発明の範囲内であることは云うまでもない。
【0007】
図1に本発明のLED素子の構造を示す模式断面図を示す。この図において、11は基板、12はバッファ層、13はn型InaAlbGa1-a-bN(0≦a、0≦b、a+b≦1)よりなるクラッド層、兼n型コンタクト層、16は単一量子井戸若しくは多重量子井戸構造を有するInXGa1-XN(0≦X<1)よりなる活性層、17はp型AlYGa1-YN(0≦Y<1)よりなるp型クラッド層、18はp型GaNよりなるp型コンタクト層である。
【0008】
基板11にはサファイア(Al23、A面、R面、C面を含む)の他、スピネル(MgAl24)、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、GaN等窒化物半導体を成長するために提案されている従来の材料が使用できる。
【0009】
バッファ層12は例えばGaN、AlN、GaAlN、SiC等が知られており、基板と窒化物半導体との格子不整合を緩和するために、通常およそ5nm〜1μmの膜厚で成長される。例えば、特公昭59−48794号、特公平4−15200号公報にはAlNをバッファ層とする方法が記載され、特開昭60−173829号、特開平4−297023号公報にはGaNをバッファ層とする方法が記載されている。また特に窒化物半導体と格子定数の近い基板、格子定数が一致した基板を用いる場合にはバッファ層が形成されない場合もある。
【0010】
次に本発明の特徴である積層構造について述べる。n型クラッド層13はInaAlbGa1-a-bN(0≦a、0≦b、a+b≦1)で表される窒化物半導体であれば、どのような組成としても良いが、特に好ましくはGaN、a値が0.5以下のInaGa1-aN、またはb値が0.5以下のAlbGa1-bNとすることが望ましい。なぜなら、図1に示すように、n型クラッド層13をn電極を形成するためのコンタクト層として兼用する際に、ある程度の膜厚を必要とする。前記窒化物半導体は例えば1μm以上の膜厚で成長させても、結晶性の良いものが得られるので、コンタクト層としてもn電極と良好なオーミックが得られる。しかも結晶性の良いn型クラッド層の上に次の活性層、p型クラッド層等を積層しないと出力の高いLED素子を得ることは難しいからである。n型クラッド層の膜厚は特に限定するものではないが、前記のようにコンタクト層として兼用するためには、0.5μm〜5μm程度の膜厚で成長させることが望ましい。なお、窒化物半導体はノンドープでも結晶中にできる窒素空孔のためにn型となる性質があるが、通常Si、Ge、Se等のドナー不純物を結晶成長中にドープすることにキャリア濃度の高い好ましいn型とすることができる。
【0011】
次に、活性層16は単一量子井戸(SQW:Single-Quantum-Well)構造、若しくは多重量子井戸(MQW:Multi-Quantum-Well)構造を有するInXGa1-XN(0≦X<1)とする必要がある。SQW構造若しくはMQW構造とすると非常に出力の高い発光素子が得られる。SQW、MQWとはノンドープのInGaNによる量子準位間の発光が得られる活性層の構造を指し、例えばSQWでは活性層を単一組成のInXGa1-XN(0≦X<1)で構成した層であり、InXGa1-XNの膜厚を10nm以下、さらに好ましくは7nm以下とすることにより量子準位間の強い発光が得られる。またMQWは組成比の異なるInXGa1-XN(この場合X=0、X=1を含む)の薄膜を複数積層した多層膜とする。このように活性層をSQW、MQWとすることにより量子準位間発光で、約365nm〜660nmまでの発光が得られる。量子構造の井戸層の厚さとしては、前記のように7nm以下が好ましい。多重量子井戸構造では井戸層はInXGa1-XNで構成し、障壁層は同じくInYGa1-YN(Y<X、この場合Y=0を含む)で構成することが望ましい。特に好ましくは井戸層と障壁層をInGaNで形成すると同一温度で成長できるので結晶性のよい活性層が得られる。障壁層の膜厚は15nm以下、さらに好ましくは12nm以下にすると高出力な発光素子が得られる。
【0012】
前記のように量子構造の井戸層の厚さとしては7nm以下、さらに好ましくは5nm以下とすると発光出力の高い素子を実現できる。これはこの膜厚がInGaN活性層の臨界膜厚以下であることを示している。InGaNでは電子のボーア半径が約3nmであり、このためInGaNの量子効果が7nm以下で現れる。多重量子井戸構造の場合も同様に、井戸層の厚さは7nm以下に調整し、一方、障壁層の厚さは15nm以下に調整することが望ましい。
【0013】
次に活性層16に接するp型クラッド層17はp型AlYGa1-YN(0≦Y<1)とする必要があり、特に好ましくはY値を0.05以上とすると高出力の素子が得られる。さらに、AlGaNは高キャリア濃度のp型が得られやすく、また成長時に分解しにくく、InGaN活性層16の分解を抑える作用がある。しかもInGaN活性層16に対し、バンドオフセットおよび屈折率差を他の窒化物半導体に比べて大きくできるので最も優れている。また第一のp型クラッド層をp型GaNとすると、p型AlGaNに比べて発光出力が約1/3に低下してしまう。これはAlGaNがGaNに比べてp型になりやすいか、あるいはGaN成長時にInGaN活性層が分解していると推察される。従ってp型クラッド層としては、Y値が0.05以上のMgドープp型AlYGa1-YNが最も好ましい。
【0014】
このp型クラッド層17の膜厚は1nm以上、2μm以下、さらに好ましくは5nm以上、0.5μm以下にすることが望ましい。1nmよりも薄いとp型クラッド層17が存在しないのに近い状態になり、発光出力が低下する傾向にあり、2μmより厚いと結晶成長中にp型クラッド層自体にクラックが入りやすくなり、クラックの入った層に次の層を積層しても、結晶性の良い半導体層が得られず、出力が低下する傾向にあるからである。なお、窒化物半導体をp型とするには、結晶成長中にMg、Zn、C、Be、Ca、Ba等のアクセプター不純物をドープすることによって得られるが、高キャリア濃度のp層を得るためには、アクセプター不純物ドープ後、窒素、アルゴン等の不活性ガス雰囲気中、400℃以上でアニーリングすることがより望ましい(特開平5−183189号公報)。アニーリングを行うことにより、通常p型AlGaNで1×1017〜1×1019/cm3のキャリア濃度が得られる。またその他、特開平3−218625号公報に示される電子線照射処理を行ってもよい。
【0015】
次に、p型コンタクト層18はp型GaN、特に好ましくはMgドープp型GaNとする。p型GaNは電極と接する層であるので、LED、LD等の発光素子の場合オーミック接触を得ることが重要である。p型GaNは多くの金属とオーミックが取りやすくコンタクト層として最も好ましい。電極材料としては例えばNi−Au、Ni−Ti等によりオーミックを得ることができる。p型コンタクト層の厚さは特に限定するものではないが、通常50nm〜2μm程度の厚さで成長することが望ましい。
【0016】
窒化物半導体は有機金属気相成長法(MOVPE)、ハライド気相成長法(HDVPE)、分子線気相成長法(MBE)等の気相成長法によって成長できる。その中でもMOVPE法によると、迅速に結晶性の良いものが得られる。MOVPE法では、GaソースとしてはTMG(トリメチルガリウム)、TEG(トリエチルガリウム)、AlソースとしてはTMA(トリメチルアルミニウム)、TEA(トリエチルアルミニウム)、Inソースとしては、TMI(トリメチルインジウム)、TEI(トリエチルインジウム)等のトリアルキル金属化合物が多く用いられ、窒素源としてはアンモニア、ヒドラジン等のガスが用いられる。また不純物ソースとしてはSiであればシランガス、Geであればゲルマンガス、MgであればCp2Mg(シクロペンタジエニルマグネシウム)、ZnであればDEZ(ジエチルジンク)等のガスが用いられる。MOVPE法ではこれらのガスを例えば600℃以上に加熱された基板の表面に供給して、ガスを分解することにより、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)をエピタキシャル成長させることができる。
【0017】
【作用】
本発明の発光素子は必要最小限の構造で、発光出力に優れた素子を得ることができる。それは各層それぞれが有効に作用しているからである。まずn型クラッド層は電流注入層にもなるし、キャリア閉じ込め層にもなる。SQW、MQWの活性層は結晶性が良いので、発光層として非常に効率の良い層となる。p型クラッド層はキャリア閉じ込め層として濃度が高い層であり、さらにキャリア閉じ込め層としてるので高発光出力が得られる。さらにp型コンタクト層も電極材料と好ましいオーミックが得られるのでLED素子の順方向電圧を下げて、発光効率を向上させる。
【0018】
図3は、本発明の発光素子に係る単一量子井戸構造の活性層の膜厚と、発光出力の関係を相対値でもって示す図であり、具体的には実施例1に示すLED素子の構造について示したものである。このように本発明の発光素子は井戸層を7nm以下にすることにより高出力な発光素子が得られる。
【0019】
【実施例】
以下、図1を元に本発明に係るLED素子を詳説する。以下に述べる工程はMOVPE法によるものである。
【0020】
[実施例1]
よく洗浄したサファイア基板11を反応容器内にセットし、反応容器内を水素で十分置換した後、水素を流しながら、基板の温度を1050℃まで上昇させサファイア基板のクリーニングを行う。
【0021】
続いて、温度を510℃まで下げ、キャリアガスに水素、原料ガスにアンモニアとTMG(トリメチルガリウム)とを用い、サファイア基板11上にGaNよりなるバッファ層12を20nmの膜厚で成長させる。
【0022】
バッファ層成長後、TMGのみ止めて、温度を1030℃まで上昇させる。1030℃になったら、同じく原料ガスにTMGとアンモニアガス、ドーパントガスにシランガスを用い、n型クラッド層13として、Siを1×1020/cm3ドープしたn型GaN層を4μm成長させる。
【0023】
n型GaN層成長後、原料ガス、ドーパントガスを止め、温度を800℃にして、原料ガスにTMGとTMI(トリメチルインジウム)とアンモニアを用い、単一量子井戸構造の活性層16としてIn0.43Ga0.57N層を3nm成長させる。
【0024】
次に、原料ガス、ドーパントガスを止め、再び温度を1020℃まで上昇させ、原料ガスにTMG、TMA(トリメチルアルミニウム)、アンモニア、ドーパントガスにCp2Mg(シクロペンタジエニルマグネシウム)を用い、p型クラッド層17としてMgを2×1019/cm3ドープしたp型Al0.1Ga0.9N層を50nm成長させる。
【0025】
TMAガスを止め、続いてp型コンタクト層18として、Mgを1×1019/cm3ドープしたp型GaN層を1μm成長させる。
【0026】
p型GaN層成長後、基板を反応容器から取り出し、アニーリング装置にて窒素雰囲気中、700℃で20分間アニーリングを行い、p型クラッド層、p型コンタクト層をさらに低抵抗化する。
【0027】
以上のようにして得られたウエハーのp型コンタクト層18、p型クラッド層17、及び活性層16の一部をエッチングにより取り除き、n型クラッド層13を露出させ、p型コンタクト層にNi−Auと、p型GaN層とTi−Al−Auよりなるオーミック電極を設け、350μm角のチップにカットした後、カップ形状を有するリードフレームに設置し、エポキシ樹脂でモールドして、レンズ指向角10゜のLED素子を作成した。
【0028】
このLEDを順方向電流20mAで発光させ、そのスペクトルを測定したところ、発光ピーク525nm、半値幅45nmの純緑色発光を示し、発光出力1.5mW、量子効率2.5%と、従来のGaPよりなる黄緑色LEDに対して40倍以上の発光出力を示した。
【0029】
[実施例2]
活性層16を成長させる工程において、原料ガスにTMGとTMI(トリメチルインジウム)とアンモニアを用い、800℃で、井戸層として膜厚3nmのIn0.40Ga0.60N層を成長させ、その上に障壁層として膜厚6nmのIn0.2Ga0.4N層を成長させ、5層構造(井戸+障壁+井戸+障壁+井戸)の多重量子井戸構造よりなる活性層16を成長させる。
【0030】
後は実施例1と同様にしてLED素子としたところ、発光ピーク波長520nm、発光出力1.9mW、量子効率3%の優れたLEDを得た。
【0031】
[実施例3]
実施例1において、単一量子井戸構造よりなる活性層16の膜厚を7nmとする他は同様にして、緑色LED素子を得たところ、発光出力1.3mW、量子効率2.1%の緑色LEDを得た。
【0032】
[実施例4]
バッファ層成長後、温度を1030℃まで上昇させた後、原料ガスにTMGとTMA、アンモニアガス、ドーパントガスにシランガスを用い、n型クラッド層13としてSiを1×1020/cm3ドープしたn型Al0.05Ga0.95N層を4μm成長させる他は、実施例1と同様にしてLED素子を作成したところ、発光波長、発光出力とも、実施例1と同等の特性を示した。
【0033】
[実施例5]
p型クラッド層17の膜厚を2μmとする他は、実施例1と同様にしてLED素子を作成したところ、発光出力1.0mW、量子効率1.7%の緑色LEDを得た。
【0034】
[実施例6]
実施例1において、活性層16の組成をノンドープIn0.4Ga0.6Nよりなる井戸層を2.5nmと、ノンドープIn0.01Ga0.99Nよりなる障壁層を5nmの膜厚で成長させる。この操作を13回繰り返し、最後に井戸層を積層して総厚1000オングストロームの活性層を成長させた。後は実施例1と同様にして、LED素子としたところ、520nm、発光出力2.5mW、量子効率3.2%の優れた緑色LEDを得た。
【0035】
【発明の効果】
以上説明したように、本発明のLEDは複雑な積層構造としなくとも、必要最小限の構造で非常に発光出力が高い緑色LEDが得られる。また本発明の思想を逸脱しない範囲で、本発明に開示した他の窒化物半導体層を積層構造の間、または外側に入れても良い。
【0036】
このように、本発明のLEDを使用することにより、LEDフルカラーディスプレイにおいては、従来では光度を稼ぐため複数のGaP系LEDを必要としていたが、B、G、R各一個づつで一画素が形成できるため、高精細度な画面が得られる。またチップLEDとすればさらに小さな画素が実現でき、壁掛けTVも実現可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係るLED素子の構造を示す模式断面図。
【図2】 従来のLED素子の構造を示す模式断面図。
【図3】 本発明の発光素子に係る井戸層の膜厚と素子の出力との関係を示すグラフ図。
【符号の説明】
11・・・・基板
12・・・・バッファ層
13・・・・n型クラッド層
16・・・・活性層
17・・・・p型クラッド層
18・・・・p型コンタクト層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an LED element made of a nitride semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1).
[0002]
[Prior art]
Conventionally, red LEDs and yellow-green LEDs have been put to practical use as visible LEDs. Recently, blue, blue-green LEDs have been developed with nitride semiconductors, and for the first time, B, G, and R3 colors are used. The full color LED display that appeared.
[0003]
However, the current green LED has a light emission wavelength in the yellow-green region near 560 nm and is not a pure green LED near 520 nm, so the color reproduction region is narrow. Moreover, since the brightness of the blue and red LEDs is only 1/10 or less, there is a drawback that the number of yellow-green LEDs must be increased in order to achieve white balance. In order to solve this problem, a pure green LED having a light intensity of 2 cd or more is required.
[0004]
We have developed a high-brightness LED that emits pure green light that can solve this problem, and have already announced it (Jpn.J.Appl.Phys. Vol.34 (1995) pp.L797-L799). FIG. 2 shows the structure of the LED. 21 is a substrate made of sapphire, 22 is a buffer layer made of GaN having a thickness of 30 nm, 23 is a Si-doped n-type GaN layer having a thickness of 4 μm, 24 is a Si-doped n-type Al0.1Ga0.9N layer having a thickness of 0.1 μm, 25 Is a 50 nm thick Si-doped n-type In0.05Ga0.95N layer, 26 is a 2 nm thick non-doped In0.43Ga0.57N active layer, 27 is a 0.1 μm thick Mg-doped p-type Al0.1Ga0.9N layer, and 28 is 0 .5 μm thick Mg-doped p-type GaN layer. This LED has an active layer having a single quantum well (SQW) structure, and is molded with a resin having a lens shape with a main emission wavelength of 525 nm, a light emission output of 1 mW, and a directivity angle of 10 ° at a forward current of 20 mA. The luminous intensity is 4 cd. As a result of the development of this LED, one pixel can be constructed for each of G, B, and R, and a display with a wide color reproduction region can be realized.
[0005]
[Problems to be solved by the invention]
However, since the LED having the above structure has a complicated stacked structure, the growth process of the nitride semiconductor is complicated. Accordingly, an object of the present invention is to realize a light-emitting element such as a high-brightness LED with a minimum laminated structure of nitride semiconductors.
[0006]
[Means for Solving the Problems]
The nitride semiconductor LED of the present invention comprises a current injection layer / carrier confinement layer made of at least an n-type Al b Ga 1-b N having a b value of 0.05 or less and an In thickness of 7 nm or less on a substrate. an active layer having a quantum well structure including x Ga 1-x N (0 <X <1) well layer, a p-type cladding layer y value is 0.05 or more p-type Al y Ga 1-y N It has the laminated structure which has these in this order . In the present invention, InGaN, AlGaN, GaN, etc. do not necessarily refer to nitride semiconductors that are only ternary mixed crystals or only binary mixed crystals, but for example, in the case of InGaN, a small amount of Al, within a range that does not change the action of InGaN. It goes without saying that other impurities are included within the scope of the present invention.
[0007]
FIG. 1 is a schematic cross-sectional view showing the structure of the LED element of the present invention. In this figure, 11 is a substrate, 12 is a buffer layer, 13 is a clad layer made of n-type In a Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1), an n-type contact layer, 16 in X Ga 1-X N ( 0 ≦ X <1) than become active layer having a single quantum well or multiple quantum well structure, 17 denotes a p-type Al Y Ga 1-Y N ( 0 ≦ Y <1) A p-type cladding layer 18 is a p-type contact layer made of p-type GaN.
[0008]
The substrate 11 includes sapphire (including Al 2 O 3 , A plane, R plane, C plane), spinel (MgAl 2 O 4 ), SiC (including 6H, 4H, 3C), ZnS, ZnO, GaAs, Conventional materials proposed for growing nitride semiconductors such as GaN can be used.
[0009]
For example, GaN, AlN, GaAlN, SiC, or the like is known as the buffer layer 12 and is usually grown to a thickness of about 5 nm to 1 μm in order to alleviate the lattice mismatch between the substrate and the nitride semiconductor. For example, JP-B-59-48794 and JP-B-4-15200 describe a method using AlN as a buffer layer, and JP-A-60-173829 and JP-A-4-297023 disclose a GaN buffer layer. Is described. In particular, when a substrate having a lattice constant close to that of a nitride semiconductor or a substrate having the same lattice constant is used, the buffer layer may not be formed.
[0010]
Next, the laminated structure which is a feature of the present invention will be described. The n-type cladding layer 13 may have any composition as long as it is a nitride semiconductor represented by In a Al b Ga 1-ab N (0 ≦ a, 0 ≦ b, a + b ≦ 1), but is particularly preferable. Is preferably GaN, In a Ga 1-a N having an a value of 0.5 or less, or Al b Ga 1-b N having a b value of 0.5 or less. This is because, as shown in FIG. 1, when the n-type cladding layer 13 is also used as a contact layer for forming an n-electrode, a certain thickness is required. Even if the nitride semiconductor is grown to a thickness of, for example, 1 μm or more, a crystal with good crystallinity can be obtained, so that an n-electrode and a good ohmic can be obtained as a contact layer. Moreover, it is difficult to obtain an LED element with high output unless the next active layer, p-type cladding layer, etc. are laminated on the n-type cladding layer having good crystallinity. The film thickness of the n-type cladding layer is not particularly limited, but it is desirable to grow the film to a thickness of about 0.5 μm to 5 μm in order to serve as a contact layer as described above. Nitride semiconductors have the property of becoming n-type due to nitrogen vacancies formed in the crystal even when they are not doped, but the carrier concentration is usually high by doping donor impurities such as Si, Ge, Se, etc. during crystal growth A preferred n-type can be obtained.
[0011]
Next, the active layer 16 has a single quantum well (SQW) structure or a multi-quantum well (MQW) structure, In x Ga 1-X N (0 ≦ X <). 1). When the SQW structure or the MQW structure is used, a light emitting element having a very high output can be obtained. SQW and MQW indicate the structure of an active layer that can emit light between quantum levels due to non-doped InGaN. For example, in SQW, the active layer is composed of In X Ga 1-X N (0 ≦ X <1) having a single composition. a configuration with a layer, in X Ga 1-X N film thickness 10nm or less, more preferably a strong light emission between quantum levels is obtained by the 7nm or less. MQW is a multilayer film in which a plurality of thin films of In x Ga 1-X N (including X = 0 and X = 1 in this case) having different composition ratios are stacked. In this way, by setting the active layer to SQW and MQW, light emission of about 365 nm to 660 nm can be obtained by light emission between quantum levels. As described above, the thickness of the quantum well layer is preferably 7 nm or less. In the multiple quantum well structure, the well layer is preferably composed of In x Ga 1-X N, and the barrier layer is also composed of In Y Ga 1-Y N (Y <X, including Y = 0 in this case). Particularly preferably, when the well layer and the barrier layer are formed of InGaN, the active layer having good crystallinity can be obtained because it can be grown at the same temperature. When the thickness of the barrier layer is 15 nm or less, more preferably 12 nm or less, a high-power light-emitting element can be obtained.
[0012]
As described above, when the thickness of the quantum structure well layer is 7 nm or less, more preferably 5 nm or less, an element having a high light emission output can be realized. This indicates that this film thickness is less than the critical film thickness of the InGaN active layer. In InGaN, the Bohr radius of electrons is about 3 nm, and the quantum effect of InGaN appears below 7 nm. Similarly, in the case of the multiple quantum well structure, it is desirable to adjust the thickness of the well layer to 7 nm or less, while adjusting the thickness of the barrier layer to 15 nm or less.
[0013]
Next, the p-type cladding layer 17 in contact with the active layer 16 needs to be p-type Al Y Ga 1-Y N (0 ≦ Y <1), and particularly preferably a high output when the Y value is 0.05 or more. An element is obtained. Furthermore, AlGaN is easy to obtain a p-type with a high carrier concentration, is not easily decomposed during growth, and has an effect of suppressing decomposition of the InGaN active layer 16. In addition, the band offset and the refractive index difference can be made larger than those of other nitride semiconductors with respect to the InGaN active layer 16, which is the most excellent. If the first p-type cladding layer is p-type GaN, the light emission output is reduced to about 1/3 compared to p-type AlGaN. This is presumed that AlGaN tends to be p-type compared to GaN, or that the InGaN active layer is decomposed during GaN growth. Therefore, as the p-type cladding layer, Mg-doped p-type Al Y Ga 1-Y N having a Y value of 0.05 or more is most preferable.
[0014]
The thickness of the p-type cladding layer 17 is desirably 1 nm or more and 2 μm or less, more preferably 5 nm or more and 0.5 μm or less. If the thickness is less than 1 nm, the p-type cladding layer 17 is almost absent, and the light emission output tends to decrease. If the thickness is more than 2 μm, the p-type cladding layer itself tends to crack during crystal growth. This is because even if the next layer is stacked on the layer containing, a semiconductor layer with good crystallinity cannot be obtained and the output tends to decrease. In order to obtain a p-type nitride semiconductor, it can be obtained by doping an acceptor impurity such as Mg, Zn, C, Be, Ca, Ba during crystal growth. More preferably, after doping with an acceptor impurity, annealing is performed at 400 ° C. or higher in an atmosphere of an inert gas such as nitrogen or argon (Japanese Patent Laid-Open No. 5-183189). By performing annealing, a carrier concentration of 1 × 10 17 to 1 × 10 19 / cm 3 is usually obtained with p-type AlGaN. In addition, you may perform the electron beam irradiation process shown by Unexamined-Japanese-Patent No. 3-218625.
[0015]
Next, the p-type contact layer 18 is p-type GaN, particularly preferably Mg-doped p-type GaN. Since p-type GaN is a layer in contact with an electrode, it is important to obtain ohmic contact in the case of a light emitting device such as an LED or LD. P-type GaN is most preferable as a contact layer because it can easily form ohmic with many metals. As the electrode material, for example, ohmic can be obtained from Ni—Au, Ni—Ti or the like. The thickness of the p-type contact layer is not particularly limited, but it is usually desirable to grow with a thickness of about 50 nm to 2 μm.
[0016]
The nitride semiconductor can be grown by vapor phase growth methods such as metal organic vapor phase epitaxy (MOVPE), halide vapor phase epitaxy (HDVPE), and molecular beam vapor phase epitaxy (MBE). Among them, the MOVPE method can quickly obtain a crystal with good crystallinity. In the MOVPE method, TMG (trimethylgallium) and TEG (triethylgallium) are used as the Ga source, TMA (trimethylaluminum) and TEA (triethylaluminum) are used as the Al source, TMI (trimethylindium) and TEI (triethyl) are used as the In source. A trialkyl metal compound such as indium) is often used, and a gas such as ammonia or hydrazine is used as a nitrogen source. As the impurity source, silane gas is used for Si, germane gas is used for Ge, Cp2Mg (cyclopentadienylmagnesium) is used for Mg, and DEZ (diethyl zinc) is used for Zn. In the MOVPE method, these gases are supplied to the surface of a substrate heated to, for example, 600 ° C. or more, and decomposed, whereby In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) can be epitaxially grown.
[0017]
[Action]
The light-emitting element of the present invention has a minimum necessary structure, and an element excellent in light emission output can be obtained. This is because each layer works effectively. First, the n-type cladding layer serves as both a current injection layer and a carrier confinement layer. Since the active layers of SQW and MQW have good crystallinity, they become very efficient layers as light emitting layers. The p-type cladding layer is a high-concentration layer as a carrier confinement layer, and further as a carrier confinement layer, a high light emission output can be obtained. Further, since the p-type contact layer can provide a preferable ohmic with the electrode material, the forward voltage of the LED element is lowered to improve the light emission efficiency.
[0018]
FIG. 3 is a diagram showing the relationship between the film thickness of the active layer having a single quantum well structure according to the light emitting device of the present invention and the light emission output as a relative value. Specifically, FIG. 3 shows the LED device shown in Example 1. It shows the structure. As described above, the light emitting device of the present invention can obtain a high output light emitting device by setting the well layer to 7 nm or less.
[0019]
【Example】
Hereinafter, the LED element according to the present invention will be described in detail with reference to FIG. The process described below is based on the MOVPE method.
[0020]
[Example 1]
The well-washed sapphire substrate 11 is set in a reaction vessel, and after the inside of the reaction vessel is sufficiently substituted with hydrogen, the temperature of the substrate is raised to 1050 ° C. while flowing hydrogen to clean the sapphire substrate.
[0021]
Subsequently, the temperature is lowered to 510 ° C., hydrogen is used as the carrier gas, ammonia and TMG (trimethylgallium) are used as the source gas, and a buffer layer 12 made of GaN is grown on the sapphire substrate 11 to a thickness of 20 nm.
[0022]
After growing the buffer layer, only TMG is stopped and the temperature is raised to 1030 ° C. When the temperature reaches 1030 ° C., similarly, TMG and ammonia gas are used as the source gas, and silane gas is used as the dopant gas, and an n-type GaN layer doped with Si of 1 × 10 20 / cm 3 is grown to 4 μm as the n-type cladding layer 13.
[0023]
After the growth of the n-type GaN layer, the source gas and the dopant gas are stopped, the temperature is set to 800 ° C., TMG, TMI (trimethylindium) and ammonia are used as the source gas, and the In 0.43 Ga 0 is formed as the active layer 16 having a single quantum well structure. A .57N layer is grown by 3 nm.
[0024]
Next, stop the source gas and dopant gas, raise the temperature to 1020 ° C again, use TMG, TMA (trimethylaluminum) as the source gas, ammonia and Cp2Mg (cyclopentadienylmagnesium) as the dopant gas, and p-type cladding As the layer 17, a p-type Al0.1Ga0.9N layer doped with 2 × 10 19 / cm 3 of Mg is grown by 50 nm.
[0025]
After stopping the TMA gas, a p-type GaN layer doped with 1 × 10 19 / cm 3 of Mg is grown as a p-type contact layer 18 by 1 μm.
[0026]
After the growth of the p-type GaN layer, the substrate is taken out of the reaction vessel, and annealed at 700 ° C. for 20 minutes in a nitrogen atmosphere with an annealing apparatus to further reduce the resistance of the p-type cladding layer and the p-type contact layer.
[0027]
Part of the p-type contact layer 18, the p-type cladding layer 17 and the active layer 16 of the wafer obtained as described above is removed by etching to expose the n-type cladding layer 13, and Ni-- is formed on the p-type contact layer. An ohmic electrode made of Au, a p-type GaN layer, and Ti—Al—Au is provided, cut into a 350 μm square chip, placed on a lead frame having a cup shape, molded with epoxy resin, and a lens directivity angle of 10 A LED element of ° was produced.
[0028]
When this LED was made to emit light at a forward current of 20 mA and its spectrum was measured, it showed pure green light emission with an emission peak of 525 nm and a half width of 45 nm, an emission output of 1.5 mW, a quantum efficiency of 2.5%, and more than conventional GaP. The light output of 40 times or more was shown with respect to yellow-green LED which becomes.
[0029]
[Example 2]
In the step of growing the active layer 16, an In0.40Ga0.60N layer having a thickness of 3 nm is grown as a well layer at 800 ° C. using TMG, TMI (trimethylindium) and ammonia as source gases, and a barrier layer is formed thereon. Then, an In0.2Ga0.4N layer having a thickness of 6 nm is grown, and an active layer 16 having a multi-quantum well structure having a five-layer structure (well + barrier + well + barrier + well) is grown.
[0030]
Thereafter, an LED element was obtained in the same manner as in Example 1. As a result, an excellent LED having an emission peak wavelength of 520 nm, an emission output of 1.9 mW, and a quantum efficiency of 3% was obtained.
[0031]
[Example 3]
In Example 1, a green LED element was obtained in the same manner except that the thickness of the active layer 16 having a single quantum well structure was set to 7 nm. As a result, a green LED having a light emission output of 1.3 mW and a quantum efficiency of 2.1% was obtained. LED was obtained.
[0032]
[Example 4]
After growing the buffer layer, the temperature was raised to 1030 ° C., and then TMG and TMA were used as source gases, ammonia gas was used as the dopant gas, and silane gas was used as the n-type cladding layer 13 to be doped with Si at 1 × 10 20 / cm 3 An LED element was produced in the same manner as in Example 1 except that the type Al0.05Ga0.95N layer was grown by 4 μm. As a result, the emission wavelength and emission output showed the same characteristics as in Example 1.
[0033]
[Example 5]
An LED element was produced in the same manner as in Example 1 except that the thickness of the p-type cladding layer 17 was set to 2 μm. As a result, a green LED having a light emission output of 1.0 mW and a quantum efficiency of 1.7% was obtained.
[0034]
[Example 6]
In Example 1, the composition of the active layer 16 is grown to a thickness of 2.5 nm for a well layer made of non-doped In0.4Ga0.6N and a thickness of 5 nm for a barrier layer made of non-doped In0.01Ga0.99N. This operation was repeated 13 times. Finally, a well layer was stacked to grow an active layer having a total thickness of 1000 angstroms. Thereafter, an LED element was obtained in the same manner as in Example 1. As a result, an excellent green LED having 520 nm, a light emission output of 2.5 mW, and a quantum efficiency of 3.2% was obtained.
[0035]
【The invention's effect】
As described above, the LED of the present invention can obtain a green LED having a very low light emission output with a minimum necessary structure without a complicated laminated structure. Further, other nitride semiconductor layers disclosed in the present invention may be placed between or outside the laminated structure without departing from the spirit of the present invention.
[0036]
As described above, by using the LED of the present invention, the LED full-color display conventionally requires a plurality of GaP-based LEDs in order to increase the luminous intensity, but one pixel is formed for each of B, G, and R one by one. As a result, a high-definition screen can be obtained. Further, if the chip LED is used, a smaller pixel can be realized, and a wall-mounted TV can also be realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of an LED element according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing the structure of a conventional LED element.
FIG. 3 is a graph showing the relationship between the thickness of the well layer and the output of the element according to the light emitting element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Substrate 12 ... Buffer layer 13 ... n-type cladding layer 16 ... Active layer 17 ... p-type cladding layer 18 ... p-type contact layer

Claims (6)

少なくとも、b値が0.05以下のn型AlGa1−bNからなる電流注入層兼キャリア閉じ込め層と、7nm以下の膜厚のInGa1−xN(0<X<1)井戸層を含む量子井戸構造を有する活性層と、y値が0.05以上のp型AlGa1−yNからなるp型クラッド層とをこの順に有する積層構造を有する窒化物半導体発光素子。At least, b n-type value is 0.05 or less Al b Ga 1-b and the current injection layer and a carrier confinement layer made of N, the following film thickness 7nm In x Ga 1-x N (0 <X <1) Nitride semiconductor light emitting device having a stacked structure having an active layer having a quantum well structure including a well layer and a p-type cladding layer made of p-type Al y Ga 1-y N having a y value of 0.05 or more in this order . 前記n型AlGa1−bNの膜厚が1μm以上である請求項1記載の窒化物半導体発光素子。The nitride semiconductor light-emitting element according to claim 1, wherein a film thickness of the n-type Al b Ga 1-b N is 1 μm or more. 前記p型クラッド層の膜厚が5nm〜0.5μmである請求項1又は2に記載の窒化物半導体発光素子。  The nitride semiconductor light emitting device according to claim 1 or 2, wherein the p-type cladding layer has a thickness of 5 nm to 0.5 µm. 前記井戸層がInGa1−xN(0.40≦x≦0.43)である請求項1から3のいずれか一つに記載の窒化物半導体発光素子。4. The nitride semiconductor light emitting device according to claim 1, wherein the well layer is In x Ga 1-x N (0.40 ≦ x ≦ 0.43). 前記窒化物半導体における発光ピーク波長が520〜525nmである請求項1から4のいずれか一つに記載の窒化物半導体発光素子。  The light emission peak wavelength in the said nitride semiconductor is 520-525 nm, The nitride semiconductor light-emitting device as described in any one of Claim 1 to 4. 前記活性層が多重量子井戸構造である請求項1から5のいずれか一つに記載の窒化物半導体発光素子。  The nitride semiconductor light emitting device according to claim 1, wherein the active layer has a multiple quantum well structure.
JP30098399A 1995-09-29 1999-10-22 Nitride semiconductor light emitting device Expired - Lifetime JP3809749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30098399A JP3809749B2 (en) 1995-09-29 1999-10-22 Nitride semiconductor light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27682095 1995-09-29
JP7-276820 1995-09-29
JP30098399A JP3809749B2 (en) 1995-09-29 1999-10-22 Nitride semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31784995A Division JP3135041B2 (en) 1995-09-29 1995-12-06 Nitride semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000091635A JP2000091635A (en) 2000-03-31
JP3809749B2 true JP3809749B2 (en) 2006-08-16

Family

ID=26552126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30098399A Expired - Lifetime JP3809749B2 (en) 1995-09-29 1999-10-22 Nitride semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3809749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900474B2 (en) * 2002-12-20 2005-05-31 Lumileds Lighting U.S., Llc Light emitting devices with compact active regions

Also Published As

Publication number Publication date
JP2000091635A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3135041B2 (en) Nitride semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP3551101B2 (en) Nitride semiconductor device
JP3656456B2 (en) Nitride semiconductor device
JP2956489B2 (en) Crystal growth method of gallium nitride based compound semiconductor
JP3622562B2 (en) Nitride semiconductor light emitting diode
US6900465B2 (en) Nitride semiconductor light-emitting device
JP3868136B2 (en) Gallium nitride compound semiconductor light emitting device
JP3646649B2 (en) Gallium nitride compound semiconductor light emitting device
JP3548442B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2001237457A (en) Light-emitting element
JP2001053339A (en) Semiconductor light-emitting device and manufacture thereof
JPH08316528A (en) Nitride semiconductor light emitting device
JPH09148678A (en) Nitride semiconductor light emitting element
JPH11191639A (en) Nitride semiconductor device
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP2004014587A (en) Nitride compound semiconductor epitaxial wafer and light emitting element
JP2976951B2 (en) Display device with nitride semiconductor light emitting diode
JP3924973B2 (en) Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device
JP3809749B2 (en) Nitride semiconductor light emitting device
JP3767491B2 (en) Gallium nitride compound semiconductor light emitting device
JP3659059B2 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050719

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term