[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3893648B2 - High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate - Google Patents

High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate Download PDF

Info

Publication number
JP3893648B2
JP3893648B2 JP28447896A JP28447896A JP3893648B2 JP 3893648 B2 JP3893648 B2 JP 3893648B2 JP 28447896 A JP28447896 A JP 28447896A JP 28447896 A JP28447896 A JP 28447896A JP 3893648 B2 JP3893648 B2 JP 3893648B2
Authority
JP
Japan
Prior art keywords
dielectric constant
high dielectric
resin
laminate
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28447896A
Other languages
Japanese (ja)
Other versions
JPH10130460A (en
Inventor
春已 根岸
猛 杉村
義則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP28447896A priority Critical patent/JP3893648B2/en
Publication of JPH10130460A publication Critical patent/JPH10130460A/en
Application granted granted Critical
Publication of JP3893648B2 publication Critical patent/JP3893648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Organic Insulating Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高誘電率樹脂組成物、高誘電率プリプレグ及び高誘電率積層板に関するものである。
【0002】
【従来の技術】
近年電子技術の多様な発展にともない、電子装置に用いる絶縁材料にも多様な性能が要求されるようになってきている。特にプリント配線板は極めて広範囲の用途に使用され、プリント配線板の基板材料としての積層板に対する要求特性も益々多岐となってきている。誘電特性に関する要求についていえば、信号の高速伝搬化、高インピーダンス化、クロストークの減少などを目的として低誘電率積層板が要求され、一方、高周波、マイクロウェーブ回路における遅延回路の形成、低インピーダンス化、積層板自身にコンデンサー効果を持たせた素子の複合回路化などを目的として高誘電率積層板が要求される。
【0003】
従来、高誘電率積層板としては、基材としてガラス布又はガラス不織布を用い、この基材に、高誘電率の無機質粉末を配合したエポキシ樹脂ワニスを含浸乾燥したプリプレグを、所要枚数重ねて加熱加圧して製造されたものが知られている。
【0004】
【発明が解決しようとする課題】
ところが、エポキシ樹脂に配合できる高誘電率の無機質粉末の量には限度があり、したがって、積層板の誘電率を20まで上げることができなかった。また、多量の無機質粉末を配合する必要があるため、成形性や穴あけ加工性が悪くなるという欠点があった。
本発明は、より少ない高誘電率の無機質粉末の配合量で高い誘電率の積層板を得ることができ、したがって、従来と同等の誘電率の積層板を得る場合には高誘電率の無機質粉末の配合量を少なくできるため、成形性や穴あけ加工性を改善できる高誘電率樹脂組成物、この高誘電率樹脂組成物を用いた高誘電率プリプレグ及び高誘電率積層板を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は、(a)分子中にジヒドロベンゾオキサジン環を有する樹脂、及び、(b)ジヒドロベンゾオキサジン環ジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基のいずれかと反応性を示す化合物からなる樹脂成分、並びに、(c)誘電率が10以上の無機質粉末を必須成分として含有してなり、前記樹脂成分100重量部に対する前記(c)誘電率が10以上の無機質粉末の配合量が80〜250重量部である高誘電率樹脂組成物である。
【0006】
また、本発明は、前記高誘電率樹脂組成物をワニスとして基材に含浸、乾燥してなる高誘電率プリプレグである。
さらに、本発明は前記の高誘電率プリプレグを加熱加圧してなる高誘電率積層板である。
【0007】
【発明の実施の形態】
(a)の分子中にジヒドロベンゾオキサジン環を有する樹脂は、150℃以上に加熱することにより開環して重合する。この樹脂は、フェノール性水酸基を分子中に2個以上有する化合物と1級アミンとホルムアルデヒドとを反応させることによって得られる。フェノール性水酸基1モルに対して、1級アミンを0.2〜1.0モル、ホルムアルデヒドを1級アミンの2倍モル量の比で反応させるのが好ましい。1級アミンが0.2モル未満であると、ジヒドロベンゾオキサジン環の数が少なくなるので、樹脂を硬化させたとき架橋密度が小さくなって好ましくない。また、1.0モルを超えると、硬化反応において分子鎖の伸長度が小さく、架橋密度も小さくなって好ましくない。
【0008】
フェノール性水酸基を分子中に2個以上有する化合物としては、フェノールノボラック樹脂、レゾール樹脂、フェノール変性キシレン樹脂、アルキルフェノール樹脂、メラミンフェノール樹脂、フェノール変性ポリブタジエン等が挙げられる。
【0009】
1級アミンとしては、アニリン、置換アニリン、シクロヘキシルアミン、メチルアミン等が挙げられる。
【0010】
(b)のジヒドロベンゾオキサジン環ジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基のいずれかと反応性を示す化合物からなる樹脂成分の官能基としては、(a)の分子中にジヒドロベンゾオキサジン環を有する樹脂中に残存するフェノール性水酸基とも反応性を示すものであるのが好ましい。
具体的な化合物としては、フェノール性水酸基を有する化合物、2官能以上のエポキシ樹脂が挙げられる。
また、これらの化合物としては、積層板に難燃性を付与するためにハロゲン化合物、例えば、ブロム化エポキシ樹脂のようなハロゲン化樹脂を用いることもできる。
(a)の分子中にジヒドロベンゾオキサジン環を有する樹脂100重量部に対する、(b)のジヒドロベンゾオキサジン環及びジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基と反応性を示す化合物からなる樹脂成分の配合量は、5〜30重量部であることが好ましい。
【0011】
(a)の分子中にジヒドロベンゾオキサジン環を有する樹脂、及び、(b)のジヒドロベンゾオキサジン環ジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基のいずれかと反応性を示す化合物からなる樹脂成分に、硬化剤、硬化促進剤、ジヒドロベンゾオキサジン環の開環反応を促進する化合物を配合するのが好ましい。硬化剤、硬化促進剤としては、ジシアンジアミドを単独で、又は、イミダゾール類と併用して配合するのが効果、性能及び価格の点で好ましい。配合量は、樹脂成分100重量部に対して0.1〜5重量部とするのが好ましく、より好ましくは0.5〜1重量部とするのがさらに好ましい。
【0012】
銅張積層板としたときの、銅はくピール強度を高めるため、必要によりカップリング剤を配合することもできる。
カップリング剤としては、シランカップリング剤が好ましく、特に尿素シラン、フェニルアミノシランが良好である。カップリング剤の配合量は樹脂成分100重量部に対して、0.1〜2重量部とするのが好ましく、0.1〜0.5重量部とするのがより好ましい。
【0013】
(c)の高誘電率の無機質粉末としては、好ましくは、誘電率が10以上、より好ましくは誘電率が30以上であって、誘電正接が0.005以下のものが用いられる。誘電率が高ければ、同じ配合量でより高い誘電率の積層板を得ることができるからである。このようなものとして例えば二酸化チタン系セラミック、チタン酸バリウム系セラミック、チタン酸鉛系セラミック、チタン酸ストロンチウム系セラミック、チタン酸カルシウム系セラミック、チタン酸ビスマス系セラミック、チタン酸マグネシウム系セラミックジルコン酸鉛系セラミックなどが挙げることができる。これらは、単独または2種類以上を混合して用いてもよい。
なお、前記二酸化チタン系セラミックとは、組成的には、二酸化チタンのみからなる系、又は二酸化チタンに他の少量の添加物を含む系で、主成分である二酸化チタンの結晶構造が保持されているものである。他の系のセラミックもこれと同様である。二酸化チタンは化学式がTiOで示される物質で、種々の結晶構造を有するものがあるが、誘電体セラミックとして使用されるのは、その中のルチル構造のものである。
【0014】
高誘電率の無機質粉末の粒子径としては、約50μm以下のものを用いることができるが、好ましくは0.1〜20μm、さらに好ましくは0.5〜7μmの範囲のものが用いられる。高誘電率の無機質粉末の粒子径が50μmより大きいと樹脂への均一分散、混合が困難になり、また積層板の穴あけ等の成形加工性の低下をもたらす。逆に0.1未満では取り扱い性が悪くなる。
【0015】
高誘電率の無機質粉末の樹脂成分に対する配合量は、樹脂成分100重量部に対して、80〜250重量部の範囲で、要求される誘電率によって選択される。配合量が250重量部を超えると、樹脂成分中への均一分散、混合が困難になり、積層後の機械的強度が低下する。また、80重量部未満では、必要とする誘電率が得られないためである。
配合量が樹脂成分100重量部に対して140重量部未満であれば、高誘電率多層プリント配線板の接着用プリプレグとしても使用可能である。
【0016】
必要な成分を溶剤に溶解してワニスとし、基材に含浸乾燥してプリプレグとする。基材としては、ガラス繊維の織布又は不織布を用いるのが好ましい。
溶剤としては、アルコール系、エーテル系、ケトン系、アミド系、芳香族炭化水素系、エステル系、ニトリル系等が挙げられる。
【0017】
積層板はプリプレグを必要枚数重ね合わせ積層成形することにより得られるが、このときの条件としては、温度170℃、圧力3MPa、で120分間の加熱加圧が一般的である。
【0018】
【実施例】
実施例1
フェノール1.9kg、ホルマリン(ホルムアルデヒドの37重量%水溶液)1.0kg、しゅう酸4gを5リットルフラスコに仕込み、還流温度で6時間反応させた。引き続き、フラスコ内部を70hPa以下に減圧して未反応のフェノール及び水分を除去した。このようにして得られたフェノールノボラック樹脂1.70kg(フェノール性水酸基として16mol相当)とアニリン0.93kg(10mol)とを混合し、80℃で5時間撹拌して均一な混合液(以下混合液Aとする)を得た。
5リットルフラスコ中に、ホルマリン1.62kgを仕込み90℃に加熱し、その中に混合液Aの全量を30分間かけて添加した。添加終了後30分間、還流温度に保ち、然る後に100℃で2時間70hPa以下に減圧して縮合水を除去して、分子中にジヒドロベンゾオキサジン環を有する樹脂(以下樹脂Aとする)を得た。樹脂Aは、フェノールノボラック樹脂中のフェノール性水酸基のうち、71%がジヒドロベンゾオキサジン環化されたものである。
【0019】
樹脂A80部(重量部、以下同じ)、エポキシ当量400、臭素含有量48重量%のビスフェノールA型臭素化エポキシ樹脂(住友化学工業株式会社製、ESB−400(商品名)を使用した)20部、ジシアンジアミド1部及びフェニルアミノシラン0.25部を、メチルエチルケトン55部、及び、ジメチルホルムアミド15部からなる混合溶媒に溶解して溶液Aを得た。
【0020】
この溶液Aに、チタン酸ストロンチウム粉末(富士チタン工業株式会社製)を200部配合し、均一に分散させてワニスとした。このワニスを、厚さ0.1mm、重量104g/m2 のガラス布(日東紡績株式会社製、WE116E(商品名)を使用した)に、乾燥後の厚さが0.15mmとなるように塗布、乾燥してプリプレグを得た。
【0021】
プリプレグを4枚重ね、温度170℃、圧力3MPaで120分間、加熱加圧して厚さ0.6mmの積層板を得た。
【0022】
比較例1
エポキシ樹脂(油化シェルエポキシ株式会社製、エピコート1001(商品名)を使用した)100部、ジシアンジアミド1.2部(0.8当量相当)を、メチルエチルケトン55部、及び、ジメチルホルムアミド15部からなる混合溶媒に溶解して溶液Bを得た。
この溶液Bに、実施例1と同じチタン酸ストロンチウム粉末を250部配合し、均一に分散させてワニスとした。以下実施例1と同様にしてプリプレグ及び厚さ0.6mmの積層板を得た。
【0023】
実施例2
チタン酸ストロンチウム粉末の配合量を100部としたほかは実施例1と同様にしてプリプレグ及び厚さ0.6mmの積層板を得た。
【0024】
比較例2
チタン酸ストロンチウム粉末の配合量を150部としたほかは比較例1と同様にしてプリプレグ及び厚さ0.6mmの積層板を得た。
【0025】
得られたプリプレグについてプリプレグ成形性を、また、積層板について誘電率、及び穴あけ加工性を以下に説明するようにして調べた。その結果を表1に示す。
誘電率:JIS C 6481に準拠して、周波数1MHzで測定した。
プリプレグ成形性:厚さ0.8mm、銅はく厚さ35μmのガラス布基材エポキシ樹脂両面銅張積層板の片面に電源回路パターンを形成し、電源パターン形成面にプリプレグを介して厚さ35μmの銅はくを重ね、温度170℃、圧力3MPaで120分間加熱加圧して基板を得、この基板をダイヤモンドカッターで切断し、切断面を観察してボイドの発生状況を観察した。
穴あけ加工性:直径0.9mmのドリルを用いて回転数毎分60,000回転、送り速度3m/分の条件で穴あけして調べた。穴あけ加工性の記号の意味は次の通りである。
○:良好
△:ドリル穴あけ困難
×:ドリル穴あけ不可
【0026】
【表1】

Figure 0003893648
【0027】
【発明の効果】
本発明によれば、より少ない高誘電率の無機質粉末の配合量で高い誘電率の積層板を得ることができ、したがって、従来と同等の誘電率の積層板を得る場合には高誘電率の無機質粉末の配合量を少なくできるため、成形性や穴あけ加工性を改善できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high dielectric constant resin composition, a high dielectric constant prepreg, and a high dielectric constant laminate.
[0002]
[Prior art]
In recent years, with various developments in electronic technology, various performances have been required for insulating materials used in electronic devices. In particular, printed wiring boards are used in a very wide range of applications, and the required characteristics for laminated boards as printed circuit board materials are becoming increasingly diverse. Regarding dielectric properties, low dielectric constant laminates are required for the purpose of high-speed signal propagation, high impedance, and reduction of crosstalk. On the other hand, high-frequency, delay circuit formation in microwave circuits, low impedance High dielectric constant laminates are required for the purpose of making a composite circuit of elements in which the laminate itself has a capacitor effect.
[0003]
Conventionally, as a high dielectric constant laminate, glass cloth or glass nonwoven fabric is used as a base material, and a prepreg obtained by impregnating and drying an epoxy resin varnish mixed with a high dielectric constant inorganic powder is heated on the base material in a required number. Those manufactured by applying pressure are known.
[0004]
[Problems to be solved by the invention]
However, there is a limit to the amount of the high dielectric constant inorganic powder that can be blended in the epoxy resin, and therefore the dielectric constant of the laminate cannot be increased to 20. Moreover, since it is necessary to mix | blend a lot of inorganic powder, there existed a fault that a moldability and drilling workability worsened.
The present invention can obtain a laminate having a high dielectric constant with a smaller amount of inorganic powder having a high dielectric constant. Therefore, when obtaining a laminate having a dielectric constant equivalent to the conventional one, the inorganic powder having a high dielectric constant can be obtained. An object of the present invention is to provide a high dielectric constant resin composition that can improve moldability and drilling workability, and a high dielectric constant prepreg and a high dielectric constant laminate using the high dielectric constant resin composition. It is what.
[0005]
[Means for Solving the Problems]
The present invention relates to (a) a resin having a dihydrobenzoxazine ring in the molecule, and (b) a compound that is reactive with any of the phenolic hydroxyl groups formed by opening the dihydrobenzoxazine ring and the dihydrobenzoxazine ring. comprising a resin ingredient and, (c) Ri dielectric constant name contains as an essential component 10 or more inorganic powder, the amount of said (c) a dielectric constant of 10 or more inorganic powder to the resin component 100 parts by weight Is a high dielectric constant resin composition having a weight of 80 to 250 parts by weight .
[0006]
The present invention also provides a high dielectric constant prepreg obtained by impregnating a substrate with the high dielectric constant resin composition as a varnish and drying it.
Furthermore, the present invention is a high dielectric constant laminate obtained by heating and pressing the high dielectric constant prepreg.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The resin having a dihydrobenzoxazine ring in the molecule (a) opens and polymerizes by heating to 150 ° C. or higher. This resin is obtained by reacting a compound having two or more phenolic hydroxyl groups in the molecule, a primary amine and formaldehyde. It is preferable to react the primary amine in a ratio of 0.2 to 1.0 mol and formaldehyde in a molar amount twice that of the primary amine with respect to 1 mol of the phenolic hydroxyl group. When the primary amine is less than 0.2 mol, the number of dihydrobenzoxazine rings is decreased, and therefore, the crosslinking density is decreased when the resin is cured, which is not preferable. On the other hand, if it exceeds 1.0 mol, the degree of elongation of the molecular chain is small in the curing reaction, and the crosslinking density is also unfavorable.
[0008]
Examples of the compound having two or more phenolic hydroxyl groups in the molecule include phenol novolac resin, resole resin, phenol-modified xylene resin, alkylphenol resin, melamine phenol resin, and phenol-modified polybutadiene.
[0009]
Examples of the primary amine include aniline, substituted aniline, cyclohexylamine, and methylamine.
[0010]
The functional group of the resin component composed of a compound that is reactive with any of the phenolic hydroxyl groups formed by the opening of the dihydrobenzoxazine ring and the dihydrobenzoxazine ring of (b) includes dihydrobenzox in the molecule of (a). It is preferable that the phenolic hydroxyl group remaining in the resin having an oxazine ring is also reactive.
Specific examples of the compound include a compound having a phenolic hydroxyl group and a bifunctional or higher functional epoxy resin.
Further, as these compounds, halogen compounds such as halogenated resins such as brominated epoxy resins can be used in order to impart flame retardancy to the laminate.
It consists of a compound that is reactive with the phenolic hydroxyl group formed by the opening of the dihydrobenzoxazine ring and dihydrobenzoxazine ring of (b) with respect to 100 parts by weight of the resin having a dihydrobenzoxazine ring in the molecule of (a). The compounding amount of the resin component is preferably 5 to 30 parts by weight.
[0011]
A resin having a dihydrobenzoxazine ring in the molecule of (a), and a compound that is reactive with any of the phenolic hydroxyl groups formed by the opening of the dihydrobenzoxazine ring and the dihydrobenzoxazine ring of (b) It is preferable to mix | blend the compound which accelerates | stimulates the ring-opening reaction of a hardening | curing agent, a hardening accelerator, and a dihydrobenzoxazine ring with a resin component. As the curing agent and curing accelerator, dicyandiamide is preferably used alone or in combination with imidazoles in view of the effect, performance and price. The blending amount is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 1 part by weight with respect to 100 parts by weight of the resin component.
[0012]
In order to increase the copper peel strength when the copper-clad laminate is used, a coupling agent can be blended as necessary.
As the coupling agent, a silane coupling agent is preferable, and urea silane and phenylaminosilane are particularly preferable. The amount of the coupling agent is preferably 0.1 to 2 parts by weight, more preferably 0.1 to 0.5 parts by weight, based on 100 parts by weight of the resin component.
[0013]
As the inorganic powder having a high dielectric constant (c), those having a dielectric constant of 10 or more, more preferably a dielectric constant of 30 or more and a dielectric loss tangent of 0.005 or less are used. This is because if the dielectric constant is high, a laminate having a higher dielectric constant can be obtained with the same blending amount. For example, titanium dioxide ceramic, barium titanate ceramic, lead titanate ceramic, strontium titanate ceramic, calcium titanate ceramic, bismuth titanate ceramic , magnesium titanate ceramic , lead zirconate And ceramics. You may use these individually or in mixture of 2 or more types.
The titanium dioxide ceramic is compositionally composed of only titanium dioxide or a system containing a small amount of other additives in titanium dioxide, and the crystal structure of titanium dioxide as a main component is maintained. It is what. The same applies to other ceramics. Titanium dioxide is a substance having a chemical formula of TiO 2 and has various crystal structures, but a dielectric ceramic used is a rutile structure.
[0014]
The particle diameter of the high dielectric constant inorganic powder can be about 50 μm or less, preferably 0.1 to 20 μm, more preferably 0.5 to 7 μm. When the particle size of the inorganic powder having a high dielectric constant is larger than 50 μm, it becomes difficult to uniformly disperse and mix the resin, and the moldability such as drilling of the laminate is reduced. On the other hand, if it is less than 0.1, the handleability deteriorates.
[0015]
The blending amount of the high dielectric constant inorganic powder with respect to the resin component is selected in the range of 80 to 250 parts by weight based on the required dielectric constant with respect to 100 parts by weight of the resin component. If the blending amount exceeds 250 parts by weight, uniform dispersion and mixing in the resin component will be difficult, and the mechanical strength after lamination will decrease. Further, if it is less than 80 parts by weight, the required dielectric constant cannot be obtained.
If the blending amount is less than 140 parts by weight with respect to 100 parts by weight of the resin component, it can be used as an adhesive prepreg for a high dielectric constant multilayer printed wiring board.
[0016]
Necessary components are dissolved in a solvent to obtain a varnish, and the base material is impregnated and dried to obtain a prepreg. As a base material, it is preferable to use the woven fabric or nonwoven fabric of glass fiber.
Examples of the solvent include alcohols, ethers, ketones, amides, aromatic hydrocarbons, esters and nitriles.
[0017]
The laminate can be obtained by laminating and forming the required number of prepregs, and as a condition at this time, heating and pressurization for 120 minutes at a temperature of 170 ° C. and a pressure of 3 MPa is common.
[0018]
【Example】
Example 1
1.9 kg of phenol, 1.0 kg of formalin (37% by weight aqueous solution of formaldehyde) and 4 g of oxalic acid were charged into a 5 liter flask and reacted at reflux temperature for 6 hours. Subsequently, the pressure inside the flask was reduced to 70 hPa or less to remove unreacted phenol and moisture. 1.70 kg of phenol novolak resin thus obtained (corresponding to 16 mol as phenolic hydroxyl group) and 0.93 kg (10 mol) of aniline were mixed and stirred at 80 ° C. for 5 hours to obtain a uniform mixed solution (hereinafter referred to as “mixed solution”). A).
Into a 5-liter flask, 1.62 kg of formalin was charged and heated to 90 ° C., and the entire amount of the mixed solution A was added to the flask over 30 minutes. After completion of the addition, the temperature is maintained at the reflux temperature for 30 minutes, and then the pressure is reduced to 70 hPa or less at 100 ° C. for 2 hours to remove the condensed water, and a resin having a dihydrobenzoxazine ring in the molecule (hereinafter referred to as resin A) is obtained. Obtained. Resin A is one in which 71% of the phenolic hydroxyl groups in the phenol novolac resin are cyclized with dihydrobenzoxazine.
[0019]
Resin A 80 parts (parts by weight, the same applies hereinafter), epoxy equivalent 400, bisphenol A brominated epoxy resin having a bromine content of 48% by weight (Sumitomo Chemical Co., Ltd., ESB-400 (trade name) used) 20 parts Then, 1 part of dicyandiamide and 0.25 part of phenylaminosilane were dissolved in a mixed solvent consisting of 55 parts of methyl ethyl ketone and 15 parts of dimethylformamide to obtain a solution A.
[0020]
To this solution A, 200 parts of strontium titanate powder (Fuji Titanium Industry Co., Ltd.) was blended and uniformly dispersed to obtain a varnish. This varnish was applied to a glass cloth having a thickness of 0.1 mm and a weight of 104 g / m 2 (manufactured by Nitto Boseki Co., Ltd., using WE116E (trade name)) so that the thickness after drying was 0.15 mm. And dried to obtain a prepreg.
[0021]
Four prepregs were stacked and heated and pressed at a temperature of 170 ° C. and a pressure of 3 MPa for 120 minutes to obtain a laminate having a thickness of 0.6 mm.
[0022]
Comparative Example 1
100 parts of epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd., using Epicoat 1001 (trade name)), 1.2 parts of dicyandiamide (equivalent to 0.8 equivalent), 55 parts of methyl ethyl ketone and 15 parts of dimethylformamide Solution B was obtained by dissolving in a mixed solvent.
To this solution B, 250 parts of the same strontium titanate powder as in Example 1 was blended and uniformly dispersed to obtain a varnish. Thereafter, in the same manner as in Example 1, a prepreg and a laminated plate having a thickness of 0.6 mm were obtained.
[0023]
Example 2
A prepreg and a 0.6 mm thick laminate were obtained in the same manner as in Example 1 except that the amount of strontium titanate powder was 100 parts.
[0024]
Comparative Example 2
A prepreg and a 0.6 mm thick laminate were obtained in the same manner as in Comparative Example 1 except that the blending amount of strontium titanate powder was 150 parts.
[0025]
The prepreg moldability of the obtained prepreg and the dielectric constant and punching workability of the laminate were examined as described below. The results are shown in Table 1.
Dielectric constant: Measured at a frequency of 1 MHz in accordance with JIS C 6481.
Prepreg formability: a power circuit pattern is formed on one side of a glass cloth base epoxy resin double-sided copper-clad laminate with a thickness of 0.8 mm and a copper foil thickness of 35 μm, and the thickness of the power pattern formation surface is 35 μm via the prepreg. The copper foil was stacked and heated and pressed at a temperature of 170 ° C. and a pressure of 3 MPa for 120 minutes to obtain a substrate. This substrate was cut with a diamond cutter, and the cut surface was observed to observe the occurrence of voids.
Drilling workability: Using a drill with a diameter of 0.9 mm, drilling was performed under conditions of 60,000 rotations per minute and a feed rate of 3 m / min. The meanings of the drilling workability symbols are as follows.
○: Good △: Difficult drilling ×: Unable to drill
[Table 1]
Figure 0003893648
[0027]
【The invention's effect】
According to the present invention, it is possible to obtain a laminate having a high dielectric constant with a smaller amount of inorganic powder having a high dielectric constant. Therefore, when obtaining a laminate having a dielectric constant equivalent to the conventional one, a high dielectric constant is obtained. Since the blending amount of the inorganic powder can be reduced, moldability and drilling processability can be improved.

Claims (3)

(a)分子中にジヒドロベンゾオキサジン環を有する樹脂、及び、(b)ジヒドロベンゾオキサジン環ジヒドロベンゾオキサジン環が開環して生成するフェノール性水酸基のいずれかと反応性を示す化合物からなる樹脂成分、並びに、(c)誘電率が10以上の無機質粉末を必須成分として含有してなり、前記樹脂成分100重量部に対する前記(c)誘電率が10以上の無機質粉末の配合量が80〜250重量部である高誘電率樹脂組成物。(A) a resin component comprising a resin having a dihydrobenzoxazine ring in the molecule, and (b) a compound that is reactive with any of the phenolic hydroxyl groups generated by the opening of the dihydrobenzoxazine ring and the dihydrobenzoxazine ring. and, Ri (c) dielectric constant name contains as an essential component 10 or more inorganic powders, wherein for said resin component 100 parts by weight (c) dielectric constant is the amount of 10 or more inorganic powder 80 - 250 A high dielectric constant resin composition in parts by weight . 請求項1に記載の高誘電率樹脂組成物をワニスとして基材に含浸、乾燥してなる高誘電率プリプレグ。A high dielectric constant prepreg obtained by impregnating a substrate with the high dielectric constant resin composition according to claim 1 and drying it. 請求項2に記載の高誘電率プリプレグを加熱加圧してなる高誘電率積層板。A high dielectric constant laminate obtained by heating and pressing the high dielectric constant prepreg according to claim 2.
JP28447896A 1996-10-25 1996-10-25 High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate Expired - Lifetime JP3893648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28447896A JP3893648B2 (en) 1996-10-25 1996-10-25 High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28447896A JP3893648B2 (en) 1996-10-25 1996-10-25 High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate

Publications (2)

Publication Number Publication Date
JPH10130460A JPH10130460A (en) 1998-05-19
JP3893648B2 true JP3893648B2 (en) 2007-03-14

Family

ID=17679047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28447896A Expired - Lifetime JP3893648B2 (en) 1996-10-25 1996-10-25 High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate

Country Status (1)

Country Link
JP (1) JP3893648B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715979B2 (en) * 2000-07-04 2011-07-06 三菱瓦斯化学株式会社 Prepreg manufacturing method and printed wiring board using the same
WO2004009708A1 (en) * 2002-07-19 2004-01-29 Nippon Steel Chemical Co., Ltd. Curable resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501864A (en) * 1983-12-22 1985-02-26 Monsanto Company Polymerizable compositions comprising polyamines and poly(dihydrobenzoxazines)
JP2814288B2 (en) * 1990-03-29 1998-10-22 大塚化学 株式会社 High dielectric resin composition
JP3429090B2 (en) * 1994-12-28 2003-07-22 日立化成工業株式会社 Thermosetting resin composition and cured product thereof

Also Published As

Publication number Publication date
JPH10130460A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
KR101677736B1 (en) Thermosetting resin composition for semiconductor package and Prepreg and Metal Clad laminate using the same
JP5338187B2 (en) Inorganic filler-containing resin composition, prepreg, laminate and wiring board
KR102077867B1 (en) Thermosetting epoxy resin composition, adhesive film for forming insulating layer and multilayer printed wiring board
JP4926811B2 (en) Resin composition, prepreg, laminate and wiring board
WO2005023933A1 (en) Thermosetting resin composition for high speed transmission circuit board
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
KR101013074B1 (en) Epoxy resin composition and an adhesive film for a printed wiring boards prepared using the same
US6544652B2 (en) Cyanate ester-containing insulating composition, insulating film made therefrom and multilayer printed circuit board having the film
JP3371916B2 (en) Epoxy resin composition
KR100632862B1 (en) Resin composition, prepreg and laminate using the composition
JP3893648B2 (en) High dielectric constant resin composition, high dielectric constant prepreg, and high dielectric constant laminate
KR102136861B1 (en) Thermosetting resin composition for semiconductor pakage and preprege using the same
JP2008106106A (en) Resin composition having high permittivity, prepreg and laminated plate used for printed wiring board
JP2692508B2 (en) Manufacturing method of laminated board
JP2001347600A (en) Laminated sheet
JP3529088B2 (en) Epoxy resin composition, prepreg and laminate using the same
JP2004315653A (en) Resin composition and its use
JP2002145994A (en) Prepreg for printed circuit board and laminate
JP3089522B2 (en) Method for producing prepreg for electric laminate, electric laminate using the prepreg, and printed wiring board using the laminate
JP2004059704A (en) Epoxy resin composition for printed wiring board, prepreg and laminate
JPS62169828A (en) Production of substrate for printed circuit
JP2003020407A (en) Varnish composition, prepreg and metal foil-clad laminate using the same
JP2002241521A (en) Epoxy resin prepreg, epoxy resin copper-clad board, epoxy resin printed circuit board and epoxy resin multilayer printed circuit board
JPH08103984A (en) Copper-clad laminated plate
JPH09157496A (en) Thermosetting resin composition, cured product therefrom, prepreg and metallic foil-laminated plate using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term