[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3891307B2 - Nd-Fe-B rare earth permanent sintered magnet material - Google Patents

Nd-Fe-B rare earth permanent sintered magnet material Download PDF

Info

Publication number
JP3891307B2
JP3891307B2 JP2005370225A JP2005370225A JP3891307B2 JP 3891307 B2 JP3891307 B2 JP 3891307B2 JP 2005370225 A JP2005370225 A JP 2005370225A JP 2005370225 A JP2005370225 A JP 2005370225A JP 3891307 B2 JP3891307 B2 JP 3891307B2
Authority
JP
Japan
Prior art keywords
mass
rare earth
alloy
ihc
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005370225A
Other languages
Japanese (ja)
Other versions
JP2006210893A (en
Inventor
健治 山本
晃一 廣田
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005370225A priority Critical patent/JP3891307B2/en
Publication of JP2006210893A publication Critical patent/JP2006210893A/en
Application granted granted Critical
Publication of JP3891307B2 publication Critical patent/JP3891307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

本発明は、Nd−Fe−B系希土類永久焼結磁石材料に関する。 The present invention relates to a Nd—Fe—B rare earth permanent sintered magnet material.

希土類永久磁石は、優れた磁気特性と経済性のため、電気・電子機器の分野で多用されており、近年益々その高性能化が要求されている。
R−Fe−B系希土類永久磁石を高特性化するためには、合金中の主相成分であるR2Fe141相の存在割合を増大させることが必要である。そのことは非磁性相であるNdリッチ相を減少させることと同義である。そのためNdリッチ相をできる限り酸化や炭化や窒化させないように合金の酸素・炭素・窒素濃度を低下させることが必要である。
しかし、合金中の酸素濃度を低下させると焼結工程において異常粒成長が起こりやすく、Brは高いが、iHcが低く、(BH)maxの不十分な角型性の悪い磁石となる。
Rare earth permanent magnets are widely used in the field of electrical and electronic equipment because of their excellent magnetic properties and economy, and in recent years, their performance is increasingly required.
In order to improve the properties of the R—Fe—B rare earth permanent magnet, it is necessary to increase the proportion of the R 2 Fe 14 B 1 phase that is the main phase component in the alloy. This is synonymous with reducing the Nd-rich phase, which is a nonmagnetic phase. Therefore, it is necessary to reduce the oxygen, carbon, and nitrogen concentrations of the alloy so that the Nd-rich phase is not oxidized, carbonized, or nitrided as much as possible.
However, if the oxygen concentration in the alloy is reduced, abnormal grain growth is likely to occur in the sintering process, and although Br is high, iHc is low and (BH) max is insufficient, resulting in a magnet with poor squareness.

本発明者は、先に提案した特開2002−75717号公報(特許文献1)で述べた通り、磁気特性の向上を図るために製造工程中の酸素濃度を低減し、合金中の酸素濃度を低下させても、ZrB化合物、NbB化合物又はHfB化合物を磁石中に微細かつ一様に析出させることによって、最適焼結温度領域を著しく拡大し、異常粒成長が少ない、高性能なNd−Fe−B系希土類永久磁石材料の生産が可能となったことを報告した。
更に、本発明者は磁石合金のコストダウンを図るために、大きな炭素濃度を有する安価な原料を用いて製造してみたところ、iHcが著しく低下し、角型性も悪く、製品としては使用不可となる特性しか得られなかった。
この磁気特性の著しい低下は、現存する超高特性磁石はRリッチ相を必要最小限の量にしているために、僅かの炭素濃度の増加によっても、酸化していないRリッチ相の多くが炭化物となるために液相焼結に必要なRリッチ相が極端に減少したためと考えられる。
これまで工業的に生産されてきたNd系焼結磁石は炭素濃度がおおよそ0.05%を超えると保磁力が減少し始め、約0.1%を超えると製品として使用不可となることがわかっている。
As described in Japanese Patent Application Laid-Open No. 2002-75717 (Patent Document 1), the present inventor reduced the oxygen concentration during the manufacturing process in order to improve the magnetic characteristics, and reduced the oxygen concentration in the alloy. Even if it is lowered, the optimum sintering temperature range is remarkably expanded by depositing the ZrB compound, NbB compound or HfB compound finely and uniformly in the magnet, and high performance Nd-Fe- with little abnormal grain growth. It was reported that production of B-based rare earth permanent magnet materials became possible.
Furthermore, the present inventor tried to manufacture a magnet alloy by using an inexpensive raw material having a large carbon concentration. As a result, iHc was remarkably lowered, the squareness was poor, and the product could not be used. Only the characteristic which becomes is obtained.
This significant decrease in magnetic properties is due to the fact that existing ultra-high performance magnets have the minimum amount of R-rich phase, so even with a slight increase in carbon concentration, much of the non-oxidized R-rich phase is carbide. This is considered to be because the R-rich phase necessary for liquid phase sintering is extremely reduced.
It has been found that the Nd-based sintered magnets that have been industrially produced so far start to decrease in coercive force when the carbon concentration exceeds approximately 0.05%, and cannot be used as a product when it exceeds approximately 0.1%. ing.

特開2002−75717号公報JP 2002-75717 A

本発明は上記事情に鑑みなされたもので、高炭素、低酸素濃度においても、異常粒の成長が抑制され、最適焼結温度幅も広がり、良好な磁気特性を有するNd−Fe−B系希土類永久焼結磁石材料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an Nd—Fe—B rare earth having excellent magnetic properties, in which the growth of abnormal grains is suppressed, the optimum sintering temperature range is widened even at high carbon and low oxygen concentrations. An object is to provide a permanent sintered magnet material.

本発明者は、上記問題を解決するために鋭意検討を行った結果、Co,Al,Cuを含有する高炭素濃度のR−Fe−B系希土類永久焼結磁石中に、M−B系化合物及びM−B−Cu系化合物及びM−C系化合物(MはTi、Zr、Hfのうち1種又は2種以上)のうち少なくとも2種と、更にR酸化物とが合金組織中に析出し、かつその析出化合物の平均粒径が5μm以下であって、合金組織中に隣り合って析出した化合物間の最大間隔が50μm以下に均一に分散して析出させることにより、主に炭素濃度の大きいNd系磁石合金の磁気特性を著しく改良し、炭素濃度が0.1質量%を超えても保磁力が劣化しないNd−Fe−B系希土類焼結磁石を得ることに成功したものである。 As a result of intensive studies to solve the above problems, the present inventor has found that an M-B compound is contained in an R—Fe—B rare earth permanent sintered magnet having a high carbon concentration containing Co, Al, and Cu. And at least two of M-B-Cu compounds and M-C compounds (M is one or more of Ti, Zr, and Hf) and further an R oxide precipitates in the alloy structure. In addition, the average particle size of the precipitated compound is 5 μm or less, and the maximum distance between the compounds deposited adjacent to each other in the alloy structure is uniformly dispersed and precipitated to 50 μm or less. The present inventors have succeeded in obtaining an Nd—Fe—B rare earth sintered magnet that significantly improves the magnetic properties of an Nd magnet alloy and whose coercive force does not deteriorate even when the carbon concentration exceeds 0.1 mass%.

従って、本発明は下記Nd−Fe−B系希土類永久焼結磁石材料を提供する。
(I)R−Fe−Co−B−Al−Cu(但し、RはNd、Pr、Dy、Tb、Hoのうち1種又は2種以上で、Ndを15〜33質量%含有する)系希土類永久磁石材料であり、炭素を0.1質量%を超え0.3質量以下で含有するNd−Fe−B系磁石合金であって、(i)M−B系化合物、M−B−Cu系化合物、M−C系化合物(MはTi、Zr、Hfのうち1種又は2種以上)のうち少なくとも2種と、更に(ii)R酸化物とが合金組織中に析出し、かつその析出化合物の平均粒径が5μm以下であって、合金組織中に隣り合って析出した化合物間の最大間隔が50μm以下に分散して析出していることを特徴とするNd−Fe−B系希土類永久焼結磁石材料。
(II)主相成分であるR2Fe141相の存在容量割合が89〜99%であり、希土類又は希土類と遷移金属の硼素化物と炭化物と酸化物の合計の存在容量割合が0.1〜3%である(I)記載のNd−Fe−B系希土類永久焼結磁石材料。
(III)粒径50μm以上のR2Fe141相の巨大異常成長粒が、金属組織全体に対する存在容量割合で3%以下である(I)又は(II)記載のNd−Fe−B系希土類永久焼結磁石材料。
(IV)磁気特性がBrで12.5kG以上、保磁力iHcが10kOe以上、角型比4×(BH)max/Br2が0.95以上である(I),(II)又は(III)記載のNd−Fe−B系希土類永久焼結磁石材料。
(V)Nd−Fe−B系磁石合金が、質量百分率で、R27〜33%(但し、RはNd、Pr、Dy、Tb、Hoのうち1種又は2種以上で、Ndを15〜33%含有する)、Co0.1〜10%、B0.8〜1.5%、Al0.05〜1.0%、Cu0.02〜1.0%、Ti,Zr及びHfから選ばれる元素0.02〜1.0%、O0.04〜0.4%、N0.002〜0.1%、並びに残部Fe及び不可避の不純物からなる(I)〜(IV)のいずれか1項記載のNd−Fe−B系希土類永久焼結磁石材料。
Accordingly, the present invention provides the following Nd—Fe—B rare earth permanent sintered magnet material.
(I) R—Fe—Co—B—Al—Cu (where R is one or more of Nd, Pr, Dy, Tb, and Ho and contains 15 to 33% by mass of Nd) a permanent magnet material, an Nd-Fe-B based magnet alloy containing below 0.3 wt% exceeding 0.1 mass% of carbon, (i) M-B compound, M-B-Cu And at least two of M-C compounds and M-C compounds (M is one or more of Ti, Zr, and Hf), and (ii) R oxide is precipitated in the alloy structure, and Nd-Fe-B rare earths characterized in that the average particle size of the precipitated compounds is 5 μm or less, and the maximum distance between adjacent compounds deposited in the alloy structure is dispersed to 50 μm or less. Permanent sintered magnet material.
(II) The abundance ratio of the R 2 Fe 14 B 1 phase as the main phase component is 89 to 99%, and the abundance ratio of the total of the rare earth or rare earth and transition metal borides, carbides and oxides is 0. The Nd—Fe—B rare earth permanent sintered magnet material according to (I), which is 1 to 3%.
(III) The Nd—Fe—B system according to (I) or (II), wherein the giant abnormally grown grains of the R 2 Fe 14 B 1 phase having a grain size of 50 μm or more are 3% or less in the existing capacity ratio with respect to the entire metal structure Rare earth permanent sintered magnet material.
(IV) The magnetic characteristics are 12.5 kG or more in Br, the coercive force iHc is 10 kOe or more, and the squareness ratio 4 × (BH) max / Br 2 is 0.95 or more (I), (II) or (III) The Nd-Fe-B rare earth permanent sintered magnet material described.
(V) Nd—Fe—B based magnet alloy in mass percentage, R27 to 33% (where R is one or more of Nd, Pr, Dy, Tb, Ho, and Nd is 15 to 33) %), Co 0.1 to 10%, B 0.8 to 1.5%, Al 0.05 to 1.0%, Cu 0.02 to 1.0%, Ti, Zr and Hf. Nd- according to any one of (I) to (IV), comprising 02 to 1.0%, O 0.04 to 0.4%, N 0.002 to 0.1%, and the balance Fe and inevitable impurities Fe-B rare earth permanent sintered magnet material.

本発明のNd−Fe−B系希土類永久磁石材料によれば、上記M−B系化合物、M−B−Cu系化合物、M−C系化合物の2種以上とR酸化物とを細かく析出させることによって、異常粒成長が抑制され、最適焼結温度幅も広がり、高炭素、低酸素濃度においても良好な磁気特性を有するものである。   According to the Nd-Fe-B rare earth permanent magnet material of the present invention, two or more of the above-mentioned MB compound, MB-Cu compound, and MC compound and R oxide are finely precipitated. As a result, abnormal grain growth is suppressed, the optimum sintering temperature range is widened, and good magnetic properties are obtained even at high carbon and low oxygen concentrations.

本発明のNd−Fe−B系希土類永久磁石材料は、R−Fe−Co−B−Al−Cu(但し、RはNd、Pr、Dy、Tb、Hoのうち1種又は2種以上であるが、Ndを15〜33質量%含有する)系希土類永久磁石材料であって、好ましくは炭素を0.1質量%を超え0.3質量%以下、特に0.1質量%を超え0.2質量%以下を含有し、主相成分であるNd2Fe141相の存在容量割合が89〜99%であり、希土類又は希土類と遷移金属の硼素化物と炭化物と酸化物の存在容量割合が0.1〜3%であるNd−Fe−B系磁石合金において、該合金の金属組織中にMをTi、Zr、Hfのうち1種又は2種以上とし、M−B系化合物、M−B−Cu系化合物、M−C系化合物のうち少なくとも2種以上と、更にR酸化物とが合金組織中に析出し、かつその析出化合物の平均粒径が5μm以下で、かつ上記合金中に隣り合って存在する化合物間の最大間隔が50μm以下で均一に分散していることを特徴とする。 The Nd—Fe—B rare earth permanent magnet material of the present invention is R—Fe—Co—B—Al—Cu (where R is one or more of Nd, Pr, Dy, Tb, and Ho). Is a rare earth permanent magnet material containing 15 to 33% by mass of Nd, preferably more than 0.1% by mass and 0.3% by mass or less, and more preferably more than 0.1% by mass of carbon. The abundance ratio of the Nd 2 Fe 14 B 1 phase as the main phase component is 89-99%, and the abundance ratio of the rare earth or rare earth and transition metal borides, carbides and oxides. In an Nd-Fe-B magnet alloy of 0.1 to 3%, M is one or more of Ti, Zr, and Hf in the metal structure of the alloy, and an M-B compound, M- An alloy of at least two or more of B-Cu compounds and MC compounds, and further an R oxide Deposited in weaving, and the following average particle size 5μm of its deposit compounds, and the maximum spacing between compounds present adjacent in the alloy is characterized in that uniformly distributed in 50μm or less.

上記Nd−Fe−B系磁石合金の磁気特性は、磁性を発現するNd2Fe141相の存在容量割合を増大させ、それに反比例して非磁性のNdリッチ粒界相を少なくすることで、残留磁束密度とエネルギー積の向上が図られてきている。Ndリッチ相は、主相Nd2Fe141相の結晶粒界をクリーニングし、粒界の不純物や結晶欠陥を取り除くことによって保磁力を発生させるという役割を担っている。従って、いくら磁束密度が高くなるからといって、磁石合金の組織中から完全にNdリッチ相をなくすことはできず、少量のNdリッチ相をできるだけ効率的に活用して粒界のクリーニングを行わせ、いかに大きな保磁力を得るかが磁気特性開発上の要点となる。 The magnetic characteristics of the Nd-Fe-B based magnet alloy include increasing the abundance ratio of the Nd 2 Fe 14 B 1 phase that exhibits magnetism and reducing the nonmagnetic Nd-rich grain boundary phase in inverse proportion to it. Improvement of residual magnetic flux density and energy product has been attempted. The Nd-rich phase has a role of generating a coercive force by cleaning the crystal grain boundaries of the main phase Nd 2 Fe 14 B 1 phase and removing impurities and crystal defects at the grain boundaries. Therefore, no matter how high the magnetic flux density is, the Nd-rich phase cannot be completely eliminated from the structure of the magnet alloy, and the grain boundary is cleaned as efficiently as possible using a small amount of the Nd-rich phase. Therefore, how to obtain a large coercive force is the main point in developing magnetic properties.

一般に、Ndリッチ相は活性であるため、粉砕や焼結工程などを通して容易に酸化、炭化又は窒化し、Ndが消費される。そうなると粒界組織の健全化が完全に行えず、所定の保磁力が得られなくなる。残留磁束密度の高い保磁力の大きな高性能磁石を得る、言い換えれば最少量のNdリッチ相を有効に利用して磁気特性を得るには、原材料を含め製造工程中でのNdリッチ相の酸化や炭化や窒化を防ぐ対策が必要となる。
焼結工程では、微粉の焼結反応によって高密度化が進行する。成型された微粉は焼結温度で互いに接合しながら拡散し、介在する空孔を外部に排除することによって焼結体中の空間を充填し、収縮する。このとき共存するNdリッチな液相が焼結反応をスムーズに促進するといわれている。
しかし、炭素濃度が大きい安価な原料を使うことによって焼結体の炭素濃度が増加すると、Ndの炭化物が多く生成され、結晶粒界のクリーニングや粒界の不純物又は結晶欠陥を取り除くことができなくなり、保磁力が著しく低下するものと考えられる。
In general, since the Nd-rich phase is active, it is easily oxidized, carbonized or nitrided through pulverization or sintering processes, and Nd is consumed. If this happens, the grain boundary structure cannot be completely sounded and a predetermined coercive force cannot be obtained. In order to obtain a high-performance magnet with a high residual magnetic flux density and a large coercive force, in other words, to obtain magnetic properties by effectively using the minimum amount of Nd-rich phase, oxidation of the Nd-rich phase in the manufacturing process including raw materials is performed. Measures to prevent carbonization and nitriding are necessary.
In the sintering process, densification proceeds by a sintering reaction of fine powder. The molded fine powder diffuses while being bonded to each other at the sintering temperature, and fills the space in the sintered body by shrinking the interstitial pores to the outside and contracts. It is said that the Nd-rich liquid phase coexisting at this time smoothly promotes the sintering reaction.
However, if the carbon concentration of the sintered body is increased by using an inexpensive raw material with a high carbon concentration, a large amount of Nd carbide is generated, and it becomes impossible to clean crystal grain boundaries and remove impurities or crystal defects at the grain boundaries. It is considered that the coercive force is significantly reduced.

そこで、本発明者は、高炭素濃度のNd−Fe−B系磁石合金において、M−B系化合物、M−B−Cu系化合物、M−C系化合物の2種以上を析出させることにより、Ndの炭化物の生成を著しく抑え、かつ主相粒子であるR2Fe141相のBをCで置換することに成功し、本発明の効果を得た。
また、Ndの含有量を少なくし、更に工程での酸化を抑えた高特性Nd磁石においては、Nd酸化物の存在量不足のためにピン止め効果を十分に発揮することができなくなる。このため、特定の結晶粒が焼結温度で急激に大きく成長してしまう巨大異常成長粒発生の現象が現れ、主に角型性が著しく低下するものと考えられる。
Therefore, the present inventor precipitated two or more of an M-B compound, an M-B-Cu compound, and an MC compound in a high carbon concentration Nd-Fe-B-based magnet alloy, The production of Nd carbide was remarkably suppressed, and B in the R 2 Fe 14 B 1 phase, which is the main phase particle, was successfully replaced with C, and the effects of the present invention were obtained.
In addition, in a high-performance Nd magnet with a reduced Nd content and further suppressed oxidation in the process, the pinning effect cannot be sufficiently exhibited due to the insufficient amount of Nd oxide. For this reason, the phenomenon of generation of huge abnormally grown grains in which specific crystal grains grow rapidly and greatly at the sintering temperature appears, and it is considered that the squareness is remarkably lowered mainly.

上記問題に関し、Nd磁石合金中にM−B系化合物、M−B−Cu系化合物、M−C系化合物のうち少なくとも2種と、更にR酸化物とを析出させることで、それらの粒界でのピン止め効果により焼結体の異常粒成長を抑えることができたと考えられる。
このようなM−B系化合物、M−B−Cu系化合物、M−C系化合物と更にR酸化物との効果によって、広い焼結温度範囲において巨大異常成長粒の発生を抑制することが可能となり、粒径が50μm以上となっているR2Fe141相の巨大異常成長粒を金属組織全体に対して存在容量割合で3%以下とすることができる。
更にM−B系化合物、M−B−Cu系化合物、M−C系化合物の効果によって、高炭素濃度を有する焼結体の保磁力の減少を著しく抑えることができ、高炭素濃度においても高特性磁石を製造することが可能となった。
With respect to the above problem, at least two of the MB compound, the MB-Cu compound, and the MC compound and further the R oxide are precipitated in the Nd magnet alloy, so that the grain boundaries thereof are precipitated. It is considered that the abnormal grain growth of the sintered body could be suppressed by the pinning effect at.
Due to the effects of such M-B compounds, M-B-Cu compounds, M-C compounds and further R oxides, it is possible to suppress the occurrence of giant abnormally grown grains in a wide sintering temperature range. Thus, the giant abnormally grown grains of the R 2 Fe 14 B 1 phase having a grain size of 50 μm or more can be made 3% or less in terms of the existing capacity with respect to the entire metal structure.
Furthermore, due to the effects of the M-B compound, M-B-Cu compound, and M-C compound, the decrease in coercive force of the sintered body having a high carbon concentration can be remarkably suppressed, and even at a high carbon concentration, the high It became possible to manufacture characteristic magnets.

以上のように、本発明の希土類永久磁石材料は、好ましくは主相成分であるNd2Fe141相の存在容量割合が89〜99%、より好ましくは93〜98%であって、かつまた希土類又は希土類と遷移金属の硼素化物と炭化物や酸化物の存在容量割合が0.1〜3%、より好ましくは0.5〜2%である高特性Nd−Fe−B系磁石合金において、該合金の金属組織中にM−B系化合物、M−B−Cu系化合物、M−C系化合物のうち少なくとも2種と、更にR酸化物が合金組織中に析出し、その析出平均粒径としては5μm以下、好ましくは0.1〜5μm、特に0.5〜2μmで、かつまた上記合金中に隣り合って析出する最大の間隔が50μm以下、好ましくは5〜10μmで均一に分散しているものであり、この場合、この希土類永久磁石材料において粒径が50μm以上となっているR2Fe141相の巨大異常成長粒が、金属組織全体に対して存在容量割合で3%以下であることが好適である。なお、Ndリッチ相は0.5〜10%、特に1〜5%であることが好ましい。 As described above, the rare earth permanent magnet material of the present invention preferably has an abundance ratio of Nd 2 Fe 14 B 1 phase as a main phase component of 89 to 99%, more preferably 93 to 98%, and Further, in the high-characteristic Nd—Fe—B based magnet alloy in which the existing capacity ratio of the rare earth or rare earth and transition metal borides, carbides and oxides is 0.1 to 3%, more preferably 0.5 to 2%, In the metal structure of the alloy, at least two kinds of MB compound, MB-Cu compound, and MC compound, and further R oxide precipitates in the alloy structure, and the precipitation average particle size thereof As 5 μm or less, preferably 0.1 to 5 μm, particularly 0.5 to 2 μm, and the maximum distance between adjacent deposits in the alloy is 50 μm or less, preferably 5 to 10 μm, and uniformly dispersed. In this case, this rare earth permanent It is preferable that the giant abnormally grown grains of the R 2 Fe 14 B 1 phase having a grain size of 50 μm or more in the magnet material is 3% or less in terms of the existing capacity with respect to the entire metal structure. The Nd-rich phase is preferably 0.5 to 10%, particularly 1 to 5%.

ここで、上記希土類永久磁石合金は、その組成として、質量百分率で、R=27〜33%、特に28.8〜31.5%、Co=0.1〜10%、特に1.3〜3.4%、B=0.8〜1.5%、好ましくは0.9〜1.4%、特に0.95〜1.15%、Al=0.05〜1.0%、特に0.1〜0.5%、Cu=0.02〜1.0%、特に0.05〜0.3%、Ti,Zr及びHfから選ばれる元素=0.02〜1.0%、特に0.04〜0.4%、C=0.1%を超え0.3%以下、特に0.1%を超え0.2%以下、O=0.04〜0.4%、特に0.06〜0.3%、N=0.002〜0.1%、特に0.005〜0.1%、Fe=残部、更に、不可避の不純物からなるものであることが好ましい。   Here, the composition of the rare earth permanent magnet alloy is R = 27 to 33%, particularly 28.8 to 31.5%, Co = 0.1 to 10%, particularly 1.3 to 3% by mass. .4%, B = 0.8 to 1.5%, preferably 0.9 to 1.4%, especially 0.95 to 1.15%, Al = 0.05 to 1.0%, especially 0. 1 to 0.5%, Cu = 0.02 to 1.0%, particularly 0.05 to 0.3%, an element selected from Ti, Zr and Hf = 0.02 to 1.0%, especially 0. 04 to 0.4%, C = over 0.1% to 0.3%, particularly over 0.1% to 0.2%, O = 0.04 to 0.4%, especially 0.06 to 0.3%, N = 0.002 to 0.1%, particularly 0.005 to 0.1%, Fe = remainder, and further preferably composed of inevitable impurities.

ここで、Rは希土類元素のうち1種又は2種以上であることを示すが、Ndは必須元素であり、合金組成中、Ndを15〜33質量%、特に18〜33質量%含有することが必要である。この場合、Rは上述したように27〜33質量%含有するが、これが27質量%未満ではiHcの減少が著しくなるおそれがあり、33質量%を超えるとBrの減少が著しくなるおそれがあるため、27〜33質量%とすることがよい。   Here, R indicates one or more of the rare earth elements, but Nd is an essential element, and Nd is contained in the alloy composition in an amount of 15 to 33% by mass, particularly 18 to 33% by mass. is required. In this case, as described above, R is contained in an amount of 27 to 33% by mass. However, if it is less than 27% by mass, iHc may be significantly reduced. If it exceeds 33% by mass, Br may be significantly reduced. 27-33 mass%.

本発明においてFeの一部をCoで置換することは、キュリー温度Tcの改善効果の上で有効である。また磁石を高温高湿度中にさらした場合の焼結体の質量減においてもCoは有効であるが、Coが0.1質量%未満ではTc改善や質量減改善の効果が少なく、コスト面を考慮して0.1〜10質量%とすることがよい。   In the present invention, replacing part of Fe with Co is effective in improving the Curie temperature Tc. Co is also effective in reducing the mass of the sintered body when the magnet is exposed to high temperature and high humidity. However, if Co is less than 0.1% by mass, the effect of Tc improvement and mass reduction is small, and the cost is reduced. In consideration of this, the content is preferably 0.1 to 10% by mass.

Bは、0.8質量%未満ではiHcの減少が著しくなるおそれがあり、1.5質量%を超えるとBrの減少が著しくなるおそれがあるため、0.8〜1.5質量%とすることがよい。   If B is less than 0.8% by mass, iHc may be significantly reduced. If it exceeds 1.5% by mass, Br may be significantly reduced. It is good.

Alは、コストをかけずに保磁力iHcを上昇させる上で有効であるが、0.05質量%未満ではiHcの増加の効果が非常に少なく、1.0質量%を超えるとBrの減少が大きくなるおそれがあるため、0.05〜1.0質量%とすることがよい。   Al is effective in increasing the coercive force iHc without cost, but if it is less than 0.05% by mass, the effect of increasing iHc is very small, and if it exceeds 1.0% by mass, the decrease in Br is reduced. Since there exists a possibility that it may become large, it is good to set it as 0.05-1.0 mass%.

Cuは、0.02質量%未満ではiHcの増加の効果が非常に少なく、1.0質量%を超えるとBrの減少が大きくなるおそれがあるため、0.02〜1.0質量%とすることがよい。   If Cu is less than 0.02% by mass, the effect of increasing iHc is very small, and if it exceeds 1.0% by mass, the reduction of Br may increase, so 0.02 to 1.0% by mass. It is good.

Ti,Zr及びHfから選ばれる元素は、CuやCとの複合効果により最適焼結温度領域を広げ、更に炭素と化合物を作り、Ndリッチ相の炭化を防ぐことができ、磁気特性中の特にiHcの増加に効果がある。0.02質量%未満ではiHcの増加の効果が非常に少なく、1.0質量%を超えるとBrの減少が大きくなるおそれがあるため、0.02〜1.0質量%とすることがよい。   Elements selected from Ti, Zr, and Hf can widen the optimum sintering temperature region due to the combined effect of Cu and C, further create carbon and compounds, and prevent carbonization of the Nd-rich phase, especially in the magnetic properties It is effective in increasing iHc. If the amount is less than 0.02% by mass, the effect of increasing iHc is very small. If the amount exceeds 1.0% by mass, the reduction of Br may increase, so 0.02 to 1.0% by mass is preferable. .

炭素(C)含有量は、0.1質量%以下、とりわけ0.05質量%以下では本発明の意味を十分に生かすことができないのでよくなく、また0.3質量%を超えると本発明の効果を発揮できなくなるため、0.1質量%を超え0.3質量%以下、特に0.1質量%を超え0.2質量%以下とすることがよい。   If the carbon (C) content is 0.1% by mass or less, particularly 0.05% by mass or less, the meaning of the present invention cannot be fully utilized, and if it exceeds 0.3% by mass, Since the effect cannot be exhibited, it is preferable to exceed 0.1% by mass and not more than 0.3% by mass, particularly more than 0.1% by mass and not more than 0.2% by mass.

窒素(N)含有量は、0.002質量%未満では過焼結になりやすく、角型性がよくなく、また0.1質量%を超えると焼結性及び角型性が悪く、更には保磁力を減少させるおそれがあるため、0.002〜0.1質量%とすることがよい。
なお、酸素(O)含有量は、0.04〜0.4質量%であることがよい。
If the nitrogen (N) content is less than 0.002% by mass, oversintering tends to occur and the squareness is not good, and if it exceeds 0.1% by mass, the sinterability and squareness are poor. Since there exists a possibility of reducing a coercive force, it is good to set it as 0.002-0.1 mass%.
The oxygen (O) content is preferably 0.04 to 0.4 mass%.

本発明に用いるNd、Pr、Dy、Tb、Cu、Ti、Zr、Hf等の原料はFeやAl等との合金や混合物でもよい。更に、使用原料中に含まれ、あるいは製造工程中に混入する0.2質量%以下の少量のLa,Ce,Sm,Ni,Mn,Si,Ca,Mg,S,P,W,Mo,Ta,Cr,Ga,Nbの存在は本発明の効果を損ねるものではない。   The raw materials such as Nd, Pr, Dy, Tb, Cu, Ti, Zr, and Hf used in the present invention may be alloys or mixtures with Fe, Al, and the like. Further, a small amount of La, Ce, Sm, Ni, Mn, Si, Ca, Mg, S, P, W, Mo, Ta contained in the raw material used or mixed during the manufacturing process is 0.2% by mass or less. , Cr, Ga and Nb do not impair the effects of the present invention.

本発明の永久磁石材料は、後述する実施例に示すような所用の材料を用い、常法に従って合金を得た後、必要に応じて水素化処理、脱水素処理を行い、微粉砕し、成型、焼結、熱処理することにより得ることができ、また二合金法を採用することもできる。   The permanent magnet material of the present invention uses the necessary materials as shown in the examples to be described later, and after obtaining an alloy according to a conventional method, it is subjected to hydrogenation treatment and dehydrogenation treatment as necessary, pulverized, and molded , Sintering, and heat treatment, and a two-alloy method can also be employed.

この場合、特に炭素濃度の多い原材料を使用し、かつTi、Zr、Hf添加量をこれらの好適存在範囲(0.02〜1.0質量%)となるように選定することで、1,000〜1,200℃、0.5〜5時間、不活性ガス雰囲気下で焼結し、更に300〜600℃、0.5〜5時間、不活性ガス雰囲気下で熱処理することにより、本発明の磁性材料を得ることができる。   In this case, by using a raw material having a particularly high carbon concentration and selecting the addition amount of Ti, Zr, and Hf so as to be within these preferable existence ranges (0.02 to 1.0% by mass), 1,000 By sintering in an inert gas atmosphere at ˜1,200 ° C. for 0.5 to 5 hours, and further heat-treating in an inert gas atmosphere at 300 to 600 ° C. for 0.5 to 5 hours, A magnetic material can be obtained.

本発明によれば、R−Fe−Co−B−Al−Cu系をベースとし、高濃度の炭素と極く少量のTi,Zr又はHfを含むR−Fe−Co−B−Al−Cu−Ti,Zr又はHf系の一定の組成範囲において、合金鋳造、粉砕、成型、焼結、更に焼結温度よりも低い温度で熱処理することにより、残留磁束密度(Br)と保磁力(iHc)が大きく、角型性に優れ、更に最適焼結温度領域が広い磁石合金を提供することができるものである。
従って、本発明の永久磁石材料は、その磁気特性がBrで12.5kG以上、保磁力iHcが10kOe以上、角型比4×(BH)max/Br2が0.95以上の優れた磁気特性を有するものとすることができる。
According to the present invention, R—Fe—Co—B—Al—Cu— based on the R—Fe—Co—B—Al—Cu system and containing a high concentration of carbon and a very small amount of Ti, Zr or Hf. Residual magnetic flux density (Br) and coercive force (iHc) are obtained by alloy casting, crushing, molding, sintering, and heat treatment at a temperature lower than the sintering temperature in a certain composition range of Ti, Zr or Hf. It is possible to provide a magnet alloy that is large, excellent in squareness, and has a wide optimum sintering temperature range.
Therefore, the permanent magnet material of the present invention has excellent magnetic properties such that the magnetic properties are 12.5 kG or more in Br, the coercive force iHc is 10 kOe or more, and the squareness ratio 4 × (BH) max / Br 2 is 0.95 or more. It can have.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
なお、下記の実施例の希土類永久磁石材料において、そのR2Fe141相の存在容量割合、希土類又は希土類と遷移金属の硼素化物と炭化物と酸化物の存在容量割合、及び粒径50μm以上のR2Fe141相巨大異常成長粒の存在容量割合は、表13にまとめて示す。
また、以下の実施例において、炭素濃度の大きい出発原料とは、原料中の炭素濃度の合計が0.1質量%を超え0.2質量%までであり、従来技術では十分な磁気特性が得られない原料である。また、特に記述のない出発原料は炭素濃度の合計が0.005〜0.05質量%である。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
In the rare earth permanent magnet materials of the following examples, the existing capacity ratio of the R 2 Fe 14 B 1 phase, the existing capacity ratio of the rare earth or rare earth and transition metal borides, carbides and oxides, and the particle size of 50 μm or more. Table 13 summarizes the abundance ratio of the R 2 Fe 14 B 1 phase giant abnormally grown grains.
In the following examples, the starting material having a high carbon concentration means that the total carbon concentration in the raw material is more than 0.1% by mass and up to 0.2% by mass, and sufficient magnetic properties can be obtained with the conventional technology. It is a raw material that can not be. In addition, starting materials not specifically described have a total carbon concentration of 0.005 to 0.05 mass%.

[実施例1]
出発原料として、Nd,Pr,電解鉄,Co,フェロボロン,Al,Cu及びチタンを使用し、質量比で28.9Nd−2.5Pr−BAL.Fe−4.5Co−1.2B−0.7Al−0.4Cu−XTi(X=0、0.04、0.4、1.4)の組成に配合後、単ロール急冷法により合金を得た。得られた合金を+1.5±0.3kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で800℃×3時間の脱水素処理を行った。この時得られた合金は、水素化・脱水素処理によって数百μmの粗粉になっている。得られた粗粉と潤滑剤として0.1質量%のステアリン酸をVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径3μm程度に微粉砕した。その後、これらの微粉を成型装置の金型に充填し、25kOeの磁界中で配向し、磁界に垂直方向に0.5ton/cm2の圧力で成型し、それらの成型体を1,000℃から10℃毎に1,200℃までの範囲で2時間、Ar雰囲気中で焼結し、更に冷却した後、500℃で1時間、Ar雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.111〜0.133質量%、O=0.095〜0.116質量%、N=0.079〜0.097質量%であった。
[Example 1]
As starting materials, Nd, Pr, electrolytic iron, Co, ferroboron, Al, Cu and titanium were used, and the mass ratio was 28.9Nd-2.5Pr-BAL. After blending with the composition of Fe-4.5Co-1.2B-0.7Al-0.4Cu-XTi (X = 0, 0.04, 0.4, 1.4), an alloy is obtained by a single roll quenching method. It was. The obtained alloy was hydrogenated in a hydrogen atmosphere of + 1.5 ± 0.3 kgf / cm 2 , and dehydrogenated at 800 ° C. for 3 hours in a vacuum of 10 −2 Torr or less. The alloy obtained at this time has become a coarse powder of several hundred μm by hydrogenation / dehydrogenation treatment. The obtained coarse powder and 0.1% by mass of stearic acid as a lubricant were mixed with a V mixer, and further pulverized to an average particle size of about 3 μm with a jet mill in a nitrogen stream. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 25 kOe, and molded at a pressure of 0.5 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered in an Ar atmosphere every 10 ° C up to 1,200 ° C for 2 hours, further cooled, and then heat treated in an Ar atmosphere at 500 ° C for 1 hour to obtain permanent magnet materials of each composition It was. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.111 to 0.133 mass% and O = 0.095, respectively. It was -0.116 mass% and N = 0.079-0.097 mass%.

得られた磁気特性の結果を表1に示す。0.04%及び0.4%Ti添加品は1,040〜1,070℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0%Ti添加品は、本実施例のような炭素濃度が0.111〜0.133質量%ではiHcが低く、角型性も悪いことが分る。1.4%Ti添加品は1,040〜1,070℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.04%及び0.4%Ti添加品に比べ、低めの値となっていることがわかる。
Table 1 shows the results of the obtained magnetic characteristics. The 0.04% and 0.4% Ti-added products are good at 1040 to 1,070 ° C with almost no change in Br, iHc and squareness ratio, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the 0% Ti-added product has low iHc and poor squareness when the carbon concentration is 0.111 to 0.133% by mass as in this example. The 1.4% Ti-added product is good at 1040 to 1,070 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products containing 0.04% and 0.4% Ti.

Figure 0003891307
Figure 0003891307

[実施例2]
出発原料として、炭素濃度の大きいNd,Dy,電解鉄,Co,フェロボロン,Al,Cu及びチタンを使用し、Ti添加量の検討として、質量比で28.6Nd−2.5Dy−BAL.Fe−9.0Co−1.0B−0.8Al−0.6Cu−XTi(X=0.01、0.2、0.6、1.5)の組成に配合後、高周波溶解し、水冷銅鋳型に鋳造することにより、各々の組成の鋳塊を得た。これらの鋳塊をブラウンミルで粗粉砕し、得られた粗粉と潤滑剤として0.05質量%のラウリン酸をVミキサーで混合し、更に窒素気流中ジェットミルにて処理し、平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、15kOeの磁界中で配向し、磁界に垂直方向に1.2ton/cm2の圧力で成型し、それの成型体を1,000〜1,200℃で2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、10-2Torr以下の真空雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.180〜0.208質量%、O=0.328〜0.398質量%、N=0.027〜0.041質量%であった。
[Example 2]
As a starting material, Nd, Dy, electrolytic iron, Co, ferroboron, Al, Cu, and titanium having a high carbon concentration were used. As a study of the amount of Ti added, 28.6 Nd-2.5 Dy-BAL. After blending into the composition of Fe-9.0Co-1.0B-0.8Al-0.6Cu-XTi (X = 0.01, 0.2, 0.6, 1.5), high-frequency dissolution, water-cooled copper An ingot of each composition was obtained by casting into a mold. These ingots were coarsely pulverized with a brown mill, and the obtained coarse powder and 0.05% by mass of lauric acid as a lubricant were mixed with a V mixer, and further treated with a jet mill in a nitrogen stream to obtain an average particle size. A fine powder of about 5 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 15 kOe, and molded at a pressure of 1.2 ton / cm 2 in a direction perpendicular to the magnetic field. , Sintered at 200 ° C. for 2 hours in a vacuum atmosphere of 10 −4 Torr or less, further cooled, and then heat treated at 500 ° C. for 1 hour in a vacuum atmosphere of 10 −2 Torr or less to obtain a permanent composition. A magnet material was obtained. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.180 to 0.208 mass% and O = 0.328, respectively. It was -0.398 mass% and N = 0.027-0.041 mass%.

得られた磁気特性の結果を表2に示す。0.2%及び0.6%Ti添加品は1,100〜1,130℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0.01%Ti添加品は、本実施例のような炭素濃度が0.180〜0.208質量%ではiHcが低く、角型性も悪いことがわかる。
1.5%Ti添加品は1,100〜1,130℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.2%及び0.6%Ti添加品に比べ、低めの値となっていることがわかる。
The obtained magnetic property results are shown in Table 2. The 0.2% and 0.6% Ti-added products are good at 1,100 to 1,130 ° C with almost no change in Br, iHc, and squareness ratio, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the 0.01% Ti-added product has a low iHc and poor squareness when the carbon concentration is 0.180 to 0.208% by mass as in this example.
The 1.5% Ti-added product is good at 1,100 to 1,130 ° C with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C, but the amount added is too much Therefore, it can be seen that both Br and iHc have lower values than the products with 0.2% and 0.6% Ti added.

Figure 0003891307
Figure 0003891307

[実施例3]
出発原料として、炭素濃度の大きいNd,Tb,電解鉄,Co,フェロボロン,Al,Cu及びチタンを使用し、二合金法を用い、母合金を質量比で27.3Nd−BAL.Fe−0.5Co−1.0B−0.4Al−0.2Cuの組成に、助剤合金を質量比で46.2Nd−17.0Tb−BAL.Fe−18.9Co−XTi(X=0.2、4.0、9.8、25)の組成にした。混合後の組成は29.2Nd−1.7Tb−BAL.Fe−2.3Co−0.9B−0.4Al−0.2Cu−XTi(X=0.01、0.2、0.5、1.3)である。母合金は単ロール急冷法により作製し、+0.5〜+2.0kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で500℃×3時間の半脱水素処理を行った。また、助材合金は高周波溶解し、水冷銅鋳型に鋳造することにより鋳塊を得た。
[Example 3]
As a starting material, Nd, Tb, electrolytic iron, Co, ferroboron, Al, Cu and titanium having a high carbon concentration were used, and a two-alloy method was used, and the mother alloy was 27.3 Nd-BAL. In the composition of Fe-0.5Co-1.0B-0.4Al-0.2Cu, the auxiliary alloy is 46.2 Nd-17.0 Tb-BAL. The composition was Fe-18.9Co-XTi (X = 0.2, 4.0, 9.8, 25). The composition after mixing was 29.2Nd-1.7Tb-BAL. Fe-2.3Co-0.9B-0.4Al-0.2Cu-XTi (X = 0.01, 0.2, 0.5, 1.3). The mother alloy is produced by a single roll quenching method, subjected to hydrogenation treatment in a hydrogen atmosphere of +0.5 to +2.0 kgf / cm 2 , and semi-dehydrogenated at 500 ° C. for 3 hours in a vacuum of 10 −2 Torr or less. Processed. The auxiliary alloy was melted at high frequency and cast into a water-cooled copper mold to obtain an ingot.

次に、母合金を90質量%と助材を10質量%秤量し、潤滑剤としてPVAを0.05質量%添加してVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径4μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、15kOeの磁界中で配向し、磁界に垂直方向に0.5ton/cm2の圧力で成型し、それの成型体を1,000℃から10℃毎に1,200℃まで2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、10-2Torr以下のArガス雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.248〜0.268質量%、O=0.225〜0.298質量%、N=0.029〜0.040質量%であった。 Next, 90% by mass of the master alloy and 10% by mass of the auxiliary material are weighed, 0.05% by mass of PVA is added as a lubricant, mixed with a V mixer, and further, an average particle diameter of 4 μm is obtained by a jet mill in a nitrogen stream. About a fine powder was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 15 kOe, and molded at a pressure of 0.5 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered every 10 ° C to 1,200 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then heat treated at 500 ° C for 1 hour in an Ar gas atmosphere of 10 -2 Torr or less. The permanent magnet material of each composition was obtained. In addition, the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.248 to 0.268 mass% and O = 0.225, respectively. It was -0.298 mass%, N = 0.029-0.040 mass%.

得られた磁気特性の結果を表3に示す。0.2%及び0.5%Ti添加品は1,060〜1,090℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0.01%Ti添加品は、本実施例のような炭素濃度が0.248〜0.268質量%ではiHcが低く、角型性も悪いことがわかる。1.3%Ti添加品は1,060〜1,090℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.2%及び0.5%Ti添加品に比べ、低めの値となっていることがわかる。
Table 3 shows the magnetic characteristics obtained. The 0.2% and 0.5% Ti-added products are good at 1,060 to 1,090 ° C with almost no change in Br, iHc and squareness ratio, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the 0.01% Ti-added product has a low iHc and poor squareness when the carbon concentration is 0.248 to 0.268% by mass as in this example. The 1.3% Ti-added product is good at 1,060 to 1,090 ° C. with almost no change in Br, iHc and squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products with 0.2% and 0.5% Ti added.

Figure 0003891307
Figure 0003891307

[実施例4]
出発原料として、炭素濃度の大きいNd,Pr,Dy,電解鉄,Co,フェロボロン,Al,Cu及びチタンを使用し、先の実施例と同様に二合金法を用いた。母合金を質量比で26.8Nd−2.2Pr−BAL.Fe−0.5Co−1.0B−0.2Alの組成に、助剤合金を質量比で37.4Nd−10.5Dy−BAL.Fe−26.0Co−0.8B−0.2Al−1.6Cu−XTi(X=0、1.2、7.0、17.0)の組成にした。混合後の組成は27.9Nd−2.0Pr−1.1Dy−BAL.Fe−3.0Co−1.0B−0.2Al−0.2Cu−XTi(X=0、0.1、0.7、1.7)である。母合金・助材合金共に単ロール急冷法により作製した。母合金のみ+0.5〜+2.0kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で500℃×3時間の半脱水素処理を行い、平均粒径で数百μmの粗粉を得た。また、助材合金はブラウンミルで粉砕し、平均粒径で数百μmの粗粉を得た。
[Example 4]
As a starting material, Nd, Pr, Dy, electrolytic iron, Co, ferroboron, Al, Cu and titanium having a high carbon concentration were used, and a two-alloy method was used as in the previous example. The mother alloy was 26.8 Nd-2.2 Pr-BAL. In the composition of Fe-0.5Co-1.0B-0.2Al, the auxiliary alloy is 37.4Nd-10.5Dy-BAL. The composition was Fe-26.0Co-0.8B-0.2Al-1.6Cu-XTi (X = 0, 1.2, 7.0, 17.0). The composition after mixing was 27.9 Nd-2.0 Pr-1.1 Dy-BAL. Fe-3.0Co-1.0B-0.2Al-0.2Cu-XTi (X = 0, 0.1, 0.7, 1.7). Both the mother alloy and the auxiliary alloy were produced by a single roll quenching method. Only the mother alloy is subjected to hydrogenation treatment in a hydrogen atmosphere of +0.5 to +2.0 kgf / cm 2 , and subjected to a semi-dehydrogenation treatment at 500 ° C. for 3 hours in a vacuum of 10 −2 Torr or less. A coarse powder of several hundred μm was obtained. The auxiliary alloy was pulverized with a brown mill to obtain a coarse powder having an average particle size of several hundreds of μm.

次に、母合金を90質量%と助材を10質量%秤量し、潤滑剤としてカプロン酸を0.1質量%添加してVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、20kOeの磁界中で配向し、磁界に垂直方向に0.8ton/cm2の圧力で成型し、それの成型体を1,000℃から10℃毎に1,200℃まで2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、10-2Torr以下のArガス雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.198〜0.222質量%、O=0.095〜0.138質量%、N=0.069〜0.090質量%であった。 Next, 90% by mass of the master alloy and 10% by mass of the auxiliary material are weighed, 0.1% by mass of caproic acid is added as a lubricant, mixed by a V mixer, and further average particle size is obtained by a jet mill in a nitrogen stream. A fine powder of about 5 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 20 kOe, and molded at a pressure of 0.8 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered every 10 ° C to 1,200 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then heat treated at 500 ° C for 1 hour in an Ar gas atmosphere of 10 -2 Torr or less. The permanent magnet material of each composition was obtained. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.198 to 0.222 mass% and O = 0.095, respectively. It was -0.138 mass%, N = 0.069-0.090 mass%.

得られた磁気特性の結果を表4に示す。0.1%及び0.7%Ti添加品は1,070〜1,100℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
Ti添加なし品は、本実施例のような炭素濃度が0.198〜0.222質量%ではiHcが低く、角型性も悪いことがわかる。1.7%Ti添加品は1,070〜1,100℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.1%及び0.7%Ti添加品に比べ、低めの値となっていることがわかる。
Table 4 shows the obtained magnetic characteristics. The 0.1% and 0.7% Ti-added products are good at 1,070 to 1,100 ° C. with almost no change in Br, iHc and squareness, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the product without Ti addition has a low iHc and poor squareness when the carbon concentration is 0.198 to 0.222% by mass as in this example. The 1.7% Ti-added product is good at 1,070 to 1,100 ° C. with almost no change in Br, iHc, and squareness ratio, and has an optimum sintering temperature range of 30 ° C., but the added amount is too large. Therefore, it can be seen that both Br and iHc have lower values than the products with 0.1% and 0.7% Ti added.

Figure 0003891307
Figure 0003891307

これら実施例1〜4の各試料についてEPMA(Electron Probe Micro Analysis)による元素分布像を見ると、Ti量が本発明の好適範囲である0.02〜1.0質量%である焼結体中には、直径が5μm以下のTiB化合物、TiBCu化合物及びTiC化合物を50μm以下の間隔で一様に細かく析出していた。
これらのことから、適量のTiを添加し、焼結体中にTiB化合物、TiBCu化合物及びTiC化合物を一様に細かく析出させることによって、異常粒成長を抑制し、最適焼結温度幅を広げ、このような高炭素・低酸素濃度においても良好な磁気特性が得られていることがわかる。
When the element distribution image by EPMA (Electron Probe Micro Analysis) is observed for each sample of Examples 1 to 4, the Ti amount is 0.02 to 1.0% by mass in the preferred range of the present invention. The TiB compound, TiBCu compound, and TiC compound having a diameter of 5 μm or less were uniformly and finely deposited at intervals of 50 μm or less.
From these, an appropriate amount of Ti is added, and TiB compound, TiBCu compound and TiC compound are uniformly and finely precipitated in the sintered body, thereby suppressing abnormal grain growth and widening the optimum sintering temperature range, It can be seen that good magnetic properties are obtained even at such high carbon and low oxygen concentrations.

[実施例5]
出発原料として、炭素濃度の大きいNd,Pr,Dy,Tb,電解鉄,Co,フェロボロン,Al,Cu及びジルコニウムを使用し、Zr添加量の比較として、質量比で26.7Nd−1.1Pr−1.3Dy−1.2Tb−BAL.Fe−3.6Co−1.1B−0.4Al−0.1Cu−XZr(X=0、0.1、0.6、1.3)の組成に配合後、双ロール急冷法により合金を得た。得られた合金を+1.0±0.2kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で700℃×5時間の脱水素処理を行った。この時得られた合金は、水素化・脱水素処理によって数百μmの粗粉になっている。得られた粗粉と潤滑剤として0.1質量%のパナセートをVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径5μm程度に微粉砕した。その後、これらの微粉を成型装置の金型に充填し、20kOeの磁界中で配向し、磁界に垂直方向に1.2ton/cm2の圧力で成型し、それらの成型体を1,000〜1,200℃で2時間、Ar雰囲気中で焼結し、更に冷却した後、500℃で1時間、Ar雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.141〜0.153質量%、O=0.093〜0.108質量%、N=0.059〜0.074質量%であった。
[Example 5]
As a starting material, Nd, Pr, Dy, Tb, electrolytic iron, Co, ferroboron, Al, Cu, and zirconium having a high carbon concentration were used, and as a comparison of the amount of Zr added, 26.7 Nd-1.1 Pr- 1.3 Dy-1.2 Tb-BAL. After blending with the composition of Fe-3.6Co-1.1B-0.4Al-0.1Cu-XZr (X = 0, 0.1, 0.6, 1.3), an alloy is obtained by a twin roll quenching method. It was. The obtained alloy was hydrogenated in a hydrogen atmosphere of + 1.0 ± 0.2 kgf / cm 2 and dehydrogenated at 700 ° C. for 5 hours in a vacuum of 10 −2 Torr or less. The alloy obtained at this time has become a coarse powder of several hundred μm by hydrogenation / dehydrogenation treatment. The obtained coarse powder and 0.1% by mass of panacet as a lubricant were mixed with a V mixer, and further pulverized to an average particle size of about 5 μm with a jet mill in a nitrogen stream. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 20 kOe, and molded in a direction perpendicular to the magnetic field at a pressure of 1.2 ton / cm 2. Sintered at 200 ° C. for 2 hours in an Ar atmosphere, further cooled, and then heat treated at 500 ° C. for 1 hour in an Ar atmosphere to obtain permanent magnet materials of the respective compositions. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B based permanent magnet materials are C = 0.141 to 0.153 mass% and O = 0.093, respectively. It was -0.108 mass% and N = 0.059-0.074 mass%.

得られた磁気特性の結果を表5に示す。0.1%及び0.6%Zr添加品は1,050〜1,080℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
Zrなし品は、本実施例のような炭素濃度が0.141〜0.153質量%ではiHcが極端に低い値となることがわかる。1.3%Zr添加品は1,050〜1,080℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に低めの値となっていることがわかる。
Table 5 shows the results of the obtained magnetic characteristics. The 0.1% and 0.6% Zr-added products are good at 1,050 to 1,080 ° C. with almost no change in Br, iHc and squareness, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the Zr-free product has an extremely low iHc value when the carbon concentration is 0.141 to 0.153 mass% as in this example. The 1.3% Zr-added product is good at 1,050 to 1,080 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values.

Figure 0003891307
Figure 0003891307

[実施例6]
出発原料として、炭素濃度の大きいNd,Dy,電解鉄,Co,フェロボロン,Al,Cu及びフェロジルコニウムを使用し、Zr添加の有無の比較として、質量比で28.7Nd−2.5Dy−BAL.Fe−1.8Co−1.0B−0.8Al−0.2Cu−XZr(X=0.01,0.07,0.7,1.4)の組成に配合後、高周波溶解し、水冷銅鋳型に鋳造することにより、各々の組成の鋳塊を得た。これらの鋳塊をブラウンミルで粗粉砕し、得られた粗粉と潤滑剤として0.07質量%のオルフィンをVミキサーで混合し、更に窒素気流中ジェットミルにて処理し、平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、20kOeの磁界中で配向し、磁界に垂直方向に0.7ton/cm2の圧力で成型し、それの成型体を1,000〜1,200℃で2時間、Ar雰囲気中で焼結し、更に冷却した後、500℃で1時間、Ar雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.141〜0.162質量%、O=0.248〜0.271質量%、N=0.003〜0.010質量%であった。
[Example 6]
As a starting material, Nd, Dy, electrolytic iron, Co, ferroboron, Al, Cu, and ferrozirconium having a large carbon concentration were used, and as a comparison of the presence or absence of Zr addition, 28.7 Nd-2.5 Dy-BAL. After blending into the composition of Fe-1.8Co-1.0B-0.8Al-0.2Cu-XZr (X = 0.01, 0.07, 0.7, 1.4), it was melted at high frequency, and water-cooled copper An ingot of each composition was obtained by casting into a mold. These ingots were coarsely pulverized with a brown mill, and the obtained coarse powder and 0.07% by mass of orphine as a lubricant were mixed with a V mixer, and further treated with a jet mill in a nitrogen stream to obtain an average particle size of 5 μm. About a fine powder was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 20 kOe, and molded at a pressure of 0.7 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered at 200 ° C. for 2 hours in an Ar atmosphere, further cooled, and then heat treated at 500 ° C. for 1 hour in an Ar atmosphere to obtain permanent magnet materials of the respective compositions. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.141 to 0.162 mass% and O = 0.248, respectively. It was -0.271 mass% and N = 0.003-0.010 mass%.

得られた磁気特性の結果を表6に示す。0.07%及び0.7%Zr添加品は1,110〜1,140℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0.01%Zr添加品は、本実施例のような炭素濃度が高く、酸素濃度が低い場合はiHcが極端に低い値となることがわかる。1.4%Zr添加品は1,110〜1,140℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に低めの値となっていることがわかる。
Table 6 shows the results of the obtained magnetic characteristics. 0.07% and 0.7% Zr-added products are good at 1,110 to 1,140 ° C. with almost no change in Br, iHc and squareness ratio, and have an optimum sintering temperature range of 30 ° C. Recognize.
It can be seen that the 0.01% Zr-added product has a high carbon concentration as in this example, and iHc has an extremely low value when the oxygen concentration is low. The 1.4% Zr-added product is good with almost no change in Br, iHc, squareness ratio at 1,110 to 1,140 ° C, and the optimum sintering temperature range is 30 ° C, but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values.

Figure 0003891307
Figure 0003891307

[実施例7]
本発明を二合金法を利用することで更なる高特性化を試みた。出発原料として、炭素濃度の大きいNd,Dy,電解鉄,Co,フェロボロン,Al,Cu及びジルコニウムを使用し、母合金を質量比で28.3Nd−BAL.Fe−0.9Co−1.2B−0.2Al−XZr(X=0、0.07、0.7、1.4)の組成に、助剤合金を質量比で34.0Nd−19.2Dy−BAL.Fe−24.3Co−0.2B−1.5Cuの組成にした。混合後の組成は28.9Nd−1.9Dy−BAL.Fe−3.3Co−1.1B−0.2Al−0.2Cu−XZr(X=0、0.06、0.6、1.3)である。母合金は単ロール急冷法により作製し、+0.5〜+2.0kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で500℃×3時間の半脱水素処理を行った。また、助材合金は高周波溶解し、水冷銅鋳型に鋳造することにより鋳塊を得た。
[Example 7]
An attempt was made to further improve the characteristics of the present invention by utilizing a two-alloy method. As starting materials, Nd, Dy, electrolytic iron, Co, ferroboron, Al, Cu, and zirconium having a high carbon concentration were used, and the master alloy was 28.3 Nd-BAL. The composition of Fe-0.9Co-1.2B-0.2Al-XZr (X = 0, 0.07, 0.7, 1.4) was added to the auxiliary alloy in a mass ratio of 34.0 Nd-19.2 Dy. -BAL. The composition was Fe-24.3Co-0.2B-1.5Cu. The composition after mixing was 28.9Nd-1.9Dy-BAL. Fe-3.3Co-1.1B-0.2Al-0.2Cu-XZr (X = 0, 0.06, 0.6, 1.3). The mother alloy is produced by a single roll quenching method, subjected to hydrogenation treatment in a hydrogen atmosphere of +0.5 to +2.0 kgf / cm 2 , and semi-dehydrogenated at 500 ° C. for 3 hours in a vacuum of 10 −2 Torr or less. Processed. The auxiliary alloy was melted at high frequency and cast into a water-cooled copper mold to obtain an ingot.

次に、母合金を90質量%と助材を10質量%秤量し、潤滑剤としてステアリン酸を0.05質量%添加してVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径4μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、15kOeの磁界中で配向し、磁界に垂直方向に0.5ton/cm2の圧力で成型し、それの成型体を1,000℃から10℃毎に1,200℃まで2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、10-2Torr以下のArガス雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.203〜0.217質量%、O=0.125〜0.158質量%、N=0.021〜0.038質量%であった。 Next, 90% by mass of the master alloy and 10% by mass of the auxiliary material were weighed, 0.05% by mass of stearic acid was added as a lubricant, mixed with a V mixer, and further average particle size was measured with a jet mill in a nitrogen stream. A fine powder of about 4 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 15 kOe, and molded at a pressure of 0.5 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered every 10 ° C to 1,200 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then heat treated at 500 ° C for 1 hour in an Ar gas atmosphere of 10 -2 Torr or less. The permanent magnet material of each composition was obtained. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials were C = 0.203 to 0.217 mass%, and O = 0.125, respectively. It was -0.158 mass% and N = 0.021-0.038 mass%.

得られた磁気特性の結果を表7に示す。0.06%及び0.6%Zr添加品は1,060〜1,090℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
Zrなし品は、本実施例のような炭素濃度が0.203〜0.217質量%ではiHcが極端に低い値となることがわかる。1.3%Zr添加品は1,060〜1,090℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.06%及び0.6%Zr添加品に比べ、低めの値となっていることがわかる。
Table 7 shows the obtained magnetic property results. The 0.06% and 0.6% Zr-added products are good at 1,060 to 1,090 ° C with almost no change in Br, iHc and squareness, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the Zr-free product has an extremely low iHc value when the carbon concentration is 0.203 to 0.217% by mass as in this example. The 1.3% Zr-added product is good at 1,060 to 1,090 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the 0.06% and 0.6% Zr-added products.

Figure 0003891307
Figure 0003891307

[実施例8]
出発原料として、Nd,Dy,電解鉄,Co,フェロボロン,Al,Cu及びジルコニウムを用い、先の実施例と同様に二合金法を用いた。母合金を質量比で27.0Nd−1.3Dy−BAL.Fe−1.8Co−1.0B−0.2Al−0.1Cuの組成に、助剤合金を質量比で25.1Nd−28.3Dy−BAL.Fe−23.9Co−XZr(X=0.1、1.0、5.0、11.0)の組成にした。混合後の組成は26.8Nd−4.0Dy−BAL.Fe−4.0Co−0.9B−0.2Al−0.1Cu−XZr(X=0.01、0.1、0.5、1.1)である。母合金・助材合金共に単ロール急冷法により作製し、+0.5〜+1.0kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で500℃×4時間の半脱水素処理を行い、平均粒径で数百μmの粗粉を得た。
[Example 8]
As a starting material, Nd, Dy, electrolytic iron, Co, ferroboron, Al, Cu and zirconium were used, and the two-alloy method was used as in the previous examples. The mother alloy was 27.0 Nd-1.3 Dy-BAL. The composition of Fe-1.8Co-1.0B-0.2Al-0.1Cu was mixed with the auxiliary alloy in a mass ratio of 25.1 Nd-28.3 Dy-BAL. The composition was Fe-23.9Co-XZr (X = 0.1, 1.0, 5.0, 11.0). The composition after mixing was 26.8 Nd-4.0 Dy-BAL. Fe-4.0Co-0.9B-0.2Al-0.1Cu-XZr (X = 0.01, 0.1, 0.5, 1.1). Both the mother alloy and the auxiliary alloy are produced by a single roll quenching method, subjected to hydrogenation treatment in a hydrogen atmosphere of +0.5 to +1.0 kgf / cm 2 , and 500 ° C. × 4 hours in a vacuum of 10 −2 Torr or less. Semi-dehydrogenation treatment was performed to obtain a coarse powder having an average particle size of several hundreds of μm.

次に、母合金を90質量%と助材を10質量%秤量し、潤滑剤としてラウリン酸を0.15質量%添加してVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、16kOeの磁界中で配向し、磁界に垂直方向に0.6ton/cm2の圧力で成型し、それの成型体を1,000℃から10℃毎に1,200℃まで2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、Arガス雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.101〜0.132質量%、O=0.065〜0.110質量%、N=0.015〜0.028質量%であった。 Next, 90% by mass of the master alloy and 10% by mass of the auxiliary material are weighed, 0.15% by mass of lauric acid is added as a lubricant, mixed with a V mixer, and further averaged by a jet mill in a nitrogen stream. A fine powder of about 5 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 16 kOe, and molded at a pressure of 0.6 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered every 10 ° C for up to 1,200 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then heat treated in an Ar gas atmosphere for 1 hour at 500 ° C. A magnet material was obtained. The carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.101 to 0.132 mass% and O = 0.065, respectively. It was -0.110 mass% and N = 0.015-0.028 mass%.

得られた磁気特性の結果を表8に示す。0.1%及び0.5%Zr添加品は1,070〜1,100℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0.01%Zr添加品は、1,070℃焼結ではBr、iHc、角型比が良好であるが、0.1%及び0.5%Zr添加品に比べ、最適焼結温度幅が狭いことがわかる。1.1%Zr添加品は1,070〜1,100℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.1%及び0.5%Zr添加品に比べ、低めの値となっていることがわかる。
Table 8 shows the results of the obtained magnetic characteristics. The 0.1% and 0.5% Zr-added products are good at 1,070 to 1,100 ° C. with almost no change in Br, iHc and squareness, and the optimum sintering temperature range is 30 ° C. Recognize.
The 0.01% Zr-added product has a good ratio of Br, iHc, and squareness when sintered at 1,070 ° C., but the optimum sintering temperature range is 0.1% and 0.5% Zr-added product. You can see that it is narrow. The 1.1% Zr-added product is good at 1,070 to 1,100 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products containing 0.1% and 0.5% Zr.

Figure 0003891307
Figure 0003891307

これら実施例5〜8の各試料についてEPMAによる元素分布像を見ると、Zr量が本発明の好適範囲である0.02〜1.0質量%である焼結体中には、直径が5μm以下のZrB化合物、ZrBCu化合物及びZrC化合物を50μm以下の間隔で一様に細かく析出していた。
これらのことから、適量のZrを添加し、焼結体中にZrB化合物、ZrBCu化合物及びZrC化合物を一様に細かく析出させることによって、異常粒成長を抑制し、最適焼結温度幅を広げ、このような高炭素・低酸素濃度においても良好な磁気特性が得られていることがわかる。
When the element distribution image by EPMA is seen about each sample of these Examples 5-8, in a sintered compact whose Zr amount is 0.02-1.0 mass% which is the suitable range of this invention, a diameter is 5 micrometers. The following ZrB compound, ZrBCu compound and ZrC compound were uniformly and finely precipitated at intervals of 50 μm or less.
From these, an appropriate amount of Zr is added, and the ZrB compound, ZrBCu compound and ZrC compound are uniformly and finely precipitated in the sintered body, thereby suppressing abnormal grain growth and expanding the optimum sintering temperature range, It can be seen that good magnetic properties are obtained even at such high carbon and low oxygen concentrations.

[実施例9]
出発原料として、Nd,Pr,Dy,電解鉄,Co,フェロボロン,Al,Cu及びハフニウムを使用し、質量比で26.7Nd−2.2Pr−2.5Dy−BAL.Fe−2.7Co−1.2B−0.4Al−0.3Cu−XHf(X=0、0.2、0.5、1.4)の組成に配合後、単ロール急冷法により合金を得た。得られた合金を+1.0±0.3kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で400℃×5時間の脱水素処理を行った。この時得られた合金は、水素化・脱水素処理によって数百μmの粗粉になっている。得られた粗粉と潤滑剤として0.1質量%のカプロン酸をVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径6μm程度に微粉砕した。その後、これらの微粉を成型装置の金型に充填し、20kOeの磁界中で配向し、磁界に垂直方向に1.5ton/cm2の圧力で成型し、それらの成型体を1,000〜1,200℃で2時間、Ar雰囲気中で焼結し、更に冷却した後、500℃で1時間、Ar雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.111〜0.123質量%、O=0.195〜0.251質量%、N=0.009〜0.017質量%であった。
[Example 9]
As starting materials, Nd, Pr, Dy, electrolytic iron, Co, ferroboron, Al, Cu and hafnium were used, and the mass ratio was 26.7Nd-2.2Pr-2.5Dy-BAL. After blending with the composition of Fe-2.7Co-1.2B-0.4Al-0.3Cu-XHf (X = 0, 0.2, 0.5, 1.4), an alloy is obtained by a single roll quenching method. It was. The obtained alloy was hydrogenated in a hydrogen atmosphere of + 1.0 ± 0.3 kgf / cm 2 and dehydrogenated at 400 ° C. for 5 hours in a vacuum of 10 −2 Torr or less. The alloy obtained at this time has become a coarse powder of several hundred μm by hydrogenation / dehydrogenation treatment. The obtained coarse powder and 0.1% by mass of caproic acid as a lubricant were mixed with a V mixer, and further pulverized to an average particle size of about 6 μm with a jet mill in a nitrogen stream. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 20 kOe, and molded at a pressure of 1.5 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered at 200 ° C. for 2 hours in an Ar atmosphere, further cooled, and then heat treated at 500 ° C. for 1 hour in an Ar atmosphere to obtain permanent magnet materials of the respective compositions. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.111 to 0.123 mass% and O = 0.195, respectively. It was -0.251 mass% and N = 0.0009-0.017 mass%.

得られた磁気特性の結果を表9に示す。0.2%及び0.5%Hf添加品は1,020〜1,050℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0%Hf添加品は、本実施例のような炭素濃度が0.111〜0.123質量%ではiHcが低く、角型性も悪いことがわかる。1.4%Hf添加品は1,020〜1,050℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.2%及び0.5%Hf添加品に比べ、低めの値となっていることがわかる。
Table 9 shows the results of the obtained magnetic characteristics. The 0.2% and 0.5% Hf-added products are good at 1020 to 1,050 ° C. with almost no change in Br, iHc and squareness, and the optimum sintering temperature range is 30 ° C. Recognize.
It can be seen that the 0% Hf-added product has a low iHc and poor squareness when the carbon concentration is 0.111 to 0.123 mass% as in this example. The 1.4% Hf-added product is good at 1,020 to 1,050 ° C. with almost no change in Br, iHc and squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products containing 0.2% and 0.5% Hf.

Figure 0003891307
Figure 0003891307

[実施例10]
出発原料として、炭素濃度の大きいNd,電解鉄,Co,フェロボロン,Al,Cu及びハフニウムを使用し、Hf添加量の検討として、質量比で31.1Nd−BAL.Fe−3.6Co−1.1B−0.6Al−0.3Cu−XHf(X=0.01、0.4、0.8、1.5)の組成に配合後、高周波溶解し、水冷銅鋳型に鋳造することにより、各々の組成の鋳塊を得た。これらの鋳塊をブラウンミルで粗粉砕し、得られた粗粉と潤滑剤として0.05質量%のオレイン酸をVミキサーで混合し、更に窒素気流中ジェットミルにて処理し、平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、12kOeの磁界中で配向し、磁界に垂直方向に0.3ton/cm2の圧力で成型し、それの成型体を1,000〜1,200℃で2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、10-2Torr以下の真空雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.180〜0.188質量%、O=0.068〜0.088質量%、N=0.062〜0.076質量%であった。
[Example 10]
As a starting material, Nd, electrolytic iron, Co, ferroboron, Al, Cu, and hafnium having a high carbon concentration were used. As a study of the amount of Hf added, 31.1Nd-BAL. After blending into a composition of Fe-3.6Co-1.1B-0.6Al-0.3Cu-XHf (X = 0.01, 0.4, 0.8, 1.5), high-frequency dissolution, water-cooled copper An ingot of each composition was obtained by casting into a mold. These ingots were coarsely pulverized with a brown mill, and the obtained coarse powder and 0.05% by mass of oleic acid as a lubricant were mixed with a V mixer, and further treated with a jet mill in a nitrogen stream to obtain an average particle size. A fine powder of about 5 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 12 kOe, and molded at a pressure of 0.3 ton / cm 2 in a direction perpendicular to the magnetic field. , Sintered at 200 ° C. for 2 hours in a vacuum atmosphere of 10 −4 Torr or less, further cooled, and then heat treated at 500 ° C. for 1 hour in a vacuum atmosphere of 10 −2 Torr or less to obtain a permanent composition. A magnet material was obtained. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials are C = 0.180 to 0.188 mass% and O = 0.068, respectively. It was -0.088 mass% and N = 0.062-0.076 mass%.

得られた磁気特性の結果を表10に示す。0.4%及び0.8%Hf添加品は1,050〜1,080℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0.01%Hf添加品は、1,050℃焼結ではBr、iHc、角型比が良好であるが、0.4%及び0.8%Hf添加品に比べ、最適焼結温度幅が狭いことがわかる。1.5%Hf添加品は1,050〜1,080℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.4%及び0.8%Hf添加品に比べ、低めの値となっていることがわかる。
Table 10 shows the results of the obtained magnetic characteristics. The 0.4% and 0.8% Hf-added products are good at 1,050 to 1,080 ° C. with almost no change in Br, iHc and squareness, and the optimum sintering temperature range is 30 ° C. Recognize.
The 0.01% Hf-added product has a good ratio of Br, iHc, and squareness when sintered at 1,050 ° C., but the optimum sintering temperature range is higher than that of 0.4% and 0.8% Hf-added products. You can see that it is narrow. The 1.5% Hf-added product is good at 1,050 to 1,080 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products containing 0.4% and 0.8% Hf.

Figure 0003891307
Figure 0003891307

[実施例11]
本発明を二合金法を利用することで更なる高特性化を試みた。出発原料として、炭素濃度の大きいNd,Dy,電解鉄,Co,フェロボロン,Al,Cu及びハフニウムを使用し、母合金を質量比で27.4Nd−BAL.Fe−0.3Co−1.1B−0.4Al−0.2Cuの組成に、助剤合金を質量比で33.8Nd−19.0Dy−BAL.Fe−24.1Co−XHf(X=0.1、2.1、7.9、15)の組成にした。混合後の組成は28.0Nd−1.9Dy−BAL.Fe−2.7Co−1.0B−0.4Al−0.2Cu−XHf(X=0.01、0.2、0.8、1.5)である。母合金は単ロール急冷法により作製し、+0.5〜+2.0kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で600℃×3時間の半脱水素処理を行った。また、助材合金は高周波溶解し、水冷銅鋳型に鋳造することにより鋳塊を得た。
[Example 11]
An attempt was made to further improve the characteristics of the present invention by utilizing a two-alloy method. As a starting material, Nd, Dy, electrolytic iron, Co, ferroboron, Al, Cu, and hafnium having a high carbon concentration are used, and the mother alloy is 27.4 Nd-BAL. The composition of Fe-0.3Co-1.1B-0.4Al-0.2Cu was mixed with an auxiliary alloy in a mass ratio of 33.8 Nd-19.0 Dy-BAL. The composition was Fe-24.1Co-XHf (X = 0.1, 2.1, 7.9, 15). The composition after mixing was 28.0 Nd-1.9 Dy-BAL. Fe-2.7Co-1.0B-0.4Al-0.2Cu-XHf (X = 0.01, 0.2, 0.8, 1.5). The mother alloy is prepared by a single roll quenching method, hydrogenated in a hydrogen atmosphere of +0.5 to +2.0 kgf / cm 2 , and half-dehydrogenated at 600 ° C. for 3 hours in a vacuum of 10 −2 Torr or less. Processed. The auxiliary alloy was melted at high frequency and cast into a water-cooled copper mold to obtain an ingot.

次に、母合金を90質量%と助材を10質量%秤量し、潤滑剤としてブチルラウレートを0.05質量%添加してVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、15kOeの磁界中で配向し、磁界に垂直方向に0.3ton/cm2の圧力で成型し、それの成型体を1,000℃から10℃毎に1,200℃まで2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、10-2Torr以下のArガス雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.283〜0.297質量%、O=0.095〜0.108質量%、N=0.025〜0.044質量%であった。 Next, 90% by mass of the master alloy and 10% by mass of the auxiliary material were weighed, 0.05% by mass of butyl laurate was added as a lubricant, mixed with a V mixer, and further averaged with a jet mill in a nitrogen stream. A fine powder having a diameter of about 5 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 15 kOe, and molded at a pressure of 0.3 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered every 10 ° C to 1,200 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then heat treated at 500 ° C for 1 hour in an Ar gas atmosphere of 10 -2 Torr or less. The permanent magnet material of each composition was obtained. Note that the carbon (C), oxygen (O), and nitrogen (N) contents in these R—Fe—B permanent magnet materials were C = 0.283 to 0.297 mass% and O = 0.095, respectively. It was -0.108 mass% and N = 0.025-0.044 mass%.

得られた磁気特性の結果を表11に示す。0.2%及び0.8%Hf添加品は1,120〜1,150℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0.01%Hf添加品は、1,120℃焼結ではBr、iHc、角型比が良好であるが、0.2%及び0.8%Hf添加品に比べ、最適焼結温度幅が狭いことがわかる。1.5%Hf添加品は1,120〜1,150℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.2%及び0.8%Hf添加品に比べ、低めの値となっていることがわかる。
Table 11 shows the obtained magnetic property results. The 0.2% and 0.8% Hf-added products are good at 1,120-1150 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C. Recognize.
The 0.01% Hf-added product has a good ratio of Br, iHc, and squareness when sintered at 1,120 ° C, but the optimum sintering temperature range is higher than that of 0.2% and 0.8% Hf-added products. You can see that it is narrow. The 1.5% Hf-added product is good at 1,120-1150 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products containing 0.2% and 0.8% Hf.

Figure 0003891307
Figure 0003891307

[実施例12]
出発原料として、Nd,Dy,Tb,電解鉄,Co,フェロボロン,Al,Cu及びハフニウムを使用し、先の実施例と同様に二合金法を用いた。母合金を質量比で26.0Nd−2.5Dy−BAL.Fe−1.4Co−1.0B−0.8Al−0.2Cu−XHf(X=0、0.06、0.6、1.7)の組成に、助剤合金を質量比で40.8Nd−18.0Tb−BAL.Fe−20.0Co−0.1B−0.3Alの組成にした。混合後の組成は27.5Nd−2.3Dy−1.8Tb−BAL.Fe−3.2Co−0.9B−0.8Al−0.2Cu−XHf(X=0、0.05、0.5、1.5)である。母合金・助材合金共に単ロール急冷法により作製し、+0.5〜+1.0kgf/cm2の水素雰囲気中で水素化処理を行い、10-2Torr以下の真空中で500℃×2時間の半脱水素処理を行い、平均粒径で数百μmの粗粉を得た。
[Example 12]
Nd, Dy, Tb, electrolytic iron, Co, ferroboron, Al, Cu, and hafnium were used as starting materials, and a two-alloy method was used as in the previous examples. The mother alloy was 26.0 Nd-2.5 Dy-BAL. The composition of Fe-1.4Co-1.0B-0.8Al-0.2Cu-XHf (X = 0, 0.06, 0.6, 1.7) was added to the auxiliary alloy in a mass ratio of 40.8 Nd. -18.0 Tb-BAL. The composition was Fe-20.0Co-0.1B-0.3Al. The composition after mixing was 27.5Nd-2.3Dy-1.8Tb-BAL. Fe-3.2Co-0.9B-0.8Al-0.2Cu-XHf (X = 0, 0.05, 0.5, 1.5). Both the mother alloy and the auxiliary alloy are produced by a single roll quenching method, subjected to hydrogenation treatment in a hydrogen atmosphere of +0.5 to +1.0 kgf / cm 2 , and heated at 500 ° C. for 2 hours in a vacuum of 10 −2 Torr or less. Semi-dehydrogenation treatment was performed to obtain a coarse powder having an average particle size of several hundreds of μm.

次に、母合金を90質量%と助材を10質量%秤量し、潤滑剤としてカプリル酸を0.1質量%添加してVミキサーで混合し、更に窒素気流中ジェットミルにて平均粒径5μm程度の微粉を得た。その後、これらの微粉を成型装置の金型に充填し、25kOeの磁界中で配向し、磁界に垂直方向に0.5ton/cm2の圧力で成型し、それの成型体を1,000℃から10℃毎に1,200℃まで2時間、10-4Torr以下の真空雰囲気中で焼結し、更に冷却した後、500℃で1時間、Arガス雰囲気中で熱処理し、各々の組成の永久磁石材料を得た。なお、これらのR−Fe−B系永久磁石材料における炭素(C),酸素(O),窒素(N)含有量は、それぞれC=0.102〜0.128質量%、O=0.105〜0.148質量%、N=0.025〜0.032質量%であった。 Next, 90% by mass of the master alloy and 10% by mass of the auxiliary material are weighed, 0.1% by mass of caprylic acid is added as a lubricant, mixed with a V mixer, and further averaged by a jet mill in a nitrogen stream. A fine powder of about 5 μm was obtained. Thereafter, these fine powders are filled in a mold of a molding apparatus, oriented in a magnetic field of 25 kOe, and molded at a pressure of 0.5 ton / cm 2 in a direction perpendicular to the magnetic field. Sintered every 10 ° C for up to 1,200 ° C for 2 hours in a vacuum atmosphere of 10 -4 Torr or less, further cooled, and then heat treated in an Ar gas atmosphere for 1 hour at 500 ° C. A magnet material was obtained. In addition, carbon (C), oxygen (O), and nitrogen (N) content in these R—Fe—B based permanent magnet materials are C = 0.102 to 0.128 mass%, O = 0.105, respectively. It was -0.148 mass%, N = 0.025-0.032 mass%.

得られた磁気特性の結果を表12に示す。0.05%及び0.5%Hf添加品は1,160〜1,190℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あることがわかる。
0%Hf添加品は、1,160℃焼結ではBr、iHc、角型比が良好であるが、0.05%及び0.5%Hf添加品に比べ、最適焼結温度幅が狭いことがわかる。1.5%Hf添加品は1,160〜1,190℃でBr、iHc、角型比が殆ど変化せずに良好であり、最適焼結温度幅が30℃あるが、添加量が多すぎるためにBr、iHc共に0.05%及び0.5%Hf添加品に比べ、低めの値となっていることがわかる。
Table 12 shows the obtained magnetic characteristics. 0.05% and 0.5% Hf-added products are good at 1,160 to 1,190 ° C. with little change in Br, iHc, squareness ratio, and optimum sintering temperature range is 30 ° C. Recognize.
The 0% Hf-added product has a good Br, iHc and squareness ratio at 1,160 ° C sintering, but the optimum sintering temperature range is narrower than the 0.05% and 0.5% Hf-added products. I understand. The 1.5% Hf-added product is good at 1,160 to 1,190 ° C. with almost no change in Br, iHc, squareness ratio, and the optimum sintering temperature range is 30 ° C., but the added amount is too large Therefore, it can be seen that both Br and iHc have lower values than the products containing 0.05% and 0.5% Hf.

Figure 0003891307
Figure 0003891307

これら実施例9〜12の各試料についてEPMAによる元素分布像を見ると、Hf量が本発明の好適範囲である0.02〜1.0質量%である焼結体中には、直径が5μm以下のHfB化合物、HfBCu化合物及びHfC化合物を50μm以下の間隔で一様に細かく析出していた。
これらのことから、適量のHfを添加し、焼結体中にHfB化合物、HfBCu化合物及びHfC化合物を一様に細かく析出させることによって、異常粒成長を抑制し、最適焼結温度幅を広げ、このような高炭素・低酸素濃度においても良好な磁気特性が得られていることがわかる。
When the element distribution image by EPMA is seen about each sample of these Examples 9-12, in a sintered compact whose Hf amount is 0.02-1.0 mass% which is the suitable range of this invention, a diameter is 5 micrometers. The following HfB compound, HfBCu compound and HfC compound were uniformly and finely precipitated at intervals of 50 μm or less.
From these, an appropriate amount of Hf is added, and the HfB compound, HfBCu compound, and HfC compound are uniformly and finely precipitated in the sintered body, thereby suppressing abnormal grain growth and widening the optimum sintering temperature range, It can be seen that good magnetic properties are obtained even at such high carbon and low oxygen concentrations.

Figure 0003891307
Figure 0003891307

Claims (5)

R−Fe−Co−B−Al−Cu(但し、RはNd、Pr、Dy、Tb、Hoのうち1種又は2種以上で、Ndを15〜33質量%含有する)系希土類永久磁石材料であり、炭素を0.1質量%を超え0.3質量以下で含有するNd−Fe−B系磁石合金であって、M−B系化合物、M−B−Cu系化合物、M−C系化合物(MはTi、Zr、Hfのうち1種又は2種以上)のうち少なくとも2種と、更にR酸化物とが合金組織中に析出し、かつその析出化合物の平均粒径が5μm以下であって、合金組織中に隣り合って析出した化合物間の最大間隔が50μm以下に分散して析出していることを特徴とするNd−Fe−B系希土類永久焼結磁石材料。 R—Fe—Co—B—Al—Cu (where R is one or more of Nd, Pr, Dy, Tb, and Ho and contains 15 to 33% by mass of Nd) based rare earth permanent magnet material , and the a Nd-Fe-B based magnet alloy containing below 0.3 wt% exceeding 0.1 mass% of carbon, M-B compound, M-B-Cu-based compound, M-C At least two of the system compounds (M is one or more of Ti, Zr, and Hf) and further an R oxide precipitates in the alloy structure, and the average particle size of the precipitated compound is 5 μm or less. The Nd—Fe—B rare earth permanent sintered magnet material is characterized in that the maximum distance between adjacently precipitated compounds in the alloy structure is dispersed to 50 μm or less. 主相成分であるR2Fe141相の存在容量割合が89〜99%であり、希土類又は希土類と遷移金属の硼素化物と炭化物と酸化物の合計の存在容量割合が0.1〜3%である請求項1記載のNd−Fe−B系希土類永久焼結磁石材料。 The existing capacity ratio of the main phase component R 2 Fe 14 B 1 phase is 89 to 99%, and the total existing capacity ratio of rare earth or rare earth and transition metal borides, carbides and oxides is 0.1 to 3%. The Nd—Fe—B rare earth permanent sintered magnet material according to claim 1, wherein 粒径50μm以上のR2Fe141相の巨大異常成長粒が、金属組織全体に対する存在容量割合で3%以下である請求項1又は2記載のNd−Fe−B系希土類永久焼結磁石材料。 The Nd-Fe-B rare earth permanent sintered magnet according to claim 1 or 2, wherein the giant abnormally grown grains of the R 2 Fe 14 B 1 phase having a particle size of 50 µm or more are 3% or less in the existing capacity ratio with respect to the entire metal structure. material. 磁気特性がBrで12.5kG以上、保磁力iHcが10kOe以上、角型比4×(BH)max/Br2が0.95以上である請求項1,2又は3記載のNd−Fe−B系希土類永久焼結磁石材料。 4. The Nd—Fe—B according to claim 1, wherein the magnetic properties are 12.5 kG or more in Br, the coercive force iHc is 10 kOe or more, and the squareness ratio 4 × (BH) max / Br 2 is 0.95 or more. system rare earth permanent sintered magnet material. Nd−Fe−B系磁石合金が、質量百分率で、R27〜33%(但し、RはNd、Pr、Dy、Tb、Hoのうち1種又は2種以上で、Ndを15〜33%含有する)、Co0.1〜10%、B0.8〜1.5%、Al0.05〜1.0%、Cu0.02〜1.0%、Ti,Zr及びHfから選ばれる元素0.02〜1.0%、O0.04〜0.4%、N0.002〜0.1%、並びに残部Fe及び不可避の不純物からなる請求項1〜4のいずれか1項記載のNd−Fe−B系希土類永久焼結磁石材料。 The Nd—Fe—B based magnet alloy has a mass percentage of R27 to 33% (provided that R is one or more of Nd, Pr, Dy, Tb, and Ho and contains 15 to 33% of Nd. ), Co 0.1 to 10%, B 0.8 to 1.5%, Al 0.05 to 1.0%, Cu 0.02 to 1.0%, element 0.02 to 1 selected from Ti, Zr and Hf The Nd—Fe—B rare earth according to claim 1, comprising 0.0%, O 0.04 to 0.4%, N 0.002 to 0.1%, and the balance Fe and inevitable impurities. Permanent sintered magnet material.
JP2005370225A 2004-12-27 2005-12-22 Nd-Fe-B rare earth permanent sintered magnet material Active JP3891307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370225A JP3891307B2 (en) 2004-12-27 2005-12-22 Nd-Fe-B rare earth permanent sintered magnet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004375784 2004-12-27
JP2005370225A JP3891307B2 (en) 2004-12-27 2005-12-22 Nd-Fe-B rare earth permanent sintered magnet material

Publications (2)

Publication Number Publication Date
JP2006210893A JP2006210893A (en) 2006-08-10
JP3891307B2 true JP3891307B2 (en) 2007-03-14

Family

ID=36967323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370225A Active JP3891307B2 (en) 2004-12-27 2005-12-22 Nd-Fe-B rare earth permanent sintered magnet material

Country Status (1)

Country Link
JP (1) JP3891307B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113371A1 (en) 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
WO2012002059A1 (en) 2010-06-29 2012-01-05 昭和電工株式会社 R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
WO2012002060A1 (en) 2010-06-29 2012-01-05 昭和電工株式会社 R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
DE112009003804B4 (en) * 2008-12-26 2014-02-13 Showa Denko K.K. Alloy material for a rare earth permanent magnet of the R-T-B system, method of making a rare earth permanent magnet of the R-T-B system
US11783973B2 (en) 2018-03-22 2023-10-10 Tdk Corporation R-T-B based permanent magnet

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548127B2 (en) * 2005-01-26 2010-09-22 Tdk株式会社 R-T-B sintered magnet
JP5153643B2 (en) * 2007-06-29 2013-02-27 Tdk株式会社 Rare earth magnets
JP2010222601A (en) * 2009-03-19 2010-10-07 Honda Motor Co Ltd Rare earth permanent magnet and method for producing the same
CN102214508B (en) * 2010-04-02 2014-03-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
CN102456458B (en) * 2010-10-15 2017-02-08 中国科学院宁波材料技术与工程研究所 Sintered NdFeB magnet with high corrosion resistance and preparation method thereof
CN104674115A (en) * 2013-11-27 2015-06-03 厦门钨业股份有限公司 Low-B rare earth magnet
CN106062898B (en) 2014-03-19 2018-04-13 株式会社东芝 Permanent magnet and the motor and generator using the permanent magnet
JP6672753B2 (en) * 2015-03-13 2020-03-25 Tdk株式会社 RTB based rare earth sintered magnet and alloy for RTB based rare earth sintered magnet
US10428408B2 (en) 2015-03-13 2019-10-01 Tdk Corporation R-T-B-based rare earth sintered magnet and alloy for R-T-B-based rare earth sintered magnet
JP6627555B2 (en) * 2015-03-30 2020-01-08 日立金属株式会社 RTB based sintered magnet
JP6488976B2 (en) 2015-10-07 2019-03-27 Tdk株式会社 R-T-B sintered magnet
US10943717B2 (en) * 2016-02-26 2021-03-09 Tdk Corporation R-T-B based permanent magnet
JP6541038B2 (en) * 2016-03-28 2019-07-10 日立金属株式会社 RTB based sintered magnet
JP6623998B2 (en) * 2016-09-28 2019-12-25 日立金属株式会社 Method for producing RTB based sintered magnet
CN108154987B (en) 2016-12-06 2020-09-01 Tdk株式会社 R-T-B permanent magnet
JP6863008B2 (en) 2017-03-30 2021-04-21 Tdk株式会社 Method for manufacturing RTB-based rare earth sintered magnet alloy and RTB-based rare earth sintered magnet
US11527340B2 (en) 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
JP7314513B2 (en) * 2018-07-09 2023-07-26 大同特殊鋼株式会社 RFeB sintered magnet
JP7315889B2 (en) 2019-03-29 2023-07-27 Tdk株式会社 Alloy for RTB Permanent Magnet and Method for Producing RTB Permanent Magnet
CN110993232B (en) * 2019-12-04 2021-03-26 厦门钨业股份有限公司 R-T-B series permanent magnetic material, preparation method and application
JP7463791B2 (en) 2020-03-23 2024-04-09 Tdk株式会社 R-T-B rare earth sintered magnet and method for producing the same
CN111636035B (en) * 2020-06-11 2022-03-01 福建省长汀金龙稀土有限公司 Heavy rare earth alloy, neodymium iron boron permanent magnet material, raw materials and preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009003804B4 (en) * 2008-12-26 2014-02-13 Showa Denko K.K. Alloy material for a rare earth permanent magnet of the R-T-B system, method of making a rare earth permanent magnet of the R-T-B system
WO2010113371A1 (en) 2009-03-31 2010-10-07 昭和電工株式会社 Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
WO2012002059A1 (en) 2010-06-29 2012-01-05 昭和電工株式会社 R-t-b type rare earth permanent magnet, motor, automobile, power generator, and wind power generation system
WO2012002060A1 (en) 2010-06-29 2012-01-05 昭和電工株式会社 R-t-b based rare earth permanent magnet, motor, automobile, power generator and wind energy conversion system
US11783973B2 (en) 2018-03-22 2023-10-10 Tdk Corporation R-T-B based permanent magnet

Also Published As

Publication number Publication date
JP2006210893A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP3891307B2 (en) Nd-Fe-B rare earth permanent sintered magnet material
KR101227273B1 (en) Nd-Fe-B based Rare-Earth Permanent Magnet Material
JP6089535B2 (en) R-T-B sintered magnet
EP0753867B1 (en) Rare earth permanent magnet and method for producing the same
JP3951099B2 (en) R-Fe-B rare earth permanent magnet material
US6506265B2 (en) R-Fe-B base permanent magnet materials
JP2021533557A (en) Ce-containing sintered rare earth permanent magnet with high durability and high coercive force, and its preparation method
JPH0521218A (en) Production of rare-earth permanent magnet
JP4605013B2 (en) R-T-B system sintered magnet and rare earth alloy
US6527874B2 (en) Rare earth magnet and method for making same
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP4260087B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP4618437B2 (en) Method for producing rare earth permanent magnet and raw material alloy thereof
JP3815983B2 (en) Rare earth magnet and manufacturing method thereof
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JPH0521219A (en) Production of rare-earth permanent magnet
JP3086334B2 (en) Anisotropic rare earth alloy powder for permanent magnet
JPS61139638A (en) Manufacture of sintered permanent magnet material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151215

Year of fee payment: 9