[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3892547B2 - Grid-connected distributed power system - Google Patents

Grid-connected distributed power system Download PDF

Info

Publication number
JP3892547B2
JP3892547B2 JP25265797A JP25265797A JP3892547B2 JP 3892547 B2 JP3892547 B2 JP 3892547B2 JP 25265797 A JP25265797 A JP 25265797A JP 25265797 A JP25265797 A JP 25265797A JP 3892547 B2 JP3892547 B2 JP 3892547B2
Authority
JP
Japan
Prior art keywords
power supply
distributed power
distribution line
distributed
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25265797A
Other languages
Japanese (ja)
Other versions
JPH1189093A (en
Inventor
裕文 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25265797A priority Critical patent/JP3892547B2/en
Publication of JPH1189093A publication Critical patent/JPH1189093A/en
Application granted granted Critical
Publication of JP3892547B2 publication Critical patent/JP3892547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Communication Control (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力系統に複数台の分散型電源装置を接続して連系運転する系統連系分散型電源システムに関する。
【0002】
【従来の技術】
電力系統に分散型電源装置を接続して連系運転を行い、需要家負荷に電力を供給する方式が採用されている。図4に分散型電源装置を接続した電力系統の配電線系統を示す。配電線1は電力系統2の一部をなし、配電線1には需要家負荷3a〜3c及び分散型電源装置4が並列に接続されている。
【0003】
分散型電源装置4としては、太陽電池、風力発電装置、蓄電池、フライホイール電力貯蔵装置などが用いられ、この分散型電源装置4が発生する直流電力を電力変換装置(インバータ)により50Hzまたは60Hzの交流電力に変換し、商用の配電線1に電力を供給する。また、分散型電源装置4が蓄電池やフライホイール電力貯蔵装置である場合には、配電線1からの電力を電力変換装置(コンバータ)により直流に変換し蓄積したりする。
【0004】
これらの分散型電源装置4の単独の容量は、一般に数kWから数MW程度であり、電力系統2の配電容量と比べると小規模である。今後、分散型電源装置4の設置件数が増加し、分散型電源装置4の合計の出力電力容量が、例えば、配電線1の柱上変圧器の容量の数十%またはそれ以上を占めるようになることも予想されている。
【0005】
このような小規模の分散型電源装置4を、複数台、配電線系統に連系して運用する場合に、それぞれの分散型電源装置4は配電線系統の電力品質や保護安全対策を妨げないように協調をとって発電を行うことが重要となる。
【0006】
また、これらの分散型電源装置4は、その一つ一つの電源が発電を行うシステムであるから、日常の点検を行い、故障を防いで稼動率を上げると共に、分散型電源装置4から直流電流などの異常な出力が出て電力系統2に対して有害な状態となることを防ぐ必要がある。それと同時に、配電線系統側では、これら分散型電源装置4が全体として発電している出力電力容量を把握し、火力発電所や水力発電所など既存の発電システムの発電量に反映する必要がある。
【0007】
また、電力系統側での故障によって一時的に配電を止め、事故箇所を特定しその事故箇所を分離してから送電を再開するような制御動作に対して、分散型電源装置4が悪影響を与えないようにする必要がある。
【0008】
系統に連系する分散型電源装置4の数が増えると、分散型電源装置4全体の運転状況を掴み、また、万が一、配電線系統で事故が起きて、送電を止めた場合等には、全ての分散型電源装置4に対して、発電運転を停止しかつ配電線系統から電路を切り離す手段をとることが必要となる。
【0009】
【発明が解決しようとする課題】
しかし、多数の分散型電源装置4の全てを確実に解列できるようにするためには、全ての分散型電源装置4に対して配電線系統から解列させるための信号を分配しなければならない。つまり、全ての分散型電源装置4に対して専用の信号ケーブルを設置し、かつ分散型電源装置4側にそれぞれ受信装置を設けることが必要である。従って、設備コストが高くなり、分散型電源装置4のの経済性を下げてしまう。また、分散型電源装置4の設置件数が増えると、その全ての分散型電源装置4の適切な点検や修理を行うことが困難となる。
【0010】
本発明の目的は、電力配電線系統に多数連系された分散型電源装置の異常検出を容易に行える系統連系分散型電源システムを提供することである。
【0011】
【課題を解決するための手段】
請求項1の発明に係わる系統連係分散型電源システムは、電力系統の配電線に接続され前記配電線との連系点における電気量に基づいて分散電源で発電した直流電力を電力変換装置で交流電力に変換したり前記配電線の交流電力を直流電力に変換したりすると共に運転状態信号を通信回線に送出し異常時または解列指令を受信したときは前記電力変換装置を停止させる複数台の分散型電源装置と、前記分散型電源装置からの運転状態信号を通信回線を介して受信し通常運転中に停止した分散型電源装置または異常状態を示した分散型電源装置から送られるデータに基づいて停止原因または異常原因を判定すると共に故障位置を判定するメーカ側サービス用コンピュータと、前記配電線系統の管理上必要な場合に前記分散型電源装置に対して解列指令を出力すると共に各々の前記分散型電源装置の発電出力電力を前記通信回線から受信し前記分散型電源装置全体の発電量を監視する配電線管理用コンピュータとを備えたことを特徴とする。
【0012】
請求項2の発明に係わる系統連係分散型電源システムは、請求項1の発明において、前記分散型電源装置がディーゼル発電機との連系運転を行う場合には、前記ディーゼル発電機が起動した後の予め定められた期間は、前記運転制御手段は前記配電線との連系点の電圧および周波数の異常判定値を通常値よりも検出感度を鈍くした異常判定値に変更して運転を継続するようにしたことを特徴とする
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる系統連系分散型電源システムの構成図である。
【0026】
図1において、各々の分散型電源装置4は、電力系統2の配電線1にそれぞれ分岐配電線5を介して接続されている。一方、各々の分散型電源装置4は、各々の分岐通信線10を介して通信回線9に接続されており、この通信回線9にはメーカ側サービス用コンピュータ7および配電線管理用コンピュータ8が接続されている。メーカ側サービス用コンピュータ7は、分散型電源装置4からの通信回線9を介して得られる運転状態信号に基づいて分散型電源装置4の異常判定を行うものであり、また、配電線管理用コンピュータ8は、配電線系統の管理上必要な場合に分散型電源装置4に対して解列指令を出力するものである。ここで、通信回線9としては、インターネットを用いる公衆電話回線を用いる。
【0027】
また、分散型電源装置4は、配電線1に電力を供給したり配電線1からの電力を蓄積したりするための分散型電源11を有している。この分散型電源11は太陽電池、風力発電装置、蓄電池、フライホイール電力貯蔵装置などで構成され、通常直流電力を蓄積するようになっている。
【0028】
従って、分散型電源11の直流電力は電力変換装置12により交流電力に変換されて配電線1に供給され、また、分散型電源11が蓄電池、フライホイール電力貯蔵装置などであるときは、電力変換装置12で配電線1の交流電力を直流電力に変換して蓄積する。
【0029】
この電力変換装置12は運転制御手段13で運転制御される。すなわち、運転制御手段13は、電気量検出器14で検出された配電線1との連系点における電気量に基づいて電力変換装置12のゲート制御を行い融通する電力量を制御すると共に周波数変換を行う。そして、その運転状態を示す運転状態信号を通信インターフェース6を介して通信回線9に送出する。また、通信インターフェース6は通信回線9を介して配電線管理用コンピュータ8からの解列指令やメーカ側サービス用コンピュータ7からの各種指令を受信する。
【0030】
運転制御手段13は分散型電源装置4が異常となったときや配電線管理用コンピュータ8から解列指令を受信したときは、電力変換装置12を停止させ、また、メーカ側サービス用コンピュータからの各種指令に基づいて、その指令に従った演算を行う。
【0031】
次に、分散型電源装置4の通信インターフェース6から通信回線9に送出される運転状態信号には、各々の分散型電源装置固有の識別信号が付されて送出される。ここで、運転状態信号とは、分散型電源装置4の運転/停止状態、運転出力電力、連系点の電圧、連系点の高調波歪率、停止した場合の原因内訳などであり、分散型電源装置4の内部の各部開閉器の投入状態、電力変換装置12のゲートパルス発生の有無なども含まれる。
【0032】
分散型電源装置4を配電線1に接続して運転するときには、分散型電源装置4の電力変換装置12は、運転制御手段13により配電線1側へ流出する高調波および逆潮流による配電線1の電圧上昇を十分低いものとし、配電線1に影響を及ぼさないように交流出力を調整する。そして、予め設定した高調波歪率あるいは出力電圧を越えた運転値を計測した場合には、電力変換装置12を自動的に停止させる。
【0033】
分散型電源装置4を配電線1に連系して使うときには、分散型電源装置4の電気量検出器14により連系点の電圧や周波数を検出し、異常値が計測された場合には分散型電源装置4を停止させる。ここで、分散型電源装置4側には時に異常が無く、例えば何らかの原因によって配電線電圧が高くなったり、また、配電線1の高調波歪みが増えてその影響により分散型電源装置4の電力変換装置12の出力電流に含まれる高調波電流歪みが増える場合がある。このような場合に、分散型電源装置4が停止しても、分散型電源装置4側の故障により停止したかのように見えると、分散型電源装置4の保守点検を行う業者による分散型電源装置4の設置現場への出張と点検が必要になる。
【0034】
そこで、通信インターフェース6は、分散型電源装置4が停止すると、その分散型電源装置4が接続される配電線1の電圧と配電線電圧の高調波電圧あるいは電圧波形データを自動的に通信回線9に送出する。その情報はメーカ側サービス用コンピュータ7により受信され、メーカ側サービス用コンピュータ7では、オペレータが操作して、分散型電源装置4から送られたデータの情報と、メーカ側サービス用コンピュータ7内部の記憶装置に予め登録されたその分散型電源装置4に関する型式、定格、運転データを参照し、過去の停止事例、他の類似機種での停止事例、補足事項などから、候補となる停止原因を複数件、特定する。
【0035】
次に、この複数の候補要因のいずれかが第一の要因であるかを確認する。つまり、メーカ側サービス用コンピュータ7を操作するオペレータにより、該当する分散型電源装置4の電圧異常や高調波異常により分散型電源装置4が停止することを決める設定値が、どの値に設定されているか、波形が異常でないか、周辺のスイッチ類が正常に投入されているか、などの情報を分散型電源装置4側から送信させるように、通信回線9を介して分散型電源に指示しデータを回収する。このデータをオペレータが検討し、判断することによって、停止が分散型電源装置4の外部の電気的な環境による一時的なものであるか、分散型電源装置4の内部の故障による持続的なものであるかを決定する。
【0036】
次に、分散型電源装置4が故障していることが判明した場合、メーカ側サービス用コンピュータ7のオペレータは、分散型電源装置4の内部の主回路部分あるいは、運転制御手段13の部分のいずれかの部位で、あるいは、どの制御基板のどの部品が故障しているかを調べるため、制御基板内におかれた制御イベントを記録する記憶装置の情報を通信回線9を介してメーカ側サービス用コンピュータ7に回収する。この情報を調べ、可能な範囲で故障部位を特定する。メーカ側のサービス要員は、この特定作業により明らかとなった修理交換部品を準備し、検索された情報を得た上で現場へ出張し該当部品の修理を行う。また、交換部品が分散型電源装置4を設置したユーザーでも容易に交換できるということが確認される場合には、該当する部品をユーザーへ輸送するだけで修理が可能である。
【0037】
このように、多数の分散型電源装置4が電力系統2に接続された状態で、個々の分散型電源装置4が故障したときに、メーカ側のサービス要員が故障原因の調査に出張する以前に、可能な範囲で故障あるいは外部要因による停止の原因を特定し、考えられる対策を検討し準備してから対応することができるので、迅速なサービス対応と運転再開の待ち時間を減らすことが可能となる。
【0038】
ここで、メーカ側サービス用コンピュータ7をオペレータが操作し、必要なデータを回収する方式を説明したが、オペレータが操作し判断を行う前に、コンピュータ内部のプログラムで、同様な分散型電源装置4の固有データの検索、運転を停止した原因候補の要因特定、必要と考えられる復旧処理、交換部品の決定を自動的に行うことも可能である。
【0039】
そして、通信回線9を介して分散型電源装置4の運転出力電力の計測データを配電線管理用コンピュータ8に送ることにより、刻々の分散型電源装置4全体の発電出力とその全体傾向を知ることができる。
【0040】
また、配電線1側で計画的に停電作業があるような場合には、通信回線9を介して配電線管理用コンピュータ8から分散型電源装置4の通信インターフェース6にその情報を送り、分散型電源装置4の使用者にメッセージを伝えたり、必要によっては停電中に分散型電源装置4を強制的に自立運転させることを可能とする。
【0041】
さらに、配電線で万が一、異常があり、配電線1への送電を停止した時には、通信回線9を介して全ての分散型電源装置4に、配電線系統から解列し運転を停止して、配電線1に電力を送らないように指示を出すこともできる。ただし、このような急速な対応を要する場合には、情報を次々に受け渡していくようなインターネットを用いる公衆電話回線では時間がかかりすぎて危険である。
【0042】
そこで、解列指令のような迅速な対応を要する信号を送るためには、例えば電力配電線を用いた信号送信などを使って高速に信号を送る。これに対して、通常の運転時のデータや停止後の状況の検討に使うデータのやり取りには、数秒オーダー以上の時間がかかっても特に問題は無いのでインターネットを用いる公衆電話回線を使うことが可能である。
【0043】
例えば、通信回線9として通信事業用の公衆回線でなく、ケーブルテレビジョンのための回線、あるいは配電線制御の自動化のために設置される光ケーブルを用いる。通信回線9が光ケーブルの場合には、架線として張られた電柱上に、光−アナログの変換装置を設置し、アナログの電気信号線を個別の分散型電源装置4へ分岐する。
【0044】
また、需要家が自己の負荷を賄うために分散型電源装置4を設置している場合には、その分散型電源装置4は小型の分散型電源装置4である。すなわち、その分散型電源装置4は電力会社の変電所に設置された数十kW以上の中・大型電源ではなく、工場やビルに設置された数十kW程度の中規模あるいは個人住宅に設置された数kWの小型の分散型電源装置4である。
【0045】
これらの分散型電源装置4は、個人需要家に設置されているものなので、電力会社に設置される分散型電源装置4のように専用の通信回線9を用いることは少なく、むしろ上述したような、一般に普及している通信回線9あるいは公衆電話回線が用いられる。
【0046】
図2は、分散型電源装置4の運転制御手段13の演算処理内容を示すフローチャートである。図2において、分散型電源装置4の運転制御手段13は、通信回線9を介して外部から解列指令が入力されているか否かを判定し(S1)、解列指令が入力されていないときは、運転状況連絡プログラムを実行する(S2)。つまり、運転状況連絡プログラムの実行により分散型電源装置4の出力電力値を計測して通信回線9へその出力電力値を送り出す。一方、通信回線9を介して解列指令が入力されると、割り込み処理プログラムを実行し(S3)、分散型電源装置4内部の電力変換装置12を停止し、連系点を解列する処理を行う。
【0047】
そして、解列が完了すると分散型電源装置4の運転制御手段13は運転状況連絡プログラムを起動し解列完了信号を通信回線9へ送り出す。その後に、定期点検などで長期の停止操作を行うか否かを判定し(S4)、長期の停止操作である場合にはこのプログラムを終了する(S5)。
【0048】
図3は、図2のステップS2の運転状況連絡プログラム部分の演算内容を示すフローチャートである。図3において、常時は、分散型電源装置4の発電出力電力や充電消費電力などの常時運転データを収集し通信回線9に送信を行う(S11)。また、太陽光発電システムなどでほとんど運転員による日常点検が行われないようなシステムでは、毎日の運転開始前の日の出の時または定時刻に、電力変換装置12内の運転設定値、保護設定値、その他の制御装置の状況確認を行い、その後、運転プログラムを起動する(S12)。また、分散型電源装置4の運転プログラムが正常に起動した後に、前日の一日の発電電力量、停止の発生状況などの必要なデータを通信回線を介して自動発信する(S13)。
【0049】
ここで、運転開始前のシステム確認中や運転プログラムの処理中にシステムの異常が検出されると(S14)、それ以上、起動操作を行うことを禁止し、連系スイッチなどが自動的に投入することがないようにインターロックをとると共に、異常発生とその箇所などの異常状況を知らせる信号を通信回線9へ発信する(S15)。一方、システムが正常であると判断した場合には、運転を開始または運転を継続する(S16)。
【0050】
次に、分散型電源装置4を設置した場所と同一の構内にディーゼル発電機などの回転機電源を設置し、分散型電源装置4とディーゼル発電機とを並列して使うように構成する場合がある。ディーゼル発電機は電力系統が万が一、停電した場合に、所内の非常電源を確保するために使われる。
【0051】
この場合、所内の配電線を電力系統からの受電点で切離し、ディーゼル発電機が起動する。すなわち、ディーゼル発電機の回転エンジンが起動して運転を始めると、その回転数が定常値に達するまでの期間は周波数が一定しない。また、非常負荷が選択投入されるとディーゼル発電機の負荷が変動するので、発電機出力の電圧と周波数が変動する。
【0052】
この変動の度合いは、電力系統が所内配電線系統と接続されている時よりも大きくなるので、分散型電源装置4の電圧や周波数の保護整定値に掛り、保護動作が働いて分散型電源装置4を停止し解列する可能性がある。分散型電源装置4が解列すると、ディーゼル発電機の負荷がますます増えるので、ディーゼル発電機の回転数が下がり、ディーゼル発電機も周波数低下で停止してしまう場合が考えられる。
【0053】
そこで、所内電源が配電線系統から解列されて、ディーゼル発電機が運転を開始したときは、その運転開始信号を所内の連系点の遮断機の接点信号とディーゼル発電機の起動信号とから受信し、この信号を受信した時には、予め定められた期間だけ、分散型電源装置4の電圧や周波数の保護整定値を通常値よりも弛めた値にし、分散型電源装置4が停止し解列しにくくする。
【0054】
この場合、受電点の解列信号(接点信号)やディーゼル発電機の起動信号に加えて、配電線系統から停電を知らせる信号を発信し、これを受信して停電とディーゼル発電機が起動したことの判定に使うことも可能である。
【0055】
【発明の効果】
以上述べたように、本発明によれば、多数の分散型電源装置を電力系統の配電線に接続して使う系統連系型分散型電源システムにおいて、個々の分散型電源装置の運転状況や故障状況または停止の原因などのデータを、通信回線を介して集め、また配電線側の万が一の故障などにより分散型電源装置を全て配電線から解列するための信号を発信することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる系統連系分散型電源システムの構成図。
【図2】本発明の実施の形態における分散型電源装置の運転制御手段の演算処理内容を示すフローチャート。
【図3】図2に示したステップS2の演算処理内容を示すフローチャート。
【図4】従来例による分散型電源装置を接続した電力系統の配電線系統の説明図。
【符号の説明】
1 配電線
2 電力系統
3 需要家負荷
4 分散型電源装置
5 分岐配電線
6 通信インターフェース
7 メーカ側サービス用コンピュータ
8 配電線管理用コンピュータ
9 通信回線
10 分岐通信線
11 分散型電源
12 電力変換装置
13 運転制御手段
14 電気量検出器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grid-connected distributed power supply system in which a plurality of distributed power supply apparatuses are connected to an electric power system to perform a linked operation.
[0002]
[Prior art]
A system is adopted in which a distributed power supply device is connected to an electric power system to perform interconnection operation and supply electric power to a consumer load. FIG. 4 shows a distribution line system of a power system to which a distributed power supply device is connected. The distribution line 1 constitutes a part of the power system 2, and the customer loads 3 a to 3 c and the distributed power supply device 4 are connected to the distribution line 1 in parallel.
[0003]
As the distributed power supply device 4, a solar battery, a wind power generator, a storage battery, a flywheel power storage device, or the like is used, and direct current power generated by the distributed power supply device 4 is 50 Hz or 60 Hz by a power conversion device (inverter). It converts into AC power and supplies power to the commercial distribution line 1. When the distributed power supply device 4 is a storage battery or a flywheel power storage device, the power from the distribution line 1 is converted into direct current by a power conversion device (converter) and stored.
[0004]
The single capacity of these distributed power supply devices 4 is generally about several kW to several MW, and is smaller than the distribution capacity of the power system 2. In the future, the number of installations of the distributed power supply 4 will increase, and the total output power capacity of the distributed power supply 4 will occupy, for example, several tens of percent or more of the capacity of the pole transformer of the distribution line 1 It is also expected to be.
[0005]
When such a small-scale distributed power supply device 4 is operated in conjunction with a plurality of distribution lines, each distributed power supply 4 does not hinder the power quality and protective safety measures of the distribution line system. It is important to generate power in such a way.
[0006]
In addition, since each of these distributed power supply devices 4 is a system in which each power source generates power, daily inspection is performed to prevent failure and increase the operating rate. Therefore, it is necessary to prevent an abnormal output such as that which is harmful to the power system 2. At the same time, on the distribution line system side, it is necessary to grasp the output power capacity generated by these distributed power supply devices 4 as a whole and reflect it in the power generation amount of existing power generation systems such as thermal power plants and hydroelectric power plants. .
[0007]
In addition, the distributed power supply 4 has an adverse effect on a control operation that temporarily stops power distribution due to a failure on the power system side, identifies an accident location, isolates the accident location, and restarts power transmission. It is necessary not to.
[0008]
When the number of distributed power supply devices 4 connected to the system increases, the operating status of the distributed power supply device 4 as a whole is grasped. Also, in the unlikely event that an accident occurs in the distribution line system and power transmission is stopped, It is necessary for all the distributed power supply devices 4 to take a means for stopping the power generation operation and disconnecting the electric circuit from the distribution line system.
[0009]
[Problems to be solved by the invention]
However, in order to reliably disconnect all of the multiple distributed power supply devices 4, a signal for disconnecting from the distribution line system must be distributed to all the distributed power supply devices 4. . That is, it is necessary to install a dedicated signal cable for all the distributed power supply devices 4 and provide a receiving device on the distributed power supply device 4 side. Accordingly, the equipment cost is increased and the economic efficiency of the distributed power supply device 4 is lowered. Further, when the number of installed distributed power supply devices 4 increases, it becomes difficult to perform appropriate inspection and repair of all the distributed power supply devices 4.
[0010]
An object of the present invention is to provide a grid-connected distributed power supply system that can easily detect an abnormality in a distributed power supply apparatus that is connected to a power distribution system.
[0011]
[Means for Solving the Problems]
A grid-connected distributed power supply system according to the invention of claim 1 is connected to a distribution line of an electric power system, and direct-current power generated by the distributed power source based on the amount of electricity at the connection point with the distribution line is converted into AC by a power converter. A plurality of units that convert the power into the power or convert the AC power of the distribution line into DC power and send an operation state signal to the communication line to stop the power converter when an abnormality or a disconnection command is received . Based on data sent from a distributed power supply and a distributed power supply that has received an operation state signal from the distributed power supply via a communication line and stopped during normal operation or a distributed power supply that has indicated an abnormal condition solution and manufacturer service computer determines fault location with determining the stop cause or abnormality cause, relative to the dispersed type power supply if the distribution line system management necessary for Te Characterized in that a each of the distributed power supply distribution line management computer that the power generation output power received from the communication line to monitor the power generation amount of the entire distributed power device outputs the command.
[0012]
The grid-connected distributed power supply system according to the invention of claim 2 is the system according to claim 1, wherein, when the distributed power supply device is connected to the diesel generator, the diesel generator is started. During the predetermined period of time, the operation control means changes the abnormality determination value of the voltage and frequency at the connection point with the distribution line to an abnormality determination value whose detection sensitivity is lower than the normal value, and continues the operation. It is characterized by doing so .
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a grid-connected distributed power supply system according to an embodiment of the present invention.
[0026]
In FIG. 1, each distributed power supply device 4 is connected to a distribution line 1 of a power system 2 via a branch distribution line 5. On the other hand, each distributed power supply 4 is connected to a communication line 9 via each branch communication line 10, and a manufacturer-side service computer 7 and a distribution line management computer 8 are connected to the communication line 9. Has been. The manufacturer-side service computer 7 determines an abnormality of the distributed power supply device 4 based on an operation state signal obtained from the distributed power supply device 4 through the communication line 9, and the distribution line management computer 8 outputs a disconnection command to the distributed power supply device 4 when necessary for the management of the distribution line system. Here, a public telephone line using the Internet is used as the communication line 9.
[0027]
In addition, the distributed power supply device 4 includes a distributed power supply 11 for supplying power to the distribution line 1 and accumulating power from the distribution line 1. The distributed power source 11 is composed of a solar cell, a wind power generator, a storage battery, a flywheel power storage device, and the like, and normally stores DC power.
[0028]
Therefore, the DC power of the distributed power source 11 is converted into AC power by the power conversion device 12 and supplied to the distribution line 1, and when the distributed power source 11 is a storage battery, a flywheel power storage device or the like, power conversion is performed. The apparatus 12 converts the AC power of the distribution line 1 into DC power and stores it.
[0029]
The power converter 12 is controlled by the operation control means 13. That is, the operation control means 13 performs gate control of the power conversion device 12 based on the amount of electricity at the connection point with the distribution line 1 detected by the amount-of-electricity detector 14, and controls the amount of power to be accommodated and frequency conversion. I do. Then, an operation state signal indicating the operation state is transmitted to the communication line 9 via the communication interface 6. The communication interface 6 receives a disconnection command from the distribution line management computer 8 and various commands from the manufacturer-side service computer 7 via the communication line 9.
[0030]
The operation control means 13 stops the power conversion device 12 when the distributed power supply device 4 becomes abnormal or receives a disconnection command from the distribution line management computer 8, and from the manufacturer service computer, Based on various commands, calculations are performed according to the commands.
[0031]
Next, the operation state signal sent from the communication interface 6 of the distributed power supply 4 to the communication line 9 is sent with an identification signal unique to each distributed power supply. Here, the operation state signal includes the operation / stop state of the distributed power supply 4, the operation output power, the voltage at the connection point, the harmonic distortion factor at the connection point, the breakdown of the cause when the operation is stopped, and the like. The on / off state of each part switch inside the power supply device 4 and the presence / absence of generation of a gate pulse in the power converter 12 are also included.
[0032]
When the distributed power supply device 4 is connected to the distribution line 1 and operated, the power conversion device 12 of the distributed power supply device 4 causes the operation control means 13 to distribute the distribution line 1 by harmonics and reverse power flowing out to the distribution line 1 side. The AC output is adjusted so as not to affect the distribution line 1. Then, when an operation value exceeding a preset harmonic distortion factor or output voltage is measured, the power converter 12 is automatically stopped.
[0033]
When the distributed power supply device 4 is connected to the distribution line 1, the voltage or frequency at the connection point is detected by the electric quantity detector 14 of the distributed power supply device 4, and if an abnormal value is measured, the distributed power supply device 4 is dispersed. The mold power supply 4 is stopped. Here, there is sometimes no abnormality on the distributed power supply device 4 side. For example, the distribution line voltage becomes high due to some cause, or the harmonic distortion of the distribution line 1 increases, and the power of the distributed power supply device 4 is influenced by the influence. The harmonic current distortion contained in the output current of the converter 12 may increase. In such a case, even if the distributed power supply 4 stops, if it appears as if the distributed power supply 4 has stopped due to a failure on the distributed power supply 4 side, the distributed power supply by a supplier who performs maintenance and inspection of the distributed power supply 4 A business trip and inspection to the installation site of the apparatus 4 are required.
[0034]
Therefore, when the distributed power supply 4 stops, the communication interface 6 automatically transmits the voltage of the distribution line 1 to which the distributed power supply 4 is connected and the harmonic voltage or voltage waveform data of the distribution line voltage to the communication line 9. To send. The information is received by the manufacturer-side service computer 7, and the manufacturer-side service computer 7 operates by an operator to store information on the data sent from the distributed power supply 4 and the storage in the manufacturer-side service computer 7. Refer to the model, rating, and operation data related to the distributed power supply device 4 registered in advance in the device, and select multiple possible causes of stoppage from past stop cases, other similar model stop cases, supplementary items, etc. ,Identify.
[0035]
Next, it is confirmed whether any of the plurality of candidate factors is the first factor. In other words, the operator who operates the manufacturer-side service computer 7 is set to which value the setting value that determines that the distributed power supply device 4 is stopped due to voltage abnormality or harmonic abnormality of the corresponding distributed power supply device 4 is set. The distributed power supply 4 is instructed to the distributed power supply 4 via the communication line 9 so that information such as whether the waveform is not abnormal or the peripheral switches are normally turned on is transmitted from the distributed power supply 4 side. to recover. The operator examines and judges this data, so that the stop is temporary due to an electrical environment outside the distributed power supply 4 or is sustained due to an internal failure of the distributed power supply 4. To determine whether
[0036]
Next, when it is found that the distributed power supply 4 is out of order, the operator of the manufacturer-side service computer 7 can execute either the main circuit portion inside the distributed power supply device 4 or the operation control means 13. In order to check which part of which control board is malfunctioning at any part, information on the storage device that records the control event placed in the control board is sent via the communication line 9 to the manufacturer side service computer. Recover to 7. Examine this information and identify the fault location as much as possible. The service personnel on the manufacturer side prepares a repair / replacement part that has been clarified by this specific work, and after having obtained the retrieved information, makes a business trip to the site to repair the relevant part. In addition, when it is confirmed that the replacement part can be easily replaced even by the user who installed the distributed power supply device 4, the repair can be performed only by transporting the corresponding part to the user.
[0037]
As described above, when each of the distributed power supply devices 4 breaks down in a state where a large number of distributed power supply devices 4 are connected to the power system 2, before the manufacturer's service personnel make a business trip to investigate the cause of the failure. It is possible to identify the cause of failure or stoppage due to external factors to the extent possible, and to consider and prepare for possible countermeasures before taking action, so it is possible to reduce the waiting time for quick service response and resumption of operation Become.
[0038]
Here, the method in which the operator operates the manufacturer-side service computer 7 and collects necessary data has been described. However, before the operator operates and makes a determination, the same distributed power supply 4 can be used by a program inside the computer. It is also possible to automatically search for unique data, identify the cause of the cause of the stoppage of operation, perform recovery processing considered necessary, and determine replacement parts.
[0039]
Then, by sending measurement data of the operation output power of the distributed power supply 4 via the communication line 9 to the distribution line management computer 8, the power generation output of the entire distributed power supply 4 and its overall tendency are known every moment. Can do.
[0040]
Also, when there is a planned power outage on the distribution line 1 side, the information is sent from the distribution line management computer 8 to the communication interface 6 of the distributed power supply device 4 via the communication line 9 and distributed. A message is transmitted to the user of the power supply device 4 or, if necessary, the distributed power supply device 4 can be forced to operate independently during a power failure.
[0041]
Furthermore, in the unlikely event that there is an abnormality in the distribution line, when power transmission to the distribution line 1 is stopped, all the distributed power supply devices 4 are disconnected from the distribution line system via the communication line 9 and the operation is stopped. It is also possible to give an instruction not to send power to the distribution line 1. However, when such a rapid response is required, a public telephone line using the Internet that passes information one after another takes too much time and is dangerous.
[0042]
Therefore, in order to send a signal that requires a quick response, such as a disconnection command, the signal is sent at high speed using, for example, signal transmission using a power distribution line. On the other hand, there is no particular problem in exchanging data during normal driving and data used for studying the situation after the stop, so there is no problem even if it takes several seconds or more, so a public telephone line using the Internet should be used. Is possible.
[0043]
For example, the communication line 9 is not a public line for communication business, but a line for cable television or an optical cable installed for automation of distribution line control. When the communication line 9 is an optical cable, an optical-analog conversion device is installed on a utility pole stretched as an overhead line, and the analog electric signal line is branched to individual distributed power supply devices 4.
[0044]
In addition, when the customer installs the distributed power supply device 4 in order to cover his load, the distributed power supply device 4 is a small distributed power supply device 4. In other words, the distributed power unit 4 is not installed in a power supply company's substation, but in a medium or large power supply of several tens of kW or more, and is installed in a medium or individual house of several tens of kW installed in a factory or building. This is a small distributed power supply device 4 of several kW.
[0045]
Since these distributed power supply devices 4 are installed in individual consumers, it is rare to use a dedicated communication line 9 like the distributed power supply device 4 installed in an electric power company. In general, a communication line 9 or a public telephone line that is widely used is used.
[0046]
FIG. 2 is a flowchart showing the calculation processing contents of the operation control means 13 of the distributed power supply device 4. In FIG. 2, the operation control means 13 of the distributed power supply device 4 determines whether or not a disconnection command is input from the outside via the communication line 9 (S1), and when the disconnection command is not input Executes the driving situation communication program (S2). That is, the output power value of the distributed power supply device 4 is measured by executing the operation status communication program, and the output power value is sent to the communication line 9. On the other hand, when a disconnection command is input via the communication line 9, an interrupt processing program is executed (S3), the power converter 12 in the distributed power supply 4 is stopped, and the connection point is disconnected. I do.
[0047]
Then, when the disconnection is completed, the operation control means 13 of the distributed power supply device 4 starts an operation status communication program and sends a disconnection completion signal to the communication line 9. Thereafter, it is determined whether or not a long-term stop operation is to be performed in a periodic inspection or the like (S4).
[0048]
FIG. 3 is a flowchart showing the calculation contents of the operation status communication program part in step S2 of FIG. In FIG. 3, always-on operation data such as power generation output power and charging power consumption of the distributed power supply 4 is collected and transmitted to the communication line 9 (S11). Further, in a system in which a daily inspection by an operator is hardly performed in a solar power generation system or the like, an operation set value and a protection set value in the power conversion device 12 at the time of sunrise or a fixed time before the start of daily operation. Then, the status of other control devices is checked, and then the operation program is started (S12). In addition, after the operation program of the distributed power supply device 4 is normally started, necessary data such as the amount of generated power of the previous day and the occurrence of the stop are automatically transmitted via the communication line (S13).
[0049]
Here, if a system abnormality is detected during system confirmation before starting operation or during processing of the operation program (S14), further activation is prohibited and the interconnection switch etc. is automatically turned on. An interlock is taken so as not to occur, and a signal notifying the occurrence of an abnormality and an abnormal condition such as the location is transmitted to the communication line 9 (S15). On the other hand, when it is determined that the system is normal, the operation is started or the operation is continued (S16).
[0050]
Next, there is a case where a rotating machine power source such as a diesel generator is installed in the same premises where the distributed power supply device 4 is installed, and the distributed power supply device 4 and the diesel generator are used in parallel. is there. Diesel generators are used to secure emergency power in the power station in the event of a power failure.
[0051]
In this case, the distribution line in the station is disconnected at the power receiving point from the power system, and the diesel generator is started. That is, when the rotary engine of the diesel generator is started and started to operate, the frequency is not constant during the period until the rotational speed reaches a steady value. Further, when an emergency load is selectively input, the load on the diesel generator varies, so the voltage and frequency of the generator output vary.
[0052]
Since the degree of this fluctuation is greater than when the power system is connected to the on-site distribution line system, it depends on the protective set value of the voltage and frequency of the distributed power supply device 4 and the protective operation is activated to operate the distributed power supply device. 4 may be stopped and disconnected. When the distributed power supply device 4 is disconnected, the load on the diesel generator increases more and more, so the rotation speed of the diesel generator may decrease, and the diesel generator may stop due to a decrease in frequency.
[0053]
Therefore, when the on-site power supply is disconnected from the distribution line system and the diesel generator starts operation, the operation start signal is obtained from the contact signal of the breaker at the connection point in the station and the start signal of the diesel generator. When this signal is received, the voltage and frequency protection settling values of the distributed power supply device 4 are set to values which are less than normal values for a predetermined period, and the distributed power supply device 4 is stopped and turned off. Make it difficult to line up.
[0054]
In this case, in addition to the disconnection signal (contact signal) at the receiving point and the start signal of the diesel generator, a signal notifying the power outage is transmitted from the distribution line system, and this is received to start the power outage and the diesel generator It is also possible to use this for the determination.
[0055]
【The invention's effect】
As described above, according to the present invention, in a grid-connected distributed power supply system that uses a large number of distributed power supply devices connected to the distribution lines of the power system, the operating status and failures of the individual distributed power supply devices. It is possible to collect data such as the situation or cause of stoppage via the communication line, and to send a signal for disconnecting all the distributed power supply units from the distribution line due to a failure on the distribution line side etc. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a grid-connected distributed power supply system according to an embodiment of the present invention.
FIG. 2 is a flowchart showing calculation processing contents of an operation control unit of the distributed power supply device according to the embodiment of the present invention.
FIG. 3 is a flowchart showing the calculation processing contents of step S2 shown in FIG. 2;
FIG. 4 is an explanatory diagram of a distribution line system of a power system to which a distributed power supply device according to a conventional example is connected.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Distribution line 2 Power system 3 Consumer load 4 Distributed power supply 5 Branch distribution line 6 Communication interface 7 Manufacturer side service computer 8 Distribution line management computer 9 Communication line 10 Branch communication line 11 Distributed power supply 12 Power conversion device 13 Operation control means 14 Electric quantity detector

Claims (2)

電力系統の配電線に接続され前記配電線との連系点における電気量に基づいて分散電源で発電した直流電力を電力変換装置で交流電力に変換したり前記配電線の交流電力を直流電力に変換したりすると共に運転状態信号を通信回線に送出し異常時または解列指令を受信したときは前記電力変換装置を停止させる複数台の分散型電源装置と、前記分散型電源装置からの運転状態信号を通信回線を介して受信し通常運転中に停止した分散型電源装置または異常状態を示した分散型電源装置から送られるデータに基づいて停止原因または異常原因を判定すると共に故障位置を判定するメーカ側サービス用コンピュータと、前記配電線系統の管理上必要な場合に前記分散型電源装置に対して解列指令を出力すると共に各々の前記分散型電源装置の発電出力電力を前記通信回線から受信し前記分散型電源装置全体の発電量を監視する配電線管理用コンピュータとを備えたことを特徴とする系統連係分散型電源システム。 DC power generated by a distributed power source based on the amount of electricity connected to the distribution line of the power system is converted to AC power by a power converter, or the AC power of the distribution line is converted to DC power. And a plurality of distributed power supply devices that stop the power conversion device when an abnormal state or a disconnection command is received by sending an operation state signal to the communication line and operating state from the distributed power supply device Based on data sent from a distributed power supply that has received a signal via a communication line and stopped during normal operation or from a distributed power supply that has indicated an abnormal condition, the cause of the stop or the abnormality is determined and the failure location is determined. power of each of the dispersed type power supply apparatus and outputs the manufacturer service computer, the disconnecting command to the distributed power supply device when management required of the distribution line system System interconnection distributed power supply system, characterized in that a distribution line management computer for receiving a force power from the communication line to monitor the power generation amount of the entire distributed power system. 前記分散型電源装置がディーゼル発電機との連系運転を行う場合には、前記ディーゼル発電機が起動した後の予め定められた期間は、前記運転制御手段は前記配電線との連系点の電圧および周波数の異常判定値を通常値よりも検出感度を鈍くした異常判定値に変更して運転を継続するようにしたことを特徴とする請求項1に記載の系統連系分散型電源システム。  In the case where the distributed power supply device performs the interconnection operation with the diesel generator, the operation control means is configured to set the interconnection point with the distribution line for a predetermined period after the diesel generator is activated. 2. The grid-connected distributed power supply system according to claim 1, wherein the operation is continued by changing the abnormality determination value of the voltage and frequency to an abnormality determination value in which the detection sensitivity is lower than the normal value.
JP25265797A 1997-09-03 1997-09-03 Grid-connected distributed power system Expired - Fee Related JP3892547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25265797A JP3892547B2 (en) 1997-09-03 1997-09-03 Grid-connected distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25265797A JP3892547B2 (en) 1997-09-03 1997-09-03 Grid-connected distributed power system

Publications (2)

Publication Number Publication Date
JPH1189093A JPH1189093A (en) 1999-03-30
JP3892547B2 true JP3892547B2 (en) 2007-03-14

Family

ID=17240414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25265797A Expired - Fee Related JP3892547B2 (en) 1997-09-03 1997-09-03 Grid-connected distributed power system

Country Status (1)

Country Link
JP (1) JP3892547B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817124B2 (en) * 2000-09-11 2006-08-30 シャープ株式会社 Wide area power supply system and operation method of individual small-scale power generator
JP3634731B2 (en) 2000-09-21 2005-03-30 シャープ株式会社 Photovoltaic power generation management system, solar power generation management server and solar power generation apparatus used in the system
ES2568499T3 (en) 2001-09-28 2016-04-29 Wobben Properties Gmbh Procedure for the operation of a wind power plant
US8121741B2 (en) 2008-05-09 2012-02-21 International Business Machines Corporation Intelligent monitoring of an electrical utility grid
JP5286935B2 (en) * 2008-05-27 2013-09-11 パナソニック株式会社 Distributed power supply
JP2010219336A (en) * 2009-03-17 2010-09-30 Sadao Iguchi Photovoltaic power generation system for electric railways
JP2011019366A (en) * 2009-07-10 2011-01-27 Sanyo Electric Co Ltd Grid-connected system
DE102011085107B4 (en) 2011-10-24 2013-06-06 Wobben Properties Gmbh Method for controlling a wind energy plant
JP6344116B2 (en) * 2014-07-25 2018-06-20 富士電機株式会社 Electric propulsion device charging control system
SG10201502972VA (en) * 2015-04-15 2016-11-29 Sun Electric Pte Ltd Method and system for operating a plurality of photovoltaic (pv) generating facilities connected to an electrical power grid network
KR102601443B1 (en) * 2021-07-13 2023-11-13 한전케이디엔주식회사 Optimal voltage control device and method of distributed power supply

Also Published As

Publication number Publication date
JPH1189093A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
US10935945B2 (en) Methods and apparatus for power generation and distribution
JP3892547B2 (en) Grid-connected distributed power system
JPH10201086A (en) Solar beam power generation system
CN103703646A (en) Fault diagnosis method, grid-interconnected device, and control device
CN108695889B (en) High-efficient photovoltaic inverter capable of sharing operation and maintenance
KR20060082108A (en) Hybrid generation system using solar light and wind power
CN110912109A (en) Low-voltage direct-current power supply and distribution equipment and method
JP2002354680A (en) Power supply system for apartment house
JP2001095263A (en) Inverter control system, inverter, and system control apparatus
CN113985132B (en) Insulation resistance measuring device and method for standby motor
CN113659701B (en) Intelligent air compression station electric energy supply system and supply method thereof
JP2001298865A (en) Operation monitoring device for dispersed power source
RU2318281C1 (en) Computerized system for no-break power supply to stationary equipment
WO2023135968A1 (en) Plant monitoring system and plant monitoring device
WO2016176628A1 (en) Controller for micro-grid generator and renewable power and method of use
CN215813253U (en) Remote control system for checking capacity of communication power supply storage battery
CN116961574A (en) Intelligent monitoring system of photovoltaic power station and operation and maintenance method of photovoltaic power station
KR102529846B1 (en) Outage-management system of distribution line and method thereof
CN116388374A (en) Method and equipment for quickly starting electric field scene emergency power supply suitable for unattended operation
JP2006050763A (en) System for leveling electrical load
KR100653284B1 (en) Digital uninterruptible power supply system for three phases
JP6114279B2 (en) Energy management device and control method of energy management device
CN201075711Y (en) Digitalization uninterrupted power supply system
CN220019840U (en) Portable secondary circuit fault detector for diesel generator system
CN115842345B (en) Energy router control method and energy router

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees