JP3894043B2 - Operation method of membrane separator - Google Patents
Operation method of membrane separator Download PDFInfo
- Publication number
- JP3894043B2 JP3894043B2 JP2002148562A JP2002148562A JP3894043B2 JP 3894043 B2 JP3894043 B2 JP 3894043B2 JP 2002148562 A JP2002148562 A JP 2002148562A JP 2002148562 A JP2002148562 A JP 2002148562A JP 3894043 B2 JP3894043 B2 JP 3894043B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- concentration
- concentrated
- concentrated sludge
- membrane separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は膜分離装置の運転方法に係り、特に汚泥を膜分離処理して透過液と濃縮汚泥とに分離する膜分離装置の運転方法に関する。
【0002】
【従来の技術】
廃水処理や浄水処理の分野では、生物学的や物理化学的な処理によって発生した汚泥を膜分離処理して透過液と濃縮汚泥とに分離することが行われている。濃縮のための膜分離装置としては、濃縮汚泥を満たした分離槽内に膜モジュールを浸漬したのものが知られている。この浸漬式の膜分離装置においては、定量の原汚泥を分離槽に連続的に供給しつつ、膜モジュールから吸引する透過液の流量を一定に保持する運転が一般的に行われている。分離槽からオーバーフローして排出される濃縮汚泥の量も原汚泥と透過液の差分として一定となる運転であった。濃縮汚泥の汚泥濃度は原汚泥量と濃縮汚泥量との比である濃縮倍率によって定まる。したがって、上記のような濃縮倍率が一定の運転では原汚泥の汚泥濃度が変動した場合には濃縮汚泥の汚泥濃度も比例して変動する。
【0003】
【発明が解決しようとする課題】
上述の運転方法によれば量的な観点からは安定な処理が可能であるが、何らかの原因によって原汚泥の汚泥濃度が高くなった時には、濃縮汚泥の汚泥濃度も高くなり、濾過膜の目詰まりなどを誘発して膜分離装置の運転操作上の不具合を招く。また、濃縮汚泥は後段処理として脱水、天日乾燥、焼却などの処理を受けるが、濃縮汚泥の汚泥濃度が変動すると後段処理の負荷や運転が不安定となり、処理性能や効率を低下させるという問題点があった。
【0004】
このような問題点を解決するために、濃縮汚泥の汚泥濃度を計測し、その計測結果に基づいて濃縮汚泥の汚泥濃度が目標値となるように原汚泥や透過液の流量をフィードバック制御することが考えられる。しかしながら、このような方法はフィードバック制御を実現するための装置構成が複雑で高価になるとともに、原汚泥の汚泥濃度の変動が大きい場合には膜分離装置の負荷も追随して変動することになり、運転の不安定を招く。
本発明の目的は、上記従来技術の問題点を改善し、原汚泥の汚泥濃度の変動が大きい場合でも、複雑なフィードバック制御を行うことなく膜分離装置の負荷を安定に維持し、かつ、最終的に系外に排出する濃縮汚泥の汚泥濃度を目標値に近づけることができる膜分離装置の運転方法を提供することにある。
【0005】
【課題を解決するための手段】
上記の課題を解決するために、本発明に係る膜分離装置の運転方法は、汚泥供給槽からの供給汚泥を膜分離処理して透過液と濃縮汚泥とに分離する膜分離装置の運転方法であって、膜分離処理を行いつつ膜分離装置から排出される濃縮汚泥の全量を装置外に排出する排出運転と、膜分離処理を行いつつ前記膜分離装置から排出される濃縮汚泥の全量を前記汚泥供給槽に返送する循環運転と、膜分離処理を停止しつつ供給される供給汚泥に相当する量の濃縮汚泥を装置外に排出する押出運転との、いずれかの運転を濃縮汚泥の汚泥濃度に応じて自動的に切り替えることを特徴とする。
【0006】
また、本発明に係る膜分離装置の運転方法は上記の構成において、前記濃縮汚泥の汚泥濃度を下限値、中間値、上限値の3段階に区分し、前記排出運転の結果、前記濃縮汚泥の汚泥濃度が下降して下限値に達した時には前記循環運転に切り替え、この循環運転の結果、前記濃縮汚泥の汚泥濃度が上昇して中間値に達した時には前記排出運転に切り替え、前記排出運転の結果、濃縮汚泥の汚泥濃度が上限値に達した時には押出運転に切り替え、この押出運転の結果、前記濃縮汚泥の汚泥濃度が下降して前記中間値に達した時には前記排出運転に切り替えることを特徴とする。
また、本発明に係る膜分離装置の運転方法は上記の構成において、前記濃縮汚泥の汚泥濃度を下限値、上限値の2段階に区分し、前記排出運転の結果、前記濃縮汚泥の汚泥濃度が下降して下限値に達した時には前記循環運転を所定時間実行した後に前記排出運転に切り替え、前記排出運転の結果、前記濃縮汚泥の汚泥濃度が上昇して上限値に達した時には前記押出運転を所定時間実行した後に前記排出運転に切り替えることを特徴とする。
なお、本発明において「下限値(中間値、上限値)に達した時」の「達した時」という用語は、「その値に接近した時」「その値に一致した時」「その値を超えた時」のいずれにも理解し得るものとする。
【0007】
また、本発明に係る膜分離装置の運転方法は上記の構成において、前記膜分離装置は分離槽と、この分離槽内の濃縮汚泥に浸漬された膜モジュールと、濃縮汚泥の液面を一定に保持する濃縮汚泥の排出手段とを具備していることを特徴とする。
【0008】
【発明の実施の形態】
図1は本発明に係る膜分離装置の運転方法を実施するための装置系統図である。図1において汚泥供給槽10には管路12から濃縮対象物である原汚泥が流入する。また、この汚泥供給槽10には管路14から後述するように濃縮汚泥が返送される場合がある。汚泥供給槽10は管路16によって膜分離装置20と接続され、汚泥供給槽10内の汚泥は管路16の途中に設けた供給ポンプ18によって、膜分離装置20に供給される。本発明においては、このような汚泥供給槽10から膜分離装置20に供給される汚泥を供給汚泥と定義し、前記原汚泥と区別する。膜分離装置20は主として分離槽22と、この分離槽22内の濃縮汚泥に浸漬された膜モジュール24とからなる。膜モジュール24の二次側には管路26が接続され、この管路26に設けた吸引ポンプ28によって、膜モジュール24の濾過膜を透過した透過液が管路26から抜き出され、装置外に排出される。また、膜分離によって濃縮された分離槽22内の濃縮汚泥は、その液面が一定に保持されつつ、オーバーフロー分が管路30から排出される。
【0009】
膜モジュール24の膜材としては有機材料又はセラミック材料で形成された精密濾過膜又は限外濾過膜が用いられる。膜モジュール24の型式としては浸漬式の中空糸膜、平膜が好ましく、特に円盤状の平膜を回転させるようにした回転平膜式の膜モジュールが汚泥の濃縮用に好都合である。しかしながら、本発明に係る膜分離装置は上記の浸漬式の膜モジュールを用いたものに限らず、例えば管型の膜モジュールを用いたものにも適用可能である。
【0010】
管路30から排出された濃縮汚泥は汚泥溜32を経由したのち、排出ポンプ34によって管路36から前記汚泥供給槽10又は汚泥貯槽38のいずれか一方に送出される。すなわち、管路36は循環用の管路14と排出用の管路40とに分岐しており、管路14には切替弁15が、管路40には切替弁42が設けられている。この切替弁15と切替弁42の開閉を操作することによって、管路36からの濃縮汚泥は管路14を介して汚泥供給槽10に返送されるか、又は管路42を介して汚泥貯槽38に排出される。
切替弁15と切替弁42の操作は前記分離槽22に配設した汚泥濃度計44の検出信号を取り込む制御器46によって制御される。また、この制御器46は汚泥濃度計44の検出信号に応じて、吸引ポンプ28の稼動と停止を切り替える信号を出力する機能を備えている。
なお、分離槽22内の濃縮汚泥の液面を一定に保持する濃縮汚泥の排出手段としては前記したオーバーフローによる方法に限らない。例えば管路30と排出ポンプ34とを汚泥溜32を介さずに直接に接続し、分離槽22内に設けた液面計の指示値が一定となるように排出ポンプ34による濃縮汚泥の引き抜き量を制御するようにしてもよい。
【0011】
上記の構成において、汚泥供給槽10には管路12から原汚泥が連続的又は間欠的に流入する。また、後述する循環運転時には汚泥供給槽10に管路14から濃縮汚泥が流入する。このように濃縮汚泥が汚泥供給槽10内に流入する場合には、原汚泥よりは汚泥濃度が比較的高い濃度に調整された供給汚泥が膜分離装置20に供給される。通常は膜分離装置20では供給される供給汚泥の流量及び膜モジュール24から吸引する透過液の流量を一定に保持する運転をする。その結果、分離槽22をオーバーフローして排出される濃縮汚泥の流量も一定に保持される。なお、分離槽22内の濃縮汚泥の汚泥濃度は汚泥濃度計44によって連続的に又は適当な制御間隔で検出され、制御器46にその検出信号が送信される。
【0012】
当該膜分離装置20の運転モードは排出運転、循環運転、押出運転の3種類に区分される。
排出運転は濃縮汚泥の汚泥濃度が目標範囲内の正常な時の運転であり、膜分離処理を行いつつ膜分離装置20から排出される濃縮汚泥の全量を装置外に排出する。具体的には供給ポンプ18と吸引ポンプ28を稼動し、供給汚泥の流量及び膜モジュール24から吸引する透過液の流量を一定に保持して膜分離処理を行いつつ、切替弁15を閉、切替弁42を開として膜分離装置20から排出される濃縮汚泥を汚泥貯槽38に排出する。
循環運転は濃縮汚泥の汚泥濃度が比較的低濃度な時の運転であり、膜分離処理を行いつつ膜分離装置20から排出される濃縮汚泥の全量を汚泥供給槽10に返送する。具体的には供給ポンプ18と吸引ポンプ28を稼動し、供給汚泥の流量及び膜モジュール24から吸引する透過液の流量を一定に保持して膜分離処理を行いつつ、切替弁15を開、切替弁42を閉として膜分離装置20から排出される濃縮汚泥を汚泥供給槽10に返送する。この循環運転を行うと汚泥供給槽10では原汚泥と濃縮汚泥が混合し、供給汚泥の濃縮汚泥が上昇する。その結果、濃縮汚泥の汚泥濃度も上昇する。
押出運転は濃縮汚泥の汚泥濃度が比較的高濃度な時の運転であり、膜分離処理を停止しつつ供給される供給汚泥に相当する量の濃縮汚泥の全量を装置外に排出する。具体的には供給ポンプ18からの供給汚泥の流量一定に保持するとともに、吸引ポンプ28を停止して膜分離処理を停止し、切替弁15を閉、切替弁42を開として供給汚泥に相当する量の濃縮汚泥を汚泥貯槽38に排出する。この押出運転を行うと分離槽22内の濃縮汚泥が逐次、汚泥濃度が低い供給汚泥と置換される。その結果、濃縮汚泥の汚泥濃度が比較的急速に下降する。
【0013】
上記3種類の運転モードの切り替えは汚泥濃度計44からの検出信号に応じた制御器46による前記切替弁15と切替弁42の切り替え信号及び吸引ポンプ28の稼動と停止の切り替え信号によって実行される。図2はその制御手順を示すフローチャートである。排出運転からスタートした場合、濃縮汚泥の汚泥濃度が下限値以上、上限値未満の正常値であれば排出運転を継続し(S100)、下限値未満になると循環運転に切り替え(S110)、上限値以上になると押出運転に切り替える(S120)。循環運転をしても汚泥濃度が中間値未満であれば循環運転を継続し(S130)、中間値以上になると排出運転に切り替える(S140)。また、押出運転をしても汚泥濃度が中間値を超える時には押出運転を継続し(S150)、中間値以下になると排出運転に切り替える(S160)。このような運転モードの切り替えによって、原汚泥の汚泥濃度が大幅に変動した場合でも膜分離装置20から装置外へ排出される濃縮汚泥の汚泥濃度を下限値以上、上限値未満の目標範囲内にほぼ維持することができる。
なお、上記の例は中間値を1点とする場合であるが、本発明はこれに限らない。例えば中間値として中間値▲1▼と中間値▲2▼を設定し、循環運転と排出運転との切り替え制御点として中間値▲1▼を用い、押出運転と排出運転との切り替え制御点として中間値▲2▼を用いるようにしてもよい。
【0014】
図3は上記の運転モードの切り替え制御を実行した場合に、原汚泥と濃縮汚泥の汚泥濃度の経時変化状況をモデル化して示したものである。(イ)は原汚泥の汚泥濃度の経時変化を示し、例えば標準濃度1.0%に対して、時間帯T1では0.5%以下、時間帯T2では1.5%以上に原汚泥の汚泥濃度が変動したと仮定する。(ロ)は原汚泥の濃度変動に伴う濃縮汚泥の汚泥濃度の経時変化を示し、例えば標準濃度4.0%を中間値とし、下限値を3.8%、上限値を4.2%に設定して制御を実行した場合である。汚泥供給槽10や分離槽22は相応の容量を有しており、汚泥が一定時間滞留するので、濃縮汚泥の汚泥濃度は原汚泥の濃度変動に対して遅れて、かつ濃度変動をある程度吸収して平均化した状態で変動する。このため、原汚泥の汚泥濃度が標準濃度1.0%を中心に多少変動しても、排出運転Aを実行すれば濃縮汚泥の汚泥濃度は標準濃度4.0%を中心に比較的安定に推移する。しかしながら、(イ)に示したように原汚泥の汚泥濃度が0.5%以下の時間帯T1が比較的長時間にわたって継続すると、濃縮汚泥の汚泥濃度は徐々に下降して、終には下限値の3.8%に達する。すると制御器46は汚泥濃度計44からの検出信号に応じて切替弁15を開、切替弁42を閉とする切り替え信号を出力して、運転モードを循環運転Bに切り替える。この循環運転Bの結果、濃縮汚泥の汚泥濃度が徐々に上昇し、中間値である標準濃度4.0%に達する。すると制御器46は汚泥濃度計44からの検出信号に応じて切替弁15を閉、切替弁42を開とする切り替え信号を出力して、運転モードを排出運転Aに復帰させる。しかしながら、原汚泥の汚泥濃度が0.5%以下の時間帯が継続している場合には排出運転Aにより、濃縮汚泥の汚泥濃度は再び下降する。したがって、原汚泥の汚泥濃度が0.5%以下の時間帯T1が継続する期間中はこのような排出運転Aと循環運転Bが交互に繰り返されることになる。
【0015】
一方、(イ)に示したように原汚泥の汚泥濃度が1.5%以上の時間帯T2が比較的長時間にわたって継続すると、濃縮汚泥の汚泥濃度は徐々に上昇して、終には上限値を4.2%に達する。すると制御器46は汚泥濃度計44からの検出信号に応じて運転モードを排出運転Aから押出運転Cに切り替える。すなわち、切替弁15を閉、切替弁42を開とした状態を維持しつつ、供給ポンプ18からの供給汚泥の流量一定に保持するとともに、吸引ポンプ28を停止して膜分離処理を停止する。この押出運転Cの結果、分離槽22内の濃縮汚泥が逐次、汚泥濃度が低い供給汚泥と置換され、濃縮汚泥の汚泥濃度が急速に下降して中間値である標準濃度4.0%に達する。すると制御器46は汚泥濃度計44からの検出信号に応じて吸引ポンプ28を再稼動し、運転モードを排出運転Aに復帰させる。しかしながら、原汚泥の汚泥濃度が1.5%以上の時間帯が継続している場合には排出運転Aにより、濃縮汚泥の汚泥濃度は再び上昇する。したがって、原汚泥の汚泥濃度が1.5%以上の時間帯T2が継続する期間中はこのような排出運転Aと押出運転Cが交互に繰り返されることになる。
【0016】
上述のとおり、本実施の形態によれば原汚泥の汚泥濃度が標準濃度1.0%に対して、0.5%以下や1.5%以上の範囲で大きく変動する場合でも、装置外に排出する濃縮汚泥の汚泥濃度を常に平均約4%(上限4.2%、下限3.8%)の安定した値にすることができる。このため、汚泥濃度の変動に対して原汚泥や透過液の流量制御などの複雑な制御を必要とせず、安定した汚泥の濃縮操作を実施できる。
【0017】
図4は他の制御手順を示すフローチャートである。排出運転からスタートし、濃縮汚泥の汚泥濃度が下限値以上、上限値未満の正常値であれば排出運転を継続し(S200)、下限値未満になると循環運転に切り替え(S210)、上限値以上になると押出運転に切り替える(S220)。循環運転では所定の設定時間T3が経過するまで運転を継続し(S230)、所定の設定時間T3を経過すると排出運転に切り替える(S240)。また、押出運転では所定の設定時間T4が経過するまで運転を継続し(S250)、所定の設定時間T4を経過すると排出運転に切り替える(S260)。この制御方法によれば、循環運転と押出運転の運転時間をタイマーによって設定するので図2に示した中間値(標準濃度)に基づく制御に比べて、制御の単純化を図ることができる。なお、循環運転と押出運転とでは、濃縮汚泥の汚泥濃度に対する応答性に差がある。したがって、応答が緩慢な循環運転では設定時間T3を長めとし、応答が敏感な押出運転では設定時間T4を短めとし、各運転を排出運転に切り替えた際の濃縮汚泥の汚泥濃度が下限値と上限値とのほぼ中間となるように設定することが好ましい。
【0018】
【発明の効果】
上述のとおり、本発明に係る汚泥の濃縮方法によれば、原汚泥の汚泥濃度の変動が大きい場合でも、複雑なフィードバック制御を行うことなく膜分離装置の負荷を安定に維持し、かつ、最終的に系外に排出する濃縮汚泥の汚泥濃度を一定の目標値に近づけることができる。
【図面の簡単な説明】
【図1】本発明に係る膜分離装置の運転方法を実施するための装置系統図。
【図2】本発明に係る運転方法の実施形態を示すフローチャート。
【図3】本発明に係る運転方法実行した場合に濃縮汚泥などの汚泥濃度の経時変化を例示した説明図。
【図4】本発明に係る運転方法の他の実施形態を示すフローチャート。
【符号の説明】
10……汚泥供給槽
15……切替弁
18……(供給汚泥の)供給ポンプ
20……膜分離装置
22……分離槽
24……膜モジュール
28……(透過液の)吸引ポンプ
32……汚泥溜
34……(濃縮汚泥の)排出ポンプ
38……汚泥貯槽
42……切替弁
42……汚泥濃度計
46……制御[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a membrane separator, and more particularly, to a method for operating a membrane separator that separates sludge into permeate and concentrated sludge by membrane separation treatment.
[0002]
[Prior art]
In the field of wastewater treatment and water purification treatment, sludge generated by biological or physicochemical treatment is separated into permeate and concentrated sludge by membrane separation treatment. As a membrane separation device for concentration, one in which a membrane module is immersed in a separation tank filled with concentrated sludge is known. In the submerged membrane separation apparatus, an operation is generally performed in which a constant amount of raw sludge is continuously supplied to the separation tank and the flow rate of the permeate sucked from the membrane module is kept constant. The operation was such that the amount of concentrated sludge overflowed from the separation tank was constant as the difference between the raw sludge and the permeate. The sludge concentration of the concentrated sludge is determined by the concentration ratio, which is the ratio of the raw sludge amount and the concentrated sludge amount. Therefore, in the operation where the concentration rate is constant as described above, when the sludge concentration of the raw sludge varies, the sludge concentration of the concentrated sludge also varies in proportion.
[0003]
[Problems to be solved by the invention]
According to the operation method described above, stable treatment is possible from a quantitative point of view, but when the sludge concentration of the raw sludge increases for some reason, the sludge concentration of the concentrated sludge also increases and the filtration membrane is clogged. This causes problems in the operation of the membrane separator. Concentrated sludge is subject to subsequent treatments such as dehydration, sun drying, and incineration, but if the sludge concentration in the concentrated sludge varies, the load and operation of the subsequent treatment will become unstable, reducing the processing performance and efficiency. There was a point.
[0004]
In order to solve such problems, the sludge concentration of the concentrated sludge is measured, and the flow rate of the raw sludge and permeate is feedback controlled so that the sludge concentration of the concentrated sludge becomes the target value based on the measurement result. Can be considered. However, in such a method, the apparatus configuration for realizing feedback control is complicated and expensive, and when the fluctuation of the sludge concentration of the raw sludge is large, the load of the membrane separation apparatus also fluctuates. , Driving instability.
The object of the present invention is to improve the above-mentioned problems of the prior art, stably maintain the load of the membrane separation device without complicated feedback control even when the fluctuation of the sludge concentration of the raw sludge is large, and finally An object of the present invention is to provide a method for operating a membrane separation device that can bring the sludge concentration of concentrated sludge discharged out of the system closer to the target value.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the operation method of the membrane separation apparatus according to the present invention is an operation method of the membrane separation apparatus that separates the supplied sludge from the sludge supply tank into a permeate and concentrated sludge by membrane separation treatment. A discharge operation for discharging the entire amount of the concentrated sludge discharged from the membrane separator while performing the membrane separation treatment, and the total amount of the concentrated sludge discharged from the membrane separator while performing the membrane separation treatment. Concentration sludge concentration is one of the following operations: circulation operation for returning to the sludge supply tank and extrusion operation for discharging the amount of concentrated sludge equivalent to the supply sludge supplied while stopping the membrane separation process. It is characterized by switching automatically according to
[0006]
Moreover, the operation method of the membrane separation apparatus according to the present invention is the above-described configuration, wherein the concentrated sludge concentration is divided into three stages of a lower limit value, an intermediate value, and an upper limit value, and as a result of the discharge operation, When the sludge concentration decreases and reaches the lower limit value, the operation is switched to the circulation operation. As a result of the circulation operation, when the sludge concentration of the concentrated sludge reaches an intermediate value, the operation is switched to the discharge operation. As a result, when the sludge concentration of the concentrated sludge reaches the upper limit value, the operation is switched to the extrusion operation, and as a result of the extrusion operation, when the sludge concentration of the concentrated sludge reaches the intermediate value, the operation is switched to the discharge operation. And
Further, the operation method of the membrane separation apparatus according to the present invention has the above-described configuration, wherein the sludge concentration of the concentrated sludge is divided into two stages of a lower limit value and an upper limit value, and as a result of the discharge operation, the sludge concentration of the concentrated sludge is When the lower limit is reached and the lower limit value is reached, the circulation operation is performed for a predetermined time and then switched to the discharge operation. As a result of the discharge operation, when the sludge concentration of the concentrated sludge reaches the upper limit value, the extrusion operation is performed. It is characterized by switching to the discharge operation after executing for a predetermined time.
In the present invention, the term “when reaching” of “when reaching the lower limit (intermediate value, upper limit)” means “when approaching that value”, “when matching that value”, “ It can be understood at any time when it is exceeded.
[0007]
The operation method of the membrane separation apparatus according to the present invention is the above-described configuration, wherein the membrane separation apparatus has a separation tank, a membrane module immersed in the concentrated sludge in the separation tank, and a liquid level of the concentrated sludge. And a means for discharging the concentrated sludge to be retained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an apparatus system diagram for carrying out a method of operating a membrane separation apparatus according to the present invention. In FIG. 1, raw sludge that is an object to be concentrated flows into a
[0009]
As the membrane material of the
[0010]
The concentrated sludge discharged from the
The operation of the
The concentrated sludge discharge means for keeping the liquid level of the concentrated sludge in the separation tank 22 constant is not limited to the above-described overflow method. For example, the
[0011]
In the above configuration, the raw sludge flows from the pipe 12 continuously or intermittently into the
[0012]
The operation mode of the
The discharge operation is an operation when the sludge concentration of the concentrated sludge is normal within the target range, and the entire amount of the concentrated sludge discharged from the
The circulation operation is an operation when the sludge concentration of the concentrated sludge is relatively low, and the whole amount of the concentrated sludge discharged from the
The extrusion operation is an operation when the sludge concentration of the concentrated sludge is relatively high, and the entire amount of the concentrated sludge corresponding to the supplied sludge supplied while the membrane separation process is stopped is discharged out of the apparatus. Specifically, the flow rate of the supplied sludge from the
[0013]
The switching of the three operation modes is performed by a switching signal for the switching
In the above example, the intermediate value is one point, but the present invention is not limited to this. For example, intermediate value (1) and intermediate value (2) are set as intermediate values, intermediate value (1) is used as a switching control point between circulation operation and discharging operation, and intermediate control point is set as switching operation between extrusion operation and discharging operation. The value {circle over (2)} may be used.
[0014]
FIG. 3 shows a modeled change with time of the sludge concentrations of the raw sludge and the concentrated sludge when the above-described operation mode switching control is executed. (A) shows the change over time in the sludge concentration of the raw sludge. For example, the sludge of the original sludge is 0.5% or less in the time zone T1 and 1.5% or more in the time zone T2 with respect to the standard concentration 1.0%. Assume that the concentration has fluctuated. (B) shows the change over time in the sludge concentration of the concentrated sludge accompanying the change in the concentration of the raw sludge. For example, the standard concentration 4.0% is the intermediate value, the lower limit is 3.8%, and the upper limit is 4.2%. This is a case where control is executed after setting. The
[0015]
On the other hand, as shown in (a), when the time period T2 in which the sludge concentration of the raw sludge is 1.5% or more continues for a relatively long time, the sludge concentration of the concentrated sludge gradually increases and finally reaches the upper limit. The value reaches 4.2%. Then, the
[0016]
As described above, according to the present embodiment, even if the sludge concentration of the raw sludge varies greatly within the range of 0.5% or less or 1.5% or more with respect to the standard concentration of 1.0%, it is outside the apparatus. The sludge concentration of the discharged concentrated sludge can always be a stable value of an average of about 4% (upper limit 4.2%, lower limit 3.8%). Therefore, it is possible to carry out stable sludge concentration operation without requiring complicated control such as control of the flow rate of raw sludge or permeate with respect to fluctuations in the sludge concentration.
[0017]
FIG. 4 is a flowchart showing another control procedure. Starting from the discharge operation, if the sludge concentration of the concentrated sludge is a normal value that is not less than the lower limit and less than the upper limit, the discharge operation is continued (S200), and if it is less than the lower limit, the operation is switched to the circulation operation (S210). Then, the operation is switched to the extrusion operation (S220). In the circulating operation, the operation is continued until a predetermined set time T3 elapses (S230), and when the predetermined set time T3 elapses, the operation is switched to the discharge operation (S240). Further, in the extrusion operation, the operation is continued until a predetermined set time T4 elapses (S250), and when the predetermined set time T4 elapses, the operation is switched to the discharge operation (S260). According to this control method, since the operation time of the circulation operation and the extrusion operation is set by the timer, the control can be simplified as compared with the control based on the intermediate value (standard concentration) shown in FIG. Note that there is a difference in the response of the concentrated sludge to the sludge concentration between the circulation operation and the extrusion operation. Therefore, the set time T3 is lengthened in the circulation operation with slow response, the set time T4 is shortened in the extrusion operation with sensitive response, and the sludge concentration of the concentrated sludge when each operation is switched to the discharge operation is the lower limit value and the upper limit value. It is preferable to set so as to be approximately in the middle of the value.
[0018]
【The invention's effect】
As described above, according to the sludge concentration method according to the present invention, the load of the membrane separation device can be stably maintained without complicated feedback control even when the variation of the sludge concentration of the raw sludge is large, and the final In particular, the sludge concentration of the concentrated sludge discharged out of the system can be brought close to a certain target value.
[Brief description of the drawings]
FIG. 1 is an apparatus system diagram for carrying out a method of operating a membrane separation apparatus according to the present invention.
FIG. 2 is a flowchart showing an embodiment of an operation method according to the present invention.
FIG. 3 is an explanatory view exemplifying a change over time in the concentration of sludge such as concentrated sludge when the operation method according to the present invention is executed.
FIG. 4 is a flowchart showing another embodiment of the operation method according to the present invention.
[Explanation of symbols]
10 ...
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148562A JP3894043B2 (en) | 2002-05-23 | 2002-05-23 | Operation method of membrane separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002148562A JP3894043B2 (en) | 2002-05-23 | 2002-05-23 | Operation method of membrane separator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003340497A JP2003340497A (en) | 2003-12-02 |
JP3894043B2 true JP3894043B2 (en) | 2007-03-14 |
Family
ID=29767059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002148562A Expired - Fee Related JP3894043B2 (en) | 2002-05-23 | 2002-05-23 | Operation method of membrane separator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3894043B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5639373A (en) | 1995-08-11 | 1997-06-17 | Zenon Environmental Inc. | Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate |
US8852438B2 (en) | 1995-08-11 | 2014-10-07 | Zenon Technology Partnership | Membrane filtration module with adjustable header spacing |
JP2006326471A (en) * | 2005-05-25 | 2006-12-07 | Jfe Engineering Kk | Membrane separation apparatus and its operation method |
-
2002
- 2002-05-23 JP JP2002148562A patent/JP3894043B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003340497A (en) | 2003-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5833037B2 (en) | Activated sludge wastewater purification method and equipment | |
WO2019001571A1 (en) | Waste water treatment system with buffering device and waste water treatment method therefor | |
JPH0975588A (en) | Wholly automatic washing machine | |
KR20190136105A (en) | Washing apparatus and washing method of water treatment membrane, and water treatment system | |
JP3894043B2 (en) | Operation method of membrane separator | |
JP3894034B2 (en) | Concentration method of sludge | |
CN216837373U (en) | Intelligent filtering system integrating ceramic membrane micro cross flow filtering and dead end filtering | |
JPH10216486A (en) | Operation controller for membrane separator | |
CN208345817U (en) | Water purification machine | |
SE503918C2 (en) | Apparatus for purifying water comprising a pressurized membrane chamber and a method for determining the flushing time of a pressurized membrane chamber | |
JP2019042666A (en) | Operating method of sludge concentration device and sludge concentration system | |
JP6430091B1 (en) | Membrane cleaning apparatus and membrane cleaning method | |
JP2001187323A (en) | Membrane separation device and operation method thereof | |
JP2010201335A (en) | Water treatment system and water treatment method | |
JP2002322691A (en) | System for reusing bathwater | |
JP6743409B2 (en) | Method of controlling pH in neutralization tank | |
JP4551124B2 (en) | Filtration pond system | |
JPH10128328A (en) | Septic tank | |
JP2020065955A (en) | Device of reusing effluent, and boiler system | |
JP2002263452A (en) | Membrane filtering method and membrane filtering system | |
CN114162932B (en) | Water purification system, control method thereof, storage medium, electronic device and water purification device | |
CN213977064U (en) | Water purifier | |
CN216073265U (en) | Waste water tank and water purification system for water purifier | |
JP2016067967A (en) | Cleaning method | |
JPH10151483A (en) | Purifying tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061204 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3894043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131222 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |