JP3892943B2 - Liver disease diagnostic agent - Google Patents
Liver disease diagnostic agent Download PDFInfo
- Publication number
- JP3892943B2 JP3892943B2 JP19690397A JP19690397A JP3892943B2 JP 3892943 B2 JP3892943 B2 JP 3892943B2 JP 19690397 A JP19690397 A JP 19690397A JP 19690397 A JP19690397 A JP 19690397A JP 3892943 B2 JP3892943 B2 JP 3892943B2
- Authority
- JP
- Japan
- Prior art keywords
- fucose
- lectin
- receptor
- reaction
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は慢性肝炎、肝硬変等の肝臓疾患を適確に診断するための試薬に関する。
【0002】
【従来の技術】
慢性肝炎、肝硬変等の肝臓疾患の診断には、従来よりGOT(グルタミン酸オキサロ酢酸トランスアミナーゼ)活性値及びGPT(グルタミンピルビン酸トランスアミナーゼ)活性値が用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、肝細胞の変性・壊死を伴なう肝硬変であるにもかかわらず、GOT値及びGPT値が正常範囲内となってしまうこともあり、必ずしも従来の検査法で十分とはいえなかった。
従って、本発明は、さらに新しい機序に基づく肝臓疾患診断薬を提供することにある。
【0004】
【課題を解決するための手段】
そこで本発明者は、肝臓の糖鎖抗原の合成能に着目し、種々検討してきた結果、全く意外にも血漿のα1,6フコース転移酵素活性が健常者に比べて肝臓疾患患者では明確に高くなり、適確な肝臓疾患の診断が可能であることを見出し、本発明を完成するに至った。
【0005】
すなわち、本発明はα1,6フコース転移酵素測定試薬を含有する慢性肝炎及び/又は肝硬変の診断薬を提供するものである。
【0006】
【発明の実施の形態】
本発明診断薬に用いられるα1,6フコース転移酵素測定試薬としては、血清、血漿等の血液中のα1,6フコース転移酵素活性を測定できる試薬であれば特に制限されず、例えばフコース受容体及びフコース供与体を含有するものである。
【0007】
ここで、フコース供与体としては、フコースヌクレオチドが好ましく、例えばGDPフコースが特に好ましい。フコース供与体は、標識体を用いるのが好ましく、標識は例えば、3H、14Cなどの放射性同位元素を用いるのが好ましい。
【0008】
フコース受容体としては、オリゴ糖、糖脂質、糖蛋白等が挙げられる。具体的にはN−グリコシド結合由来アシアロ・アガラクト下記式(1)の2本鎖オリゴ糖
【0009】
【化1】
【0010】
等が挙げられる。
【0011】
このうち、標識フコース供与体として標識GDPフコースを、フコース受容体として上記(1)の2本鎖オリゴ糖を用いるのが特に好ましい。
【0012】
被検体とフコース供与体とフコース受容体との反応は、通常の酵素反応条件、例えば室温から37℃、1〜12時間程度行えばよい。
【0013】
これらのフコース供与体とフコース受容体にα1,6転移酵素を作用させた反応生成物の例としては、フコシル化アシアロ・アガラクトオリゴ糖、次の式(2)の化合物
【0014】
【化2】
【0015】
等が挙げられる。
【0016】
上記反応終了後の反応混合物中には、上記の目的とする反応生成物の他に、未反応の標識フコース供与体、未反応のフコース受容体、標識フコース供与体分解物、フコース受容体分解物等が含まれている。これらの測定結果に悪影響を及ぼす可能性のある成分を除去する目的で、反応混合物を、フコース受容体の非反応性糖鎖を認識するレクチン(A)と反応させる。このレクチン(A)と結合し得る成分としては、上記成分のうち未反応のフコース受容体とフコース受容体分解物があるが、これらは標識物質を含まないので、測定結果には影響しない。従って、レクチン(A)に結合しなかった成分を洗浄等により除去した後、レクチン(A)に結合した成分の標識量を定量すれば、正確に目的とするα1,6フコース転移酵素活性が測定できる。
【0017】
また、反応混合物と上記レクチン(A)を反応させ、該レクチン(A)に結合しなかった成分を除去した後、該レクチン(A)に結合した成分を、フコース受容体とフコース供与体との反応によって生じた糖鎖を認識するレクチン(B)と反応させ、該レクチン(B)に結合した反応生成物の標識量を測定すれば、さらに本発明の測定値の精度は向上する。
【0018】
ここで、フコース受容体の非反応性糖鎖を認識するレクチン(A)としては、反応部位と異なる部位を認識するレクチンであればよく、例えば式(1)のフコース受容体を用いた場合は、(GlcNAcβ1,2Man)2 構造を認識するレクチン、例えばムジナタケレクチン(PVL)等が挙げられる。
【0019】
一方、フコース受容体とフコース供与体との反応によって生じた糖鎖を認識するレクチン(B)は、フコース受容体とフコース供与体とがα1,6フコース転移酵素の作用により生じた糖鎖構造を認識するレクチンであり、例えば式(1)のフコース受容体と標識フコースヌクレオチドを用いてα1,6フコース転移酵素を測定しようとする場合のレクチン(B)は、Fucα1,6GlcNAc 構造を認識するレクチンであり、特にヒイロチャワンタケレクチン(AAL)が好ましい。
【0020】
これらのレクチン(A)及びレクチン(B)は、それぞれ不溶性担体に固定化して用いるのが好ましい。かかる不溶性担体としては、アガロース、アクリルアミド、セルロース等が挙げられる。担体の形状としては、粒子、球、容器の型等が使用できる。これらのレクチン(A)固定化担体及びレクチン(B)固定化担体は、それぞれこれらの固定化担体を充填したカラムの形態にして用いるのがより好ましい。
【0021】
レクチン(A)固定化カラムを用いた場合の反応は、例えば反応混合物をレクチン(A)固定化カラムにかけ、該レクチン(A)に結合しなかった成分を洗浄して除去した後、カラムから結合した成分を溶出させ、溶出液中の標識量を測定すればよい。またレクチン(A)固定化カラムとレクチン(B)固定化カラムを用いた場合の反応は、例えば反応混合物をレクチン(A)固定化カラムにかけ、該レクチン(A)に結合しなかった成分を洗浄して除去し、該カラムから結合した成分を溶出させ、次いでレクチン(B)固定化カラムにかけ、該レクチン(B)に結合しなかった成分を洗浄して除去し、該カラムから結合した成分を溶出させ、得られた溶出液中の標識量を測定すればよい。
【0022】
本発明においては、フコース供与体としてGDPフコースを、フコース受容体として式(1)の2本鎖オリゴ糖を、レクチン(A)として(GlcNAcβ1,2Man)2 構造を認識するレクチンを、所望によりレクチン(B)としてFucα1,6GlcNAc構造を認識するレクチンを用いるα1,6フコース転移酵素活性測定試薬が特に好ましい。
【0023】
本発明に用いられる被検体としては血清、血漿等が挙げられる。
【0024】
本発明においては、上記手段により被検者の体液中のα1,6フコース転移酵素活性を測定し、健常者のそれと対比し、有意に高ければ肝臓疾患と診断できる。本発明において診断される肝臓疾患としては慢性肝炎及び肝硬変が好ましい。
【0025】
【実施例】
次に実施例を挙げて本発明を詳細に説明するが、本発明はこれにより何ら制限されるものではない。
【0026】
実施例1
次の手順により、健常者23名の血漿中のα1,6フコース転移酵素活性を測定した。
(1)酵素受容体の調製
卵黄から大量分離・精製された下記式で表されるジシアリシル2本鎖11糖オリゴ糖(YDS;Koketsu, M., Juneja, LR, Kim, M., Ohta, M., Matsuura, F. and Yamamoto, T. Sialyloligosaccharides of delipidated egg yolk fraction, J. Food Sci., 58(4):743-747, 1993)を原料として用いた。
【0027】
【化3】
【0028】
このYDS(20mg)及びArthrobactor ureafaciens(ナカライテスク)のシアリダーゼ0.2Uを0.2M酢酸ナトリウムバッファー400μl中で37℃48時間作用させて、下記式で表されるAsialo-YDSを得た。
【0029】
【化4】
【0030】
得られたAsialo-YDSを分離することなく、蒸留水で2倍に希釈した(800μl)この液とStreprococcal 6646K(生化学工業)のβガラクトシダーゼ5mUを0.05M酢酸ナトリウムバッファー(pH6.0)1.6ml中で、37℃48時間作用させて、
【0031】
【化5】
【0032】
を得た。このオリゴ糖は、HiLoad Superdex pg(ファルマシア)及びSuperdex Peptide HR(ファルマシア)によるゲルろ過で分離、精製した。
【0033】
(2)レクチン固定化ゲルの作成
ムジナタケレクチン(PVL)を精製し、保護基となるハプテン(GlcNAc)を加えたのち、バイオラッドのマニュアルに従い、Affi-Gel 10(バイオラッド)に固定した。
一方、ヒイロチャワンタケレクチン(AAL)を精製し、保護基となるハプテン(Fuc)を加えたのち、バイオラッドのマニュアルに従い、Affi-Gel 10(バイオラッド)に固定した。
【0034】
(3)酵素反応
酵素反応液組成:
HEPES-NaOH, pH7.0 4μmol、(1)で調製したASAG-YDS 20nmol、GDP-[3H ]フコース10nmol及び被検血漿20μlをとり、全量50μlとした。この反応液を37℃、4時間保温して、エタノールを等量加えて反応を止めた。
【0035】
(4)活性の測定
(3)の反応液の遠心上清を5mlのPVL-Affi-Gel 10を充填したカラムにかける。なお、カラムは予め、5M CaCl2 を含む0.02Mトリス−塩酸緩衝液(pH7.0)生理食塩水(Ca-TBS)で平衡化しておく。次に、室温で30分放置、洗浄液Ca-TBS 15mlで洗浄する。次に、GlcNAc50mMを含むCa-TBS3mlを流す。さらに、GlcNAc50mMを含むCa-TBS7mlを加えて、その溶出液を集める。溶出液は直ちにAAL-Affi-Gel 10を充填したカラムにかける。なお、カラムは予め、0.01Mリン酸緩衝液(pH7.0)生理食塩水(PBS)で平衡化しておく。カラムをPBS 15mlで洗浄する。次に、Fuc 20mMを含むPBS 3mlを流す。さらに、Fuc 20mMを含むPBS 7mlを加えて、その溶出液を集め、シンチレーターを加えた後、液体シンチレーションカウンターで放射活性を測定する。
【0036】
(5)測定結果
(i)上記(4)において、PVL-Affi-Gel 10を充填したカラムを用いたアフィニティクロマトグラフィーの結果を図1に示す。図1中、黒丸は糖受容体を加えた場合を、黒四角は糖受容体を加えなかった場合を示す。図1の結果から明らかなように、フコシル化糖受容体がPVL 固定化カラムに選択的に結合し、GluNAcで特異的に溶出されていることがわかる。
(ii)上記(4)において、AAL-Affi-Gel 10を充填したカラムを用いたアフィニティクロマトグラフィーの結果を図2に示す。図から明らかなように、PVL 溶出分画は全てAAL 固定化カラムに結合し、Fuc で特異的に溶出された。このことから、PVL-Affi-Gel 10を充填したカラムを用いたアフィニティクロマトグラフィーのみで、正確に測定できることがわかる。
(iii)健常者23名の結果を表1に示す。酵素活性は単位時間(h)、血漿1ml当たり基質(ASAG-YDS)に取り込まれたフコース量(pmole)として計算した。
【0037】
【表1】
【0038】
また、上記(4)においてPVL-Affi-Gel 10を充填したカラムの溶出液の標識量を測定したところ、表1とほぼ同様の結果が得られた。
【0039】
実施例2
実施例1と同様にして、肝硬変(n=13)、慢性肝炎(n=10)患者血漿中のα1,6フコース転移酵素活性を測定した。
【0040】
【表2】
【0041】
その結果、表1及び表2から明らかなように、血漿中のα1,6フコース転移酵素活性と肝臓疾患との間には明らかな相関関係が認められ、α1,6フコース転移酵素活性の測定が肝臓疾患の診断法として有用であることが判明した。
【0042】
【発明の効果】
本発明によれば慢性肝炎、肝硬変等の肝臓疾患を適確に診断できる。
【図面の簡単な説明】
【図1】 PVL-Affi-Gel 10充填カラムを用いたアフィニティクロマトグラフィーの結果を示す図である。
【図2】 AAL-Affi-Gel 10充填カラムを用いたアフィニティクロマトグラフィーの結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reagent for accurately diagnosing liver diseases such as chronic hepatitis and cirrhosis.
[0002]
[Prior art]
Conventionally, GOT (glutamate oxaloacetate transaminase) activity value and GPT (glutamine pyruvate transaminase) activity value have been used for diagnosis of liver diseases such as chronic hepatitis and cirrhosis.
[0003]
[Problems to be solved by the invention]
However, in spite of liver cirrhosis accompanied by degeneration / necrosis of hepatocytes, the GOT value and GPT value may be within the normal range, and the conventional examination methods are not necessarily sufficient.
Therefore, the present invention is to provide a diagnostic agent for liver diseases based on a new mechanism.
[0004]
[Means for Solving the Problems]
Therefore, the present inventor has paid attention to the ability to synthesize liver sugar chain antigens, and as a result of various studies, the present inventors have surprisingly found that plasma α1,6 fucose transferase activity is clearly higher in liver disease patients than in healthy individuals. As a result, the inventors have found that it is possible to accurately diagnose liver diseases, and have completed the present invention.
[0005]
That is, the present invention provides a diagnostic agent for chronic hepatitis and / or cirrhosis containing an α1,6 fucose transferase measuring reagent.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The reagent for measuring α1,6 fucose transferase used in the diagnostic agent of the present invention is not particularly limited as long as it can measure α1,6 fucose transferase activity in blood such as serum and plasma. It contains a fucose donor.
[0007]
Here, as the fucose donor, fucose nucleotides are preferable, and for example, GDP fucose is particularly preferable. The fucose donor is preferably a label, and the label is preferably a radioisotope such as 3 H or 14 C.
[0008]
Examples of fucose receptors include oligosaccharides, glycolipids and glycoproteins. Specifically, N-glycoside bond-derived asialo-agalacto double-chain oligosaccharide of the following formula (1)
[Chemical 1]
[0010]
Etc.
[0011]
Of these, it is particularly preferable to use labeled GDP fucose as the labeled fucose donor and the double-stranded oligosaccharide of the above (1) as the fucose acceptor.
[0012]
The reaction between the analyte, the fucose donor, and the fucose acceptor may be performed under normal enzyme reaction conditions, for example, from room temperature to 37 ° C. for about 1 to 12 hours.
[0013]
Examples of reaction products obtained by allowing α1,6 transferase to act on these fucose donors and fucose acceptors include fucosylated asialo-agalacto-oligosaccharides and compounds of the following formula (2):
[Chemical 2]
[0015]
Etc.
[0016]
In the reaction mixture after completion of the above reaction, in addition to the target reaction product, unreacted labeled fucose donor, unreacted fucose acceptor, labeled fucose donor decomposition product, fucose acceptor decomposition product Etc. are included. For the purpose of removing components that may adversely affect these measurement results, the reaction mixture is reacted with a lectin (A) that recognizes the non-reactive sugar chain of the fucose receptor. As components capable of binding to the lectin (A), there are unreacted fucose receptors and fucose receptor degradation products among the above components, but these do not contain a labeling substance, and therefore do not affect the measurement results. Therefore, after removing components that did not bind to lectin (A) by washing or the like, the amount of labeled components bound to lectin (A) can be quantified to accurately measure the target α1,6 fucose transferase activity. it can.
[0017]
In addition, the reaction mixture is reacted with the lectin (A) to remove components that did not bind to the lectin (A), and then the components bound to the lectin (A) are combined with a fucose acceptor and a fucose donor. If the reaction is performed with a lectin (B) that recognizes a sugar chain generated by the reaction, and the amount of the reaction product bound to the lectin (B) is measured, the accuracy of the measurement value of the present invention is further improved.
[0018]
Here, the lectin (A) that recognizes the non-reactive sugar chain of the fucose receptor may be a lectin that recognizes a site different from the reactive site. For example, when the fucose receptor of the formula (1) is used, , (GlcNAcβ1,2Man) 2 lectins that recognize the structure, for example, Musinatake lectin (PVL).
[0019]
On the other hand, the lectin (B) that recognizes the sugar chain produced by the reaction between the fucose acceptor and the fucose donor has a sugar chain structure produced by the action of α1,6 fucose transferase between the fucose acceptor and the fucose donor. A lectin that recognizes the Fucα1,6GlcNAc structure is a lectin that recognizes the Fucα1,6GlcNAc structure when, for example, α1,6 fucose transferase is measured using a fucose receptor of formula (1) and a labeled fucose nucleotide. In particular, the yellow tea lectin lectin (AAL) is preferable.
[0020]
These lectin (A) and lectin (B) are preferably immobilized on an insoluble carrier. Such insoluble carriers include agarose, acrylamide, cellulose and the like. As the shape of the carrier, particles, spheres, container shapes and the like can be used. These lectin (A) immobilization carrier and lectin (B) immobilization carrier are more preferably used in the form of columns filled with these immobilization carriers.
[0021]
The reaction using the lectin (A) -immobilized column is performed by, for example, applying the reaction mixture to the lectin (A) -immobilized column, washing away components that did not bind to the lectin (A), and then binding from the column. The eluted component is eluted, and the amount of label in the eluate may be measured. The reaction when using the lectin (A) -immobilized column and the lectin (B) -immobilized column is performed by, for example, applying the reaction mixture to the lectin (A) -immobilized column and washing the components not bound to the lectin (A). The components bound from the column are eluted and then applied to the lectin (B) -immobilized column. The components not bound to the lectin (B) are removed by washing, and the components bound from the column are removed. Elution is performed, and the amount of label in the obtained eluate may be measured.
[0022]
In the present invention, GDP fucose as a fucose donor, a double-stranded oligosaccharide of the formula (1) as a fucose acceptor, and a lectin that recognizes the (GlcNAcβ1,2Man) 2 structure as a lectin (A), if desired, A reagent for measuring α1,6 fucose transferase activity using a lectin that recognizes the Fucα1,6GlcNAc structure as (B) is particularly preferred.
[0023]
Examples of the subject used in the present invention include serum and plasma.
[0024]
In the present invention, the α1,6 fucose transferase activity in the body fluid of a subject is measured by the above means, and compared with that of a healthy person. If it is significantly higher, a liver disease can be diagnosed. As the liver disease diagnosed in the present invention, chronic hepatitis and cirrhosis are preferable.
[0025]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited at all by this.
[0026]
Example 1
The α1,6 fucose transferase activity in the plasma of 23 healthy subjects was measured by the following procedure.
(1) Preparation of Enzyme Receptor A large amount of disialicyl double-chain 11-sugar oligosaccharide (YDS: Koketsu, M., Juneja, LR, Kim, M., Ohta, M) , Matsuura, F. and Yamamoto, T. Sialyloligosaccharides of delipidated egg yolk fraction, J. Food Sci., 58 (4): 743-747, 1993).
[0027]
[Chemical 3]
[0028]
This YDS (20 mg) and Arthrobactor ureafaciens (Nacalai Tesque) sialidase 0.2 U were allowed to act in 400 μl of 0.2 M sodium acetate buffer at 37 ° C. for 48 hours to obtain Asialo-YDS represented by the following formula.
[0029]
[Formula 4]
[0030]
Without separating the obtained Asialo-YDS, this solution diluted twice with distilled water (800 μl) and 5 mU of β-galactosidase of Streprococcal 6646K (Seikagaku) were added to 0.05 M sodium acetate buffer (pH 6.0) 1 Let act in 6 ml at 37 ° C for 48 hours,
[0031]
[Chemical formula 5]
[0032]
Got. The oligosaccharide was separated and purified by gel filtration using HiLoad Superdex pg (Pharmacia) and Superdex Peptide HR (Pharmacia).
[0033]
(2) Preparation of lectin-immobilized gel Musinatake lectin (PVL) was purified, added with a hapten (GlcNAc) serving as a protecting group, and then immobilized on Affi-Gel 10 (Bio-Rad) according to the Bio-Rad manual.
On the other hand, after purifying Japanese bamboo lectin (AAL) and adding a hapten (Fuc) as a protecting group, it was immobilized on Affi-Gel 10 (Bio-Rad) according to the Bio-Rad manual.
[0034]
(3) Enzyme reaction Enzyme reaction solution composition:
HEPES-NaOH, pH 7.0 4 μmol, 20 nmol of ASAG-YDS prepared in (1), 10 nmol of GDP- [ 3 H] fucose and 20 μl of test plasma were taken to make a total volume of 50 μl. This reaction solution was kept at 37 ° C. for 4 hours, and the reaction was stopped by adding an equal amount of ethanol.
[0035]
(4) Measurement of activity The centrifugal supernatant of the reaction solution in (3) is applied to a column packed with 5 ml of PVL-Affi-
[0036]
(5) Measurement results (i) FIG. 1 shows the results of affinity chromatography using a column packed with PVL-Affi-
(Ii) FIG. 2 shows the results of affinity chromatography using the column packed with AAL-Affi-
(Iii) Table 1 shows the results of 23 healthy subjects. The enzyme activity was calculated as the amount of fucose (pmole) incorporated into the substrate (ASAG-YDS) per ml of plasma per unit time (h).
[0037]
[Table 1]
[0038]
In addition, when the amount of label in the eluate of the column packed with PVL-Affi-
[0039]
Example 2
In the same manner as in Example 1, α1,6 fucose transferase activity in plasma of patients with cirrhosis (n = 13) and chronic hepatitis (n = 10) was measured.
[0040]
[Table 2]
[0041]
As a result, as is apparent from Tables 1 and 2, a clear correlation was observed between α1,6 fucose transferase activity in plasma and liver disease, and α1,6 fucose transferase activity was measured. It proved to be useful as a diagnostic method for liver diseases.
[0042]
【The invention's effect】
According to the present invention, liver diseases such as chronic hepatitis and cirrhosis can be accurately diagnosed.
[Brief description of the drawings]
FIG. 1 shows the results of affinity chromatography using a PVL-Affi-
FIG. 2 is a diagram showing the results of affinity chromatography using an AAL-Affi-
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19690397A JP3892943B2 (en) | 1997-07-23 | 1997-07-23 | Liver disease diagnostic agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19690397A JP3892943B2 (en) | 1997-07-23 | 1997-07-23 | Liver disease diagnostic agent |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1132797A JPH1132797A (en) | 1999-02-09 |
JP3892943B2 true JP3892943B2 (en) | 2007-03-14 |
Family
ID=16365570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19690397A Expired - Fee Related JP3892943B2 (en) | 1997-07-23 | 1997-07-23 | Liver disease diagnostic agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3892943B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5109001B2 (en) * | 2007-02-27 | 2012-12-26 | 株式会社J−オイルミルズ | α1,6 fucose sugar chain detection and fractionation method |
-
1997
- 1997-07-23 JP JP19690397A patent/JP3892943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1132797A (en) | 1999-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gallagher et al. | Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose | |
US5143712A (en) | Method of determining a site of inflammation utilizing elam-1 ligands | |
US5648344A (en) | Methods of treating inflammation using selection binding compounds | |
Sönju et al. | Electron microscopy, carbohydrate analyses and biological activities of the proteins adsorbed in two hours to tooth surfaces in vivo | |
US5470842A (en) | Carbohydrate-based anti-inflammatory agents | |
AU649019B2 (en) | Anabolic activity modulator and uses thereof | |
Walton et al. | An assay for adenosine 3', 5'-cyclic monophosphate based on the association of the nucleotide with a partially purified binding protein | |
Parving et al. | Simultaneous determination of the transcapillary escape rate of albumin and IgG in normal and long-term juvenile diabetic subjects | |
JP2644767B2 (en) | Methods and agents for removing advanced glycosylation end products | |
JPS6411148B2 (en) | ||
Cooper et al. | In vivo release of glycoprotein I from the Ha subline of TA3 murine tumor into ascites fluid and serum | |
CA1211062A (en) | Sensitive tests for malignancies based on dna detection | |
JP2579497B2 (en) | Liver disease diagnostic agent | |
Stuart et al. | Abnormal platelet function and arachidonate metabolism in chronic idiopathic thrombocytopenic purpura | |
Greenacre et al. | Desensitization of the beta‐adrenoceptor of lymphocytes from normal subjects and asthmatic patients in vitro. | |
US5811075A (en) | Method and agents for removing advanced glycosylation endproducts | |
Cohen et al. | Age-related changes in non-enzymatic glycosylation of human basement membranes | |
Harwood et al. | Dynamic interaction of prostaglandin and norepinephrine in the formation of adenosine 3′, 5′-monophosphate in human and rabbit platelets | |
JP3892943B2 (en) | Liver disease diagnostic agent | |
Berthon et al. | 13C nmr isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes | |
CHAWLA et al. | Plasma and urine cyclic guanosine 3′: 5′-monophosphate in disseminated cancer | |
Gillette et al. | Thymidine kinase activity in cardiac muscle during embryonic and postnatal development | |
Schmitz et al. | Alternative Pathways of Glucose Metabolism: I. Distribution of Radioactivity from Glucose-1-C14 in Acid-soluble and Acid-insoluble Fractions of Tumor and Normal Tissue | |
Abraham et al. | Critical ATP parameters associated with blood and mammalian cells: Relevant measurement techniques | |
Hu et al. | Determination of galactose in human blood by high‐performance liquid chromatography: Comparison with an enzymatic method and application to the pharmacokinetic study of galactose in patients with liver dysfunction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040513 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040513 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061208 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131215 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |