[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3897672B2 - Heating device and heating trial operation control method for heating device - Google Patents

Heating device and heating trial operation control method for heating device Download PDF

Info

Publication number
JP3897672B2
JP3897672B2 JP2002296112A JP2002296112A JP3897672B2 JP 3897672 B2 JP3897672 B2 JP 3897672B2 JP 2002296112 A JP2002296112 A JP 2002296112A JP 2002296112 A JP2002296112 A JP 2002296112A JP 3897672 B2 JP3897672 B2 JP 3897672B2
Authority
JP
Japan
Prior art keywords
heating
circulation
heat
hot water
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002296112A
Other languages
Japanese (ja)
Other versions
JP2004132579A (en
Inventor
健志 森川
良秀 中嶋
直樹 峠田
義孝 栢原
正博 吉村
博司 高木
哲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Noritz Corp
Toho Gas Co Ltd
Original Assignee
Saibu Gas Co Ltd
Osaka Gas Co Ltd
Noritz Corp
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saibu Gas Co Ltd, Osaka Gas Co Ltd, Noritz Corp, Toho Gas Co Ltd filed Critical Saibu Gas Co Ltd
Priority to JP2002296112A priority Critical patent/JP3897672B2/en
Publication of JP2004132579A publication Critical patent/JP2004132579A/en
Application granted granted Critical
Publication of JP3897672B2 publication Critical patent/JP3897672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は加熱装置に係り、更に詳しくは、暖房機能を備えた加熱装置における試運転の制御方法に関する。
【0002】
【従来の技術】
近時、給湯や暖房、風呂の落とし込み、追い焚きなどの多機能を備えた加熱装置が開発されている。このような加熱装置では、系統の異なる暖房循環回路、給湯流路、風呂の落とし込み流路、及び、追い焚き循環回路などを燃焼機に集中させることにより、燃焼機から各回路あるいは流路に対して直接熱交換を行う構成が採られている。
【0003】
また、従来の加熱装置では、暖房循環回路の循環往路または循環復路が分岐され、各々の分岐流路に熱動弁を設けて各暖房端末に接続する構成が採用されている。これにより、熱動弁を開閉制御することで、暖房運転に際して、燃焼機で加熱された暖房循環回路の熱媒体を暖房循環ポンプによって加熱装置の外部に設けられた複数の暖房端末へ選択的に循環させて暖房を行うようにされている。
【0004】
このような加熱装置では、暖房運転に際して暖房循環ポンプの不良が生じると、暖房循環回路の熱媒体が循環されず暖房が行われない上に、熱媒体が燃焼機で極度に加熱されるような不具合が生じる。また、暖房循環ポンプが正常に作動していても、暖房端末毎に設けられたいずれかの熱動弁が閉成されない場合は、使用していない暖房端末にまで熱媒体が循環されて暖房効率の低下を招く。このため、従来より、加熱装置の新設時には、暖房循環ポンプや熱動弁の良否を判別するべく暖房試運転が行われている。
【0005】
従来の加熱装置では、暖房の試運転に際して、暖房循環回路に設けられた暖房循環ポンプに駆動信号を送出すると共に、暖房端末側への熱媒体の流動を阻止するべく、全熱動弁に閉成信号を送出する。そして、暖房循環ポンプの焼損防止のために設けたバイパス流路を介して循環する熱媒体の温度上昇を監視し、この温度上昇によって、暖房循環ポンプの駆動状態の良否や熱動弁の閉成状態の良否の判別を行っていた。
【0006】
ところで、近時、加熱装置に発電装置を併設し、発電に伴う排熱を回収利用する所謂コージェネレーションシステムが開発されている。このような、システムでは、発電装置の排熱を再利用することから、加熱装置に採用する燃焼機を小型化する場合が多い。このため、従来のように、燃焼機で系統の異なる複数の循環回路の熱媒体を直接加熱するのではなく、燃焼機において一つの熱源循環回路を循環する熱媒体を加熱し、熱源循環回路を循環する熱媒体の熱を複数の熱負荷に選択的に供給する構成が採られている。
則ち、熱源循環回路と他の暖房循環回路や追い焚き循環回路などの間を分離するべく、両者の間に熱交換部を介在させて、熱源循環回路を循環する熱媒体の熱を他の循環回路の熱媒体に伝達する構成が採用されている。
【0007】
【特許文献1】
特開2001−248913号公報
【0008】
【発明が解決しようとする課題】
ところが、前記した、熱源循環回路を循環する熱媒体の熱を他の循環回路の熱媒体に伝達する構成では、従来のように、暖房循環回路を流動する熱媒体を燃焼機で直接加熱する構成に比べて、暖房試運転に際しての暖房循環回路の熱媒体の温度上昇カーブが異なったものになり、暖房循環ポンプや熱動弁の動作異常を的確に判別できない不具合が生じていた。
【0009】
本発明は、前記事情に鑑みて提案されるもので、熱源循環回路を循環する熱媒体の熱を暖房循環回路の熱媒体に伝達して暖房を行う加熱装置において、暖房循環ポンプや熱動弁の動作異常を的確に判別可能な加熱装置を提供することを目的としている。
【0010】
【課題を解決するための手段】
前記目的を達成するために、本発明者らは次の技術的手段を講じた。
則ち、請求項1に記載の発明は、一又は二以上の熱源部で加熱された熱媒体を循環させる熱源循環回路と外部に設けられた暖房端末に接続されて熱媒体を循環させる暖房循環回路との間に暖房熱交換部を介在させ、前記熱源循環回路を循環する熱媒体の熱を暖房循環回路を循環する熱媒体へ伝達させて暖房運転を行う加熱装置であって、前記暖房循環回路は、循環往路と循環復路とをバイパスするバイパス流路を有し、当該バイパス流路より前記暖房熱交換部側に位置する流路上に熱媒体を循環させる暖房循環ポンプを備えると共に、前記バイパス流路よりも暖房端末側に位置する流路上に熱媒体の暖房端末側への循環を開閉制御する流路制御弁を備えており、加熱装置の暖房試運転時には、前記流路制御弁に閉成信号を送出すると共に前記暖房循環ポンプに駆動信号を送出し、前記熱源部で加熱された熱媒体を熱源循環回路に循環させつつ前記暖房循環回路のバイパス流路よりも熱交換部側の循環往路と循環復路の熱媒体の温度を検出し、当該検出された温度に基づいて前記流路制御弁の閉動作の良否を判別することを特徴とする加熱装置である。
【0011】
暖房試運転に際して、暖房循環ポンプが駆動され、且つ、流路制御弁が閉成されると、暖房循環回路の熱媒体は、暖房熱交換部で熱交換を受けつつバイパス流路を介するルートで循環する。従って、循環往路及び循環復路における双方の熱媒体の温度が上昇すると共に、循環往路と循環復路との熱媒体の温度に大きな差は生じない。
【0012】
また、暖房循環ポンプが駆動され、且つ、流路制御弁が開成されたままのときは、暖房循環回路は加熱装置の外部に設けられた暖房端末側を介した循環回路を形成する。このため、循環往路の熱媒体は高温となり、循環復路の熱媒体は低温となって、循環往路と循環復路の熱媒体に大きな温度差が生じる。
【0013】
更に、暖房循環ポンプが駆動されないときは、流路制御弁の開閉状態に拘わらず、暖房循環回路の熱媒体が循環しない。このため、循環往路と循環復路との熱媒体の温度に殆ど差は生じず、しかも、循環往路及び循環復路の熱媒体は低温のままとなる。
【0014】
本発明によれば、流路制御弁の開閉に伴って暖房循環回路の循環往路と循環復路の熱媒体に生じる前記温度変動を参照することにより、流路制御弁の動作の良否を的確に判別することが可能となる。
【0015】
請求項2に記載の発明は、熱源循環回路を循環する熱媒体の温度を検出し、当該検出温度に基づいて前記暖房循環ポンプの駆動状態の良否を判別することを特徴とする請求項1に記載の加熱装置である。
【0016】
ここで、暖房循環ポンプに駆動信号を送出しているにも拘わらずポンプが駆動されないときは、暖房循環回路を熱媒体が循環せず、熱源循環回路の熱媒体の熱が暖房循環回路の熱媒体へ伝達されない。則ち、暖房熱交換部において熱源循環回路の熱媒体が循環しているにも拘わらず、暖房循環回路の熱媒体が循環しないため、暖房循環回路に滞留する熱媒体が暖房熱交換部において加熱されるだけで、暖房循環回路へ伝達される熱量が極めて少ない。このため、暖房循環ポンプが正常に作動している場合に比べて、熱源循環回路を循環する熱媒体の温度上昇が急増する。
一方、暖房循環ポンプが正常に駆動されると、熱源循環回路の熱媒体の熱は暖房循環回路の熱媒体へ伝達されると共に、暖房循環回路の熱媒体は暖房端末へ熱伝達を行うため、熱源循環回路の熱媒体の温度は急増しない。
【0017】
本発明は、このような、暖房循環ポンプの駆動、停止に応じて熱源循環回路を循環する熱媒体の温度変動が大きく変化することを利用するものであり、熱源循環回路を循環する熱媒体の温度変動を監視することによって、暖房循環ポンプの駆動、停止状態を的確に判別可能となる。これにより、流量センサなどを備えていない暖房循環回路であっても、暖房試運転によって暖房循環ポンプの動作不良を直ちに判別することが可能となる。
【0018】
請求項に記載の発明は、請求項に記載の加熱装置において、暖房試運転時には、熱源循環回路を循環する熱媒体が所定の上限温度に達したときは熱源部の駆動を停止させる一方、熱媒体が前記上限温度より低下したときは熱源部の駆動を再開させる構成とされている。
【0019】
本発明によれば、熱源循環回路の熱媒体の温度上昇を抑えつつ暖房循環ポンプの異常を的確に判別することが可能となる。これにより、暖房試運転時において、暖房循環ポンプの動作不良に伴う熱源循環回路の熱媒体の温度上昇が抑制され、信頼性を向上させた暖房試運転を行うことが可能となる。
本発明において、熱源部の駆動を停止させるには、例えば、熱源部自体で熱媒体の温度を検知して自らの駆動を制御する構成や、熱源部とは別の制御回路部で熱媒体の温度を検知して熱源部の駆動を制御する構成を採ることができる。
【0020】
請求項に記載の発明は、前記請求項2または3に記載の加熱装置において、暖房試運転時には、熱源循環回路を循環する熱媒体が所定の上限温度を超える時間を積算し、暖房試運転の開始から予め定められた時間内に積算時間が所定値に達したときは、暖房循環ポンプの異常と判別する構成とされている。
【0021】
本発明によれば、暖房試運転の開始から、熱源循環回路の熱媒体が上限温度を超える時間、則ち、熱源循環回路から暖房循環回路への熱伝達が行われない状態に相当する時間を積算する。そして、暖房試運転の開始から所定時間内に時間の積算値が所定値に達すると、暖房循環ポンプの異常と判別する。
これにより、試運転開始時や試運転中の過渡的な変動要因を排除しつつ、暖房循環回路への熱伝達が行われない状態、則ち、暖房循環ポンプの動作不良に伴う循環停止状態を的確に判別することが可能となる。
【0022】
請求項に記載の発明は、1乃至4のいずれか1項に記載の加熱装置において、暖房試運転時には、暖房循環回路の循環往路及び循環復路の熱媒体が各々予め定められた温度以上であり、且つ、循環往路と循環復路の熱媒体の温度差が予め定められた温度範囲内である状態が所定時間継続して検出された場合には、流路制御弁の閉動作が正常であると判別する構成とされている。
【0023】
ここで、前記したように、暖房循環ポンプが駆動され、且つ、流路制御弁が閉成されておれば、循環往路及び循環復路における双方の熱媒体の温度が上昇すると共に、循環往路と循環復路との熱媒体の温度に大きな差は生じない。一方、流路制御弁が開成されると、上記温度条件は満たされない。
【0024】
従って、本発明のように、循環往路及び循環復路の熱媒体が各々予め定められた温度以上であり、且つ、循環往路と循環復路の熱媒体の温度差が予め定められた温度範囲内である状態を検出することにより、流路制御弁の閉動作が正常に行われていることを的確に判別可能となる。また、本発明によれば、上記温度条件を所定時間継続して検出することにより、過渡的な温度変動による誤判別を排除して正確な判別が可能となる。
【0025】
尚、本発明において規定する温度条件は、暖房循環ポンプが駆動され、且つ、流路制御弁が閉成された状態を示す必要充分条件であり、流路制御弁の動作の良否を判別しつつ、同時に、暖房循環ポンプの動作をも判別可能である。
【0026】
請求項に記載の発明は、請求項1乃至5のいずれか1項に記載の加熱装置において、熱源循環回路を循環する熱媒体が湯水であり、加熱装置の外部に設けられた給湯端末または風呂端末へ給湯を行う貯湯部を備え、当該貯湯部は熱源循環回路に接続されると共に、貯湯部は給湯流路及び給水流路に接続された構成とされており、熱源部で加熱された高温水を熱源循環回路を介して貯留しつつ貯湯部内の低温水を熱源循環回路を介して熱源部に環流させる貯湯運転と、給水流路を介して貯湯部へ給水を行いつつ貯留された湯水を給湯流路を介して給湯端末または風呂端末へ流出させる給湯運転とを排他的に行う構成とされている。
【0027】
本発明によれば、熱源部に対して貯湯部が熱負荷として接続されて熱源循環回路を形成する。従って、熱源部に対して熱負荷である貯湯部と前記暖房熱交換部とを並列に接続した構成を採ることができる。
この構成によれば、熱源循環回路を循環する湯水を貯湯部及び暖房熱交換部のいずれか一方または双方に選択的に供給することができ、貯湯運転や暖房運転を単独または並行して行うことが可能である。
【0028】
また、給湯流路に接続された給湯栓(カラン)などの給湯端末や風呂端末を操作すると、給水栓に加わる水圧によって貯湯部内へ水が流入し、貯湯部から給湯流路を通じて高温の湯水が端末へ供給される給湯運転が行われる。また、貯湯運転と給湯運転とは排他的に行われるので、給湯運転を行いつつ暖房運転を行うことも可能である。
【0029】
請求項に記載の発明は、請求項1乃至6のいずれか1項に記載の加熱装置において、加熱装置の外部に設けられた風呂端末に接続されて湯水を循環させる追い焚き循環回路を備えており、熱源循環回路と追い焚き循環回路との間に追い焚き熱交換部を介在させて、熱源部で加熱されて熱源循環回路を循環する熱媒体の熱を追い焚き循環回路を循環する湯水へ伝達して追い焚き運転を行う構成とされている。
【0030】
本発明によれば、熱源部に対して追い焚き熱交換部が熱負荷として接続されて熱源循環回路を形成する。従って、熱源部に対して熱負荷である追い焚き熱交換部と前記暖房熱交換部や貯湯部を並列に接続した構成を採ることができる。
この構成によれば、追い焚きや暖房運転を単独で行ったり、貯湯運転や暖房運転と並行して行うことが可能となる。
【0031】
請求項に記載の発明は、請求項6または7に記載の加熱装置において、加熱装置の暖房試運転の期間は、貯湯運転、給湯運転及び追い焚き運転を禁止させる構成とされている。
【0032】
本発明によれば、暖房試運転の期間は、熱源循環回路を循環する熱媒体は暖房循環回路の熱媒体にだけ熱伝達が行われる。則ち、暖房試運転の期間は、追い焚き循環回路や貯湯水の熱交換が行われることがない。また、給湯運転も禁止されるので、給湯に伴う貯留水の温度低下によって貯湯運転が開始されることがない。これにより、暖房試運転に係る温度変動要素以外の変動要素を排除した状態で熱源循環回路及び暖房循環回路を循環する熱媒体の温度を検知することができ、暖房循環ポンプ及び流路制御弁の良否を的確に判別可能となる。
【0033】
請求項に記載の発明は、請求項1乃至8のいずれか1項に記載の加熱装置において、熱源部の一つが、熱源循環回路の流路上に設けられた燃焼機で構成される加熱装置である。
本発明によれば、燃焼機によって熱源循環回路を循環する熱媒体を効率良く加熱することが可能となる。また、当該燃焼機に加えて、更に別の熱源部を熱源循環回路の流路上に配することにより、燃焼機に要求される最大燃焼量の低減を図ることも可能となる。
【0034】
請求項10に記載の発明は、請求項1乃至9のいずれか1項に記載の加熱装置において、電気機器へ電力を供給する発電装置を加熱装置に併設して構成され、当該発電装置は、発電に伴って生じる排熱を熱媒体へ熱交換して循環させる排熱循環回路を有しており、熱源部の一つが、排熱循環回路と熱源循環回路との間に排熱熱交換部を介在させることによって熱源循環回路の流路上に形成された熱源で構成される加熱装置である。
【0035】
本発明によれば、排熱循環回路を循環する熱媒体の熱が排熱熱交換部を介して熱源循環回路に伝達されることにより、熱源循環回路上に一つの熱源部が形成される。これにより、従来廃棄されていた排熱を回収して熱源循環回路を循環する熱媒体の昇温に再利用することが可能となり、熱源循環回路に接続される熱負荷を効率良く駆動することが可能となる。
【0036】
請求項11に記載の発明は、熱源部で加熱された熱媒体を循環させる熱源循環回路と外部に設けられた暖房端末に接続されて暖房循環ポンプによって熱媒体を循環させる暖房循環回路との間に暖房熱交換部を介在させ、前記熱源循環回路を循環する熱媒体の熱を暖房循環回路を循環する熱媒体へ伝達させて暖房を行う加熱装置の暖房試運転制御方法であって、加熱装置は、前記暖房循環回路の循環往路と循環復路とをバイパスするバイパス流路を有し、前記暖房循環ポンプはバイパス流路より前記暖房熱交換部側に位置する流路上に設けられると共に、前記バイパス流路よりも暖房端末側に位置する流路上に熱媒体の暖房端末側への循環を開閉制御する流路制御弁を備えており、前記流路制御弁に閉成信号を送出すると共に前記暖房循環ポンプに駆動信号を送出し、前記熱源部で加熱された熱媒体を熱源循環回路に循環させつつ前記暖房循環回路のバイパス流路よりも熱交換部側の循環往路と循環復路の熱媒体の温度を検出し、当該検出された温度に基づいて前記流路制御弁の閉動作の良否を判別することを特徴とする加熱装置の暖房試運転制御方法である。
【0037】
また、請求項12に記載の発明は、熱源循環回路を循環する熱媒体の温度を検出し、当該検出温度に基づいて前記暖房循環ポンプの駆動状態の良否を判別することを特徴とする請求項11に記載の加熱装置の暖房試運転制御方法である。
【0038】
【発明の実施の形態】
以下に、図面を参照して本発明の好適な実施形態を説明する。
図1は本発明の実施形態に係る加熱装置2の構成を示す流路系統図、図2は図1に示す加熱装置2に接続される暖房端末の流路系統図、図3,図4は図1に示す加熱装置で実施される暖房試運転の制御を示すフローチャートである。
【0039】
本実施形態の加熱装置2は貯湯式給湯暖房機能を有したものであり、給湯栓7などの給湯端末への給湯や風呂の落とし込み給湯を行う給湯運転、風呂の追い焚き運転、床暖房やファンコンベクタなどの暖房端末8による暖房運転、及び、貯湯タンク31への貯湯を行う貯湯運転の機能を備えている。
【0040】
加熱装置2は、前記した各運転を実施するための複数の流路及び循環回路を備えている。則ち、図1の様に、都市ガス(天然ガス)の供給を受けて燃焼する燃焼機6(熱源部K)で加熱された湯水(熱媒体)を循環させる熱源循環回路32と、加熱装置2の外部に設けられた暖房端末8と接続されて湯水を循環させる暖房循環回路35と、風呂端末に接続されて湯水を循環させる追い焚き循環回路36の3つの循環回路を備えている。また、貯湯タンク31から延出する給湯流路83,33及び給水流路91を備えている。本実施形態では、燃焼機6として最大燃焼量20号のものを使用している。
【0041】
熱源循環回路32は、燃焼機6から延出する循環往路38と循環復路41との間に、熱負荷となる暖房熱交換器(暖房熱交換部)42、追い焚き熱交換器(追い焚き熱交換部)43及び貯湯タンク(貯湯部)31を並列に接続して構成されている。則ち、燃焼器6から延出する循環往路38は、分岐点Cで熱負荷となる熱交換器42,43側と貯湯タンク31へ分岐し、熱交換器42,43側の復路と貯湯タンク31の復路は接続点Dで集合して循環復路41に接続されている。更に、熱交換器42,43側の流路は、分岐点Cから延出する往路途中の分岐点Eで暖房熱交換器42と追い焚き熱交換器43とに分岐し、各熱交換器42,43の復路は接続点Fで一旦集合した後に接続点Dに接続されている。
【0042】
これらの並列接続された熱負荷には、各熱負荷への湯水の循環を制御するための電磁弁あるいは比例制御弁が設けられている。則ち、分岐点Eと接続点Fとの間において、暖房熱交換器42側の流路には直列に暖房熱交電磁弁52が配されると共に、追い焚き熱交換器43側の流路にも直列に追い焚き熱交電磁弁53が設けられている。また、分岐点Cから貯湯タンク31の上部に至る上部配管87の途中には貯湯量制御弁84が配され、貯湯タンク31の下部から延出する下部配管89は接続点Dに接続されている。
【0043】
則ち、熱源循環回路32の燃焼機6から延出する循環往路38と循環復路41との間に接続された暖房熱交換器42、追い焚き熱交換器43及び貯湯タンク31の各熱負荷は、各々に設けられた暖房熱交電磁弁52、追い焚き熱交電磁弁53及び貯湯量制御弁84を制御することによって、燃焼機6で加熱された湯水の循環を個別に選択制御可能な構成とされている。
【0044】
次に、本発明の暖房試運転の制御に関連する構成を詳細に説明する。尚、図1では、本発明の暖房試運転に係る流路を強調表示している。
熱源循環回路32は、前記したように、熱源部である燃焼機6から延出する循環往路38の分岐点Cと、循環復路41の接続点Dとの間に熱負荷である暖房熱交換器42、追い焚き熱交換器43及び貯湯タンク31を各々並列に接続して形成される。循環復路41の接続点Dには、エアーセパレータ46が設けられ、更に、循環復路41の下流に沿って熱源循環ポンプ47、流量センサ50及び循環流量制御弁51が順に直列に配されて燃焼機6に至る流路が形成されている。
【0045】
熱源循環回路32に配された各構成要素を詳細に説明する。暖房熱交換器42は、熱源循環回路32を循環する湯水の熱を暖房循環回路35を循環する湯水に伝達する熱交換器である。暖房熱交電磁弁52はソレノイド駆動される開閉弁であり、熱源循環回路32を循環する湯水の暖房熱交換器42への流動を開閉制御して熱負荷としての接続及び遮断を行う。また、追い焚き熱交電磁弁53も同様に、ソレノイド型の開閉弁であり、追い焚き熱交換器43の熱負荷としての接続及び遮断を行う。
【0046】
エアーセパレータ46は循環する湯水に混入する空気を外部に放出するもので、空気の混入した湯水の循環に伴う衝撃音の発生を除去するものである。熱源循環ポンプ47は閉ループ状の熱源循環回路32の湯水を強制循環させるポンプである。循環流量センサ50は、熱源循環回路32を循環する湯水の流量を検知するセンサである。また、循環流量制御弁51は、熱源循環回路32を循環する湯水の流量を調節する比例制御弁である。
【0047】
また、熱源循環回路32には、循環する湯水(熱媒体)の温度を検知する温度センサが各部に設けられている。則ち、循環往路38には燃焼機6から加熱されて熱負荷へ送出される湯水の温度を検知する往路温度センサ39が設けられている。また、熱交換器42,43の下流側の接続点Eと接続点Cとの復路の途中には、熱負荷である熱交換器42,43へ熱伝達されて温度を低下させた湯水の温度を検知する熱交下流温度センサ40が設けられ、接続点Cと燃焼機6の流入側の間の循環復路41上には、貯湯タンク31を含む各熱負荷へ熱伝達されて温度を低下させて燃焼機6に流入する湯水の温度を検知する復路温度センサ45が設けられている。
尚、本実施形態では、各温度センサにサーミスタを用いているが、ポジスタや他の半導体温度センサを用いることも可能である。
【0048】
このような構成の熱源循環回路32では、熱負荷へ選択的に湯水を循環させるために、制御回路部10から暖房熱交電磁弁52、追い焚き熱交電磁弁53或いは貯湯量制御弁84へ制御信号を送出して切り換え制御を行っている。また、熱源循環回路32に設けられた流量センサや温度センサの検知信号は制御回路部10へ伝送されて信号処理され、循環する湯水の温度を目的とする温度に調節するべく燃焼機6の燃焼量や循環流量制御弁51の開度が調節制御される。
【0049】
次に、暖房循環回路35について説明する。暖房循環回路35は、図1の様に、熱源循環回路32から熱伝達を受ける暖房熱交換器42を熱源とし、暖房端末8を熱負荷として構成される循環回路である。則ち、暖房熱交換器42から延出する循環往路55及び循環復路56に、暖房端末8を接続して形成される循環回路である。
【0050】
暖房循環回路35の構成を図1、図2を参照して更に詳細に説明する。
暖房熱交換器42から延出する循環往路55及び循環復路56は、加熱装置2の外部に延出している。循環往路55は暖房熱交換器42の一端から直接加熱装置2の外部に延出する。また、循環復路56は、加熱装置2の外部から熱動弁(流路制御弁)54、補水タンク17及び暖房循環ポンプ60を介して暖房熱交換器42の他端に接続されている。そして、加熱装置2から延出する循環往路55および循環復路56には暖房端末8が接続されている。
【0051】
尚、循環復路56に設けられた補水タンク17は、暖房循環回路35を循環する湯水が減少したときに補水を行うものである。則ち、水位センサ20の検知水位が所定レベルよりも低下すると、制御回路部10によって補水弁19を開成して給水栓(不図示)から給水流路21を介して補水管18へ供給される水を補水タンク22に所定水位まで補給する動作を行う。
【0052】
また、循環往路55と循環復路56との間には、加熱装置2の内部において両路をバイパスするバイパス流路63が設けられている。則ち、熱動弁54と補水タンク17との間の循環復路56と循環往路55との間にバイパス流路63が設けられており、暖房端末8を経由する長い暖房循環回路35とは別に、加熱装置2の内部でバイパス流路63を経由する短い循環回路が形成されている。
バイパス流路63は、循環往路55及び循環復路56よりも流路断面積の小さい配管で形成され、熱動弁54が閉成された状態で暖房循環ポンプ60を駆動された場合に、当該バイパス流路63を介して湯水を循環させることによりポンプ60の焼き付きを防止する機能を有する。
【0053】
ここで、本実施形態の加熱装置2では、図2の様に、循環復路56は加熱装置2の出口近傍において複数の流路56a〜56cに分岐され、各分岐流路56a〜56cには各々熱動弁54a〜54cが設けられている。
そして、循環往路55は加熱装置2から延出する循環往路55' を介して複数の暖房端末8(8a〜8c)の往路側へ接続され、各暖房端末8の復路側は個別の循環復路56a' 〜56c' によって熱動弁54に接続されている。
【0054】
暖房端末8は、図2の様に、ファンコンベクタなどの複数の暖房端末8a,8bや床暖房8cなどの暖房端末を含むものであり、運転しようとする暖房端末に対応する熱動弁54a〜54cを開成制御して暖房循環回路35を形成することにより、当該暖房端末へ湯水を循環させて暖房を行うものである。
【0055】
また、暖房循環回路35には、バイパス流路63よりも暖房熱交換器42側の循環往路55及び循環復路56に、各々、往路温度センサ76及び復路温度センサ77が設けられている。これらの温度センサ76,77の検知信号は制御回路部10へ送出されて、暖房循環回路35を循環する湯水の温度を調節するべく、前記熱源循環回路32及び排熱循環回路12を循環する湯水の温度調節が行われる構成とされている。
【0056】
本発明の暖房試運転では、前記バイパス流路63を介して循環する湯水の温度をこれらの温度センサ76,77で検知することによって、暖房循環回路35に配された暖房循環ポンプ60や熱動弁54の駆動状態の良否を判別するものである。
【0057】
次に、本実施形態の加熱装置2の暖房試運転時に行われる制御の詳細を説明する。
本実施形態に採用する加熱装置2では、前記したように、暖房循環回路35に流量センサが設けられていない。このため、システム1の新設時などに、暖房循環ポンプ60の駆動不良や熱動弁54cの駆動不良を直接検知することが不可能である。このため、熱源循環回路32及び暖房循環回路35を循環する湯水の温度を検知し、検知された温度から暖房循環ポンプ60及び熱動弁54の動作の良否を判別することに特徴を有したものである。
【0058】
以下に、図1,図2に加えて、図3,図4のフローチャートを参照しつつ、暖房試運転における制御の詳細を説明する。
尚、以下の説明では、暖房試運転の制御プログラムは制御回路部10に設けられたROM(不図示)に予め格納されており、当該制御プログラムに従って制御処理や判別処理がデジタル処理されるものとする。また、当該制御回路部10には、試運転モードや給湯、暖房などの運転モード、或いは、温度設定などを切り換えるリモートコントローラなどの制御端末(不図示)が含まれているものとして述べる。
また、暖房試運転に際して、熱源循環ポンプ47の駆動不良、及び、暖房熱交電磁弁52、追い焚き熱交電磁弁53、貯湯量制御弁84の駆動不良は、熱源循環回路32に設けた循環流量制御弁50及び各部に設けた温度センサによって制御回路部10で検出可能なものとする。
【0059】
リモートコントローラによって暖房試運転の指示を行うと、制御回路部10は、いずれかの運転が行われているか否かをチェックする。則ち、図4のステップ200(200a〜200d)に示すように、暖房、給湯(落とし込み)、貯湯或いは追い焚きのいずれかの運転が行われているか否かをチェックする。そして、いずれかの運転が行われているときには、全ての運転を一旦停止させる(以上、図3,図4ステップ200,201参照)。
【0060】
次に、暖房試運転に際して制御回路部10は初期設定を行う。初期設定は、図4のステップ202に示す様に、タイマーto,t1,t2をリセットする。また、暖房熱交換器42のみが熱源循環回路32の熱負荷となるように、暖房熱交電磁弁52を開成すると共に、追い焚き熱交電磁弁53及び貯湯量制御弁84を閉成制御する。更に、全暖房端末8a〜8cに接続された熱動弁54a〜54cに閉成信号を送出し、熱源循環回路32の循環ポンプ47を駆動し、燃焼機6を燃焼駆動すると共に、暖房循環ポンプ60に駆動信号を送出する(以上、図3ステップ202,図4ステップ202(ステップ202a〜202f)参照)。
【0061】
また、制御回路部10は、暖房循環回路35へ正常に熱伝達が行われている状態で熱源循環回路32を循環する湯水の温度が略一定となるように、燃焼機6の燃焼量及び循環流量制御弁51の開度を予め定められた制御値に固定する(以上、図3ステップ202,図4ステップ202(ステップ202g)参照)。
【0062】
ここで、タイマーtoは暖房試運転の開始から終了までの時間を計測するタイマー、タイマーt1は燃焼機6の燃焼停止時間を積算する積算タイマー、タイマーt2は所定の温度条件の継続時間を計測するタイマーであり、いずれも、制御回路部10においてプログラム処理により計測される。
【0063】
以上の処理により、熱源循環回路32は、燃焼機6を熱源とし暖房熱交換器42のみを熱負荷とする循環回路を形成し、暖房循環回路35は、暖房熱交換器42を熱源とし循環往路55からバイパス流路63を介して循環復路56に至る循環回路を形成して暖房試運転が開始される。
【0064】
続いて、制御回路部10は、タイマーtoをスタートし、熱源循環回路32を循環する湯水の温度を、燃焼機6の流入側に設けた流入温度センサ45で検知しつつ監視する。そして、流入温度センサ45の検知温度が上限温度痾以上になると、熱源循環ポンプ47および暖房循環ポンプ60を駆動したまま燃焼機6の燃焼を停止させ、タイマーt1の計時を開始する。
このタイマーt1の計時は、燃焼機6の燃焼停止期間、則ち、流入温度センサ45の検知温度が上限温度痾以上の期間について積算計測する。そして、タイマーt1が所定時間を積算してタイムアップすると、暖房循環回路35の暖房循環ポンプ60の駆動不良と判別する(以上、図3ステップ204,216〜220参照)。
【0065】
この判別は、熱源循環回路32を循環する湯水の温度上昇は、熱源循環回路32を循環する湯水の熱が暖房循環回路35へ正常に伝達されないことに起因して発生するものであり、当該熱伝達が行われない要因として暖房循環回路35の循環不良、則ち、暖房循環ポンプ60の駆動不良と見なすことに基づいて行う。
【0066】
一方、制御回路部10は、熱源循環回路32の湯水の温度が上限温度痾に達しない状態であれば、燃焼機6の燃焼を継続させる。そして、暖房循環回路35の暖房往路55及び暖房復路56を循環する湯水の温度を各々往路温度センサ76及び復路温度センサ77で検知しつつ、双方の温度が所定値竈以上であり、且つ、双方の温度差が所定値繃未満であるかを監視する。
そして、循環往路55及び循環復路56を循環する湯水の温度が上記温度条件に適合する場合は、タイマーt2の計時をスタートさせる。このタイマーt2は、循環往路55及び循環復路56を循環する熱媒体の温度が上記温度条件から外れた場合には、その都度リセットする(以上、図3ステップ204〜210,213,214参照)。
【0067】
暖房試運転を開始してからタイマーtoがカウントアップするまでの期間に、循環往路55及び循環復路56を循環する熱媒体の温度が上記温度条件に適合してタイマーt2がタイムアップすると、暖房循環ポンプ60が正常に駆動されつつ熱動弁54a〜54cが正常に閉成駆動されていると判別する(以上、図3ステップ204〜212参照)。
則ち、全ての熱動弁54が正常に閉成され、且つ暖房循環ポンプ60が駆動された状態では、暖房熱交換器42から循環往路55,バイパス流路63及び循環復路56を介して形成される短い暖房循環回路35を、熱源循環回路32で熱伝達を受けつつ湯水が循環する。これにより、循環往路55及び循環復路56を循環する湯水は共に温度上昇すると共に、双方の温度に大きな温度差が生じないことに基づいて判別を行っている。
【0068】
一方、暖房試運転を開始してからタイマーtoがカウントアップするまでの間に、循環往路55及び循環復路56を循環する湯水の温度が上記温度条件に適合せず、タイマーt2がカウントアップしないときは、熱動弁54を介して湯水が暖房端末8側へ循環しているものとして、熱動弁54a〜54cの内の少なくともいずれか一つが閉成不良であると判別する(以上、図3ステップ204〜215参照)。
則ち、暖房循環ポンプ60が正常に駆動されていても、いずれかの熱動弁54が閉成駆動されないときは、暖房熱交換器42から循環往路55,暖房端末8及び循環復路56を介して形成される長い暖房循環回路35を、熱源循環回路32で熱伝達を受けつつ湯水が循環する。これにより、循環往路55及び循環復路56を循環する湯水の温度に大きな温度差が生じ、上記温度条件が外れることに基づいて判別を行っている。
【0069】
本実施形態に示した暖房循環ポンプ60及び全熱動弁54の閉成動作の試運転に引き続いて、各熱動弁54a〜54cの開成動作を順次行う暖房試運転が行われるが、詳細については省略する。
【0070】
このように、本実施形態の加熱装置2によれば、流量センサが設けられていない暖房循環回路35の暖房循環ポンプ60や熱動弁54の動作不良を、熱源循環回路32及び暖房循環回路35を循環する湯水の温度を監視することによって正確に効率良く行うことができ、暖房試運転を短時間に完了することが可能となる。
【0071】
尚、本実施形態の暖房試運転では、熱源循環回路32あるいは暖房循環回路35の監視温度を具体的に示していないが、燃焼機6の燃焼量や熱交換器の効率を勘案して適宜定めることが可能である。
また、本実施形態の加熱装置2では、暖房試運転に際して、熱源循環回路32を循環する湯水の温度が上限温度痾に達したときには燃焼機の燃焼を停止させたが、本発明はこのような構成に限られるものではない。則ち、燃焼機6の燃焼量、湯水の上限温度、及び、積算タイマーtoのカウントアップ時間を適宜に設定することにより、燃焼機6の燃焼を継続させたままで試運転を行うことも可能である。
【0072】
更に、前記暖房試運転の制御では、暖房循環ポンプ60と熱動弁54の良否の判別を個別に行ったが、本発明はこのような判別方法に限られるものではない。則ち、前記図3に示した暖房試運転のフローチャートにおいて、監視温度を適宜に設定することにより、ステップ216〜ステップ220を省略しつつ、暖房循環ポンプ60と熱動弁54の閉成の良否を同時に判別することも可能である。
【0073】
また、前記暖房試運転では、熱源循環回路32の熱源部として燃焼機6を用いたが、後述する発電装置などから排出される排熱を利用した熱源部を用いることも可能である。
【0074】
【実施例】
次に、前記実施形態に係る加熱装置2を採用したコージェネレーションシステム1の実施例を、図5〜図10を参照しつつ説明する。尚、前記実施形態の加熱装置2と同一構成部分については、同一の符号を付して重複した説明を省略する。
【0075】
本実施例のコージェネレーションシステム1は、図5の様に、加熱装置2に発電装置3を併設して構成され、発電装置3によって外部の電気機器へ電力を供給しつつ、発電に伴って生じる排熱を加熱装置2に還元させるようにした排熱再利用システムである。
【0076】
発電装置3は、都市ガス(天然ガス)を燃焼させて駆動される水冷式ガスエンジン5と、当該ガスエンジンで駆動される発電機14とを組み合わせて構成される。発電機14で生成された電力は、外部の電気機器へ供給されると共に、ガスエンジン20の駆動に伴って生じる排熱は、ガスエンジン5を冷却するための排熱循環回路12を循環する熱媒体に熱交換して回収され、回収された排熱は加熱装置2へ送られて、給湯や暖房の熱源として再利用する構成とされている。
ここで、本実施例のシステム1では、発電装置3で回収された排熱を加熱装置2側へ伝達する構成を採用するため、前記実施形態に示した加熱装置2には、発電装置3から供給される排熱を受ける構成が追加される。以下に、発電装置3の詳細な構成と、加熱装置2の追加構成を説明する。
【0077】
発電装置3の排熱循環回路12は、図5に示すように、ガスエンジン5に設けられた冷却熱交換器5aから延出する循環往路13と循環復路15との間に、加熱装置2側に設けられる二つの熱交換器を熱負荷として切り換え可能に接続した循環回路である。則ち、加熱装置2の熱源循環回路32には、排熱熱交換器30が追加して設けられ、また、暖房循環回路35にも排熱熱交換器57が追加して設けられ、排熱循環回路12を循環する熱媒体が、これらの排熱熱交換器30,57のいずれか一方に切り換え循環可能な構成とされる。
【0078】
循環経路を更に詳細に示すと、冷却熱交換器5aから延出する循環往路13の途中には、発電機14の電力供給を受けて湯水(熱媒体)の加熱を促進するヒータ11が配され、分岐点Aから排熱往路58を通じて熱源循環回路32に設けられた排熱熱交換器30に至り、当該排熱熱交換器30から延出する排熱復路59は、三方弁25,23を介して循環復路15に接続されている。また、排熱往路58から分岐した排熱分岐往路61は暖房循環回路35に設けられた排熱熱交換器57に至り、当該排熱熱交換器57から延出する排熱分岐復路62は、三方弁25に接続されている。
【0079】
則ち、循環往路13は分岐された排熱往路58及び排熱分岐往路61を介して二つの排熱熱交換器30,57に至り、これらの排熱熱交換器30,57から延出する排熱復路59及び排熱分岐復路62は、三方弁25及び三方弁25を介して循環復路15に接続されている。
また、冷却熱交換器5aから延出する循環復路15の途中には、排熱循環ポンプ16及び補水タンク22が配され、分岐点Bには三方弁23が設けられて分岐点Aへ繋がるバイパス流路26と三方弁25とへ分岐している。
【0080】
ここで、三方弁25は、排熱復路59と排熱分岐復路62のいずれか一方と三方弁23とを連通する切り換え弁の働きをする。また、三方弁23はサーモスタットによって開閉する弁機能を備えており、排熱循環回路12の内部の熱媒体の温度が所定値以下のときは、バイパス流路26と循環復路15とを連通し、熱媒体の温度が所定値を超えると三方弁25と循環復路15とを連通する切り換え機能を備えている。
【0081】
これにより、排熱循環回路12は熱媒体の温度に応じて次の循環経路が形成される。則ち、熱媒体の温度が低いときは、三方弁23によってバイパス流路26が循環復路15と連通するので、循環往路13と循環復路15とをバイパス流路26で短絡した循環流路が形成されて、低温の熱媒体が排熱往路58や排熱分岐往路61側へ循環することが阻止される。
【0082】
熱媒体の温度が上昇すると、三方弁23によってバイパス流路26と循環復路15との連通が遮断され、三方弁25と循環復路15とが連通する。従って、三方弁25で選択されている排熱復路59又は排熱分岐復路62のいずれか一方が循環復路15と連通する。これにより、熱媒体はバイパス流路を通らずに、排熱熱交換器30又は排熱熱交換器57のいずれか一方を循環する循環経路を流動して、ガスエンジン5から回収された排熱を排熱熱交換器30又は排熱熱交換器57へ伝達する。
【0083】
尚、循環復路15に設けられた補水タンク22は、排熱循環回路12を循環する湯水が減少したときに補水を行うものである。則ち、水位センサ29の検知水位が所定レベルよりも低下すると、制御回路部10によって補水弁28を開成して給水栓(不図示)から給水流路21を介して補水管27へ供給される水を補水タンク22に所定水位まで補給する動作を行う。
【0084】
尚、本実施例のシステム1では、発電装置3の発電機14で生成された電力は基本的に外部の電気機器に供給し、その余剰電力をヒータ11に供給する構成としている。則ち、発電機14で生成する電力の余剰電力が商用電源ラインに流入する逆潮流を禁止するための余剰電力制御部(不図示)を設けている。
【0085】
一方、加熱装置2の熱源循環回路32には、図5の様に、循環復路41上の熱源循環ポンプ47に隣接する下流側に排熱熱交換器30が設けられ、これに伴って、排熱熱交換器30に隣接する上流側に循環復路41を循環する湯水の温度を検知する復路温度センサ44が追加して設けられる。則ち、熱源循環回路32には、燃焼機6の熱源部Kに加えて、更に、排熱熱交換器30による熱源部Kを設けた構成とされている。
【0086】
また、加熱装置2の暖房循環回路35には、図5の様に、循環復路56上の熱動弁54に隣接する下流側に排熱熱交換器57が追加して設けられた構成とされている。また、貯湯タンク31には、貯留される湯水の高さ方向の各部の温度を検知する最上部温度センサ95、上部温度センサ96、中部温度センサ97及び下部温度センサ98が設けられている。
尚、貯湯タンク31の上部配管87には、タンク内圧力を逃がす負圧作動式の安全弁34が設けられている。
【0087】
次に、本実施例のシステム1における排熱貯湯運転の動作を説明する。
(排熱貯湯運転)
排熱貯湯運転では、図5の様に、制御回路部10は、発電装置3の三方弁25を制御して排熱復路59と三方弁23が連通するように切り換え設定する。また、制御回路部10は、加熱装置2の熱源循環回路32において、暖房熱交電磁弁52又は追い焚き熱交電磁弁53のいずれか一方を開成すると共に、貯湯量制御弁84を開成し、給湯流路83に設けられた混合弁80を閉成する。更に、熱源循環回路32の燃焼機6は燃焼駆動を行わず、暖房循環回路35の暖房循環ポンプ60も駆動しない状態で運転を開始する。これにより、熱源循環回路32は排熱熱交換器30を熱源部Kとし、貯湯タンク31を熱負荷とした循環回路が形成される。そして、熱源循環回路32の循環流量制御弁51を開度制御しつつ、熱源循環ポンプ47を駆動して排熱貯湯運転を開始する。
【0088】
排熱貯湯運転の開始に伴って、発電装置2のガスエンジン5が駆動を開始すると、排熱循環ポンプ16が作動して排熱循環回路12内を湯水が循環し始める。同時に、ガスエンジン5の駆動により発電機10において発生した電力がヒータ11に通電されて排熱循環回路12を循環する湯水の加熱が促進される。
【0089】
ガスエンジン5の起動直後は、排熱循環回路12内の湯水が低温であり、三方弁23によってバイパス流路26を介した循環経路が形成されて、低温の湯水が排熱熱交換器30側へ流入することが阻止される。そして、バイパス流路26を介して循環する排熱循環回路12内の湯水が所定の温度以上になると、三方弁23によってバイパス流路26の湯水の循環が排熱復路59側へ切り換えられ、排熱熱交換器30を介した湯水の循環が開始される。
【0090】
一方、加熱装置2では、熱源循環ポンプ47の駆動によって、貯湯タンク31内の湯水が下部配管89を通じて循環復路41側に流入する。循環復路41内を流れる湯水は、排熱熱交換器30において発電装置3の排熱循環回路12から循環される高温の湯水から熱伝達を受けて加熱されつつ燃焼機6へ流入する。
【0091】
燃焼機6は燃焼停止状態であるため、流入した湯水はそのまま燃焼機6を通過して循環往路38へ流出する。ここで、往路温度センサ39が検知する循環往路38を循環する湯水の温度が所定値に達していないときは、貯湯量制御弁84が閉成され、貯湯タンク31への湯水の流入は阻止される。これにより、低温の湯水は暖房熱交換器42を介して熱源循環回路32内を循環する。
【0092】
循環往路38を循環する湯水が所定温度以上になると、貯湯量制御弁84が開成され、排熱熱交換器30で加熱された高温の湯水が上部配管87を介して貯湯タンク31に流入する。上部配管87から高温の湯水が流入するのに伴い、略等量の低温の湯水が下部配管89から流出し、暖房熱交換器42を介してバイパスされる高温の湯水と集合点D(エアーセパレータ46)で混合され昇温されて排熱熱交換器30へ向けて循環する。
【0093】
このように、貯湯タンク31(本実施例では150L)は常に満水状態を維持しつつ、上部側から順次高温の湯水が層を成した状態で蓄積されていき、下部温度センサ98が所定温度(本実例では、略70℃)を検出すると、制御回路部10は発電装置3の運転を停止して排熱貯湯運転を終了する。
【0094】
(給湯運転)
次に、本実施例のシステム1における給湯運転に係る構成及び動作を説明する。図6に示す様に、貯湯タンク31は、上部配管87から分岐する給湯流路83,33を備えると共に、外部に設けられた給水栓(不図示)に繋がる給水流路91が貯湯タンク31の下部に接続されている。
【0095】
詳細に説明すると、貯湯タンク31から延出する給湯流路83は、給水栓から減圧弁88及び逆止弁90を介して延出する別の給水流路85と共に混合弁80に接続され、給湯量制御弁82、給湯流量センサ81を介し給湯流路33を通じて給湯栓(カランなど)7に接続されている。一方、逆止弁90の上流で分岐された給水流路91は逆止弁86を介して貯湯タンク31の下部に接続されている。
これにより、給水流路91から貯湯タンク31及び給湯流路83を経る給湯側の流路と、給水流路85を経る給水側の流路とが混合弁80で接続され、更に給湯流路33を介して給湯栓7に至る流路が形成される。
【0096】
また、給湯流路83には貯湯タンク31から給湯される湯水の温度を検知する給湯温度センサ92が設けられ、給水流路78には給水栓から供給される水温を検知する給水温度センサ93が設けられると共に、給湯流路33には混合弁80で混合された湯水の温度を検知する混合温度センサ94が設けられている。
【0097】
給湯栓7が開栓されると、制御回路10は給湯流量センサ81で開栓を検知し、貯湯量制御弁84が閉成される。また、混合弁80は、制御回路部10で設定された給湯温度に応じて給湯流路83側と給水流路85側の弁が開成制御される。
【0098】
給湯が開始すると、貯湯タンク31に貯留する高温の湯水は、下部の給水流路91から流入する水の圧力を受けて給湯流路83から流出して混合弁80に至る。そして、給水流路85を介して混合弁80に供給される水と混合されて適温に制御されつつ給湯流路33を介して給湯栓7から流出する。
混合弁80及び給湯量制御弁82の制御に際しては、制御回路10は、給湯温度センサ92、給水温度センサ93及び混合温度センサ94の検知温度を参照しつつ排出される湯水の温度が設定温度となるように開度制御を行う。
【0099】
一方、給湯運転に際して、貯湯タンク31に貯留された湯水が最上部に渡って低温であるときは、前記した貯湯タンク31に貯留された湯水をそのまま給湯するのではなく、貯留された湯水を燃焼機6で加熱しつつ給湯が行われる。
則ち、貯湯タンク31の最上部温度センサ95あるいは上部温度センサ96の検知温度が所定値よりも低いときに給湯栓7が開栓されると、制御回路10は給湯流量センサ81で開栓を検知し、暖房熱交電磁弁52及び追い焚き熱交電磁弁53を閉成し、貯湯量制御弁84を開成し、熱源循環ポンプ47を駆動すると共に、燃焼機6の燃焼制御を開始する。
【0100】
これにより、熱源循環回路32の循環復路41は、熱源循環ポンプ47の駆動によって吸引され、給水流路91を介して貯湯タンク31へ流入する水と略等量の低温水が下部配管89を介して熱源循環回路32の循環復路41へ流出する。循環復路41へ流出した低温水は燃焼機6へ流入して加熱され、循環往路38から流出する加熱された湯水は貯湯量制御弁84を介して給湯流路83へ供給される。給湯流路83へ供給される湯水は、前記した場合と同様にして混合弁80で水と混合され適温となって給湯栓7へ供給される。
そして、給湯栓7が閉じられると、制御回路部10、は給湯流量センサ81の検知信号で閉栓を検知して燃焼機6の燃焼を停止すると共に、熱源循環ポンプ47の駆動を停止して給湯運転を終了する。
【0101】
(風呂の落とし込み運転)
次に、本実施例のシステム1における風呂の落とし込み運転に係る構成及び動作を、図7を参照して説明する。
落とし込み運転は追い焚き循環回路36を経由して行われるため、ここに追い焚き循環回路36を含めた構成を説明する。
追い焚き循環回路36は、前記熱源循環回路32の熱負荷として接続された追い焚き熱交換器43を熱源とし、当該熱交換器43から延出する循環往路65と循環復路66とを加熱装置2の外部に設けた風呂端末(不図示)に接続して形成される。
【0102】
循環往路65は直接風呂端末へ接続される一方、循環復路66には、上流側から水位センサ67、追い焚き循環ポンプ68及び水流スイッチ70が直列に配されている。また、循環復路66の水位センサに隣接する下流側には、追い焚き循環回路36を循環する湯水の温度を検知する復路温度センサ64が設けられている。
一方、前記給湯流路33に設けられた給湯量制御弁82の下流側で分岐された給湯分岐流路71が循環復路66の暖房循環ポンプの下流側に接続されており、当該給湯分岐流路71には、上流側から注湯流量センサ75、注湯弁73及び逆止弁72が配されている。
【0103】
リモートコントローラの自動スイッチを操作すると、風呂の落とし込み運転が開始され、制御回路部10は、熱源循環回路32における湯水の循環を停止させると共に、暖房熱交電磁弁52、追い焚き熱交電磁弁53及び貯湯量制御弁84を閉成する。また、追い焚き循環ポンプ68は駆動停止状態とする。
【0104】
そして、制御回路部10によって注湯弁73が開成されると、前記した給湯運転の場合と同様に、混合弁80で設定温度に混合された湯水が給湯分岐流路71を介して追い焚き循環回路36の循環復路66に達する。循環復路66に達した湯水は、一部は循環復路66を逆行して浴槽(不図示)へ落とし込まれ、残部は循環復路66から追い焚き熱交換器43を介し、循環往路を通って浴槽へ落とし込まれる。則ち、本実施例のシステム1では、落とし込みに際して、給湯分岐流路71から供給される湯水を追い焚き循環回路36の循環往路65及び循環復路66の双方から浴槽へ向けて落とし込みを行っており、短時間の落とし込み動作を可能にしている。
そして、水位センサ67によって浴槽内の水位が所定値に達したことが検知されると、注湯弁73が閉止されて落とし込み運転が終了する。
【0105】
(風呂の追い焚き運転)
次に、本実施例のシステム1における追い焚き運転を説明する。
追い焚き運転を開始すると、図8の様に、制御回路部10は、まず、追い焚き循環ポンプ68を作動させ、水流スイッチ70の検知信号を参照して、循環復路66を循環する湯水の流量が所定値であるか否かを判別する。そして、循環する湯水の量が所定値であり、浴槽に湯水が満たされていることを判別すると、熱源循環回路32の追い焚き熱交電磁弁53及び循環流量制御弁51を開成し、暖房熱交電磁弁52及び貯湯量制御弁84を閉成する。また、熱源循環ポンプ47を駆動し、燃焼機6を燃焼駆動して加熱された湯水を熱源循環回路32に循環させる。
【0106】
これにより、熱源循環回路32を循環する高温の湯水の熱は、追い焚き熱交換器43によって追い焚き循環回路36を循環する湯水に伝達されて追い焚きが行われる。そして、追い焚き循環回路36の復路温度センサ64の検知温度が設定温度に達すると、燃焼機6の燃焼駆動を停止すると共に、熱源循環ポンプ47及び追い焚き循環ポンプ68の駆動を停止して追い焚き運転を終了する。
尚、本実施例のシステム1では、追い焚きに際して、復路温度センサ64の検知温度がリモートコントローラの設定温度よりも1℃以上低いときは設定温度に至るまで追い焚きを行い、これ以外のときは、設定温度よりも1℃高い温度まで追い焚きを行っている。
【0107】
次に、本実施例のシステム1における暖房運転の動作を図2及び図9を参照して説明する。本実施例のシステム1では、暖房運転を行う際に、暖房端末の種類や設定温度に応じて、暖房循環回路35を循環させる湯水の温度を変化させている。則ち、ファンコンベクタ8a,8bなどによって局部的な暖房を行う場合は高温の湯水を循環させ、床暖房8cなどによって部屋全体の暖房を行う場合は、局部暖房に比べて温度の低い湯水を循環させる構成としている。
そこで、まず、暖房循環回路35に高温の湯水を循環させる場合における暖房運転の動作を説明する。
【0108】
(高温暖房運転)
暖房端末8を操作して暖房運転を開始すると、制御回路部10は暖房循環ポンプ60を駆動し、復路温度センサ77の検知温度が規定温度以下のときには循環する湯水の加熱を開始する。まず、制御回路部10は、暖房循環回路35に設けられた排熱熱交換器57から発電装置3へ繋がる排熱分岐復路62が、排熱循環回路12の循環復路15へ連通するように三方弁25を制御する。そして、ガスエンジン5を駆動して発電機14の電力をヒータ11に供給しつつ排熱循環回路12を循環する湯水(熱媒体)を加熱する。この状態では、ガスエンジン5が昇温しておらず、排熱循環回路12の湯水は三方弁23によってバイパス流路26を介して循環する。
また、制御回路部10は、熱源循環回路32の暖房熱交電磁弁52を開成すると共に、追い焚き熱交電磁弁53及び貯湯量制御弁84を閉成し、熱源循環ポンプ47を駆動し、燃焼機6の燃焼を開始すると共に、暖房循環ポンプ60を駆動する。更に、制御回路部10は、運転を行う暖房端末8aに対応した熱動弁54aを開成する。
【0109】
発電装置3のガスエンジンが昇温して排熱循環回路12を循環する湯水の温度が所定値を超えると、三方弁23によってバイパス流路26が切り離され、三方弁25と循環復路15とが連通する。これにより、排熱循環回路12は循環往路13から排熱分岐往路61、排熱熱交換器57、排熱分岐復路62を介して循環復路15に至る循環経路を形成する。これにより、ガスエンジン5の冷却熱交換器5aで回収された排熱とヒータ11とで加熱された湯水の熱が排熱熱交換器57を介して暖房循環回路35を循環する湯水に伝達される。
【0110】
一方、熱源循環回路32は暖房熱交換器42を熱負荷とする循環回路となり、燃焼機6で加熱されて循環する湯水の熱が暖房熱交換器42を介して暖房循環回路35を循環する湯水に伝達される。
則ち、暖房循環回路35を循環する湯水は、暖房熱交換器42による熱源と排熱熱交換器57による熱源の双方によって加熱されつつ高温となって循環して、暖房端末8aなどによる高温の暖房が行われる。
本実施例の加熱装置2では、燃焼機6及びガスエンジン5の双方にオン−オフ制御または比例制御を行って暖房循環回路35を循環する湯水の温度を目的温度とする制御を行っている。
そして、暖房運転が停止されると、制御回路部10は、ガスエンジンの駆動を停止すると共に、燃焼機6の燃焼を停止させ、循環ポンプ16,47,60の駆動を停止して運転を終了する。
【0111】
(低温暖房運転)
床暖房8cなどの低温暖房を行う場合の動作は、図10の様に、発電装置3の排熱だけを利用して暖房を行うものである。則ち、前記高温暖房運転では、暖房熱交換器42による熱源と排熱熱交換器57による熱源の双方によって暖房循環回路35を循環する湯水を加熱したのに対して、低温暖房運転では、排熱熱交換器57による熱源だけで暖房循環回路35を循環する湯水を加熱するものである。従って、運転に際しての制御動作は、高温暖房運転の制御から熱源循環回路32による加熱制御を除いたものと同一であり、詳細な説明を省略する。
尚、低温暖房運転中に、暖房循環回路35の循環復路56を循環する湯水の温度が低下したときや、暖房温度が暖房端末8の設定温度に達しない場合には、上記高温暖房運転に自動的に切り換える動作を行う。
【0112】
尚、本発明の暖房試運転は、加熱装置2の新設時にのみ行っても良いが、前記した暖房運転の開始に際して毎回行うことも可能である。
【0113】
【発明の効果】
請求項1〜5に記載の発明によれば、暖房循環ポンプや熱動弁の駆動の良否を的確に判別することができ、暖房試運転を効率良く行うことができる加熱装置を提供できる。
請求項に記載の発明によれば、給湯や風呂の落とし込み運転をも可能にした加熱装置を提供できる。
請求項に記載の発明によれば、風呂の追い焚き運転をも可能にした加熱装置を提供できる。
請求項に記載の発明によれば、他の運転を強制的に停止させることにより、暖房試運転を的確に効率良く行うことが可能となる。
請求項に記載の発明によれば、燃焼機を熱源とした高効率の加熱装置を提供することができる。
請求項10に記載の発明によれば、発電装置の排熱を利用した熱効率の高い加熱装置を提供することが可能となる。
請求項11,12に記載の加熱装置の暖房試運転制御方法によれば、暖房循環ポンプや熱動弁の駆動の良否を的確に判別することができ、暖房試運転を効率良く行うことが可能である。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る加熱装置の流路系統図である。
【図2】 図1に示す加熱装置に接続される暖房端末の流路系統図である。
【図3】 本発明の暖房試運転の制御を示すフローチャートである。
【図4】 図3のフローチャートの運転状態の判別及び初期設定の詳細を示すフローチャートである。
【図5】 本発明の実施例に係るコージェネレーションシステムの排熱貯湯運転における流路系統図である。
【図6】 本発明の実施例に係るコージェネレーションシステムの給湯運転における流路系統図である。
【図7】 本発明の実施例に係るコージェネレーションシステムの風呂の落とし込み運転における流路系統図である。
【図8】 本発明の実施例に係るコージェネレーションシステムの追い焚き運転における流路系統図である。
【図9】 本発明の実施例に係るコージェネレーションシステムの高温暖房運転における流路系統図である。
【図10】 本発明の実施例に係るコージェネレーションシステムの低温暖房運転における流路系統図である。
【符号の説明】
K 熱源部(燃焼機、排熱熱交換器)
2 加熱装置
3 発電装置
6 燃焼機
7 給湯端末(給湯栓)
8,8a,8b,8c 暖房端末
12 排熱循環回路
31 貯湯部(貯湯タンク)
30 排熱熱交換部(排熱熱交換器)
32 熱源循環回路
35 暖房循環回路
36 追い焚き循環回路
42 暖房熱交換部(暖房熱交換器)
43 追い焚き熱交換部(追い焚き熱交換器)
54,54a,54b,54c 流路制御弁(熱動弁)
55 循環往路(暖房循環回路の循環往路)
56 循環復路(暖房循環回路の循環復路)
60 暖房循環ポンプ
63 バイパス流路
83 給湯流路
91 給水流路
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heating device, and more particularly, to a test operation control method in a heating device having a heating function.
[0002]
[Prior art]
  Recently, a heating device having multiple functions such as hot water supply and heating, dropping of a bath, and chasing has been developed. In such a heating device, by concentrating a heating circulation circuit, a hot water supply channel, a bath dropping channel, a reheating circulation circuit, and the like in different systems on the combustor, each circuit or channel is connected from the combustor. Thus, a configuration for directly exchanging heat is adopted.
[0003]
  Further, in the conventional heating device, a configuration is adopted in which the circulation forward path or circulation return path of the heating circulation circuit is branched, and a thermal valve is provided in each branch flow path to connect to each heating terminal. Thus, by controlling the opening and closing of the thermal valve, the heating medium of the heating circulation circuit heated by the combustor is selectively supplied to a plurality of heating terminals provided outside the heating device by the heating circulation pump in the heating operation. It is designed to heat by circulation.
[0004]
  In such a heating device, when a heating circulation pump fails during heating operation, the heating medium in the heating circulation circuit is not circulated and heating is not performed, and the heating medium is extremely heated by the combustor. A malfunction occurs. In addition, even when the heating circulation pump is operating normally, if any of the heat valves provided for each heating terminal is not closed, the heat medium is circulated to the heating terminals that are not in use and the heating efficiency is increased. Incurs a decline. For this reason, conventionally, when a heating apparatus is newly installed, a heating trial operation is performed to determine whether the heating circulation pump and the thermal valve are good or bad.
[0005]
  In a conventional heating device, during a heating trial operation, a drive signal is sent to a heating circulation pump provided in the heating circulation circuit, and the entire heat operated valve is closed to prevent the flow of the heat medium to the heating terminal side. Send a signal. Then, the temperature rise of the heat medium circulating through the bypass flow path provided for preventing the heating circulation pump from being burned out is monitored, and this temperature rise causes the quality of the heating circulation pump to be driven and the thermal valve to be closed. The state was judged as good or bad.
[0006]
  By the way, recently, a so-called cogeneration system has been developed in which a power generation device is provided in addition to a heating device, and exhaust heat accompanying power generation is recovered and used. In such a system, since the exhaust heat of the power generation device is reused, the combustor employed in the heating device is often downsized. For this reason, instead of directly heating the heat medium of a plurality of circulation circuits of different systems in the combustor, the heat medium circulating in one heat source circulation circuit is heated in the combustor, and the heat source circulation circuit is A configuration is employed in which the heat of the circulating heat medium is selectively supplied to a plurality of heat loads.
  In other words, in order to separate between the heat source circulation circuit and other heating circulation circuit or reheating circulation circuit, a heat exchange part is interposed between the two, and the heat of the heat medium circulating in the heat source circulation circuit is changed to other A structure for transferring to the heat medium of the circulation circuit is employed.
[0007]
[Patent Document 1]
  JP 2001-248913 A
[0008]
[Problems to be solved by the invention]
  However, in the configuration in which the heat of the heat medium circulating in the heat source circulation circuit is transmitted to the heat medium of another circulation circuit, the heat medium flowing in the heating circulation circuit is directly heated by the combustor as in the conventional case. In comparison with the above, the temperature rise curve of the heat medium in the heating circulation circuit during the heating trial operation is different, which causes a problem that the abnormal operation of the heating circulation pump and the thermal valve cannot be accurately determined.
[0009]
  The present invention is proposed in view of the above circumstances, and in a heating device that performs heating by transferring heat of a heat medium circulating in a heat source circulation circuit to a heat medium in a heating circulation circuit, a heating circulation pump and a thermal valve are provided. An object of the present invention is to provide a heating device that can accurately discriminate the abnormal operation.
[0010]
[Means for Solving the Problems]
  In order to achieve the above object, the present inventors have taken the following technical means.
  In other words, the invention of claim 1A heating heat exchange unit is interposed between a heat source circulation circuit that circulates the heat medium heated by one or more heat source units and a heating circuit that is connected to an external heating terminal and circulates the heat medium. A heating device for performing heating operation by transferring heat of the heat medium circulating in the heat source circulation circuit to the heat medium circulating in the heating circulation circuit, wherein the heating circulation circuit bypasses the circulation forward path and the circulation return path A heating circulation pump that circulates a heat medium on a flow path that is closer to the heating heat exchanging unit than the bypass flow path, and that is on the flow path located closer to the heating terminal than the bypass flow path And a flow control valve for controlling the opening and closing of the circulation of the heat medium to the heating terminal side, and during the heating trial operation of the heating device, a closing signal is sent to the flow control valve and a drive signal is sent to the heating circulation pump Send The temperature of the heat medium in the circulation forward path and the circulation return path is detected from the bypass flow path of the heating circulation circuit while circulating the heat medium heated in the heat source section to the heat source circulation circuit. The heating device is characterized in that the quality of the closing operation of the flow path control valve is determined based on the measured temperature.
[0011]
  In the heating trial operation, when the heating circulation pump is driven and the flow path control valve is closed, the heat medium in the heating circulation circuit circulates along the route via the bypass flow path while receiving heat exchange in the heating heat exchange section. To do. Therefore, the temperature of the heat medium in both the circulation outward path and the circulation return path rises, and a large difference in the temperature of the heat medium between the circulation outward path and the circulation return path does not occur.
[0012]
  Further, when the heating circulation pump is driven and the flow path control valve remains open, the heating circulation circuit forms a circulation circuit via the heating terminal side provided outside the heating device. For this reason, the heat medium in the circulation outward path becomes high temperature, the heat medium in the circulation return path becomes low temperature, and a large temperature difference occurs between the heat medium in the circulation outward path and the circulation return path.
[0013]
  Furthermore, when the heating circulation pump is not driven, the heat medium in the heating circulation circuit does not circulate regardless of the open / close state of the flow path control valve. For this reason, there is almost no difference in the temperature of the heat medium between the circulation forward path and the circulation return path, and the heat medium of the circulation forward path and the circulation return path remains at a low temperature.
[0014]
  According to the present invention, it is possible to accurately determine whether the operation of the flow path control valve is good or not by referring to the temperature fluctuation generated in the heat medium in the circulation forward path and the circulation return path of the heating circulation circuit as the flow path control valve is opened and closed. It becomes possible to do.
[0015]
  The invention described in claim 22. The heating device according to claim 1, wherein the temperature of the heat medium circulating in the heat source circulation circuit is detected, and whether or not the heating circulation pump is driven is determined based on the detected temperature.
[0016]
  Here, when the drive signal is sent to the heating circulation pump but the pump is not driven, the heat medium does not circulate in the heating circulation circuit, and the heat of the heat medium in the heat source circulation circuit is the heat of the heating circulation circuit. Not transmitted to the media. In other words, the heat medium in the heating circulation circuit does not circulate even though the heat medium in the heat source circulation circuit circulates in the heating heat exchange section, so that the heat medium staying in the heating circulation circuit is heated in the heating heat exchange section. The amount of heat transferred to the heating circulation circuit is extremely small. For this reason, compared with the case where the heating circulation pump is operating normally, the temperature rise of the heat medium circulating in the heat source circulation circuit increases rapidly.
  On the other hand, when the heating circulation pump is driven normally, the heat of the heat medium in the heat source circulation circuit is transferred to the heating medium in the heating circulation circuit, and the heating medium in the heating circulation circuit transfers heat to the heating terminal. The temperature of the heat medium in the heat source circulation circuit does not increase rapidly.
[0017]
  The present invention makes use of the fact that the temperature variation of the heat medium circulating in the heat source circulation circuit changes greatly according to the driving and stopping of the heating circulation pump, and the heat medium circulating in the heat source circulation circuit is utilized. By monitoring the temperature fluctuation, it is possible to accurately determine whether the heating circulation pump is driven or stopped. Thereby, even if it is a heating circulation circuit which is not provided with a flow sensor etc., it becomes possible to immediately discriminate | determine the malfunction of a heating circulation pump by heating trial operation.
[0018]
  Claim3The invention described in claim 12In the heating apparatus described in the above, during the heating trial operation, when the heat medium circulating in the heat source circulation circuit reaches a predetermined upper limit temperature, the driving of the heat source unit is stopped, while when the heat medium is lower than the upper limit temperature, the heat source The driving of the unit is resumed.
[0019]
  ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to discriminate | determine correctly abnormality of a heating circulation pump, suppressing the temperature rise of the heat medium of a heat source circulation circuit. Accordingly, during the heating trial operation, the temperature increase of the heat medium in the heat source circulation circuit due to the malfunction of the heating circulation pump is suppressed, and the heating trial operation with improved reliability can be performed.
  In the present invention, in order to stop the drive of the heat source unit, for example, the configuration of detecting the temperature of the heat medium by the heat source unit itself and controlling its own drive, or the control circuit unit different from the heat source unit The structure which detects temperature and controls the drive of a heat-source part can be taken.
[0020]
  Claim4The invention described in claim 12 or 3In the heating apparatus described in the above, during the heating trial operation, the time when the heat medium circulating in the heat source circulation circuit exceeds a predetermined upper limit temperature is integrated, and the integrated time reaches a predetermined value within a predetermined time from the start of the heating trial operation. When it does, it is set as the structure discriminate | determined from abnormality of a heating circulation pump.
[0021]
  According to the present invention, from the start of the heating trial operation, the time when the heat medium of the heat source circulation circuit exceeds the upper limit temperature, that is, the time corresponding to the state where heat transfer from the heat source circulation circuit to the heating circulation circuit is not performed is integrated. To do. And when the integrated value of time reaches a predetermined value within a predetermined time from the start of the heating trial operation, it is determined that the heating circulation pump is abnormal.
  This eliminates transient fluctuation factors at the start of test operation and during test operation, while accurately preventing the heat transfer to the heating circulation circuit, that is, the circulation stop state due to the malfunction of the heating circulation pump. It becomes possible to discriminate.
[0022]
  Claim5The invention described inAny one of 1 to 4In the heating device described in the above, during the heating trial operation, the heating medium in the circulation circulation path and the circulation return path of the heating circulation circuit are each equal to or higher than a predetermined temperature, and the temperature difference between the heat medium in the circulation circulation path and the circulation return path is determined in advance. When a state within the specified temperature range is continuously detected for a predetermined time, it is determined that the closing operation of the flow path control valve is normal.
[0023]
  Here, as described above, if the heating circulation pump is driven and the flow path control valve is closed, the temperature of the heat medium in both the circulation forward path and the circulation return path rises, and the circulation forward path and the circulation pass. There is no significant difference in the temperature of the heat medium from the return path. On the other hand, when the flow path control valve is opened, the temperature condition is not satisfied.
[0024]
  Therefore, as in the present invention, the heat medium in the circulation forward path and the circulation return path are each equal to or higher than a predetermined temperature, and the temperature difference between the heat medium in the circulation forward path and the circulation return path is within a predetermined temperature range. By detecting the state, it is possible to accurately determine that the flow path control valve is normally closed. Further, according to the present invention, the temperature condition is continuously detected for a predetermined time, so that an erroneous determination due to a transient temperature fluctuation can be eliminated and an accurate determination can be performed.
[0025]
  The temperature condition defined in the present invention is a necessary and sufficient condition indicating that the heating circulation pump is driven and the flow path control valve is closed, while determining whether the operation of the flow path control valve is good or bad. At the same time, the operation of the heating circulation pump can be determined.
[0026]
  Claim6The invention described in claim 11 to 5The heating device according to any one of the above, wherein the heat medium circulating in the heat source circulation circuit is hot water, and includes a hot water storage unit that supplies hot water to a hot water supply terminal or a bath terminal provided outside the heating device, and the hot water storage unit Is connected to the heat source circulation circuit, and the hot water storage section is connected to the hot water supply passage and the water supply passage, and the hot water heated in the heat source section is stored via the heat source circulation circuit in the hot water storage section. Hot water storage operation for circulating low-temperature water to the heat source section through the heat source circulation circuit, and the stored hot water to the hot water storage section through the water supply flow path to the hot water supply terminal or bath terminal through the hot water supply flow path The hot water supply operation is performed exclusively.
[0027]
  According to the present invention, the hot water storage unit is connected as a heat load to the heat source unit to form a heat source circulation circuit. Therefore, it is possible to adopt a configuration in which the hot water storage section, which is a thermal load, and the heating heat exchange section are connected in parallel to the heat source section.
  According to this configuration, hot water circulating in the heat source circulation circuit can be selectively supplied to one or both of the hot water storage unit and the heating heat exchange unit, and hot water storage operation and heating operation can be performed independently or in parallel. Is possible.
[0028]
  In addition, when operating a hot water terminal such as a hot-water tap connected to the hot-water supply channel or a bath terminal, water flows into the hot water storage section due to the water pressure applied to the water tap, and hot water from the hot water storage section passes through the hot water supply channel. The hot water supply operation supplied to the terminal is performed. Further, since the hot water storage operation and the hot water supply operation are performed exclusively, it is possible to perform the heating operation while performing the hot water supply operation.
[0029]
  Claim7The invention described in claim 11 to 6The heating device according to any one of the above, comprising a recirculation circuit that is connected to a bath terminal provided outside the heating device and circulates hot water, and is provided between the heat source circulation circuit and the recirculation circuit. It is configured to perform a reheating operation by interposing a reheating heat exchanging unit and transferring the heat of the heat medium heated by the heat source unit and circulating in the heat source circulation circuit to the hot water circulating in the circulation circuit. .
[0030]
  According to the present invention, the reheating heat exchange unit is connected as a heat load to the heat source unit to form a heat source circulation circuit. Therefore, it is possible to adopt a configuration in which the reheating heat exchanging unit, which is a heat load with respect to the heat source unit, and the heating heat exchanging unit and the hot water storage unit are connected in parallel.
  According to this configuration, it is possible to perform reheating or heating operation alone, or in parallel with hot water storage operation or heating operation.
[0031]
  Claim8The invention described in claim 16 or 7In the heating device described in 1), the heating trial operation period of the heating device is configured to prohibit the hot water storage operation, the hot water supply operation, and the reheating operation.
[0032]
  According to the present invention, during the period of the heating trial operation, heat transfer from the heat medium circulating in the heat source circulation circuit is performed only to the heat medium in the heating circulation circuit. In other words, during the heating trial operation, there is no recirculation circuit or heat exchange of hot water. In addition, since the hot water supply operation is also prohibited, the hot water storage operation is not started due to the temperature drop of the stored water accompanying the hot water supply. Thereby, the temperature of the heat medium circulating in the heat source circulation circuit and the heating circulation circuit can be detected in a state in which the fluctuation elements other than the temperature fluctuation element related to the heating trial operation are excluded, and the quality of the heating circulation pump and the flow control valve can be determined. Can be accurately determined.
[0033]
  Claim9The invention described in claim 11 to 8In the heating device according to any one of the above, one of the heat source units is a heating device configured by a combustor provided on the flow path of the heat source circulation circuit.
  According to the present invention, it is possible to efficiently heat the heat medium circulating in the heat source circulation circuit by the combustor. In addition to the combustor, by disposing another heat source unit on the flow path of the heat source circulation circuit, it is possible to reduce the maximum amount of combustion required for the combustor.
[0034]
  Claim10The invention described in claim 11 to 9The heating device according to any one of the above, wherein a power generation device that supplies electric power to the electrical equipment is provided in addition to the heating device, and the power generation device exchanges exhaust heat generated by power generation with a heat medium. One of the heat source sections is formed on the flow path of the heat source circulation circuit by interposing an exhaust heat exchange section between the exhaust heat circulation circuit and the heat source circulation circuit. It is a heating device configured with a heat source.
[0035]
  According to the present invention, the heat of the heat medium circulating in the exhaust heat circulation circuit is transmitted to the heat source circulation circuit via the exhaust heat exchange unit, so that one heat source unit is formed on the heat source circulation circuit. This makes it possible to recover waste heat that has been discarded in the past and reuse it to raise the temperature of the heat medium circulating in the heat source circuit, and to efficiently drive the heat load connected to the heat source circuit. It becomes possible.
[0036]
  The invention according to claim 11 is provided between a heat source circulation circuit that circulates the heat medium heated by the heat source unit and a heating circulation circuit that is connected to a heating terminal provided outside and circulates the heat medium by a heating circulation pump. A heating trial operation control method of a heating device that performs heating by interposing a heating heat exchanging unit and transferring heat of the heat medium circulating in the heat source circulation circuit to the heat medium circulating in the heating circulation circuit, the heating device comprising: A bypass flow path that bypasses the circulation forward path and the circulation return path of the heating circulation circuit, and the heating circulation pump is provided on a flow path that is located closer to the heating heat exchanger than the bypass flow path, and the bypass flow A flow path control valve for controlling the opening and closing of the circulation of the heat medium to the heating terminal side on the flow path located on the heating terminal side from the road, and sending a closing signal to the flow path control valve and the heating circulation Pong And a temperature of the heat medium in the circulation forward path and the circulation return path on the heat exchange section side of the bypass circuit of the heating circulation circuit while circulating the heat medium heated in the heat source section to the heat source circulation circuit. It is a heating trial operation control method for a heating device, characterized in that it detects and determines whether the closing operation of the flow path control valve is good or not based on the detected temperature.
[0037]
  The invention according to claim 12 is characterized in that the temperature of the heat medium circulating in the heat source circulation circuit is detected, and whether or not the heating circulation pump is driven is determined based on the detected temperature. The heating trial operation control method of the heating device according to claim 11It is.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
  The preferred embodiments of the present invention will be described below with reference to the drawings.
  1 is a flow path system diagram showing a configuration of a heating device 2 according to an embodiment of the present invention, FIG. 2 is a flow path system diagram of a heating terminal connected to the heating device 2 shown in FIG. 1, and FIGS. It is a flowchart which shows control of the heating trial operation implemented with the heating apparatus shown in FIG.
[0039]
  The heating device 2 of the present embodiment has a hot water storage type hot water supply and heating function, such as a hot water supply operation for supplying hot water to a hot water supply terminal such as a hot water tap 7 or a hot water drop-in hot water, a reheating operation of a bath, floor heating and a fan control. A heating operation by a heating terminal 8 such as a vector and a hot water storage operation for storing hot water in the hot water storage tank 31 are provided.
[0040]
  The heating device 2 includes a plurality of flow paths and a circulation circuit for performing each operation described above. That is, as shown in FIG. 1, a heat source circulation circuit 32 that circulates hot water (heat medium) heated by a combustor 6 (heat source section K) that receives and burns city gas (natural gas) and a heating device 3 is provided with three circulation circuits: a heating circulation circuit 35 that is connected to the heating terminal 8 provided outside the circuit 2 and circulates hot water and a recirculation circuit 36 that is connected to the bath terminal and circulates hot water. In addition, hot water supply channels 83 and 33 and a water supply channel 91 extending from the hot water storage tank 31 are provided. In the present embodiment, a combustor 6 having a maximum combustion amount of 20 is used.
[0041]
  The heat source circulation circuit 32 includes a heating heat exchanger (heating heat exchange unit) 42 and a reheating heat exchanger (reheating heat) that are heat loads between a circulation outward path 38 and a circulation return path 41 extending from the combustor 6. An exchange unit) 43 and a hot water storage tank (hot water storage unit) 31 are connected in parallel. In other words, the circulation forward path 38 extending from the combustor 6 branches to the heat exchangers 42 and 43 and the hot water storage tank 31 which become heat loads at the branch point C, and the return path and the hot water storage tank on the heat exchangers 42 and 43 side. The return path 31 is gathered at the connection point D and connected to the circulation return path 41. Furthermore, the flow paths on the heat exchangers 42 and 43 side branch to the heating heat exchanger 42 and the reheating heat exchanger 43 at a branch point E in the middle of the forward path extending from the branch point C, and each heat exchanger 42. , 43 are gathered once at the connection point F and then connected to the connection point D.
[0042]
  These parallel-connected heat loads are provided with electromagnetic valves or proportional control valves for controlling the circulation of hot water to each heat load. That is, between the branch point E and the connection point F, the heating heat exchanger electromagnetic valve 52 is arranged in series in the flow path on the heating heat exchanger 42 side, and the flow path on the reheating heat exchanger 43 side. In addition, a reversing heat exchange solenoid valve 53 is provided in series. A hot water storage amount control valve 84 is disposed in the middle of the upper pipe 87 extending from the branch point C to the upper part of the hot water storage tank 31, and a lower pipe 89 extending from the lower part of the hot water storage tank 31 is connected to the connection point D. .
[0043]
  That is, each heat load of the heating heat exchanger 42, the reheating heat exchanger 43, and the hot water storage tank 31 connected between the circulation forward path 38 and the circulation return path 41 extending from the combustor 6 of the heat source circulation circuit 32 is as follows. A configuration in which the circulation of hot water heated by the combustor 6 can be selected and controlled individually by controlling the heating heat exchange solenoid valve 52, the reheating heat exchange solenoid valve 53, and the hot water storage amount control valve 84 provided in each. It is said that.
[0044]
  Next, the structure relevant to control of the heating trial operation of this invention is demonstrated in detail. In addition, in FIG. 1, the flow path which concerns on the heating trial operation of this invention is highlighted.
  As described above, the heat source circulation circuit 32 is a heating heat exchanger that is a heat load between a branch point C of the circulation forward path 38 extending from the combustor 6 that is a heat source unit and a connection point D of the circulation return path 41. 42, the reheating heat exchanger 43 and the hot water storage tank 31 are connected in parallel. An air separator 46 is provided at a connection point D of the circulation return path 41, and further, a heat source circulation pump 47, a flow rate sensor 50, and a circulation flow rate control valve 51 are sequentially arranged in series along the downstream of the circulation return path 41, and a combustor. 6 is formed.
[0045]
  Each component arranged in the heat source circulation circuit 32 will be described in detail. The heating heat exchanger 42 is a heat exchanger that transmits the heat of hot water circulating in the heat source circulation circuit 32 to hot water circulating in the heating circulation circuit 35. The heating heat exchange solenoid valve 52 is a solenoid-driven opening / closing valve that opens and closes the flow of hot water circulating in the heat source circulation circuit 32 to the heating heat exchanger 42 to connect and disconnect as a heat load. Similarly, the reheating heat exchange solenoid valve 53 is a solenoid-type on-off valve, and connects and blocks the reheating heat exchanger 43 as a heat load.
[0046]
  The air separator 46 discharges the air mixed in the circulating hot water to the outside, and removes the generation of impact sound accompanying the circulation of the hot water mixed with air. The heat source circulation pump 47 is a pump that forcibly circulates hot and cold water in the closed-loop heat source circulation circuit 32. The circulation flow rate sensor 50 is a sensor that detects the flow rate of hot water circulating in the heat source circulation circuit 32. The circulation flow rate control valve 51 is a proportional control valve that adjusts the flow rate of hot water circulating in the heat source circulation circuit 32.
[0047]
  The heat source circulation circuit 32 is provided with a temperature sensor for detecting the temperature of the circulating hot water (heat medium) in each part. In other words, the circulation path 38 is provided with a path temperature sensor 39 that detects the temperature of hot water heated from the combustor 6 and sent to the heat load. Further, in the middle of the return path between the connection point E and the connection point C on the downstream side of the heat exchangers 42 and 43, the temperature of the hot water that has been reduced in temperature by being transferred to the heat exchangers 42 and 43 that are heat loads. A heat exchange downstream temperature sensor 40 is provided for detecting the heat on the circulation return path 41 between the connection point C and the inflow side of the combustor 6, and heat is transmitted to each heat load including the hot water storage tank 31 to lower the temperature. A return path temperature sensor 45 that detects the temperature of hot water flowing into the combustor 6 is provided.
  In this embodiment, a thermistor is used for each temperature sensor, but a posistor or another semiconductor temperature sensor can also be used.
[0048]
  In the heat source circulation circuit 32 having such a configuration, in order to selectively circulate hot water to the heat load, the control circuit unit 10 transfers to the heating heat exchange solenoid valve 52, the reheating heat exchange solenoid valve 53, or the hot water storage amount control valve 84. Switching control is performed by sending a control signal. In addition, detection signals from a flow sensor and a temperature sensor provided in the heat source circulation circuit 32 are transmitted to the control circuit unit 10 for signal processing, and combustion of the combustor 6 is performed to adjust the temperature of the circulating hot water to a target temperature. The amount and the opening degree of the circulation flow control valve 51 are adjusted and controlled.
[0049]
  Next, the heating circulation circuit 35 will be described. As shown in FIG. 1, the heating circulation circuit 35 is a circulation circuit configured with the heating heat exchanger 42 that receives heat from the heat source circulation circuit 32 as a heat source and the heating terminal 8 as a heat load. That is, it is a circulation circuit formed by connecting the heating terminal 8 to the circulation forward path 55 and the circulation return path 56 extending from the heating heat exchanger 42.
[0050]
  The configuration of the heating circulation circuit 35 will be described in more detail with reference to FIGS.
  A circulation forward path 55 and a circulation return path 56 extending from the heating heat exchanger 42 extend to the outside of the heating device 2. The circulation forward path 55 extends directly from one end of the heating heat exchanger 42 to the outside of the heating device 2. The circulation return path 56 is connected to the other end of the heating heat exchanger 42 from the outside of the heating device 2 via a thermal valve (flow path control valve) 54, a water refill tank 17, and a heating circulation pump 60. The heating terminal 8 is connected to the circulation forward path 55 and the circulation return path 56 extending from the heating device 2.
[0051]
  The water replenishing tank 17 provided in the circulation return path 56 replenishes water when the hot water circulating in the heating circulation circuit 35 decreases. That is, when the detected water level of the water level sensor 20 falls below a predetermined level, the control circuit unit 10 opens the water refill valve 19 and is supplied from the water faucet (not shown) to the water refill pipe 18 through the water supply passage 21. An operation of replenishing water to the replenishing tank 22 to a predetermined water level is performed.
[0052]
  Further, a bypass flow path 63 is provided between the circulation forward path 55 and the circulation return path 56 to bypass both paths inside the heating device 2. In other words, a bypass flow path 63 is provided between the circulation return path 56 and the circulation forward path 55 between the thermal valve 54 and the supplementary water tank 17, and separately from the long heating circulation circuit 35 that passes through the heating terminal 8. A short circulation circuit is formed inside the heating device 2 via the bypass flow path 63.
  The bypass flow path 63 is formed by a pipe having a smaller cross-sectional area than the circulation forward path 55 and the circulation return path 56, and the bypass circulation path 63 is bypassed when the heating circulation pump 60 is driven in a state where the thermal valve 54 is closed. It has a function of preventing seizure of the pump 60 by circulating hot water through the flow path 63.
[0053]
  Here, in the heating device 2 of the present embodiment, as shown in FIG. 2, the circulation return path 56 is branched into a plurality of flow paths 56 a to 56 c in the vicinity of the outlet of the heating apparatus 2. Thermally operated valves 54a to 54c are provided.
  And the circulation outward path 55 is connected to the outward path side of the plurality of heating terminals 8 (8a to 8c) via the circulation outward path 55 'extending from the heating device 2, and the return path side of each heating terminal 8 is an individual circulation return path 56a. It is connected to the thermal valve 54 by “˜56c”.
[0054]
  As shown in FIG. 2, the heating terminal 8 includes a plurality of heating terminals 8 a and 8 b such as a fan convector and a floor heating 8 c, and the thermal valves 54 a to 54 b corresponding to the heating terminal to be operated. By opening control 54c and forming the heating circulation circuit 35, heating is performed by circulating hot water to the heating terminal.
[0055]
  Further, the heating circulation circuit 35 is provided with a forward path temperature sensor 76 and a return path temperature sensor 77 in the circulation forward path 55 and the circulation return path 56 on the heating heat exchanger 42 side of the bypass flow path 63, respectively. The detection signals of these temperature sensors 76 and 77 are sent to the control circuit unit 10, and hot water circulating through the heat source circulation circuit 32 and the exhaust heat circulation circuit 12 in order to adjust the temperature of the hot water circulating through the heating circulation circuit 35. The temperature is adjusted.
[0056]
  In the heating trial operation of the present invention, the temperature of the hot water circulating through the bypass passage 63 is detected by these temperature sensors 76 and 77, so that the heating circulation pump 60 and the thermal valve arranged in the heating circulation circuit 35 are detected. 54 is used to determine whether the drive state is good or bad.
[0057]
  Next, the detail of the control performed at the time of the heating trial operation of the heating apparatus 2 of this embodiment is demonstrated.
  In the heating device 2 employed in the present embodiment, the flow rate sensor is not provided in the heating circulation circuit 35 as described above. For this reason, when the system 1 is newly installed, it is impossible to directly detect the drive failure of the heating circulation pump 60 or the drive failure of the thermal valve 54c. For this reason, it has the characteristics in detecting the temperature of the hot water circulating through the heat source circulation circuit 32 and the heating circulation circuit 35, and determining the quality of the operation of the heating circulation pump 60 and the thermal valve 54 from the detected temperature. It is.
[0058]
  Details of the control in the heating trial operation will be described below with reference to the flowcharts of FIGS. 3 and 4 in addition to FIGS.
  In the following description, the control program for the heating trial operation is stored in advance in a ROM (not shown) provided in the control circuit unit 10, and the control process and the determination process are digitally processed according to the control program. . Further, the control circuit unit 10 is described as including a control terminal (not shown) such as a remote controller that switches between a test operation mode, an operation mode such as hot water supply and heating, or a temperature setting.
  In addition, during the heating trial operation, the defective operation of the heat source circulation pump 47 and the defective operation of the heating heat exchange solenoid valve 52, the reheating heat exchange solenoid valve 53, and the hot water storage control valve 84 are caused by the circulation flow rate provided in the heat source circulation circuit 32. It is assumed that the control circuit unit 10 can detect the control valve 50 and a temperature sensor provided in each unit.
[0059]
  When an instruction for a heating trial operation is given by the remote controller, the control circuit unit 10 checks whether any operation is being performed. In other words, as shown in step 200 (200a to 200d) in FIG. 4, it is checked whether any one of heating, hot water supply (dropping), hot water storage, or reheating is being performed. When any operation is being performed, all operations are temporarily stopped (see steps 200 and 201 in FIGS. 3 and 4 above).
[0060]
  Next, in the heating trial operation, the control circuit unit 10 performs initial setting. In the initial setting, the timers to, t1, and t2 are reset as shown in step 202 of FIG. Further, the heating heat exchanger solenoid valve 52 is opened so that only the heating heat exchanger 42 becomes a heat load of the heat source circulation circuit 32, and the reheating heat exchanger solenoid valve 53 and the hot water storage amount control valve 84 are closed. . Further, a closing signal is sent to the thermal valves 54a to 54c connected to all the heating terminals 8a to 8c, the circulation pump 47 of the heat source circulation circuit 32 is driven, the combustor 6 is driven to burn, and the heating circulation pump A drive signal is sent to 60 (see step 202 in FIG. 3 and step 202 in FIG. 4 (steps 202a to 202f)).
[0061]
  Further, the control circuit unit 10 sets the combustion amount and circulation of the combustor 6 so that the temperature of the hot water circulating through the heat source circulation circuit 32 is substantially constant in a state where heat is normally transferred to the heating circulation circuit 35. The opening degree of the flow control valve 51 is fixed to a predetermined control value (see step 202 in FIG. 3, step 202 in FIG. 4 (step 202g)).
[0062]
  Here, the timer to is a timer for measuring the time from the start to the end of the heating trial operation, the timer t1 is an integration timer for integrating the combustion stop time of the combustor 6, and the timer t2 is a timer for measuring the duration of a predetermined temperature condition. Both are measured by program processing in the control circuit unit 10.
[0063]
  Through the above processing, the heat source circulation circuit 32 forms a circulation circuit using the combustor 6 as a heat source and only the heating heat exchanger 42 as a heat load, and the heating circulation circuit 35 uses the heating heat exchanger 42 as a heat source to circulate the forward path. A circulation circuit extending from 55 to the circulation return path 56 via the bypass flow path 63 is formed, and the heating trial operation is started.
[0064]
  Subsequently, the control circuit unit 10 starts a timer to and monitors the temperature of hot water circulating in the heat source circulation circuit 32 while detecting it with an inflow temperature sensor 45 provided on the inflow side of the combustor 6. When the temperature detected by the inflow temperature sensor 45 becomes equal to or higher than the upper limit temperature 痾, the combustion of the combustor 6 is stopped while the heat source circulation pump 47 and the heating circulation pump 60 are driven, and the timer t1 is started.
  The timer t1 counts up and measures the combustion stop period of the combustor 6, that is, the period when the temperature detected by the inflow temperature sensor 45 is equal to or higher than the upper limit temperature 上限. When the timer t1 accumulates the predetermined time and the time is up, it is determined that the heating circulation pump 60 of the heating circulation circuit 35 is not driven properly (see steps 204 and 216 to 220 in FIG. 3).
[0065]
  This determination is caused by the fact that the temperature rise of the hot water circulating in the heat source circulation circuit 32 is not normally transmitted to the heating circulation circuit 35 because the heat of the hot water circulating in the heat source circulation circuit 32 is not transmitted. The reason why the transmission is not performed is based on the assumption that the circulation circuit of the heating circulation circuit 35 is defective, that is, that the heating circulation pump 60 is driven poorly.
[0066]
  On the other hand, if the temperature of the hot water in the heat source circulation circuit 32 does not reach the upper limit temperature 痾, the control circuit unit 10 continues the combustion of the combustor 6. And while detecting the temperature of the hot water which circulates through the heating outward path 55 and the heating return path 56 of the heating circulation circuit 35 with the outward temperature sensor 76 and the return path temperature sensor 77, respectively, both temperature is more than predetermined value 竈, and both It is monitored whether the temperature difference is less than a predetermined value 繃.
  Then, when the temperature of the hot water circulating in the circulation forward path 55 and the circulation return path 56 meets the above temperature condition, the timer t2 is started. The timer t2 is reset whenever the temperature of the heat medium circulating in the circulation forward path 55 and the circulation return path 56 deviates from the above temperature condition (see steps 204 to 210, 213, and 214 in FIG. 3).
[0067]
  When the temperature of the heat medium circulating in the circulation forward path 55 and the circulation return path 56 meets the above temperature condition and the timer t2 times out during the period from the start of the heating trial operation to the count-up of the timer to, the heating circulation pump It is determined that the thermal valves 54a to 54c are normally closed and driven while 60 is normally driven (see steps 204 to 212 in FIG. 3 above).
  In other words, when all the thermal valves 54 are normally closed and the heating circulation pump 60 is driven, the heating heat exchanger 42 is formed through the circulation forward path 55, the bypass flow path 63 and the circulation return path 56. Hot water circulates through the short heating circulation circuit 35 that receives heat transfer from the heat source circulation circuit 32. As a result, the hot water circulating in the circulation forward path 55 and the circulation return path 56 both rise in temperature, and the determination is made based on the fact that there is no large temperature difference between the two temperatures.
[0068]
  On the other hand, when the temperature of the hot water circulating in the circulation forward path 55 and the circulation return path 56 does not meet the above temperature condition and the timer t2 does not count up between the start of the heating trial operation and the timer to counting up. Assuming that hot and cold water circulates to the heating terminal 8 side via the thermal valve 54, it is determined that at least one of the thermal valves 54a to 54c is incompletely closed (steps in FIG. 3 above). 204-215).
  In other words, even if the heating circulation pump 60 is normally driven, if any of the thermal valves 54 is not driven to close, the heating heat exchanger 42 passes through the circulation forward path 55, the heating terminal 8, and the circulation return path 56. Hot water circulates through the long heating circulation circuit 35 formed by receiving heat transfer from the heat source circulation circuit 32. As a result, a large temperature difference occurs in the temperature of the hot water circulating through the circulation forward path 55 and the circulation return path 56, and the determination is made based on the fact that the temperature condition is not met.
[0069]
  Subsequent to the trial operation of the closing operation of the heating circulation pump 60 and the total thermal valve 54 shown in the present embodiment, a heating trial operation is performed in which the opening operation of each of the thermal valves 54a to 54c is sequentially performed, but details are omitted. To do.
[0070]
  As described above, according to the heating device 2 of the present embodiment, malfunctions of the heating circulation pump 60 and the thermal valve 54 of the heating circulation circuit 35 in which no flow sensor is provided are detected by the heat source circulation circuit 32 and the heating circulation circuit 35. By monitoring the temperature of the hot and cold water circulating, it is possible to accurately and efficiently perform the heating trial operation in a short time.
[0071]
  In the heating trial operation of the present embodiment, the monitoring temperature of the heat source circulation circuit 32 or the heating circulation circuit 35 is not specifically shown, but is appropriately determined in consideration of the combustion amount of the combustor 6 and the efficiency of the heat exchanger. Is possible.
  Further, in the heating device 2 of the present embodiment, the combustion of the combustor is stopped when the temperature of the hot water circulating in the heat source circulation circuit 32 reaches the upper limit temperature 痾 during the heating trial operation, but the present invention has such a configuration. It is not limited to. In other words, by appropriately setting the combustion amount of the combustor 6, the upper limit temperature of the hot water, and the count-up time of the integration timer to, it is possible to perform a trial operation while continuing the combustion of the combustor 6. .
[0072]
  Furthermore, in the control of the heating trial operation, the quality of the heating circulation pump 60 and the thermal valve 54 is individually determined. However, the present invention is not limited to such a determination method. That is, in the flowchart of the heating trial operation shown in FIG. 3, by appropriately setting the monitoring temperature, it is possible to determine whether the heating circulation pump 60 and the thermal valve 54 are closed while omitting steps 216 to 220. It is also possible to determine at the same time.
[0073]
  In the heating trial operation, the combustor 6 is used as the heat source part of the heat source circulation circuit 32. However, it is also possible to use a heat source part that uses exhaust heat discharged from a power generation device described later.
[0074]
【Example】
  Next, an example of the cogeneration system 1 that employs the heating device 2 according to the embodiment will be described with reference to FIGS. In addition, about the same component as the heating apparatus 2 of the said embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
[0075]
  As shown in FIG. 5, the cogeneration system 1 according to the present embodiment is configured by adding a power generation device 3 to the heating device 2, and is generated along with power generation while supplying power to an external electric device by the power generation device 3. This is an exhaust heat reuse system in which exhaust heat is reduced to the heating device 2.
[0076]
  The power generator 3 is configured by combining a water-cooled gas engine 5 driven by burning city gas (natural gas) and a generator 14 driven by the gas engine. The electric power generated by the generator 14 is supplied to an external electric device, and the exhaust heat generated when the gas engine 20 is driven is the heat circulating through the exhaust heat circulation circuit 12 for cooling the gas engine 5. Heat is exchanged with the medium and recovered, and the recovered exhaust heat is sent to the heating device 2 and reused as a heat source for hot water supply or heating.
  Here, in the system 1 of the present embodiment, a configuration in which the exhaust heat recovered by the power generation device 3 is transmitted to the heating device 2 side is adopted, and therefore, the heating device 2 shown in the above embodiment includes the power generation device 3. A configuration for receiving the supplied exhaust heat is added. Below, the detailed structure of the electric power generating apparatus 3 and the additional structure of the heating apparatus 2 are demonstrated.
[0077]
  As shown in FIG. 5, the exhaust heat circulation circuit 12 of the power generation device 3 is disposed between the circulation forward path 13 and the circulation return path 15 extending from the cooling heat exchanger 5 a provided in the gas engine 5. It is the circulation circuit which connected so that two heat exchangers provided in can be switched as a heat load. In other words, the heat source circulation circuit 32 of the heating device 2 is additionally provided with an exhaust heat exchanger 30, and the heating circulation circuit 35 is additionally provided with an exhaust heat exchanger 57, The heat medium circulating in the circulation circuit 12 can be switched to one of these exhaust heat exchangers 30 and 57 and circulated.
[0078]
  In more detail, the circulation path is provided with a heater 11 that receives power supply from the generator 14 and promotes heating of hot water (heat medium) in the middle of the circulation path 13 extending from the cooling heat exchanger 5a. From the branch point A to the exhaust heat exchanger 30 provided in the heat source circulation circuit 32 through the exhaust heat forward path 58, the exhaust heat return path 59 extending from the exhaust heat exchanger 30 is connected to the three-way valves 25 and 23. To the circulation return path 15. Further, the exhaust heat branch forward path 61 branched from the exhaust heat forward path 58 reaches an exhaust heat heat exchanger 57 provided in the heating circulation circuit 35, and the exhaust heat branch return path 62 extending from the exhaust heat heat exchanger 57 is Connected to the three-way valve 25.
[0079]
  In other words, the circulation outward path 13 reaches the two exhaust heat exchangers 30 and 57 via the branched exhaust heat outbound path 58 and the exhaust heat branch outbound path 61 and extends from these exhaust heat exchangers 30 and 57. The exhaust heat return path 59 and the exhaust heat branch return path 62 are connected to the circulation return path 15 via the three-way valve 25 and the three-way valve 25.
  Further, in the middle of the circulation return path 15 extending from the cooling heat exchanger 5a, the exhaust heat circulation pump 16 and the water replenishing tank 22 are arranged, and a bypass connecting to the branch point A by providing a three-way valve 23 at the branch point B. The flow branches to the flow path 26 and the three-way valve 25.
[0080]
  Here, the three-way valve 25 functions as a switching valve that communicates either the exhaust heat return path 59 or the exhaust heat branch return path 62 with the three-way valve 23. The three-way valve 23 has a valve function that opens and closes by a thermostat. When the temperature of the heat medium inside the exhaust heat circulation circuit 12 is equal to or lower than a predetermined value, the bypass flow path 26 and the circulation return path 15 communicate with each other. When the temperature of the heat medium exceeds a predetermined value, a switching function for communicating the three-way valve 25 and the circulation return path 15 is provided.
[0081]
  As a result, the exhaust heat circulation circuit 12 forms the next circulation path according to the temperature of the heat medium. That is, when the temperature of the heat medium is low, the bypass flow path 26 communicates with the circulation return path 15 by the three-way valve 23, so that a circulation flow path in which the circulation forward path 13 and the circulation return path 15 are short-circuited by the bypass flow path 26 is formed. Thus, the low-temperature heat medium is prevented from circulating to the exhaust heat forward path 58 and the exhaust heat branch forward path 61 side.
[0082]
  When the temperature of the heat medium rises, the communication between the bypass flow path 26 and the circulation return path 15 is blocked by the three-way valve 23, and the three-way valve 25 and the circulation return path 15 are communicated. Accordingly, either the exhaust heat return path 59 or the exhaust heat branch return path 62 selected by the three-way valve 25 communicates with the circulation return path 15. As a result, the heat medium flows through the circulation path that circulates either the exhaust heat exchanger 30 or the exhaust heat exchanger 57 without passing through the bypass flow path, and is recovered from the gas engine 5. Is transferred to the exhaust heat exchanger 30 or the exhaust heat exchanger 57.
[0083]
  The water replenishing tank 22 provided in the circulation return path 15 replenishes water when the hot water circulating in the exhaust heat circulation circuit 12 decreases. In other words, when the detected water level of the water level sensor 29 falls below a predetermined level, the control circuit unit 10 opens the water refill valve 28 and is supplied from the water faucet (not shown) to the water replenishment pipe 27 via the water supply passage 21. An operation of replenishing water to the replenishing tank 22 to a predetermined water level is performed.
[0084]
  In the system 1 according to the present embodiment, the power generated by the generator 14 of the power generation device 3 is basically supplied to an external electric device, and the surplus power is supplied to the heater 11. In other words, a surplus power control unit (not shown) is provided for prohibiting reverse power flow in which surplus power generated by the generator 14 flows into the commercial power supply line.
[0085]
  On the other hand, the heat source circulation circuit 32 of the heating device 2 is provided with an exhaust heat exchanger 30 on the downstream side adjacent to the heat source circulation pump 47 on the circulation return path 41 as shown in FIG. A return path temperature sensor 44 that detects the temperature of hot water circulating in the circulation return path 41 is additionally provided on the upstream side adjacent to the heat heat exchanger 30. In other words, the heat source circulation circuit 32 is further provided with a heat source part K by the exhaust heat exchanger 30 in addition to the heat source part K of the combustor 6.
[0086]
  Further, as shown in FIG. 5, the heating circulation circuit 35 of the heating device 2 has a configuration in which an exhaust heat exchanger 57 is additionally provided on the downstream side adjacent to the thermal valve 54 on the circulation return path 56. ing. The hot water storage tank 31 is provided with an uppermost temperature sensor 95, an upper temperature sensor 96, an intermediate temperature sensor 97, and a lower temperature sensor 98 that detect the temperature of each part in the height direction of the stored hot water.
  The upper piping 87 of the hot water storage tank 31 is provided with a negative pressure operated safety valve 34 for releasing the pressure in the tank.
[0087]
  Next, the operation of the exhaust heat hot water storage operation in the system 1 of the present embodiment will be described.
  (Exhaust heat storage operation)
  In the exhaust heat hot water storage operation, as shown in FIG. 5, the control circuit unit 10 controls the three-way valve 25 of the power generation device 3 to switch and set the exhaust heat return path 59 and the three-way valve 23 to communicate with each other. Further, the control circuit unit 10 opens either the heating heat exchange electromagnetic valve 52 or the reheating heat exchange electromagnetic valve 53 in the heat source circulation circuit 32 of the heating device 2, and opens the hot water storage amount control valve 84, The mixing valve 80 provided in the hot water supply channel 83 is closed. Further, the combustor 6 of the heat source circulation circuit 32 does not perform combustion driving, and starts operation without driving the heating circulation pump 60 of the heating circulation circuit 35. Thereby, the heat source circulation circuit 32 forms a circulation circuit in which the exhaust heat exchanger 30 is the heat source part K and the hot water storage tank 31 is a heat load. Then, while controlling the opening of the circulation flow rate control valve 51 of the heat source circulation circuit 32, the heat source circulation pump 47 is driven to start the exhaust heat storage operation.
[0088]
  When the gas engine 5 of the power generation device 2 starts to be driven along with the start of the exhaust heat hot water storage operation, the exhaust heat circulation pump 16 operates to start circulating hot water in the exhaust heat circulation circuit 12. At the same time, the electric power generated in the generator 10 by driving the gas engine 5 is energized to the heater 11 and the heating of hot water circulating through the exhaust heat circulation circuit 12 is promoted.
[0089]
  Immediately after the gas engine 5 is started, the hot water in the exhaust heat circulation circuit 12 is at a low temperature, a circulation path is formed by the three-way valve 23 via the bypass flow path 26, and the low temperature hot water is on the exhaust heat exchanger 30 side. Inflow to is prevented. When the hot water in the exhaust heat circulation circuit 12 that circulates through the bypass flow path 26 reaches a predetermined temperature or higher, the three-way valve 23 switches the hot water circulation in the bypass flow path 26 to the exhaust heat return path 59 side. Circulation of hot water through the heat heat exchanger 30 is started.
[0090]
  On the other hand, in the heating device 2, the hot water in the hot water storage tank 31 flows into the circulation return path 41 through the lower pipe 89 by driving the heat source circulation pump 47. The hot water flowing through the circulation return path 41 flows into the combustor 6 while being heated by receiving heat transfer from the hot hot water circulated from the exhaust heat circulation circuit 12 of the power generator 3 in the exhaust heat exchanger 30.
[0091]
  Since the combustor 6 is in a combustion stop state, the inflowing hot water passes through the combustor 6 as it is and flows out to the circulation forward path 38. Here, when the temperature of the hot water circulating through the circulation forward path 38 detected by the forward path temperature sensor 39 has not reached a predetermined value, the hot water storage amount control valve 84 is closed, and the inflow of hot water into the hot water storage tank 31 is prevented. The Thereby, the low temperature hot water circulates in the heat source circulation circuit 32 through the heating heat exchanger 42.
[0092]
  When the hot water circulating through the circulation path 38 reaches a predetermined temperature or higher, the hot water storage amount control valve 84 is opened, and hot hot water heated by the exhaust heat exchanger 30 flows into the hot water storage tank 31 via the upper pipe 87. As hot hot water flows in from the upper pipe 87, a substantially equal amount of low temperature hot water flows out of the lower pipe 89 and the hot hot water that is bypassed via the heating heat exchanger 42 and the collecting point D (air separator). In 46), the mixture is heated up and circulated toward the exhaust heat exchanger 30.
[0093]
  As described above, the hot water storage tank 31 (150 L in this embodiment) is always kept in a full water state, and hot hot water is sequentially accumulated from the upper side in a stratified state, and the lower temperature sensor 98 has a predetermined temperature ( In this example, when detecting approximately 70 ° C.), the control circuit unit 10 stops the operation of the power generator 3 and ends the exhaust heat storage operation.
[0094]
  (Hot water operation)
  Next, the configuration and operation related to the hot water supply operation in the system 1 of the present embodiment will be described. As shown in FIG. 6, the hot water storage tank 31 includes hot water supply passages 83 and 33 branched from the upper pipe 87, and a water supply passage 91 connected to a water supply tap (not shown) provided outside is provided in the hot water storage tank 31. Connected to the bottom.
[0095]
  More specifically, the hot water supply passage 83 extending from the hot water storage tank 31 is connected to the mixing valve 80 together with another water supply passage 85 extending from the water tap through the pressure reducing valve 88 and the check valve 90, and hot water supply It is connected to a hot-water tap (such as a currant) 7 through a hot-water supply passage 33 via a quantity control valve 82 and a hot-water supply flow sensor 81. On the other hand, the water supply passage 91 branched upstream of the check valve 90 is connected to the lower part of the hot water storage tank 31 via the check valve 86.
  As a result, the hot water supply side channel passing through the hot water storage tank 31 and the hot water supply channel 83 from the water supply channel 91 and the water supply side channel passing through the water supply channel 85 are connected by the mixing valve 80, and further the hot water supply channel 33. A flow path leading to the hot water tap 7 is formed.
[0096]
  The hot water supply channel 83 is provided with a hot water supply temperature sensor 92 for detecting the temperature of hot water supplied from the hot water storage tank 31, and the water supply channel 78 is provided with a water supply temperature sensor 93 for detecting the temperature of water supplied from the water tap. A hot water supply channel 33 is provided with a mixed temperature sensor 94 that detects the temperature of hot water mixed by the mixing valve 80.
[0097]
  When the hot water tap 7 is opened, the control circuit 10 detects the opening with the hot water flow rate sensor 81 and the hot water storage amount control valve 84 is closed. Further, in the mixing valve 80, the valves on the hot water supply flow path 83 side and the water supply flow path 85 side are controlled to open according to the hot water supply temperature set by the control circuit unit 10.
[0098]
  When the hot water supply is started, the hot hot water stored in the hot water storage tank 31 receives the pressure of the water flowing in from the lower water supply channel 91 and flows out of the hot water channel 83 to reach the mixing valve 80. And it mixes with the water supplied to the mixing valve 80 via the water supply flow path 85 and flows out of the hot water tap 7 via the hot water supply flow path 33 while being controlled at an appropriate temperature.
  When the mixing valve 80 and the hot water supply amount control valve 82 are controlled, the control circuit 10 refers to the detected temperatures of the hot water temperature sensor 92, the hot water temperature sensor 93, and the mixed temperature sensor 94 so that the temperature of the hot water discharged becomes the set temperature. The opening degree is controlled so that
[0099]
  On the other hand, when the hot water stored in the hot water storage tank 31 is at the lowest temperature during the hot water supply operation, the hot water stored in the hot water storage tank 31 is not supplied as it is, but the stored hot water is combusted. Hot water is supplied while being heated by the machine 6.
  That is, when the hot water tap 7 is opened when the temperature detected by the uppermost temperature sensor 95 or the upper temperature sensor 96 of the hot water storage tank 31 is lower than a predetermined value, the control circuit 10 opens the plug with the hot water flow rate sensor 81. Then, the heating heat exchange solenoid valve 52 and the reheating heat exchange solenoid valve 53 are closed, the hot water storage amount control valve 84 is opened, the heat source circulation pump 47 is driven, and the combustion control of the combustor 6 is started.
[0100]
  As a result, the circulation return path 41 of the heat source circulation circuit 32 is sucked by the drive of the heat source circulation pump 47, and approximately the same amount of low-temperature water as the water flowing into the hot water storage tank 31 through the water supply passage 91 passes through the lower pipe 89. And flows out to the circulation return path 41 of the heat source circulation circuit 32. The low temperature water that has flowed out into the circulation return path 41 flows into the combustor 6 and is heated, and the heated hot water that flows out from the circulation forward path 38 is supplied to the hot water supply flow path 83 through the hot water storage amount control valve 84. The hot water supplied to the hot water supply channel 83 is mixed with water by the mixing valve 80 and supplied to the hot water tap 7 at an appropriate temperature in the same manner as described above.
  When the hot water tap 7 is closed, the control circuit unit 10 detects the plug closure by the detection signal of the hot water flow rate sensor 81 to stop the combustion of the combustor 6 and stops the driving of the heat source circulation pump 47 to supply hot water. End driving.
[0101]
  (Bath drop operation)
  Next, the configuration and operation related to the bath drop operation in the system 1 of the present embodiment will be described with reference to FIG.
  Since the drop-in operation is performed via the recirculation circuit 36, the configuration including the recirculation circuit 36 will be described here.
  The reheating circulation circuit 36 uses the reheating heat exchanger 43 connected as a heat load of the heat source circulation circuit 32 as a heat source, and connects the circulation forward path 65 and the circulation return path 66 extending from the heat exchanger 43 to the heating device 2. It is formed by connecting to a bath terminal (not shown) provided outside.
[0102]
  While the circulation forward path 65 is directly connected to the bath terminal, a water level sensor 67, a recirculation circulation pump 68, and a water flow switch 70 are arranged in series on the circulation return path 66 from the upstream side. Further, on the downstream side of the circulation return path 66 adjacent to the water level sensor, a return path temperature sensor 64 for detecting the temperature of hot water circulating in the recirculation circuit 36 is provided.
  On the other hand, a hot water supply branch passage 71 branched downstream of the hot water supply amount control valve 82 provided in the hot water supply passage 33 is connected to the downstream side of the heating circulation pump of the circulation return passage 66, and the hot water supply branch passage 71 is provided with a pouring flow rate sensor 75, a pouring valve 73, and a check valve 72 from the upstream side.
[0103]
  When the automatic switch of the remote controller is operated, the bath dropping operation is started, and the control circuit unit 10 stops the circulation of hot water in the heat source circulation circuit 32, and the heating heat exchange solenoid valve 52 and the reheating heat exchange solenoid valve 53. And the hot water storage amount control valve 84 is closed. Further, the recirculation circulation pump 68 is in a drive stop state.
[0104]
  Then, when the pouring valve 73 is opened by the control circuit unit 10, the hot water mixed to the set temperature by the mixing valve 80 is recirculated through the hot water branch passage 71 as in the case of the hot water supply operation described above. It reaches the circulation return path 66 of the circuit 36. Part of the hot water that has reached the circulation return path 66 goes back to the circulation return path 66 and is dropped into a bathtub (not shown), and the remaining part passes from the circulation return path 66 through the heat exchanger 43 and passes through the circulation outward path. Dropped into. That is, in the system 1 of the present embodiment, when dropping, the hot water supplied from the hot water supply branch flow channel 71 is replenished and dropped from both the circulation outward path 65 and the circulation return path 66 of the circulation circuit 36 toward the bathtub. , Enabling a short drop-in operation.
  When the water level sensor 67 detects that the water level in the bathtub has reached a predetermined value, the pouring valve 73 is closed and the dropping operation is completed.
[0105]
  (Bath bathing operation)
  Next, the chasing operation in the system 1 of the present embodiment will be described.
  When the reheating operation is started, as shown in FIG. 8, the control circuit unit 10 first activates the recirculation circulation pump 68 and refers to the detection signal of the water flow switch 70 to flow the hot water circulating through the circulation return path 66. Is determined to be a predetermined value. When it is determined that the amount of hot water to circulate is a predetermined value and the bathtub is filled with hot water, the reheating heat exchange solenoid valve 53 and the circulation flow control valve 51 of the heat source circulation circuit 32 are opened, and the heating heat The electromagnetic solenoid valve 52 and the hot water storage amount control valve 84 are closed. In addition, the heat source circulation pump 47 is driven, and the hot water heated by the combustion drive of the combustor 6 is circulated to the heat source circulation circuit 32.
[0106]
  Thereby, the heat of the hot hot water circulating in the heat source circulation circuit 32 is transmitted to the hot water circulating in the recirculation circuit 36 by the reheating heat exchanger 43, and reheating is performed. When the temperature detected by the return temperature sensor 64 of the recirculation circuit 36 reaches the set temperature, the combustion drive of the combustor 6 is stopped and the drive of the heat source circulation pump 47 and the recirculation circulation pump 68 is stopped. End the whispering operation.
  In the system 1 of the present embodiment, when the temperature is detected, if the temperature detected by the return path temperature sensor 64 is 1 ° C. or more lower than the set temperature of the remote controller, the set temperature is reached. , Retreating to a temperature 1 ° C. higher than the set temperature.
[0107]
  Next, the operation of the heating operation in the system 1 of the present embodiment will be described with reference to FIGS. In the system 1 of the present embodiment, when performing the heating operation, the temperature of the hot water circulating through the heating circulation circuit 35 is changed according to the type of the heating terminal and the set temperature. In other words, when local heating is performed by the fan vector vectors 8a, 8b, etc., hot water is circulated, and when heating the entire room by the floor heating 8c, hot water having a lower temperature than the local heating is circulated. The configuration is to let
  Therefore, first, the operation of the heating operation when high-temperature hot water is circulated in the heating circulation circuit 35 will be described.
[0108]
  (High temperature heating operation)
  When the heating terminal 8 is operated to start the heating operation, the control circuit unit 10 drives the heating circulation pump 60 and starts heating the circulating hot water when the temperature detected by the return path temperature sensor 77 is equal to or lower than the specified temperature. First, the control circuit unit 10 is three-way so that the exhaust heat branch return path 62 connected from the exhaust heat exchanger 57 provided in the heating circulation circuit 35 to the power generation device 3 communicates with the circulation return path 15 of the exhaust heat circulation circuit 12. The valve 25 is controlled. Then, the hot water (heat medium) circulating in the exhaust heat circulation circuit 12 is heated while the gas engine 5 is driven to supply the electric power of the generator 14 to the heater 11. In this state, the temperature of the gas engine 5 is not increased, and the hot water in the exhaust heat circulation circuit 12 is circulated through the bypass passage 26 by the three-way valve 23.
  The control circuit unit 10 opens the heating heat exchange solenoid valve 52 of the heat source circulation circuit 32, closes the reheating heat exchange solenoid valve 53 and the hot water storage amount control valve 84, and drives the heat source circulation pump 47. While the combustion of the combustor 6 is started, the heating circulation pump 60 is driven. Furthermore, the control circuit unit 10 opens the thermal valve 54a corresponding to the heating terminal 8a that operates.
[0109]
  When the temperature of the hot water circulating through the exhaust heat circulation circuit 12 exceeds a predetermined value when the temperature of the gas engine of the power generation device 3 exceeds a predetermined value, the bypass flow path 26 is disconnected by the three-way valve 23, and the three-way valve 25 and the circulation return path 15 are Communicate. Accordingly, the exhaust heat circulation circuit 12 forms a circulation path from the circulation outward path 13 to the circulation return path 15 via the exhaust heat branch outbound path 61, the exhaust heat heat exchanger 57, and the exhaust heat branch return path 62. As a result, the exhaust heat recovered by the cooling heat exchanger 5 a of the gas engine 5 and the heat of the hot water heated by the heater 11 are transmitted to the hot water circulating through the heating circuit 35 via the exhaust heat exchanger 57. The
[0110]
  On the other hand, the heat source circulation circuit 32 is a circulation circuit having the heating heat exchanger 42 as a heat load, and hot water heated and circulated by the combustor 6 circulates in the heating circulation circuit 35 via the heating heat exchanger 42. Is transmitted to.
  In other words, the hot water circulating in the heating circulation circuit 35 circulates at a high temperature while being heated by both the heat source by the heating heat exchanger 42 and the heat source by the exhaust heat exchanger 57, and is heated by the heating terminal 8a and the like. Heating is performed.
  In the heating device 2 of the present embodiment, on / off control or proportional control is performed on both the combustor 6 and the gas engine 5 to control the temperature of the hot water circulating in the heating circulation circuit 35 as the target temperature.
  When the heating operation is stopped, the control circuit unit 10 stops the driving of the gas engine, stops the combustion of the combustor 6, stops the driving of the circulation pumps 16, 47, 60, and ends the operation. To do.
[0111]
  (Low temperature heating operation)
  The operation in the case of performing low-temperature heating such as floor heating 8c performs heating using only the exhaust heat of the power generation device 3, as shown in FIG. That is, in the high temperature heating operation, the hot water circulating in the heating circuit 35 is heated by both the heat source by the heating heat exchanger 42 and the heat source by the exhaust heat exchanger 57, whereas in the low temperature heating operation, the exhaust water is exhausted. The hot water circulating in the heating circuit 35 is heated only by the heat source by the heat heat exchanger 57. Therefore, the control operation at the time of operation is the same as that obtained by excluding the heating control by the heat source circulation circuit 32 from the control of the high-temperature heating operation, and detailed description thereof is omitted.
  During the low-temperature heating operation, when the temperature of the hot water circulating through the circulation return path 56 of the heating circulation circuit 35 decreases, or when the heating temperature does not reach the set temperature of the heating terminal 8, the high-temperature heating operation is automatically performed. Switching operation is performed.
[0112]
  In addition, although the heating trial operation of this invention may be performed only at the time of the new installation of the heating apparatus 2, it can also be performed every time the above-mentioned heating operation is started.
[0113]
【The invention's effect】
  Claim1-5According to the invention described in (1), it is possible to accurately determine whether the heating circulation pump or the thermal valve is driven, and it is possible to provide a heating device that can efficiently perform the heating trial operation.
  Claim6According to the invention described in (1), it is possible to provide a heating device that can also perform hot water supply or bath dropping operation.
  Claim7According to the invention described in (1), it is possible to provide a heating apparatus that enables a reheating operation of a bath.
  Claim8According to the invention described in (3), it is possible to perform the heating trial operation accurately and efficiently by forcibly stopping other operations.
  Claim9According to the invention described in the above, it is possible to provide a highly efficient heating apparatus using the combustor as a heat source.
  Claim10According to the invention described in (1), it is possible to provide a heating device with high thermal efficiency utilizing the exhaust heat of the power generation device.
  Claim11, 12According to the heating trial operation control method for the heating device described in the above, it is possible to accurately determine whether the heating circulation pump and the thermal valve are driven, and it is possible to efficiently perform the heating trial operation.
[Brief description of the drawings]
FIG. 1 is a flow path system diagram of a heating apparatus according to an embodiment of the present invention.
FIG. 2 is a flow path system diagram of a heating terminal connected to the heating device shown in FIG.
FIG. 3 is a flowchart showing control of a heating trial operation according to the present invention.
4 is a flowchart showing details of operation state determination and initial setting in the flowchart of FIG. 3; FIG.
FIG. 5 is a flow path system diagram in the exhaust heat hot water storage operation of the cogeneration system according to the embodiment of the present invention.
FIG. 6 is a flow path system diagram in a hot water supply operation of the cogeneration system according to the embodiment of the present invention.
FIG. 7 is a flow path system diagram in the bath dropping operation of the cogeneration system according to the embodiment of the present invention.
FIG. 8 is a flow path system diagram in the reheating operation of the cogeneration system according to the embodiment of the present invention.
FIG. 9 is a flow path system diagram in a high temperature heating operation of the cogeneration system according to the embodiment of the present invention.
FIG. 10 is a flow path system diagram in a low-temperature heating operation of the cogeneration system according to the embodiment of the present invention.
[Explanation of symbols]
K heat source (combustor, exhaust heat exchanger)
2 Heating device
3 Power generator
6 Combustor
7 Hot water supply terminal (hot water tap)
8,8a, 8b, 8c Heating terminal
12 Waste heat circulation circuit
31 Hot water storage (hot water storage tank)
30 Waste heat exchanger (exhaust heat exchanger)
32 Heat source circulation circuit
35 Heating circuit
36 Circulation circuit
42 Heating Heat Exchanger (Heating Heat Exchanger)
43 Reheating heat exchanging part (reheating heat exchanger)
54, 54a, 54b, 54c Flow path control valve (thermal valve)
55 Circulation path (circulation path of heating circuit)
56 Circulation return path (Circulation return path of heating circulation circuit)
60 Heating circulation pump
63 Bypass flow path
83 Hot water supply flow path
91 Water supply flow path

Claims (12)

一又は二以上の熱源部で加熱された熱媒体を循環させる熱源循環回路と外部に設けられた暖房端末に接続されて熱媒体を循環させる暖房循環回路との間に暖房熱交換部を介在させ、前記熱源循環回路を循環する熱媒体の熱を暖房循環回路を循環する熱媒体へ伝達させて暖房運転を行う加熱装置であって、前記暖房循環回路は、循環往路と循環復路とをバイパスするバイパス流路を有し、当該バイパス流路より前記暖房熱交換部側に位置する流路上に熱媒体を循環させる暖房循環ポンプを備えると共に、前記バイパス流路よりも暖房端末側に位置する流路上に熱媒体の暖房端末側への循環を開閉制御する流路制御弁を備えており、加熱装置の暖房試運転時には、前記流路制御弁に閉成信号を送出すると共に前記暖房循環ポンプに駆動信号を送出し、前記熱源部で加熱された熱媒体を熱源循環回路に循環させつつ前記暖房循環回路のバイパス流路よりも熱交換部側の循環往路と循環復路の熱媒体の温度を検出し、当該検出された温度に基づいて前記流路制御弁の閉動作の良否を判別することを特徴とする加熱装置。  A heating heat exchange unit is interposed between a heat source circulation circuit that circulates the heat medium heated by one or more heat source units and a heating circuit that is connected to an external heating terminal and circulates the heat medium. A heating device for performing heating operation by transferring heat of the heat medium circulating in the heat source circulation circuit to the heat medium circulating in the heating circulation circuit, wherein the heating circulation circuit bypasses the circulation forward path and the circulation return path A heating circulation pump that circulates a heat medium on a flow path that is closer to the heating heat exchanging unit than the bypass flow path, and that is on the flow path located closer to the heating terminal than the bypass flow path And a flow control valve for controlling the opening and closing of the circulation of the heat medium to the heating terminal side, and during the heating trial operation of the heating device, a closing signal is sent to the flow control valve and a drive signal is sent to the heating circulation pump Send The temperature of the heat medium in the circulation forward path and the circulation return path is detected from the bypass flow path of the heating circulation circuit while circulating the heat medium heated in the heat source section to the heat source circulation circuit. A heating device, wherein the quality of the closing operation of the flow path control valve is determined based on the determined temperature. 熱源循環回路を循環する熱媒体の温度を検出し、当該検出温度に基づいて前記暖房循環ポンプの駆動状態の良否を判別することを特徴とする請求項1に記載の加熱装置。The heating apparatus according to claim 1, wherein the temperature of the heat medium circulating in the heat source circulation circuit is detected, and whether or not the driving state of the heating circulation pump is determined based on the detected temperature. 前記暖房試運転時において、前記熱源循環回路を循環する熱媒体が所定の上限温度に達したときは前記熱源部の駆動を停止させる一方、熱媒体が前記上限温度より低下したときは前記熱源部の駆動を再開させることを特徴とする請求項に記載の加熱装置。During the heating trial operation, when the heat medium circulating in the heat source circulation circuit reaches a predetermined upper limit temperature, the driving of the heat source unit is stopped, and when the heat medium is lower than the upper limit temperature, the heat source unit The heating apparatus according to claim 2 , wherein the driving is resumed. 前記暖房試運転時において、前記熱源循環回路を循環する熱媒体が所定の上限温度を超える時間を積算し、暖房試運転の開始から予め定められた時間内に前記積算時間が所定値に達したときは、前記暖房循環ポンプの異常と判別することを特徴とする請求項2または3に記載の加熱装置。During the heating trial operation, when the heat medium circulating in the heat source circulation circuit accumulates a time exceeding a predetermined upper limit temperature, and the accumulated time reaches a predetermined value within a predetermined time from the start of the heating trial operation. The heating apparatus according to claim 2 , wherein the heating apparatus is determined to be abnormal. 前記暖房試運転時において、前記暖房循環回路の循環往路及び循環復路の熱媒体が各々予め定められた温度以上であり、且つ、循環往路と循環復路の熱媒体の温度差が予め定められた温度範囲内である状態が所定時間継続して検出された場合には、前記流路制御弁の閉動作が正常であると判別することを特徴とする請求項1乃至4のいずれか1項に記載の加熱装置。During the heating trial operation, the heat medium in the circulation forward path and the circulation return path of the heating circulation circuit is equal to or higher than a predetermined temperature, and the temperature difference between the heat medium in the circulation forward path and the circulation return path is a predetermined temperature range. if it is the inner state is detected continuously for a predetermined time, according to any one of claims 1 to 4 closing of the flow path control valve is characterized in that determining that the normal Heating device. 請求項1乃至5のいずれか1項に記載の加熱装置において、前記熱源循環回路を循環する熱媒体が湯水であり、加熱装置の外部に設けられた給湯端末または風呂端末へ給湯を行う貯湯部を備え、当該貯湯部は前記熱源循環回路に接続されると共に、前記貯湯部は給湯流路及び給水流路に接続された構成とされており、前記熱源部で加熱された高温水を熱源循環回路を介して貯留しつつ貯湯部内の低温水を熱源循環回路を介して熱源部に環流させる貯湯運転と、給水流路を介して貯湯部へ給水を行いつつ貯留された湯水を給湯流路を介して前記給湯端末または風呂端末へ流出させる給湯運転とを排他的に行うことを特徴とする加熱装置。 The hot water storage unit according to any one of claims 1 to 5 , wherein the heat medium circulating in the heat source circulation circuit is hot water, and hot water is supplied to a hot water supply terminal or a bath terminal provided outside the heating device. The hot water storage unit is connected to the heat source circulation circuit, and the hot water storage unit is connected to the hot water supply channel and the water supply channel, and the high temperature water heated by the heat source unit is circulated as a heat source. A hot water storage operation for circulating low-temperature water in the hot water storage section to the heat source section through the heat source circulation circuit while storing it through the circuit, and supplying the hot water stored in the hot water supply path through the water supply flow path to the hot water storage section. And a hot water supply operation for flowing out to the hot water supply terminal or bath terminal. 請求項1乃至6のいずれか1項に記載の加熱装置において、加熱装置の外部に設けられた風呂端末に接続されて湯水を循環させる追い焚き循環回路を備えており、前記熱源循環回路と追い焚き循環回路との間に追い焚き熱交換部を介在させて、前記熱源部で加熱されて熱源循環回路を循環する熱媒体の熱を追い焚き循環回路を循環する湯水へ伝達して追い焚き運転を行うことを特徴とする加熱装置。The heating apparatus according to any one of claims 1 to 6 , further comprising a recirculation circuit that is connected to a bath terminal provided outside the heating apparatus and circulates hot and cold water, and the heat source circulation circuit. A recirculation heat exchange unit is interposed between the recirculation circuit and the heat of the heat medium that is heated by the heat source unit and circulates in the heat source recirculation circuit is transmitted to the hot water circulating in the recirculation circuit for reheating operation. A heating device characterized by performing. 加熱装置の暖房試運転の期間は、前記貯湯運転、給湯運転及び追い焚き運転を禁止させることを特徴とする請求項6または7に記載の加熱装置。The heating device according to claim 6 or 7 , wherein the hot water storage operation, the hot water supply operation, and the reheating operation are prohibited during a period of a heating trial operation of the heating device. 前記熱源部の一つが、熱源循環回路の流路上に設けられた燃焼機で構成されることを特徴とする請求項1乃至8のいずれか1項に記載の加熱装置。Said one heat source unit, a heating device according to any one of claims 1 to 8, characterized in that it is composed of a burner provided in the flow path of the heat source circulating circuit. 請求項1乃至9のいずれか1項に記載の加熱装置において、電気機器へ電力を供給する発電装置を加熱装置に併設して構成され、当該発電装置は、発電に伴って生じる排熱を熱媒体へ熱交換して循環させる排熱循環回路を有しており、前記熱源部の一つが、排熱循環回路と熱源循環回路との間に排熱熱交換部を介在させることによって熱源循環回路の流路上に形成された熱源で構成されることを特徴とする加熱装置。The heating device according to any one of claims 1 to 9, wherein a power generation device that supplies electric power to an electric device is provided in addition to the heating device, and the power generation device heats exhaust heat generated by power generation. A heat source circulation circuit having an exhaust heat circulation circuit for exchanging heat and circulating to a medium, wherein one of the heat source units interposes an exhaust heat heat exchange unit between the exhaust heat circulation circuit and the heat source circulation circuit A heating apparatus comprising a heat source formed on the flow path. 熱源部で加熱された熱媒体を循環させる熱源循環回路と外部に設けられた暖房端末に接続されて暖房循環ポンプによって熱媒体を循環させる暖房循環回路との間に暖房熱交換部を介在させ、前記熱源循環回路を循環する熱媒体の熱を暖房循環回路を循環する熱媒体へ伝達させて暖房を行う加熱装置の暖房試運転制御方法であって、加熱装置は、前記暖房循環回路の循環往路と循環復路とをバイパスするバイパス流路を有し、前記暖房循環ポンプはバイパス流路より前記暖房熱交換部側に位置する流路上に設けられると共に、前記バイパス流路よりも暖房端末側に位置する流路上に熱媒体の暖房端末側への循環を開閉制御する流路制御弁を備えており、前記流路制御弁に閉成信号を送出すると共に前記暖房循環ポンプに駆動信号を送出し、前記熱源部で加熱された熱媒体を熱源循環回路に循環させつつ前記暖房循環回路のバイパス流路よりも熱交換部側の循環往路と循環復路の熱媒体の温度を検出し、当該検出された温度に基づいて前記流路制御弁の閉動作の良否を判別することを特徴とする加熱装置の暖房試運転制御方法。 A heating heat exchange unit is interposed between a heat source circulation circuit that circulates the heat medium heated in the heat source unit and a heating circulation circuit that is connected to a heating terminal provided outside and circulates the heat medium using a heating circulation pump, A heating trial operation control method of a heating device that performs heating by transferring heat of the heat medium circulating in the heat source circulation circuit to the heat medium circulating in the heating circulation circuit, the heating device including a circulation forward path of the heating circulation circuit A bypass flow path that bypasses the circulation return path, and the heating circulation pump is provided on a flow path that is located closer to the heating heat exchanger than the bypass flow path, and is located closer to the heating terminal than the bypass flow path A flow path control valve for controlling the opening and closing of the circulation of the heat medium to the heating terminal side on the flow path, sending a closing signal to the flow path control valve and sending a drive signal to the heating circulation pump; While circulating the heat medium heated in the source section to the heat source circulation circuit, the temperature of the heat medium in the circulation forward path and circulation return path on the heat exchange section side of the bypass circulation path of the heating circulation circuit is detected, and the detected temperature A heating trial operation control method for a heating device, wherein the quality of the closing operation of the flow path control valve is determined based on 熱源循環回路を循環する熱媒体の温度を検出し、当該検出温度に基づいて前記暖房循環ポンプの駆動状態の良否を判別することを特徴とする請求項11に記載の加熱装置の暖房試運転制御方法。12. The heating trial operation control method for a heating device according to claim 11, wherein the temperature of the heat medium circulating in the heat source circulation circuit is detected, and whether or not the heating circulation pump is driven is determined based on the detected temperature. .
JP2002296112A 2002-10-09 2002-10-09 Heating device and heating trial operation control method for heating device Expired - Fee Related JP3897672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296112A JP3897672B2 (en) 2002-10-09 2002-10-09 Heating device and heating trial operation control method for heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296112A JP3897672B2 (en) 2002-10-09 2002-10-09 Heating device and heating trial operation control method for heating device

Publications (2)

Publication Number Publication Date
JP2004132579A JP2004132579A (en) 2004-04-30
JP3897672B2 true JP3897672B2 (en) 2007-03-28

Family

ID=32286177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296112A Expired - Fee Related JP3897672B2 (en) 2002-10-09 2002-10-09 Heating device and heating trial operation control method for heating device

Country Status (1)

Country Link
JP (1) JP3897672B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765704B2 (en) * 2006-03-20 2011-09-07 株式会社ノーリツ Hot water heater / heat source machine
JP5309061B2 (en) * 2010-03-10 2013-10-09 リンナイ株式会社 Hot water system
JP5277194B2 (en) * 2010-03-17 2013-08-28 リンナイ株式会社 Hot water system
JP6218533B2 (en) * 2013-09-30 2017-10-25 リンナイ株式会社 Heating system
JP2018031522A (en) * 2016-08-24 2018-03-01 株式会社ノーリツ Storage water heater
CN110296321A (en) * 2019-07-23 2019-10-01 江西振态科技协同创新有限公司 It is multiple temperature control methods and device for needing energy equipment energy supply by same heat source

Also Published As

Publication number Publication date
JP2004132579A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP5704398B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP5333847B2 (en) Cogeneration system
JP3897678B2 (en) Cogeneration system
JP3897672B2 (en) Heating device and heating trial operation control method for heating device
JP5846413B2 (en) Cogeneration system
JP5224115B2 (en) Water heater
JP5445811B2 (en) Cogeneration system and storage tank side unit
JP5988080B2 (en) Heat source equipment
JP5862936B2 (en) Heat recovery device, cogeneration system, and pipe misconnection detection method
JP3972199B2 (en) Heating device and cogeneration system
JP4648091B2 (en) Water heater
JP4071132B2 (en) Heating device and cogeneration system
JP2004251591A (en) Heat medium supply equipment
JP3385873B2 (en) Operation control method of two-temperature hot water circulation device
JP5061153B2 (en) Hot water storage hot water supply system and cogeneration system
JP4560724B2 (en) Heat recovery equipment
JP4696835B2 (en) Water heater
JP4933783B2 (en) Heat medium supply equipment
JP3863475B2 (en) Cogeneration system
JP2013069598A (en) Cogeneration system
JP5574106B2 (en) Hot water system
JP2003176948A (en) Hot-water supply device with additional heating and air heater function
JP4602062B2 (en) Water heater
JP4624091B2 (en) Water heater
JP2004251888A (en) Equipment supplying heating medium

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees