JP3892212B2 - Carbon fiber precursor fiber bundle - Google Patents
Carbon fiber precursor fiber bundle Download PDFInfo
- Publication number
- JP3892212B2 JP3892212B2 JP2000201535A JP2000201535A JP3892212B2 JP 3892212 B2 JP3892212 B2 JP 3892212B2 JP 2000201535 A JP2000201535 A JP 2000201535A JP 2000201535 A JP2000201535 A JP 2000201535A JP 3892212 B2 JP3892212 B2 JP 3892212B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- fiber
- carbon fiber
- acrylonitrile
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、繊維強化複合材料の強化材として使用される炭素繊維束の製造に適したアクリロニトリル系重合体の単繊維からなる炭素繊維前駆体繊維束に関する。
【0002】
【従来の技術】
繊維強化複合材料には、炭素繊維、ガラス繊維、アラミド繊維等が使用されている。中でも、炭素繊維は、比強度、比弾性率、耐熱性、耐薬品性等に優れ、航空機用途、ゴルフシャフト、釣り竿等のスポーツ用途、一般産業用途の繊維強化複合材料の強化材として使用されている。このような繊維強化複合材料は、例えば、以下のようにして製造される。
【0003】
まず、ポリアクリロニトリル系重合体の単繊維からなる前駆体繊維束を、焼成工程(耐炎化工程)にて空気などの酸化性気体中、200〜300℃の温度で焼成して耐炎繊維束を得る。次いで、炭素化工程にて、不活性雰囲気中、300〜2000℃の温度で耐炎繊維束を炭素化して炭素繊維束を得る。そして、この炭素繊維束を、必要に応じて織物等に加工した後、これに合成樹脂を含浸させ、所定形状に成形することにより繊維強化複合材料を得る。
【0004】
【発明が解決しようとする課題】
炭素繊維束の製造に用いられる前駆体繊維束には、焼成工程において繊維束がばらけて、繊維束を構成する単繊維が隣接する繊維束に絡まったり、ローラに巻き付いたりしないように、高い集束性が要求される。
しかしながら、集束性の高い前駆体繊維束から得られる炭素繊維束は、その集束性の高さのため、樹脂が含浸しにくいという問題を有していた。
【0005】
また、炭素繊維束を製織して得られる炭素繊維織物は、樹脂を含浸する際に、樹脂のボイドが発生しないように、できるだけ目開きの少ない織物とする必要がある。そのために、製織中または製織後に何らかの開繊処理が施される。
しかしながら、集束性の高い前駆体繊維束から得られる炭素繊維束は、その集束性の高さのため、開繊しにくいという問題を有していた。
また、炭素繊維織物は、目空きの少ない均一な織り目が要求されるため、嵩高い炭素繊維束が必要とされていた。
【0006】
よって、本発明の目的は、樹脂含浸性、開繊性が良好で、強度が高く、嵩高な炭素繊維束を得ることができ、かつ集束性が高く、焼成工程通過性が良好な炭素繊維前駆体繊維束を提供することにある。
【0007】
【課題を解決するための手段】
本発明の炭素繊維前駆体繊維束は、複数のアクリロニトリル系重合体の単繊維からなる炭素繊維前駆体繊維束であって、単繊維の繊維断面の長径と短径との比(長径/短径)が、1.05〜1.6であり、ICP発光分析によって測定されるSi量が、500〜4000ppmの範囲であり、単繊維の表面の最大高さ(Ry)が、0.1〜0.5μmであることを特徴とする。
【0008】
また、単繊強度は、5.00cN/dtex以上であることが望ましい。
また、単繊維の表面の中心線平均粗さ(Ra)は、0.01〜0.1μmであることが望ましい。
また、単繊維の表面に複数の皺を有し、となりあう局部山頂の間隔(S)が、0.2〜1.0μmであることが望ましい。
【0009】
また、繊維束の水分率は、15重量%以下であることが望ましい。
また、繊維束を構成する単繊維の数は、12000本以下であることが望ましい。
また、繊維束の交絡度は、5ヶ/m〜20ヶ/mの範囲であることが望ましい。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の炭素繊維前駆体繊維束は、複数のアクリロニトリル系重合体の単繊維を束ねたトウである。
アクリロニトリル系重合体としては、アクリロニトリル単位を95重量%以上含有する重合体が、該炭素繊維前駆体繊維束を焼成して得られる炭素繊維束の強度発現性の面で好ましい。アクリロニトリル系重合体は、アクリロニトリルと、必要に応じてこれと共重合しうる単量体とを、水溶液中におけるレドックス重合、不均一系における懸濁重合、分散剤を使用した乳化重合などによって、重合させて得ることができる。
【0011】
アクリロニトリルと共重合しうる単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類;(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類;マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル;スチレンスルホン酸ソーダ、アリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体;2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等が挙げられる。
【0012】
本発明におけるアクリロニトリル系重合体の単繊維の繊維断面の長径と短径との比(長径/短径)は、1.05〜1.6であり、好ましくは、1.1〜1.3であり、より好ましくは1.15〜1.25である。長径/短径比がこの範囲内にあれば、前駆体繊維束の焼成工程通過性と、これから得られる炭素繊維束の樹脂含浸性および開繊性とを同時に満足することができる。長径/短径比が1.05未満では、単繊維間の空隙が減少し、得られる炭素繊維束の樹脂含浸性および開繊性が悪くなり、嵩高さが不十分となる。長径/短径比が1.6を超えると、繊維束の集束性が低下し、焼成工程通過性が悪化する。また、ストランド強度が著しく低下する。
【0013】
ここで、単繊維の繊維断面の長径と短径との比(長径/短径)は、以下のようにして決定される。
内径1mmの塩化ビニル樹脂製のチューブ内に測定用のアクリロニトリル系重合体の繊維を通した後、これをナイフで輪切りにして試料を準備する。ついで、該試料をアクリロニトリル系重合体の繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径÷短径で長径/短径の比率が決定される。
【0014】
本発明の炭素繊維前駆体繊維束のSi量は、500〜4000ppmの範囲であり、好ましくは1000〜3000ppmの範囲である。Si量がこの範囲内にあれば、前駆体繊維束の焼成工程通過性と、これから得られる炭素繊維束の樹脂含浸性および開繊性とを同時に満足することができる。Si量が500ppm未満では、繊維束の集束性が低下し、焼成工程通過性が悪化する。また、得られる炭素繊維束のストランド強度が低下する。Si量が4000ppmを超えると、前駆体繊維束の焼成時にシリカが多く飛散し、焼成安定性が悪くなる。また、得られる炭素繊維束がばらけにくくなり、樹脂含浸性および開繊性が悪くなる。
【0015】
このSi量は、炭素繊維前駆体繊維束を製造する際に使用されるシリコン系油剤に由来するものである。ここで、Si量は、ICP発光分析装置を用いて測定することができる。
【0016】
本発明におけるアクリロニトリル系重合体の単繊強度は、好ましくは5.0cN/dtex以上であり、より好ましくは6.5cN/dtex以上であり、さらに好ましくは7.0cN/dtex以上である。単繊強度が5.0cN/dtex未満では、焼成工程での単糸切れによる毛羽の発生が多くなって焼成工程通過性が悪くなる。
【0017】
ここで、アクリロニトリル系重合体の単繊強度は、単繊維自動引張強伸度測定機(オリエンテック UTM II−20)を使用し、台紙に貼られた単繊維をロードセルのチャックに装着し、毎分20.0mmの速度で引っ張り試験を行い強伸度を測定することによって求められる。
【0018】
本発明の炭素繊維前駆体繊維束は、単繊維の表面に繊維束の長手方向に延びる皺を有していることが好ましい。このような皺の存在により、本発明の炭素繊維前駆体繊維束は、良好な集束性を有すると同時に、得られる炭素繊維束は、良好な樹脂含浸性と開繊性とを有するようになる。
このような皺の深さは、以下の中心線平均粗さ(Ra)、最大高さ(Ry)および局部山頂の間隔(S)によって規定される。
【0019】
本発明の炭素繊維前駆体繊維束の単繊維の表面の中心線平均粗さ(Ra)は、好ましくは0.01〜0.1μmであり、より好ましくは0.02〜0.07μmであり、さらに好ましくは0.03〜0.06μmである。中心線平均粗さ(Ra)が0.01μm未満では、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなり、嵩高さが不十分となる。中心線平均粗さ(Ra)が0.1μmを超えると、繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
【0020】
ここで、中心線平均粗さ(Ra)とは、図1に示すように、粗さ曲線からその中心線mの方向に基準長さLだけ抜き取り、この抜取り部分の中心線mから測定曲線までの偏差の絶対値を合計し、平均した値である。中心線平均粗さ(Ra)は、レーザー顕微鏡を用いることによって測定される。
【0021】
本発明の炭素繊維前駆体繊維束の表面の最大高さ(Ry)は、好ましくは0.1〜0.5μmであり、より好ましくは0.15〜0.4μmであり、さらに好ましくは0.2〜0.35μmである。最大高さ(Ry)が0.1μm未満では、得られる炭素繊維束の樹脂含浸性、開繊性が悪くなり、嵩高さが不十分となる。最大高さ(Ry)が0.5μmを超えると、繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
【0022】
ここで、最大高さ(Ry)とは、図2に示すように、粗さ曲線からその中心線mの方向に基準長さLだけ抜き取り、この抜取り部分の山頂線および谷底線と中心線mとの間隔、RpおよびRvの合計値である。最大高さ(Ry)は、レーザー顕微鏡を用いることによって測定される。
【0023】
また、これら皺の間隔を規定するパラメータである、局部山頂の間隔(S)は、好ましくは0.2〜1.0μmであり、より好ましくは0.3〜0.8μmであり、さらに好ましくは0.4〜0.7μmである。局部山頂の間隔(S)が0.2μm未満では、得られる炭素繊維束の樹脂含浸性および開繊性が悪くなり、嵩高さが不十分となる。局部山頂の間隔(S)が1.0μmを超えると、繊維束の表面積が増加して静電気が発生し易くなり、繊維束の集束性を低下させる。また、得られる炭素繊維束のストランド強度が低下する。
【0024】
ここで、局部山頂の間隔(S)とは、図3に示すように、粗さ曲線からその中心線mの方向に基準長さLだけ抜き取り、この抜取り部分の隣り合う局部山頂間の間隔S1 、S2 、S3 、・・・の平均値Sである。局部山頂の間隔(S)は、レーザー顕微鏡を用いることによって測定される。
【0025】
また、本発明の炭素繊維前駆体繊維束の水分率は、好ましくは15重量%以下であり、より好ましくは、10重量%以下であり、さらに好ましくは、3〜5重量%である。水分率が15重量%を超えると、繊維束にエアを吹き付け交絡を施した際に、単繊維が交絡しにくくなり、その結果、繊維束がばらけやすくなって焼成工程通過性が悪くなる。
【0026】
ここで、水分率は、ウエット状態にある繊維束の重量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の重量w0 とにより、水分率(重量%)=(w−w0 )×100/w0 によって求めた数値である。
【0027】
また、本発明の炭素繊維前駆体繊維束を構成するアクリロニトリル系重合体の単繊維の数は、好ましくは、12000本以下であり、より好ましくは6000本以下であり、さらに好ましくは3000本以下である。単繊維の数が12000本を超えると、トウハンドリングおよびトウボリュウームが増加し、乾燥負荷が増大することから、紡糸速度を上げることができなくなる。また、均一な交絡を与える事が困難となり、その結果、焼成工程での通過性が悪化する。
【0028】
また、本発明の炭素繊維前駆体繊維束の交絡度は、好ましくは5〜20ヶ/mの範囲であり、より好ましくは10〜14ヶ/mの範囲である。交絡度が5ヶ/m未満では、繊維束がばらけやすくなり、焼成工程通過性が悪くなる。交絡度が20ヶ/mを超えると、得られる炭素繊維束の樹脂含浸性および開繊性が悪くなる。
【0029】
ここで、炭素繊維前駆体繊維束の交絡度とは、繊維束中の1本の単繊維が隣接する他の単繊維と1mの間に何回交絡しているかを示すパラメータである。交絡度は、フックドロップ法により測定される。
【0030】
次に、本発明の炭素繊維前駆体繊維束の製造方法について説明する。
本発明の炭素繊維前駆体繊維束は、例えば、以下のようにして製造することができる。
まず、アクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、紡糸口金を通して、有機溶剤の濃度50〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第1凝固浴中に吐出させて凝固糸にするとともに、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.8倍以下の引取り速度で引き取る。
ついで、この凝固糸を、有機溶剤の濃度50〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて1.2〜2.5倍に延伸する。
【0031】
続いて、第2凝固浴中での延伸を終えた膨潤状態にある繊維束に対して3倍以上の湿熱延伸を行う。
ついで、この繊維束に対してシリコン系油剤の添油処理を行った後、この繊維束を乾燥し、さらにスチーム延伸機で2〜4倍に延伸する。
この繊維束に対して、タッチロールで水分率の調整を行い、続いて、この糸にエアーを吹き付けて交絡を施し、炭素繊維前駆体繊維束を得る。
【0032】
紡糸原液に使用するアクリロニトリル系重合体に対する有機溶剤としては、例えば、ジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられる。中でも、ジメチルアセトアミドは、溶剤の加水分解による性状の悪化が少なく、良好な紡糸性を与えるので、好適に用いられる。
【0033】
ここで、第1凝固浴と第2凝固浴の有機溶剤の濃度を同じにする、第1凝固浴と第2凝固浴の温度を同じにする、さらには紡糸原液の有機溶剤と第1凝固浴に用いる有機溶剤と第2凝固浴に用いる有機溶剤とを同じものにする等の手段を採ることにより、第1凝固浴および第2凝固浴の調製が容易となり、しかも溶剤回収上でのメリットも生ずる。
【0034】
また、アクリロニトリル系重合体のジメチルアセトアミド溶液からなる紡糸原液と、ジメチルアセトアミド水溶液からなる第1凝固浴と、該第1凝固浴と同じ温度および組成成分のジメチルアセトアミド水溶液からなる第2凝固浴とを使用すると、繊維断面の長径/短径比が1.05〜1.6の単繊維の製造を容易に行えるようになる。
【0035】
また、第1凝固浴と第2凝固浴の有機溶剤の濃度を低くすることによって、繊維断面の長径/短径比が大きい単繊維が得られる。一方、第1凝固浴と第2凝固浴の有機溶剤の濃度を高くすることによって、繊維断面の長径/短径比が1.0に近い単繊維が得られる。
【0036】
紡糸原液を押し出すための紡糸口金には、アクリロニトリル系重合体の単繊維の一般的な太さである、1.0デニール(1.1dTex)程度のアクリロニトリル系重合体の単繊維を製造する際の孔径、すなわち15〜100μmの孔径のノズル孔を有する紡糸口金を使用できる。
「凝固糸の引取り速度/ノズルからの紡糸原液の吐出線速度」は、0.8倍以下とされることにより、良好な紡糸性を維持することができる。
【0037】
このような炭素繊維前駆体繊維束の製造方法においては、第1凝固浴から引き上げた凝固糸は、該凝固糸が含有する液体中の有機溶剤の濃度が、該第1凝固浴における有機溶剤の濃度を超えているので、凝固糸の表面だけが凝固した半凝固状態にある凝固糸になり、次工程の第2凝固浴中での延伸性が良好な凝固糸になる。
【0038】
また、第1凝固浴から引き出した凝固液を含んだままの膨潤状態にある凝固糸は、空気中で延伸することも可能であるが、この凝固糸を上記方法のように第2凝固浴中で延伸する手段を採ることにより、凝固糸の凝固を促進させることができ、また、延伸工程での温度制御も容易になる。
【0039】
第2凝固浴中での延伸倍率は、1.2倍よりも低くすると、均一に配向した繊維が得られなくなり、2.5倍よりも高くすると、単繊維切れが発生し易くなり、紡糸安定性が低下し、しかもその後の湿熱延伸工程での延伸性が悪化する。
【0040】
第2凝固浴中での延伸工程後の湿熱延伸は、繊維の配向をさらに高めるためのものである。この湿熱延伸は、第2凝固浴中での延伸を終えた膨潤状態にある膨潤繊維束を水洗に付しながらの延伸、あるいは熱水中での延伸によって行われる。中でも、高生産性の観点から、熱水中での延伸を行うのが好ましい。なお、この湿熱延伸工程での延伸倍率を3倍よりも低くすると、繊維の配向の向上が十分でなくなる。
【0041】
また、湿熱延伸を施した後の乾燥前の膨潤繊維束の膨潤度を、70重量%以下にすることが好ましい。
つまり、湿熱延伸を施した後の乾燥前の膨潤繊維束の膨潤度が70重量%以下にある繊維は、表層部と繊維内部とが均一に配向していることを意味するものである。第1凝固浴中での凝固糸の製造の際の「凝固糸の引取り速度/ノズルからの紡糸原液の吐出線速度」を下げることによって、第1凝固浴中での凝固糸の凝固を均一なものにした後、これを第2凝固浴中にて延伸することにより、内部まで均一に配向することができる。これによって、湿熱延伸を施した後の乾燥前の膨潤繊維束の膨潤度を70重量%以下とすることができる。
【0042】
一方、第1凝固浴中での凝固糸の製造の際の「凝固糸の引取り速度/ノズルからの紡糸原液の吐出線速度」を高くすると、該第1凝固浴中での凝固糸の凝固と延伸とが同時に起こる。そのため、第1凝固浴中での凝固糸の凝固が不均一になる。従って、これを第2凝固浴中で延伸する工程を採っても、湿熱延伸を施した後の乾燥前の膨潤繊維束は膨潤度の高いものになってしまい、繊維内部まで均一に配向した繊維にはならない。
【0043】
乾燥前の膨潤状態にある繊維束の膨潤度は、膨潤状態にある繊維束の付着液を遠心分離機(3000rpm、15分)によって除去した後の重量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の重量w0 とにより、膨潤度(重量%)=(w−w0 )×100/w0 によって求めた数値である。
【0044】
湿熱延伸を行った後の繊維束に対する添油処理には、一般的なシリコン系油剤を用いることができる。このシリコン系油剤は、1.0〜2.5重量%の濃度に調製された後、使用される。
【0045】
【実施例】
以下、本発明を実施例を示して詳しく説明する。
本実施例における各測定は、以下の方法によって行った。
(断面形状)
内径1mmの塩化ビニル樹脂製のチューブ内に測定用のアクリロニトリル系重合体の繊維を通した後、これをナイフで輪切りにして試料を準備した。ついで、該試料をアクリロニトリル系重合体の繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径÷短径で長径/短径の比率を求めた。
【0046】
(Si量)
まず、試料をテフロン(登録商標)製密閉容器にとり、硫酸、次いで硝酸で加熱酸分解した後、定容として、ICP発光分析装置としてジャーレルアッシュ製IRIS−APを用いて測定した。
(単繊維強度)
単繊維自動引張強伸度測定機(オリエンテック UTM II−20)を使用し、台紙に貼られた単繊維をロードセルのチャックに装着し、毎分20.0mmの速度で引っ張り試験を行い強伸度を測定した。
【0047】
(交絡度)
乾燥状態にある炭素繊維前駆体の繊維束を用意し、垂下装置の上部に該繊維束を取り付け、上部つかみ部から下方1mにおもりを取り付けつり下げた。ここで用いるおもり荷重は、デニール数の1/5のグラム数とした。該繊維束の上部つかみから1cm下部の点に該繊維束を2分割するようにフックを挿入し、2cm/Sの速度でフックを下降させた。フックが該繊維束の絡みによって停止した点までのフックの下降距離L(mm)を求め、次式によって交絡度を算出した。尚、試験回数はN=50とし、その平均値の小数点1桁まで求めた。
交絡度=1000/L
ここで用いたフックは、直径が0.5mm〜1.0mmの針状で、表面が滑らかに仕上げ処理をしたものである。
(皺形状)
乾燥状態にある炭素繊維前駆体の繊維束をスライドガラスに貼り付け、レーザーテック株式会社製のレーザー顕微鏡VL2000を用い、繊維軸方向に対して垂直方向にRa、Ry、Sを測定した。
(水分率)
ウエット状態にある炭素繊維前駆体の繊維束の重量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の重量w0 とにより、水分率(重量%)=(w−w0 )×100/w0 によって測定した。
【0048】
また、得られたアクリロニトリル系繊維束および炭素繊維束の評価方法は、以下の通りである。
【0049】
(樹脂含浸性)
炭素繊維束を約20cm切り取り、グリシジルエーテル中に約3cm浸し15分間放置した。グリシジルエーテル中から取り出した後3分間放置し、下から3.5cmのところで切り落とし、残った炭素繊維束の長さ、重量を測定した。炭素繊維束の目付けから吸い上げたグリシジルエーテルの重量割合を算出し、樹脂含浸性の指標とした。
(開繊性)
炭素繊維束を0.06g/単繊維の張力下、走行速度1m/分で金属ロール上を走行させた際のトウ幅を測定し開繊性の指標とした。
(炭素繊維のストランド強度)
JIS−7601に準じて測定した。
【0050】
[実施例1]
アクリロニトリル、アクリル酸メチルおよびメタクリル酸を、過硫酸アンモニウム−亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリル酸メチル単位/メタクリル酸単位=95/4/1(重量比)からなるアクリロニトリル系重合体を得た。このアクリロニトリル系重合体をジメチルアセトアミドに溶解し、21重量%の紡糸原液を調製した。
【0051】
この紡糸原液を孔数3000、孔径75μmの紡糸口金を通して、濃度60重量%、温度30℃のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にし、第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.8倍の引取り速度で引き取った。この凝固糸を引き続き濃度60質量%、温度30℃のジメチルアセトアミド水溶液からなる第2凝固浴に導き、浴中にて2.0倍に延伸した。
【0052】
ついで、この繊維束に対して水洗と同時に4倍の延伸を行い、これに1.5重量%に調製したアミノシリコン系油剤を添油した。この繊維束を熱ロールを用いて乾燥し、スチーム延伸機にて2.0倍に延伸した。その後、タッチロールにて繊維束の水分率を調整し、この繊維束に繊維当たり5重量%の水分を含有させた。ついで、この繊維束を、エア圧405kPaのエアによって、交絡処理し、ワインダーで巻き取ることにより、単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0053】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、アクリロニトリル系繊維束を空気中230〜260℃の熱風循環式耐炎化炉にて50分間処理し耐炎化繊維束となし、ついで耐炎繊維束を窒素雰囲気中下で最高温度780℃にて1.5分間処理し、さらに同雰囲気下で最高温度が1300℃の高温熱処理炉にて約1.5分処理した後、重炭酸水素アンモニウム水溶液中で0.4Amin/mで電解処理を施し、炭素繊維束を得た。この炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0054】
[実施例2]
第1凝固浴および第2凝固浴のジメチルアセトアミド濃度を50重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0055】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0056】
[実施例3]
第1凝固浴および第2凝固浴のジメチルアセトアミド濃度を65重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0057】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0058】
[実施例4]
第2凝固浴中における延伸倍率を2.5倍に変更し、スチーム延伸機による延伸倍率を1.6倍に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0059】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0060】
[実施例5]
第2凝固浴中における延伸倍率を1.2倍に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0061】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0062】
[実施例6]
タッチロールにて調整される繊維束の水分率を10重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0063】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0064】
[実施例7]
タッチロールにて調整される繊維束の水分率を3重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0065】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0066】
[実施例8]
繊維束に添油されるアミノシリコン系油剤の濃度を0.4重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0067】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0068】
[実施例9]
交絡処理時のエア圧を290kPaに変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0069】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および1皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
【0070】
[比較例1]
第1凝固浴および第2凝固浴のジメチルアセトアミド濃度を70重量%に変更した以外は、実施例1と同様にして、単繊維の繊維断面の長径/短径比が1.02、単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0071】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
単繊維の繊維断面の長径/短径比が1.05未満のアクリロニトリル系繊維束から得られた炭素繊維束は、樹脂含浸性および開繊性に劣っていた。
【0072】
[比較例2]
第1凝固浴および第2凝固浴のジメチルアセトアミド濃度を40質量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0073】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
単繊維の繊維断面の長径/短径比が1.6を超えるアクリロニトリル系繊維束は集束性に劣り、これから得られた炭素繊維束は、ストランド強度が低かった。
【0074】
[比較例3]
繊維束に添油されるアミノシリコン系油剤の濃度を0.2重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0075】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
Si量が500ppm未満のアクリロニトリル系繊維束は集束性に劣り、これから得られた炭素繊維束は、ストランド強度が低かった。
【0076】
[比較例4]
繊維束に添油されるアミノシリコン系油剤の濃度を2.5重量%に変更した以外は、実施例1と同様にして単繊維繊度1.1dtexのアクリロニトリル系繊維束を得た。
【0077】
得られたアクリロニトリル系繊維束について、断面形状、Si量、単繊維強度、交絡度および皺形状を測定した。結果を表1に示す。
さらに、このアクリロニトリル系繊維束を焼成して得られた炭素繊維束の樹脂含浸性、開繊性およびストランド強度を評価した。結果を表2に示す。
Si量が4000ppmを超えるアクリロニトリル系繊維束から得られた炭素繊維束は、樹脂含浸性および開繊性に劣っていた。
【0078】
【表1】
【0079】
【表2】
【0080】
【発明の効果】
以上説明したように、本発明の炭素繊維前駆体繊維束は、単繊維の繊維断面の長径と短径との比(長径/短径)が、1.05〜1.6であり、ICP発光分析によって測定されるSi量が、500〜4000ppmの範囲であるので、集束性が高く、焼成工程通過性が良好であり、また、これから得られる炭素繊維束は、樹脂含浸性、開繊性が良好で、強度が高く、嵩高となる。
また、単繊強度が、5.00cN/dtex以上であれば、焼成工程での単糸切れによる毛羽の発生がすくなくなり、焼成工程通過性がさらに向上する。
【0081】
また、単繊維の表面の中心線平均粗さ(Ra)が、0.01〜0.1μmであれば、集束性、焼成工程通過性がさらに向上し、また、これから得られる炭素繊維束の樹脂含浸性、開繊性、強度がさらに向上する。
また、単繊維の表面の最大高さ(Ry)が、0.1〜0.5μmであれば、集束性、焼成工程通過性がさらに向上し、また、これから得られる炭素繊維束の樹脂含浸性、開繊性、強度がさらに向上する。
また、単繊維の表面に複数の皺を有し、局部山頂の間隔(S)が0.2〜1.0μmであれば、集束性、焼成工程通過性がさらに向上し、また、これから得られる炭素繊維束の樹脂含浸性、開繊性、強度がさらに向上する。
【0082】
また、繊維束の水分率が、15重量%以下であれば、繊維束の単繊維が交絡しやすくなり、焼成工程通過性がさらに向上する。
また、繊維束を構成する単繊維の数が、12000本以下であれば、紡糸速度を上げることができる。また、均一な交絡を与える事ができ、その結果焼成工程での通過性が向上する。
また、繊維束の交絡度が、5ヶ/m〜20ヶ/mの範囲であれば、焼成工程通過性がさらに向上し、得られる炭素繊維束の樹脂含浸性および開繊性がさらに向上する。
【図面の簡単な説明】
【図1】 中心線平均粗さ(Ra)を説明するための炭素繊維前駆体繊維束の単繊維の表面の断面図である。
【図2】 最大高さ(Ry)を説明するための炭素繊維前駆体繊維束の単繊維の表面の断面図である。
【図3】 局部山頂の間隔(S)を説明するための炭素繊維前駆体繊維束の単繊維の表面の断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon fiber precursor fiber bundle composed of a single fiber of an acrylonitrile-based polymer suitable for producing a carbon fiber bundle used as a reinforcing material for a fiber-reinforced composite material.
[0002]
[Prior art]
Carbon fiber, glass fiber, aramid fiber, etc. are used for the fiber reinforced composite material. Among them, carbon fiber is excellent in specific strength, specific elastic modulus, heat resistance, chemical resistance, etc., and is used as a reinforcing material for fiber reinforced composite materials for aircraft applications, sports applications such as golf shafts and fishing rods, and general industrial applications. Yes. Such a fiber reinforced composite material is manufactured as follows, for example.
[0003]
First, a precursor fiber bundle made of a single fiber of a polyacrylonitrile-based polymer is fired at a temperature of 200 to 300 ° C. in an oxidizing gas such as air in a firing process (flame resistance process) to obtain a flame resistant fiber bundle. . Next, in the carbonization step, the flame resistant fiber bundle is carbonized at a temperature of 300 to 2000 ° C. in an inert atmosphere to obtain a carbon fiber bundle. And after processing this carbon fiber bundle into a textile fabric etc. as needed, this is impregnated with a synthetic resin and formed into a predetermined shape to obtain a fiber-reinforced composite material.
[0004]
[Problems to be solved by the invention]
Precursor fiber bundles used in the production of carbon fiber bundles are high so that the fiber bundles are scattered in the firing process and the single fibers constituting the fiber bundles are not entangled with adjacent fiber bundles or wound around rollers. Convergence is required.
However, the carbon fiber bundle obtained from the precursor fiber bundle having a high bundling property has a problem that the resin is difficult to be impregnated due to its high bundling property.
[0005]
Further, the carbon fiber woven fabric obtained by weaving the carbon fiber bundle needs to be a woven fabric having as few openings as possible so that resin voids are not generated when the resin is impregnated. For this purpose, some opening process is performed during or after weaving.
However, the carbon fiber bundle obtained from the precursor fiber bundle having high bundling property has a problem that it is difficult to open due to its high bundling property.
In addition, since the carbon fiber woven fabric is required to have a uniform weave with little open space, a bulky carbon fiber bundle is required.
[0006]
Therefore, the object of the present invention is to provide a carbon fiber precursor that has good resin impregnation and spreadability, is capable of obtaining a high strength and bulky carbon fiber bundle, has high converging properties, and has good permeability in the firing process. It is to provide a body fiber bundle.
[0007]
[Means for Solving the Problems]
The carbon fiber precursor fiber bundle of the present invention is a carbon fiber precursor fiber bundle composed of a single fiber of a plurality of acrylonitrile polymers, and the ratio of the major axis to the minor axis of the fiber cross section of the single fiber (major axis / minor axis). ) Is 1.05 to 1.6, and the Si amount measured by ICP emission analysis is in the range of 500 to 4000 ppm. The maximum height (Ry) of the surface of the single fiber is 0.1 to 0.5 μm It is characterized by that.
[0008]
The single fiber strength is desirably 5.00 cN / dtex or more.
Moreover, it is desirable that the center line average roughness (Ra) of the surface of the single fiber is 0.01 to 0.1 μm.
Moreover, it is desirable that the distance (S) between the local peaks having a plurality of wrinkles on the surface of the single fiber is 0.2 to 1.0 μm.
[0009]
The moisture content of the fiber bundle is desirably 15% by weight or less.
The number of single fibers constituting the fiber bundle is desirably 12000 or less.
In addition, the entanglement degree of the fiber bundle is desirably in the range of 5/20 to 20 / m.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The carbon fiber precursor fiber bundle of the present invention is a tow obtained by bundling a plurality of acrylonitrile polymer single fibers.
As the acrylonitrile-based polymer, a polymer containing 95% by weight or more of an acrylonitrile unit is preferable in terms of strength development of a carbon fiber bundle obtained by firing the carbon fiber precursor fiber bundle. An acrylonitrile polymer is a polymer of acrylonitrile and a monomer that can be copolymerized with it by redox polymerization in an aqueous solution, suspension polymerization in a heterogeneous system, emulsion polymerization using a dispersing agent, or the like. Can be obtained.
[0011]
Examples of monomers that can be copolymerized with acrylonitrile include (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. Esters; vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride; acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts; maleic imide, phenylmaleimide, (meth) acrylamide, Styrene, α-methylstyrene, vinyl acetate; polymerizable unsaturated monomer containing a sulfo group such as sodium styrene sulfonate, sodium allyl sulfonate, sodium β-styrene sulfonate, sodium methallyl sulfonate; 2-vinylpyridine , 2-methyl-5-vinylpyridine and the like Examples thereof include a polymerizable unsaturated monomer containing a lysine group.
[0012]
The ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber of the acrylonitrile polymer in the present invention is 1.05 to 1.6, preferably 1.1 to 1.3. Yes, more preferably 1.15 to 1.25. If the ratio of major axis / minor axis is within this range, it is possible to satisfy both the passability of the precursor fiber bundle through the firing step and the resin impregnation property and the fiber opening property of the carbon fiber bundle obtained therefrom. When the major axis / minor axis ratio is less than 1.05, voids between single fibers are reduced, resin impregnation property and fiber opening property of the obtained carbon fiber bundle are deteriorated, and bulkiness is insufficient. When the major axis / minor axis ratio exceeds 1.6, the convergence of the fiber bundle is lowered, and the firing process passability is deteriorated. In addition, the strand strength is significantly reduced.
[0013]
Here, the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is determined as follows.
After passing an acrylonitrile polymer fiber for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm, the sample is prepared by cutting it with a knife. Next, the sample was adhered to the SEM sample stage so that the fiber cross section of the acrylonitrile polymer was facing upward, and Au was sputtered to a thickness of about 10 nm, and then with a XL20 scanning electron microscope manufactured by PHILIPS, The fiber cross section is observed under conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, the major axis and minor axis of the fiber section of the single fiber are measured, and the ratio of major axis / minor axis is determined by major axis / minor axis.
[0014]
The Si content of the carbon fiber precursor fiber bundle of the present invention is in the range of 500 to 4000 ppm, preferably in the range of 1000 to 3000 ppm. If the amount of Si is within this range, it is possible to simultaneously satisfy the passability of the precursor fiber bundle through the firing process and the resin impregnation property and fiber opening property of the carbon fiber bundle obtained therefrom. If the amount of Si is less than 500 ppm, the fiber bundle is less converged and the firing processability is deteriorated. Further, the strand strength of the obtained carbon fiber bundle is lowered. When the amount of Si exceeds 4000 ppm, a large amount of silica is scattered during firing of the precursor fiber bundle, and firing stability is deteriorated. In addition, the obtained carbon fiber bundle is difficult to disperse, and the resin impregnation property and the fiber opening property are deteriorated.
[0015]
This amount of Si is derived from the silicon-based oil used when producing the carbon fiber precursor fiber bundle. Here, the amount of Si can be measured using an ICP emission analyzer.
[0016]
The single fiber strength of the acrylonitrile-based polymer in the present invention is preferably 5.0 cN / dtex or more, more preferably 6.5 cN / dtex or more, and further preferably 7.0 cN / dtex or more. If the single fiber strength is less than 5.0 cN / dtex, the generation of fluff due to single yarn breakage in the firing process increases, and the firing processability deteriorates.
[0017]
Here, the single fiber strength of the acrylonitrile-based polymer is determined by using a single fiber automatic tensile strength / elongation measuring machine (Orientec UTM II-20), attaching the single fiber attached to the mount to the load cell chuck, and It is obtained by performing a tensile test at a speed of 20.0 mm and measuring the strength and elongation.
[0018]
The carbon fiber precursor fiber bundle of the present invention preferably has a ridge extending on the surface of the single fiber in the longitudinal direction of the fiber bundle. Due to the presence of such wrinkles, the carbon fiber precursor fiber bundle of the present invention has good sizing properties, and at the same time, the resulting carbon fiber bundle has good resin impregnation and spreadability. .
The depth of such ridges is defined by the following centerline average roughness (Ra), maximum height (Ry) and local summit spacing (S).
[0019]
The center line average roughness (Ra) of the surface of the single fiber of the carbon fiber precursor fiber bundle of the present invention is preferably 0.01 to 0.1 μm, more preferably 0.02 to 0.07 μm, More preferably, it is 0.03-0.06 micrometer. When the center line average roughness (Ra) is less than 0.01 μm, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated, and the bulkiness is insufficient. When the center line average roughness (Ra) exceeds 0.1 μm, the surface area of the fiber bundle is increased, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.
[0020]
Here, the centerline average roughness (Ra) is, as shown in FIG. 1, extracted from the roughness curve by the reference length L in the direction of the centerline m, and from the centerline m of the extracted portion to the measurement curve. The absolute values of the deviations are summed and averaged. The center line average roughness (Ra) is measured by using a laser microscope.
[0021]
The maximum height (Ry) of the surface of the carbon fiber precursor fiber bundle of the present invention is preferably 0.1 to 0.5 μm, more preferably 0.15 to 0.4 μm, and still more preferably 0.8. 2 to 0.35 μm. When the maximum height (Ry) is less than 0.1 μm, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated, and the bulkiness is insufficient. When the maximum height (Ry) exceeds 0.5 μm, the surface area of the fiber bundle is increased, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.
[0022]
Here, as shown in FIG. 2, the maximum height (Ry) means that a reference length L is extracted from the roughness curve in the direction of the center line m, and the peak line, valley bottom line, and center line m of the extracted part are extracted. And the sum of Rp and Rv. The maximum height (Ry) is measured by using a laser microscope.
[0023]
Further, the local summit interval (S), which is a parameter for defining the interval between these ridges, is preferably 0.2 to 1.0 μm, more preferably 0.3 to 0.8 μm, and still more preferably. 0.4 to 0.7 μm. If the distance (S) between the local peaks is less than 0.2 μm, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated, and the bulkiness is insufficient. When the distance (S) between the local peaks exceeds 1.0 μm, the surface area of the fiber bundle increases, and static electricity is likely to be generated, thereby reducing the convergence of the fiber bundle. Further, the strand strength of the obtained carbon fiber bundle is lowered.
[0024]
Here, as shown in FIG. 3, the interval (S) between the local peaks is extracted from the roughness curve by the reference length L in the direction of the center line m, and the interval S between the adjacent local peaks in the extracted portion. 1 , S 2 , S Three The average value S of. The local summit spacing (S) is measured by using a laser microscope.
[0025]
The moisture content of the carbon fiber precursor fiber bundle of the present invention is preferably 15% by weight or less, more preferably 10% by weight or less, and further preferably 3 to 5% by weight. When the moisture content exceeds 15% by weight, when the fiber bundle is blown with air and entangled, the single fibers are less likely to be entangled. As a result, the fiber bundle is easily separated and the passing through the firing process is deteriorated.
[0026]
Here, the moisture content is the weight w of the fiber bundle in a wet state and the weight w after drying this with a hot air dryer at 105 ° C. × 2 hours. 0 And the moisture content (% by weight) = (w−w 0 ) × 100 / w 0 Is the numerical value obtained by
[0027]
Further, the number of single fibers of the acrylonitrile polymer constituting the carbon fiber precursor fiber bundle of the present invention is preferably 12000 or less, more preferably 6000 or less, and further preferably 3000 or less. is there. When the number of single fibers exceeds 12,000, tow handling and tow volume increase and the drying load increases, so that the spinning speed cannot be increased. Moreover, it becomes difficult to give uniform entanglement, and as a result, the permeability in a baking process deteriorates.
[0028]
Moreover, the entanglement degree of the carbon fiber precursor fiber bundle of the present invention is preferably in the range of 5 to 20 pieces / m, and more preferably in the range of 10 to 14 pieces / m. If the degree of entanglement is less than 5 / m, the fiber bundle is likely to be scattered, and the passing through the firing process is deteriorated. When the entanglement degree exceeds 20 pcs / m, the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are deteriorated.
[0029]
Here, the degree of entanglement of the carbon fiber precursor fiber bundle is a parameter indicating how many times one single fiber in the fiber bundle is entangled with 1 m from other adjacent single fibers. The degree of entanglement is measured by the hook drop method.
[0030]
Next, the manufacturing method of the carbon fiber precursor fiber bundle of this invention is demonstrated.
The carbon fiber precursor fiber bundle of the present invention can be produced, for example, as follows.
First, a spinning stock solution composed of an organic solvent solution of an acrylonitrile polymer is discharged through a spinneret into a first coagulation bath composed of an organic solvent aqueous solution having an organic solvent concentration of 50 to 70% by weight and a temperature of 30 to 50 ° C. In addition to forming a coagulated yarn, the coagulated yarn is taken out from the first coagulation bath at a take-up speed of 0.8 times or less of the discharge linear speed of the spinning dope.
Next, the coagulated yarn is drawn 1.2 to 2.5 times in a second coagulation bath composed of an organic solvent aqueous solution having an organic solvent concentration of 50 to 70% by weight and a temperature of 30 to 50 ° C.
[0031]
Subsequently, wet heat stretching is performed three times or more on the swollen fiber bundle that has been stretched in the second coagulation bath.
Next, after adding a silicon-based oil to the fiber bundle, the fiber bundle is dried and further stretched 2 to 4 times with a steam stretching machine.
The moisture content of the fiber bundle is adjusted with a touch roll, and then the yarn is entangled by blowing air onto the yarn to obtain a carbon fiber precursor fiber bundle.
[0032]
Examples of the organic solvent for the acrylonitrile polymer used in the spinning dope include dimethylacetamide, dimethylsulfoxide, dimethylformamide, and the like. Among them, dimethylacetamide is preferably used because it is less deteriorated due to hydrolysis of the solvent and gives good spinnability.
[0033]
Here, the concentration of the organic solvent in the first coagulation bath and the second coagulation bath is made the same, the temperature of the first coagulation bath and the second coagulation bath are made the same, and the organic solvent of the spinning dope and the first coagulation bath By taking measures such as making the organic solvent used for the second coagulation bath the same as the organic solvent used for the second coagulation bath, the preparation of the first coagulation bath and the second coagulation bath is facilitated, and there are also advantages in recovering the solvent. Arise.
[0034]
And a spinning stock solution comprising a dimethylacetamide solution of an acrylonitrile polymer, a first coagulation bath comprising a dimethylacetamide aqueous solution, and a second coagulation bath comprising a dimethylacetamide aqueous solution having the same temperature and composition as the first coagulation bath. If used, it becomes possible to easily produce single fibers having a major axis / minor axis ratio of 1.05 to 1.6.
[0035]
Further, by reducing the concentration of the organic solvent in the first coagulation bath and the second coagulation bath, a single fiber having a large major axis / minor axis ratio of the fiber cross section can be obtained. On the other hand, by increasing the concentration of the organic solvent in the first coagulation bath and the second coagulation bath, a single fiber having a major axis / minor axis ratio of the fiber cross section near 1.0 can be obtained.
[0036]
In the spinneret for extruding the spinning dope, an acrylonitrile polymer single fiber of about 1.0 denier (1.1 dTex), which is a general thickness of an acrylonitrile polymer single fiber, is produced. A spinneret having a nozzle hole with a hole diameter of 15 to 100 μm can be used.
The “spinning speed of the coagulated yarn / discharge linear speed of the spinning dope from the nozzle” is 0.8 times or less, so that good spinnability can be maintained.
[0037]
In such a carbon fiber precursor fiber bundle manufacturing method, the coagulated yarn pulled up from the first coagulation bath has a concentration of the organic solvent in the liquid contained in the coagulation yarn so that the organic solvent in the first coagulation bath contains Since the concentration is exceeded, only the surface of the coagulated yarn becomes a coagulated yarn in a semi-solidified state, and the coagulated yarn has good stretchability in the second coagulation bath in the next step.
[0038]
Further, the coagulated yarn in the swollen state containing the coagulation liquid drawn out from the first coagulation bath can be drawn in the air, but this coagulated yarn can be drawn in the second coagulation bath as in the above method. By adopting a means for stretching at, solidification of the coagulated yarn can be promoted, and temperature control in the stretching process is facilitated.
[0039]
If the draw ratio in the second coagulation bath is lower than 1.2 times, uniformly oriented fibers cannot be obtained, and if it is higher than 2.5 times, single fiber breakage is likely to occur, and spinning stability is improved. And the stretchability in the subsequent wet heat stretching process deteriorates.
[0040]
The wet heat drawing after the drawing step in the second coagulation bath is for further enhancing the fiber orientation. This wet heat stretching is performed by stretching a swollen fiber bundle in a swollen state after stretching in the second coagulation bath, or by stretching in hot water. Among them, it is preferable to perform stretching in hot water from the viewpoint of high productivity. In addition, when the draw ratio in this wet heat drawing process is made lower than 3 times, the improvement of fiber orientation becomes insufficient.
[0041]
Moreover, it is preferable that the swelling degree of the swollen fiber bundle after drying after wet heat stretching is 70% by weight or less.
That is, the fiber in which the swelling degree of the swollen fiber bundle after drying after wet heat stretching is 70% by weight or less means that the surface layer portion and the inside of the fiber are uniformly oriented. The coagulation of the coagulated yarn in the first coagulation bath is made uniform by lowering the “coagulated yarn take-off speed / the discharge linear velocity of the spinning dope from the nozzle” during the production of the coagulated yarn in the first coagulation bath. Then, the film is stretched in the second coagulation bath so that it can be uniformly oriented to the inside. Thereby, the swelling degree of the swollen fiber bundle before drying after the wet heat stretching can be reduced to 70% by weight or less.
[0042]
On the other hand, when the “coagulated yarn take-up speed / the discharge linear speed of the spinning dope from the nozzle” in the production of the coagulated yarn in the first coagulation bath is increased, the coagulation of the coagulated yarn in the first coagulation bath is increased. And stretching occur simultaneously. Therefore, the coagulation of the coagulated yarn in the first coagulation bath becomes non-uniform. Therefore, even if it takes the process of extending | stretching this in a 2nd coagulation bath, the swollen fiber bundle before drying after performing wet heat stretching will become a thing with a high degree of swelling, and the fiber orientated uniformly to the inside of a fiber It will not be.
[0043]
The degree of swelling of the fiber bundle in the swollen state before drying is determined by the weight w after removing the adhering solution of the fiber bundle in the swollen state by a centrifuge (3000 rpm, 15 minutes), and this is 105 ° C. × 2 hours. Weight after drying with hot air dryer 0 And the degree of swelling (% by weight) = (w−w 0 ) × 100 / w 0 Is the numerical value obtained by
[0044]
A general silicon-based oil agent can be used for the oil addition treatment to the fiber bundle after the wet heat drawing. This silicone-based oil is used after being prepared to a concentration of 1.0 to 2.5% by weight.
[0045]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Each measurement in this example was performed by the following method.
(Cross-sectional shape)
An acrylonitrile polymer fiber for measurement was passed through a tube made of vinyl chloride resin having an inner diameter of 1 mm, and this was cut into a ring with a knife to prepare a sample. Next, the sample was adhered to the SEM sample stage so that the fiber cross section of the acrylonitrile polymer was facing upward, and Au was sputtered to a thickness of about 10 nm, and then with a XL20 scanning electron microscope manufactured by PHILIPS, The cross section of the fiber was observed under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm, the major axis and minor axis of the fiber section of the single fiber were measured, and the ratio of major axis / minor axis was calculated as major axis / minor axis.
[0046]
(Si amount)
First, a sample was placed in a Teflon (registered trademark) sealed container, subjected to acid decomposition by heating with sulfuric acid and then with nitric acid, and then measured as a constant volume using IRIS-AP manufactured by Jarrel Ash as an ICP emission spectrometer.
(Single fiber strength)
Using a single fiber automatic tensile strength / elongation measuring machine (Orientec UTM II-20), the single fiber attached to the mount is attached to the load cell chuck, and a tensile test is performed at a speed of 20.0 mm / min. The degree was measured.
[0047]
(Entanglement)
A carbon fiber precursor fiber bundle in a dry state was prepared, the fiber bundle was attached to the upper part of the drooping device, and a weight was attached and suspended 1 m below from the upper gripping part. The weight load used here was 1/5 of the denier number. A hook was inserted so as to divide the fiber bundle into two at a point 1 cm below the upper grip of the fiber bundle, and the hook was lowered at a speed of 2 cm / S. The lowering distance L (mm) of the hook to the point where the hook stopped due to the entanglement of the fiber bundle was obtained, and the degree of entanglement was calculated by the following equation. The number of tests was N = 50, and the average value was obtained up to one decimal place.
Degree of confounding = 1000 / L
The hook used here has a needle shape with a diameter of 0.5 mm to 1.0 mm and has a smooth finish on the surface.
(Shape shape)
The fiber bundle of the carbon fiber precursor in a dry state was attached to a slide glass, and Ra, Ry, and S were measured in a direction perpendicular to the fiber axis direction using a laser microscope VL2000 manufactured by Lasertec Corporation.
(Moisture percentage)
Weight w of carbon fiber precursor fiber bundle in a wet state and weight w after drying this with a hot air dryer at 105 ° C. for 2 hours 0 And the moisture content (% by weight) = (w−w 0 ) × 100 / w 0 Measured by.
[0048]
Moreover, the evaluation method of the obtained acrylonitrile fiber bundle and carbon fiber bundle is as follows.
[0049]
(Resin impregnation)
The carbon fiber bundle was cut about 20 cm, immersed in about 3 cm in glycidyl ether, and left for 15 minutes. After taking out from glycidyl ether, it was allowed to stand for 3 minutes, cut off from the bottom at 3.5 cm, and the length and weight of the remaining carbon fiber bundle were measured. The weight ratio of glycidyl ether sucked up from the basis weight of the carbon fiber bundle was calculated and used as an index of resin impregnation property.
(Opening property)
The tow width when the carbon fiber bundle was run on a metal roll at a running speed of 1 m / min under a tension of 0.06 g / single fiber was used as an index of the spreadability.
(Strand strength of carbon fiber)
It measured according to JIS-7601.
[0050]
[Example 1]
Acrylonitrile, methyl acrylate and methacrylic acid were copolymerized by aqueous suspension polymerization in the presence of ammonium persulfate-ammonium hydrogen sulfite and iron sulfate, and acrylonitrile unit / methyl acrylate unit / methacrylic acid unit = 95/4/1 ( An acrylonitrile-based polymer having a weight ratio) was obtained. This acrylonitrile-based polymer was dissolved in dimethylacetamide to prepare a 21% by weight spinning dope.
[0051]
This spinning dope is passed through a spinneret having a pore number of 3000 and a pore diameter of 75 μm and discharged into a first coagulation bath composed of a dimethylacetamide aqueous solution having a concentration of 60% by weight and a temperature of 30 ° C. to obtain a coagulated yarn. The yarn was taken up at a take-up speed of 0.8 times the discharge linear speed of the spinning dope. The coagulated yarn was subsequently introduced into a second coagulation bath composed of an aqueous dimethylacetamide solution having a concentration of 60% by mass and a temperature of 30 ° C., and stretched 2.0 times in the bath.
[0052]
Next, the fiber bundle was stretched 4 times simultaneously with water washing, and an aminosilicone oil prepared to 1.5% by weight was added thereto. This fiber bundle was dried using a hot roll and stretched 2.0 times with a steam stretching machine. Thereafter, the moisture content of the fiber bundle was adjusted with a touch roll, and the fiber bundle contained 5% by weight of water per fiber. Subsequently, the fiber bundle was entangled with air having an air pressure of 405 kPa and wound with a winder to obtain an acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex.
[0053]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Further, the acrylonitrile fiber bundle was treated in a hot air circulation type flameproofing furnace at 230 to 260 ° C in air for 50 minutes to form a flameproofed fiber bundle, and then the flameproof fiber bundle was 1 at a maximum temperature of 780 ° C in a nitrogen atmosphere. After 5 minutes of treatment and further treatment in a high-temperature heat treatment furnace with a maximum temperature of 1300 ° C. for about 1.5 minutes in the same atmosphere, electrolytic treatment was performed at 0.4 Amin / m in an aqueous solution of ammonium bicarbonate to obtain carbon. A fiber bundle was obtained. The carbon fiber bundle was evaluated for resin impregnation property, fiber opening property and strand strength. The results are shown in Table 2.
[0054]
[Example 2]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the dimethylacetamide concentrations in the first coagulation bath and the second coagulation bath were changed to 50% by weight.
[0055]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0056]
[Example 3]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the dimethylacetamide concentrations in the first coagulation bath and the second coagulation bath were changed to 65% by weight.
[0057]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0058]
[Example 4]
An acrylonitrile system having a single fiber fineness of 1.1 dtex in the same manner as in Example 1 except that the draw ratio in the second coagulation bath was changed to 2.5 and the draw ratio of the steam drawing machine was changed to 1.6. A fiber bundle was obtained.
[0059]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0060]
[Example 5]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the draw ratio in the second coagulation bath was changed to 1.2 times.
[0061]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0062]
[Example 6]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the moisture content of the fiber bundle adjusted by the touch roll was changed to 10% by weight.
[0063]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0064]
[Example 7]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the moisture content of the fiber bundle adjusted by the touch roll was changed to 3% by weight.
[0065]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0066]
[Example 8]
An acrylonitrile fiber bundle with a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the concentration of the aminosilicone oil added to the fiber bundle was changed to 0.4% by weight.
[0067]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0068]
[Example 9]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the air pressure during the entanglement treatment was changed to 290 kPa.
[0069]
About the obtained acrylonitrile-type fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and 1-row shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
[0070]
[Comparative Example 1]
Except for changing the dimethylacetamide concentration of the first coagulation bath and the second coagulation bath to 70% by weight, the major axis / minor axis ratio of the fiber cross section of the single fiber is 1.02, and the single fiber fineness is the same as in Example 1. An acrylonitrile fiber bundle of 1.1 dtex was obtained.
[0071]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
A carbon fiber bundle obtained from an acrylonitrile fiber bundle having a major axis / minor axis ratio of a fiber cross section of a single fiber of less than 1.05 was inferior in resin impregnation property and fiber opening property.
[0072]
[Comparative Example 2]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the dimethylacetamide concentrations in the first coagulation bath and the second coagulation bath were changed to 40% by mass.
[0073]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
An acrylonitrile fiber bundle having a major axis / minor axis ratio of 1.6 exceeding 1.6 is inferior in converging property, and the carbon fiber bundle obtained therefrom has low strand strength.
[0074]
[Comparative Example 3]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the concentration of the aminosilicone oil added to the fiber bundle was changed to 0.2% by weight.
[0075]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
An acrylonitrile fiber bundle having an Si content of less than 500 ppm is inferior in converging property, and a carbon fiber bundle obtained therefrom has low strand strength.
[0076]
[Comparative Example 4]
An acrylonitrile fiber bundle having a single fiber fineness of 1.1 dtex was obtained in the same manner as in Example 1 except that the concentration of the aminosilicone oil added to the fiber bundle was changed to 2.5% by weight.
[0077]
About the obtained acrylonitrile fiber bundle, cross-sectional shape, Si amount, single fiber strength, entanglement degree, and wrinkle shape were measured. The results are shown in Table 1.
Furthermore, the resin impregnation property, fiber opening property, and strand strength of the carbon fiber bundle obtained by firing this acrylonitrile fiber bundle were evaluated. The results are shown in Table 2.
A carbon fiber bundle obtained from an acrylonitrile fiber bundle having an Si amount exceeding 4000 ppm was inferior in resin impregnation property and fiber opening property.
[0078]
[Table 1]
[0079]
[Table 2]
[0080]
【The invention's effect】
As described above, the carbon fiber precursor fiber bundle of the present invention has a ratio (major axis / minor axis) of the major axis to the minor axis of the fiber cross section of the single fiber of 1.05 to 1.6, and ICP light emission. Since the amount of Si measured by analysis is in the range of 500 to 4000 ppm, the focusing property is high, the firing process passing property is good, and the carbon fiber bundle obtained therefrom has resin impregnation property and fiber opening property. Good, high strength and bulky.
Moreover, if the single fiber strength is 5.00 cN / dtex or more, the generation of fluff due to single yarn breakage in the firing process is less likely, and the passing through the firing process is further improved.
[0081]
Moreover, if the centerline average roughness (Ra) of the surface of the single fiber is 0.01 to 0.1 μm, the convergence and the firing process passability are further improved, and the carbon fiber bundle resin obtained therefrom Impregnation, spreadability and strength are further improved.
Moreover, if the maximum height (Ry) of the surface of the single fiber is 0.1 to 0.5 μm, the bundling property and the firing process passability are further improved, and the resin impregnation property of the carbon fiber bundle obtained therefrom is also improved. Further, the spreadability and strength are further improved.
In addition, when the surface of the single fiber has a plurality of wrinkles and the local summit spacing (S) is 0.2 to 1.0 μm, the convergence and the firing process passability are further improved and obtained from this. The resin impregnation property, fiber opening property, and strength of the carbon fiber bundle are further improved.
[0082]
Moreover, if the moisture content of a fiber bundle is 15 weight% or less, the single fiber of a fiber bundle will become easy to be entangled, and a baking process passage property will further improve.
If the number of single fibers constituting the fiber bundle is 12000 or less, the spinning speed can be increased. Moreover, uniform entanglement can be given and, as a result, the permeability in a baking process improves.
Moreover, if the entanglement degree of the fiber bundle is in the range of 5 / m to 20 / m, the firing process passability is further improved, and the resin impregnation property and the fiber opening property of the obtained carbon fiber bundle are further improved. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a surface of a single fiber of a carbon fiber precursor fiber bundle for explaining a center line average roughness (Ra).
FIG. 2 is a cross-sectional view of the surface of a single fiber of a carbon fiber precursor fiber bundle for explaining the maximum height (Ry).
FIG. 3 is a cross-sectional view of the surface of a single fiber of a carbon fiber precursor fiber bundle for explaining a distance (S) between local peaks.
Claims (7)
単繊維の繊維断面の長径と短径との比(長径/短径)が、1.05〜1.6であり、
ICP発光分析によって測定されるSi量が、500〜4000ppmの範囲であり、
単繊維の表面の最大高さ(Ry)が、0.1〜0.5μmであることを特徴とする炭素繊維前駆体繊維束。A carbon fiber precursor fiber bundle composed of a single fiber of a plurality of acrylonitrile polymers,
The ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section of the single fiber is 1.05 to 1.6,
Si amount measured by ICP emission analysis, Ri range der of 500~4000Ppm,
Maximum height of the surface of the monofilament (Ry) is a carbon fiber precursor fiber bundle, characterized in 0.1~0.5μm der Rukoto.
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201535A JP3892212B2 (en) | 2000-07-03 | 2000-07-03 | Carbon fiber precursor fiber bundle |
MXPA02012862A MXPA02012862A (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor fiber bundle. |
KR10-2002-7017389A KR100473126B1 (en) | 2000-06-23 | 2001-06-18 | Carbon Fiber Precursor Fiber Bundle |
EP01941080A EP1306470B1 (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor fiber bundle |
ES01941080T ES2302736T3 (en) | 2000-06-23 | 2001-06-18 | MAKE CARBON FIBER PRECURSOR FIBERS. |
CNB018126200A CN1187484C (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor fiber bundle and its producing method |
PT01941080T PT1306470E (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor fiber bundle |
CNB2004100696086A CN1249280C (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor bundle and manufacturing method for the same |
DE60133560T DE60133560T2 (en) | 2000-06-23 | 2001-06-18 | KOHLENSTOFFFASERPRECURSORBÜNDEL |
HU0301420A HU227286B1 (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor fiber bundle and process for making it |
PCT/JP2001/005170 WO2001098566A1 (en) | 2000-06-23 | 2001-06-18 | Carbon fiber precursor fiber bundle |
US09/885,963 US6503624B2 (en) | 2000-06-23 | 2001-06-22 | Carbon fiber precursor fiber bundle and manufacturing method of the same |
TW090115242A TW508380B (en) | 2000-06-23 | 2001-06-22 | The carbon fiber precursor fiber bundle with the product method |
US10/293,324 US6569523B2 (en) | 2000-06-23 | 2002-11-14 | Carbon fiber bundle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201535A JP3892212B2 (en) | 2000-07-03 | 2000-07-03 | Carbon fiber precursor fiber bundle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006223229A Division JP4216873B2 (en) | 2006-08-18 | 2006-08-18 | Method for producing carbon fiber precursor fiber bundle |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002020927A JP2002020927A (en) | 2002-01-23 |
JP2002020927A5 JP2002020927A5 (en) | 2005-07-14 |
JP3892212B2 true JP3892212B2 (en) | 2007-03-14 |
Family
ID=18699209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000201535A Expired - Lifetime JP3892212B2 (en) | 2000-06-23 | 2000-07-03 | Carbon fiber precursor fiber bundle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3892212B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1719829B1 (en) | 2004-02-13 | 2010-07-14 | Mitsubishi Rayon Co., Ltd. | Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor |
JP4851083B2 (en) * | 2004-12-24 | 2012-01-11 | 三菱レイヨン株式会社 | Carbon fiber precursor tow and flame resistant fiber precursor tow package |
KR100962425B1 (en) * | 2008-02-26 | 2010-06-14 | 정주성 | Acryl carbide fiber incombustible material |
JP5313788B2 (en) * | 2009-07-02 | 2013-10-09 | 三菱レイヨン株式会社 | Carbon fiber precursor fiber bundle and method for producing the same |
JP5313797B2 (en) * | 2009-07-17 | 2013-10-09 | 三菱レイヨン株式会社 | Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle |
JP5473468B2 (en) * | 2009-08-10 | 2014-04-16 | 三菱レイヨン株式会社 | Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle |
DE102009047514A1 (en) * | 2009-12-04 | 2011-07-07 | Sgl Carbon Se, 65203 | Fibers for the production of composite materials |
JP6040786B2 (en) * | 2013-01-25 | 2016-12-07 | 東レ株式会社 | Carbon fiber bundle |
JP6477546B2 (en) * | 2016-03-09 | 2019-03-06 | 東レ株式会社 | Method for producing carbon fiber precursor fiber bundle, method for producing carbon fiber bundle, and carbon fiber bundle |
JP7155577B2 (en) * | 2018-03-29 | 2022-10-19 | 三菱ケミカル株式会社 | Carbon fiber precursor Acrylic fiber Carbon fiber |
CN112414998A (en) * | 2020-11-09 | 2021-02-26 | 中国科学院山西煤炭化学研究所 | Method for determining impurity elements in polyacrylonitrile carbon fiber sample |
-
2000
- 2000-07-03 JP JP2000201535A patent/JP3892212B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002020927A (en) | 2002-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100473126B1 (en) | Carbon Fiber Precursor Fiber Bundle | |
JP5313788B2 (en) | Carbon fiber precursor fiber bundle and method for producing the same | |
JP5765420B2 (en) | Carbon fiber bundle and method for producing carbon fiber | |
JP5264150B2 (en) | Carbon fiber strand and method for producing the same | |
JP5720783B2 (en) | Carbon fiber bundle and method for producing carbon fiber bundle | |
JP3892212B2 (en) | Carbon fiber precursor fiber bundle | |
JP5741815B2 (en) | Carbon fiber precursor acrylic fiber bundle and carbon fiber bundle | |
JP4216873B2 (en) | Method for producing carbon fiber precursor fiber bundle | |
JP5473468B2 (en) | Carbon fiber precursor fiber bundle, method for producing the same, and carbon fiber bundle | |
JP3737969B2 (en) | Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same | |
JP2006299439A (en) | Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same | |
JP5313797B2 (en) | Acrylonitrile-based precursor fiber bundle for carbon fiber, method for producing the same, and carbon fiber bundle | |
JP4624571B2 (en) | Method for producing carbon fiber precursor yarn | |
JP4775928B2 (en) | Method for producing carbon fiber and acrylonitrile-based precursor fiber | |
JP4332285B2 (en) | Carbon fiber precursor fiber bundle | |
JP3047731B2 (en) | Carbon fiber for filament winding molding and method for producing the same | |
JP2013181264A (en) | Carbon fiber bundle | |
JP4261075B2 (en) | Carbon fiber bundle | |
JPH10195718A (en) | Carbon yarn and its production | |
JP2004060126A (en) | Carbon fiber and method for producing the same | |
JP6232814B2 (en) | Acrylic fiber manufacturing method | |
JP7155577B2 (en) | Carbon fiber precursor Acrylic fiber Carbon fiber | |
JPH03241014A (en) | Carbon fiber having low specific gravity | |
JP2018159139A (en) | Acrylic fiber bundle and production method of carbon fiber using the same | |
JPH09273032A (en) | Carbon fiber precursor filament yarn and its production and production of carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041111 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060905 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061206 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3892212 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091215 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101215 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111215 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121215 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131215 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |