[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3885269B2 - Fluid control valve control device - Google Patents

Fluid control valve control device Download PDF

Info

Publication number
JP3885269B2
JP3885269B2 JP2354997A JP2354997A JP3885269B2 JP 3885269 B2 JP3885269 B2 JP 3885269B2 JP 2354997 A JP2354997 A JP 2354997A JP 2354997 A JP2354997 A JP 2354997A JP 3885269 B2 JP3885269 B2 JP 3885269B2
Authority
JP
Japan
Prior art keywords
valve
valve body
voltage
closing
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2354997A
Other languages
Japanese (ja)
Other versions
JPH10220617A (en
Inventor
行則 尾崎
茂 岩永
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2354997A priority Critical patent/JP3885269B2/en
Publication of JPH10220617A publication Critical patent/JPH10220617A/en
Application granted granted Critical
Publication of JP3885269B2 publication Critical patent/JP3885269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Control Of Stepping Motors (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流路中を流れるガス流体の流れを開閉制御するガスメータに内蔵する流体遮断弁制御装置に関する。
【0002】
【従来の技術】
従来この種の流体制御弁制御装置としては、特開平5−71656号公報に示すようなものがあった。以下、その構成について図面を参照して説明する。図16は従来の弁制御装置のブロック構成図である。1はステッピングモータ、2は回転数等の検出器、3は比較器、4はマイクロコンピュータ、5は駆動部、6は電源である。制御方法は、開弁時(又は閉弁時)弁体(図示せず)に加わる逆方向の流体圧力が大きいのでマイクロコンピュータ4からの信号で駆動部5を働かせてステッピングモータ1をモータ推力を得るため減速ドライブ(広いパルス幅を印加)して、一定時間後には加速ドライブ(狭いパルス幅を印加)に切換えていた。また、閉弁時(又は開弁時)には定速トライブ(等パルス幅を印加)を行っていた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の制御装置はパルス数のみを変化させる制御のためステッピングモータの消費電力が大きいという課題を有していた。
【0004】
【課題を解決するための手段】
前記課題を解決するため本発明は、流路を開閉する弁部と、前記弁部の内部に設けられ た弁体と、前記弁体を駆動する駆動手段と、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記駆動手段へ駆動信号をパルス信号として出力する駆動回路と、前記駆動回路の出力電圧を可変制御する電圧制御手段と、電源部とを有し、前記弁の開成動作時と閉成動作時における前記駆動手段の駆動信号は、前記弁体の移動方向に対して流体の流れによる流体圧が順方向に作用する場合の駆動電圧とパルス出力周波数に対して前記弁体の移動方向に対して流体の流れによる流体圧が逆方向に作用する場合の駆動電圧とパルス出力周波数を高電圧、低周波数とした流体制御弁制御装置である。一般に弁部においては、流体の入口と出口の位置や方向の関係で弁部の開閉動作に際し、弁体の移動方向に対して流体の流れによる流体圧が順方向に作用する場合と逆方向に作用する場合がある。従って基本的に弁体の開成動作に要する力やエネルギーと閉成動作に必要とする力やエネルギーは異なる。本発明は開成動作、閉成動作それぞれに要する力に対応して駆動電圧とパルス出力周波数を変化させて駆動手段を動作し弁部の開閉制御を行うものである。また、駆動手段の消費電力を小さくすることができ、電池電源の容量を小さくすることが可能となる。
【0005】
【発明の実施の形態】
前記課題を解決するため本発明の請求項1記載の発明は、流路を開閉する弁部と、前記弁部の内部に設けられた弁体と、前記弁体を駆動する駆動手段と、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記駆動手段へ駆動信号をパルス信号として出力する駆動回路と、前記駆動回路の出力電圧を可変制御する電圧制御手段と、電源部とを有し、前記弁の開成動作時と閉成動作時における前記駆動手段の駆動信号は、前記弁体の移動方向に対して流体の流れによる流体圧が順方向に作用する場合の駆動電圧とパルス出力周波数に対して前記弁体の移動方向に対して流体の流れによる流体圧が逆方向に作用する場合の駆動電圧とパルス出力周波数を高電圧、低周波数とした流体制御弁制御装置である。一般に弁部においては、流体の入口と出口の位置や方向の関係で弁部の開閉動作に際し、弁体の移動方向に対して流体の流れによる流体圧が順方向に作用する場合と逆方向に作用する場合がある。従って基本的に弁体の開成動作に要する力やエネルギーと閉成動作に必要とする力やエネルギーは異なる。本発明は開成動作、閉成動作それぞれに要する力に対応して駆動電圧とパルス出力周波数を変化させて駆動手段を動作し弁部の開閉制御を行うものである。また、駆動手段の消費電力を小さくすることができ、電池電源の容量を小さくすることが可能となる。
【0006】
また、本発明の請求項2記載の発明は、請求項1記載の発明にさらに、時間をカウントするタイマ手段を有し、弁体の開成動作時には前記弁体の移動方向と逆に流体圧が作用する場合、前記タイマ手段のカウントにより弁開成に十分な時間が経過した後には開成動作初期の駆動電圧とパルス出力周波数より低電圧で且つ高周波数のパルス信号で前記弁体を駆動するとともに、前記弁体の閉成動作時には前記弁体の移動方向と同方向に流体圧が作用する場合、前記タイマ手段のカウントにより前記弁体が閉成するのに十分な時間が経過した後には閉成動作初期の駆動電圧とパルス出力周波数より高電圧で且つ低周波数のパルス信号で前記弁体を駆動する流体制御弁制御装置であり、流体の流れに対向して弁体を移動し弁開動作を行う弁部の構成においては、弁閉成状態から弁開動作を行う弁開動作時初期には弁体は移動方向と逆方向に流体の流れの圧力を受けるので、高電圧、且つ低周波数パルスの強い力による駆動を行い、タイマ手段によってカウントされ所定の時間が経過し、弁体が移動して弁開することにより流体の流れにより受けていた圧力が十分小さくなった後、低電圧、且つ高周波数パルスによる駆動に切替るよう制御することによって弁開成動作に要する駆動手段の消費電力を低減することができる。
【0007】
また、弁体の閉成動作時初期は駆動手段を低電圧、且つ高周波数パルスで駆動し、所定時間経過した後に前記駆動手段を高電圧、且つ低周波数パルスで駆動することにより、流体の流れの方向に弁体を移動して弁閉動作を行う弁部の構成においては、弁開成状態から弁閉動作を行う時、弁体は順方向に流体の流れによる圧力を受けるので強い力による駆動は不要であり、低電圧、且つ高周波数パルスで駆動し、タイマ手段でカウントされる所定の時間が経過し、弁体が弁座に当接した弁閉状態で高電圧、且つ低周波数パルスによる強い力で駆動するよう制御することにより、弁体の弁座への付勢力が大きくなり弁部のシール性能を向上することができる。また、弁閉動作に要する駆動手段の消費電力を低減することができる。
【0008】
また、本発明の請求項記載の発明は、請求項1記載の発明にさらに、弁体の開閉を検出する弁開閉検出手段を有し、前記弁の開成動作時には前記弁体の移動方向と逆に流体圧が作用する場合、前記弁開閉検出手段により弁体が開成していることが検出されると、検出前の駆動電圧とパルス出力周波数より低電圧で且つ高周波数のパルス信号で前記弁体を駆動するとともに、前記弁体の閉成動作時には前記弁体の移動方向と同方向に流体圧が作用する場合に、前記弁開閉検出手段により前記弁体が閉成していることが検出されると検出前の駆動電圧とパルス出力周波数より高電圧で且つ低周波数のパルス信号で前記弁体を駆動する流体制御弁制御装置であり、流体の流れに対向して弁体を移動し弁開動作を行う弁部の構成においては、弁閉成状態から弁開動作を行う時、弁体は弁開方向と逆方向に流体圧をうける弁開動作初期には高電圧、且つ低周波数パルスによる強い駆動を行い、弁開閉検出手段により、弁部の開閉状態を検出し、弁体が僅かに開成し、弁体に逆方向に作用していた流体圧の付勢力が小さくなった状態で低電圧、且つ高周波数パルスで駆動するよう制御することにより弁開動作に要する駆動手段の消費電力を低減することができる。
【0009】
また、弁体の閉成動作時初期は駆動手段を低電圧、且つ高周波数パルスで駆動し、前記弁部が閉成した後に前記駆動手段を高電圧、且つ低周波数で駆動することにより、流体の流れの方向に弁体を移動して弁閉動作を行う弁部構成においては、弁閉動作に強い力は必要でなく、弁部の閉成動作時初期から低電圧、且つ高周波数パルスによる駆動を行い、弁開閉検出手段が弁体の閉成状態を検出した後高電圧、且つ低周波数による強い駆動を行い、弁閉時の弁体の弁座への付勢力を大きくする。従ってこの駆動制御により、駆動手段の消費電力を低減すると共に弁部のシール性能を向上することができる。
【0010】
以下、本発明の実施例について図面を参照して説明する。なお、実施例1からにおいて同等の構成要素については同一符号を符し一部説明を省略する。
【0011】
(実施例1)
図1は本発明の実施例1のガスメータの構成図である。また図2は同ガスメータのブロック図である。図3、図4は同ガスメータ弁部の弁開時の断面図、図5は同ガスメータ弁部の弁閉時の断面図である。図6は同ガスメータの弁部の弁閉動作時の動作のフローチャート、図7は同ガスメータの弁部の弁開動作時の動作フローチャートである。
【0012】
図1、図2において、7はガスメータのハウジングであり、ハウジング7の内部には、入口8と出口9を連通する流路10が構成されいる。流路10には流路10を開閉する弁部11と、弁部11を駆動する駆動手段であるステッピングモータ12と、流路10を流れる被検出流体であるガスの流量を計測する流量計測手段13と、流量計測手段13からの信号を演算処理する演算処理部14と、演算処理部からの信号を入力して駆動手段のステッピングモータ12へ駆動信号をパルス出力する駆動回路15と、駆動回路15からのパルス(以降パルスは省略)出力電圧を可変する電圧制御手段16と、電池電源部17とで構成されている。18は流量を表示する表示手段である。図3から図5において、入口継手19、出口継手20を有する弁部11の内部にはステッピングモータ12の回転を直動に変換する直動変換部21と、この直動変換部21に接続され上下に移動し、弁座22に当接して弁閉状態となる弁体23が設けられている。図6、図7において、ステップ1は流量計測動作、ステップ2は流量積算動作、ステップ3は演算処理部14に記憶されている積算流量の設定値と流量積算された値を比較する動作、ステップ4は弁の閉成を命令する弁閉成信号出力動作、ステップ5はある電圧A、パルス出力周波数Aで駆動手段であるステッピングモータ12を駆動する動作、ステップ6は弁部11の閉成状態を示す。ステップ7は弁の開成を命令する弁開成信号出力動作、ステップ8はある電圧B、パルス出力周波数Bで駆動手段であるステッピングモータ12を駆動する動作、ステップ9は弁部11の開成状態を示す。
【0013】
次に以上の構成における動作、作用について図1から図7により説明する。先ず図6に示す弁部11の弁閉動作について説明すると、通常ガスメータ内部に内蔵された弁部11の弁体23は開成状態にあり、ステップ1で、流量計測が行われている。ステップ2ではこの流量計測された値をもとに演算処理部14で流量積算が行われている。ステップ3でこの流量積算された値が演算処理部14に記憶されている積算流量の設定値と比較されており、流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合は異常と判断し、ステップ4で演算処理部14から弁閉成信号が出力され、ステップ5で駆動回路15からステッピングモータ12へ電圧A、パルス出力周波数Aが印加され、ステッピングモータ12を駆動する。ステッピングモータ12の回転は直動変換部21より直動に変換されて弁体23が移動し弁座22に当接することでステップ6の弁閉成状態となる。この時にはガスメータの弁部11で流路10が閉塞されるため器具側(図示せず)へはガスが流れない状態となる。次に図7に示す弁体の弁開動作について説明すると、器具側で異常がないと判断されると、ステップ7で弁の開成を命令する弁開成信号が演算処理部14から出力され、ステップ8で駆動回路15からステッピングモータ12へ電圧B、パルス出力周波数Bが印加され、ステッピングモータが駆動する。ステッピングモータ12の回転は直動変化部21により直動に変換されて弁体23が移動し弁座22から離脱しステップ9の弁開成状態となる。即ち図3から図5に示す本実施例の様な弁部11においては開成動作時にはガスの流れる方向と弁体23の移動方向が逆になり、弁開方向と逆のガス圧を弁体23が受けることにより、弁開動作に必要な力は大きくなるが、弁閉成動作時は入口継手19から出口継手20側に向かって流れるガスの流れと同方向に弁体23が移動するめ、ガスの流れによる圧力を弁体23が弁閉方向に受けることにより、弁体23を閉成する方向力が作用し、弁体23の閉成に必要な力は小さくなり、開成動作時に比べ低電圧、且つ高いパルス周波数で駆動することができる。この低電圧とは電池電源部17の最大出力電圧(例えば3V)以下を示している。一般に弁の動作電圧設計値としては、電池電源部17の時間経過による出力電圧低下特性、温度特性、ガス圧力等を考慮し、電池電源部17の最大出力電圧が例えば3Vの場合、2V以下で弁が開成可能なように設計される。また、閉成時の動作電圧としては開成時の電圧以下で動作されるものである。また高いパルス周波数とはスッテッピングモータの脱調トルク以下で弁体23の閉成に必要な力が得られる高い周波数を意味する。閉成時の動作パルス周波数としては開成時の周波数以上で動作されるものである。以上のように、弁開成動作と弁閉成動作に要する力やエネルギーが異なるため、本実施例では各々の動作に必要な力やエネルギーに応じて駆動電圧、パルス周波数を変化させて対応するよう制御するもので弁開成動作、弁閉成動作に要する消費電力を低減することが可能となり、電池電源部17の容量を小さくすることができる。
【0014】
(実施例2)
図8は本発明の実施例2のガスメータ構造図である。また図9は同ガスメータのブロック図である。図10は同ガスメータの弁部の弁開成動作時の動作フローチャート、図11は同ガスメータの弁部の弁閉動作時の動作フローチャート、実施例1と異なる点は、図8から図11において時間をカウントするタイマ手段24を設けたことと、高電圧、低周波数パルスで駆動手段であるステッピングモータ12を駆動する動作、ステップ10、タイマ手段24と所定時間をカウントする動作ステップ11、低電圧、高周波数パルスで駆動手段であるステッピングモータ12を駆動する動作ステップ12の各動作プログラムを有していることである。
【0015】
次に以上の構成における動作、作用について説明する。図10に示す弁部11の開成動作について説明すると、ステップ7で弁の開成を命令する弁開成信号が演算処理部14から出力されステップ10で、高電圧、低周波数パルスによる駆動信号が演算処理部14から出力された駆動回路15からステッピングモータ12へ高電圧、低周波数パルスが印加され駆動が行われ、同時にステップ11でタイマ手段24が作動し、所定時間(弁が開成するのに十分な時間)がカウントされ経過すると、ステップ12で低電圧、高周波数パルスによる駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧、高周波数パルスが印加され駆動が行われ、直動変換部21により弁体23が移動し弁座22から離脱しステップ9の弁開成状態に至る。この動作においては弁部11を開成するとき弁体の移動方向と逆にガスの流れによるガス圧力が作用するので、当初は高電圧、低周波数パルスによる強い駆動力で開成駆動し、弁開に十分な時間が経過した後弁体23が移動しガスの流れにより作用を受ける圧力の付勢力が十分小さくなった時、低電圧、高周波数パルスによる駆動に切替えるよう制御することにより、弁の開成に要する駆動手段の消費電力を低減することができる。
【0016】
次に図11に示す弁部11の閉成動作、作用について説明すると、ステップ3の設定値との比較動作においてステップ2で演算処理部14で行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で演算処理部14から弁閉成信号が出力されステップ12で、低電圧、高周波数パルスによる駆動信号が演算処理部から出力され駆動回路15からステッピングモータ12へ低電圧、高周波数パルスが印加され駆動が行われる。同時にステップ11でタイマ手段24により所定時間(弁が閉成するのに十分な時間)がカウントされ経過すると、ステップ10で高電圧、低周波数パルスによる駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧、低周波数パルスが印加され強い力での駆動が行われ、直動変換部21により弁体23が弁座22に強い力で当接しステップ9の弁閉成状態に至る。この弁の閉成動作においては弁体23の移動方向とガス圧力の作用する方向が同じであり弁の閉成動作の殆んどは低電圧、高周波数パルスによる駆動を行い、最後の段階のみ高電圧、低周波数パルスの強い駆動を行うことによって、消費電力の低減とともに、弁体23を弁座22に対して強い力で閉成することができ、弁のシール性能を向上させることができる。
【0017】
(実施例3)
図12は本発明の実施例3のガスメータの構成図である。また図13は同ガスメータのブロック図である。図14は同ガスメータの弁部の弁開動作時の動作フローチャート、図15は同ガスメータの弁部の弁開動作時の動作フローチャートである。
【0018】
実施例1、2と異なる点は、図12から図15において弁部1の開閉を検出する弁開閉検出手段25を設けたことと、弁部11の開成状態を検出する動作ステップ14、弁部11の閉成状態を検出する動作ステップ15を有していることである。なお、弁開閉検出手段25は流量計測手段13の信号を演算処理部14で処理し流れの有無を判定することにより弁部11の開閉状態を検出するものである。
【0019】
次に以上の構成における動作、作用について説明する。図14に示す弁部11の開成動作について説明すると、ステップ7で弁の開成を命令する弁開成信号が演算処理部14から出力され、ステップ10で高電圧、低周波数パルスによる駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧、低周波数パルスが印加され駆動が行われ、直動変換部21により弁体23が移動する。次にステップ14で弁部11の開成状態を検出する弁開成動作が行われ、弁体23が開成していることが検出されると、ステップ12で低電圧、高周波数パルスによる駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧、高周波数パルスが印加され低電圧による駆動をつづけ直動変換部21により弁体23が移動しステップ9の弁開成に至る。この動作においては弁部11を開成するとき当初は弁体23がガス圧力に対向して移動するため高電圧、低周波数パルスによる強い駆動を必要とするが弁体23が僅かに開成すると、弁体23の受けるガスの流れによるガス圧力の作用が小さくなる。従って弁体23が僅かに開成したことを弁開閉検出手段25で検出し、直ちに低電圧、高周波数パルスによる駆動に切替えるよう制御することにより弁開成に要する駆動手段の消費電力を低減することができる。
【0020】
次に図15に示す弁部11の閉成動作、作用について説明すると、ステップ3の設定値との比較動作においてステップ2で演算処理部14で行った流量積算の値が演算処理部14に記憶されている積算流量の設定値より大きい場合には、ステップ4で演算処理部14より弁閉成信号が出力されステップ12で低電圧、高周波数パルスによる駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ低電圧、高周波数パルスが印加されステッピングモータ12が駆動し、直動変換部21により弁体23が弁座22に向かって移動する。次にステップ15で弁開閉検出手段25により弁部11の閉成状態弁閉成を検出し、弁体23が閉成していることが検出されると、高電圧、低周波数パルスによる駆動信号が演算処理部14から出力され、駆動回路15からステッピングモータ12へ高電圧、低周波数パルスが印加されステッピングモータ12は強い力で駆動し直動変換部21によりすでに弁座22に当接している弁体23をさらに弁座22に強く付勢した状態でステップ9の弁閉成に至る。この作用により弁部11のシール特性を向上させることができる。また、弁閉成動作に要する駆動手段の消費電力を低減することができる。
【0021】
【発明の効果】
以上の効果から明かなように本発明の請求項1記載の発明によれば弁部の開成動作時と閉成動作時の駆動手段の駆動電力を異なる電圧、異なるパルス出力周波数となるように制御することにより、弁開および弁閉に各々必要な力に対応した電圧で駆動させることができるため、駆動手段に要する消費電力を小さくすることができる。その結果、電源部の容量を小さくすることができる。
【0022】
また、請求項2記載の発明によれば、弁の開成動作時初期は駆動手段を高電圧、且つ低周波数パルスで駆動し、所定時間経過した後にタイマ手段で低電圧、且つ高周波数パルスによる駆動に切替えるように制御することにより、弁開成動作に要する駆動手段の消費電力を低減することができる。その結果電源部の容量を小さくすることができる。
【0023】
また、弁体の閉成動作時初期は駆動手段を低電圧、且つ高周波数パルスで駆動し、タイマ手段により所定時間経過した後に駆動手段を高電圧、且つ低周波数パルスで駆動するよう制御することにより、弁開成時から弁閉動作を行う間の消費電力が小さくなり、所定時間経過した弁閉成状態で高電圧、且つ低周波数パルスによる強い力で駆動することにより弁閉時の弁体の弁座への付勢力が大きくなり弁部のシール性能が向上する。
【0024】
また、請求項記載の発明によれば、弁体の開成動作時初期は駆動手段を高電圧、且つ低周波数パルスで駆動し、弁開閉検出手段で弁部の開状態を検出し、弁体が僅かに開成し弁体に逆方向に作用していた流体の付勢力が小さくなった状態で低電圧、且つ高周波数パルスで駆動するよう制御するため弁開成動作に要する駆動手段の消費電力を低減することができる。
【0025】
また、弁体の閉動作時初期は駆動手段を低電圧、且つ高周波数パルスで駆動し、弁開閉検出手段で弁閉状態を検出し弁体が閉成したことを検出した後に駆動手段を高電圧、且つ低周波数パルスによる駆動に切替えるよう制御することにより、弁閉動作に要する駆動手段の消費電力を低減すると共に、弁閉成状態での弁体の弁座への付勢力が大きくなり弁シール性能を向上することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるガスメータのブロック構成図
【図2】 同ガスメータのブロック構成図
【図3】 同ガスメータの弁部の弁開時の断面図
【図4】 同ガスメータの弁部の弁開時の断面図
【図5】 同ガスメータの弁部の弁閉時の断面図
【図6】 同ガスメータの弁部の弁閉動作時の動作フローチャート
【図7】 同ガスメータの弁部の弁開動作時の動作フローチャート
【図8】 本発明の実施例2におけるガスメータのブロック構成図
【図9】 同ガスメータのブロック構成図
【図10】 同ガスメータの弁部の弁開動作時の動作フローチャート
【図11】 同ガスメータの弁部の弁閉動作時の動作フローチャート
【図12】 本発明の実施例3におけるガスメータのブロック構成図
【図13】 同ガスメータのブロック構成図
【図14】 同ガスメータの弁部の弁開動作時の動作フローチャート
【図15】 同ガスメータの弁部の弁閉動作時の動作フローチャート
【図16】 従来の弁制御方法におけるブロック構成図
【符号の説明】
10 流路
11 弁部
12 ステッピングモータ(駆動手段)
13 流量計測手段
14 演算処理部
15 駆動回路
16 電圧制御手段
17 電池電源部
22 弁座
23 弁体
24 タイマ手段
25 弁開閉検出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid shutoff valve control device built in a gas meter that controls opening and closing of a flow of a gas fluid flowing in a flow path.
[0002]
[Prior art]
Conventionally, this type of fluid control valve control device has been disclosed in Japanese Patent Laid-Open No. 5-71656. The configuration will be described below with reference to the drawings. FIG. 16 is a block diagram of a conventional valve control device . Reference numeral 1 is a stepping motor, 2 is a detector such as the number of revolutions, 3 is a comparator, 4 is a microcomputer, 5 is a drive unit, and 6 is a power source. The control method is such that when the valve is opened (or when the valve is closed), the fluid pressure in the reverse direction applied to the valve element (not shown) is large. Therefore, the drive unit 5 is actuated by a signal from the microcomputer 4 to drive the motor thrust of the stepping motor 1. In order to obtain this, deceleration driving (applying a wide pulse width) was performed, and after a certain time, switching to acceleration driving (applying a narrow pulse width) was made. Further, constant speed tribe (applying equal pulse width) was performed when the valve was closed (or opened).
[0003]
[Problems to be solved by the invention]
However, the conventional control device has a problem that the power consumption of the stepping motor is large because of control for changing only the number of pulses.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a valve portion that opens and closes a flow path, a valve body provided inside the valve section , a driving means that drives the valve body , and a fluid to be detected that flows in the flow path. A flow rate measuring means for measuring the flow rate of the gas, an arithmetic processing unit for arithmetically processing a signal from the flow rate measuring means, and a drive for inputting a signal from the arithmetic processing unit and outputting a drive signal as a pulse signal to the driving means a circuit, and a voltage control means for variably controlling the output voltage of the driving circuit, and a power supply unit, the driving signal to the driving means during the opening operation and the closing operation of the valve body, the valve body When the fluid pressure due to the fluid flow acts in the forward direction with respect to the moving direction, the fluid pressure due to the fluid flow acts in the opposite direction with respect to the driving voltage and the pulse output frequency with respect to the moving direction of the valve body. Drive voltage and pulse output frequency Voltage, a fluid control valve control apparatus with a low frequency. In general, in the valve part, when the valve part is opened and closed due to the position and direction of the inlet and outlet of the fluid, the fluid pressure due to the flow of fluid acts in the reverse direction relative to the moving direction of the valve body. May work. Therefore, basically, the force and energy required for the opening operation of the valve body are different from the force and energy required for the closing operation. The present invention controls the opening and closing of the valve section by operating the driving means by changing the driving voltage and the pulse output frequency in accordance with the forces required for the opening operation and the closing operation. In addition, the power consumption of the driving means can be reduced, and the capacity of the battery power source can be reduced.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention includes a valve portion that opens and closes a flow path, a valve body provided inside the valve portion , a driving means that drives the valve body , A flow rate measuring means for measuring the flow rate of the fluid to be detected flowing through the flow path, an arithmetic processing unit for arithmetic processing of a signal from the flow rate measuring means, and a signal input from the arithmetic processing unit to drive the driving means and a drive circuit for outputting a pulse signal, the output voltage of the driver circuit and a voltage control means for variably controlling, and a power supply unit, to the drive means in the opening operation and the closing operation of the valve body The drive signal is based on the flow of fluid in the direction of movement of the valve body with respect to the drive voltage and pulse output frequency when the fluid pressure due to the flow of fluid acts in the forward direction with respect to the direction of movement of the valve body. Driving voltage when fluid pressure acts in the opposite direction The pulse output frequency high voltage, a fluid control valve control apparatus with a low frequency. In general, in the valve part, when the valve part is opened and closed due to the position and direction of the inlet and outlet of the fluid, the fluid pressure due to the flow of fluid acts in the reverse direction relative to the moving direction of the valve body. May work. Therefore, basically, the force and energy required for the opening operation of the valve body are different from the force and energy required for the closing operation. The present invention controls the opening and closing of the valve section by operating the driving means by changing the driving voltage and the pulse output frequency in accordance with the forces required for the opening operation and the closing operation. In addition, the power consumption of the driving means can be reduced, and the capacity of the battery power source can be reduced.
[0006]
The invention of claim 2, wherein the present invention, further to the first aspect of the invention, a timer means to count between time, during opening operation of the valve body opposite to the moving direction of the valve body When a fluid pressure is applied to the valve body, after the time sufficient for valve opening has elapsed due to the counting of the timer means, the valve body is driven with a pulse signal having a high frequency and a driving voltage lower than the pulse output frequency at the initial stage of the opening operation. When the fluid pressure is applied in the same direction as the moving direction of the valve body during the closing operation of the valve body, a sufficient time has passed for the valve body to be closed by counting of the timer means The latter is a fluid control valve control device that drives the valve body with a drive signal at the initial stage of the closing operation and a pulse signal that is higher in voltage and lower in frequency than the pulse output frequency, and moves the valve body in opposition to the fluid flow. Configuration of valve section for valve opening operation Oite Since the valve opening formed operation time of initial performing valve opening formed operation from the valve closed state the valve element is subjected to pressure of the fluid flow in a direction opposite to the movement direction, the high voltage and strong low-frequency pulse performs drive by force, is passed predetermined time counting by the timer means, after the pressure had received by the flow of the fluid becomes sufficiently small by valve formed opened by moving the valve body, a low voltage, and high By controlling to switch to driving by frequency pulses, the power consumption of the driving means required for the valve opening operation can be reduced.
[0007]
In the initial stage of the closing operation of the valve body, the driving means is driven with a low voltage and high frequency pulse, and after a predetermined time has elapsed, the driving means is driven with a high voltage and low frequency pulse, thereby allowing fluid flow. in the structure of the valve unit for performing closed valve formed operation by moving the valve body in the direction, strong when performing closed valve formed operation from the valve open state, the valve element is subjected to pressure due to the flow of fluid in a forward direction forces driving is required by, and driven at low voltage and high frequency pulses, the predetermined time counted by the timer means has elapsed, a high voltage, and low in valve closed formation state where the valve body is in contact with the valve seat By controlling to drive with a strong force by the frequency pulse, the urging force of the valve body to the valve seat is increased, and the sealing performance of the valve portion can be improved. Further, it is possible to reduce the power consumption of the drive means required for the closed valve formed operation.
[0008]
Further, the invention according to claim 3 of the present invention, further to the first aspect of the invention, a valve closing detecting means for detecting the opening and closing of the valve body, said valve body during opening operation of the valve body When fluid pressure is applied in the direction opposite to the moving direction, if the valve opening / closing detection means detects that the valve body is open, a pulse with a lower frequency and higher frequency than the drive voltage and pulse output frequency before detection is detected. When the valve body is driven by a signal and the fluid pressure acts in the same direction as the movement direction of the valve body during the closing operation of the valve body, the valve body is closed by the valve opening / closing detection means. Is a fluid control valve control device that drives the valve body with a pulse signal that is higher in voltage and lower in frequency than the drive voltage and pulse output frequency before detection , and is opposed to the flow of fluid. In the configuration of the valve part that moves the valve and opens the valve, When the state performing the valve opening formed operation, the valve body is valve opening formed direction opposite to the high voltage to the valve opening forming the beginning of the operation receiving fluid pressure, and subjected to intense driving by the low frequency pulses, the valve detecting means Detecting the open / closed state of the valve part, so that the valve body is opened slightly, and the urging force of the fluid pressure acting on the valve body in the reverse direction is reduced, so that it is driven with a low voltage and high frequency pulse. power consumption of the drive means necessary for the valve opening formed operation by controlling can be reduced.
[0009]
Also, closing operation time of initial is the driving means low voltage of the valve body, and driven at a high frequency pulse, a high voltage the drive means after the valve portion is closed, and by driving at low frequencies, the fluid of the the valve unit configured to perform closed valve formed operation by moving the valve body in the direction of flow, strong force closed valve formed operation is not required, the low voltage from the closing operation at the initial of the valve portion, and a high frequency performs driving by the pulse, a high voltage after the valve closing detecting means detects the closed state of the valve body, and subjected to intense driving by a low frequency, to increase the urging force of the valve seat of the valve body when the valve closing adult . Therefore, by this drive control, the power consumption of the drive means can be reduced and the sealing performance of the valve portion can be improved.
[0010]
Embodiments of the present invention will be described below with reference to the drawings. In addition, in Example 1-3 , the same code | symbol is attached | subjected about the equivalent component and description is abbreviate | omitted partially.
[0011]
Example 1
FIG. 1 is a configuration diagram of a gas meter according to Embodiment 1 of the present invention. FIG. 2 is a block diagram of the gas meter. 3 and 4 are sectional views when the gas meter valve portion is opened, and FIG. 5 is a sectional view when the gas meter valve portion is closed. FIG. 6 is a flowchart of the operation during the valve closing operation of the valve portion of the gas meter, and FIG. 7 is an operation flowchart during the valve opening operation of the valve portion of the gas meter.
[0012]
1 and 2, 7 is the housing of the gas meter, in the interior of the housing 7, the passage 10 for communicating the inlet 8 and outlet 9 is formed. The flow path 10 includes a valve unit 11 that opens and closes the flow path 10, a stepping motor 12 that is a driving unit that drives the valve unit 11, and a flow rate measurement unit that measures a flow rate of a gas that is a detected fluid that flows through the flow path 10. 13, an arithmetic processing unit 14 that performs arithmetic processing on the signal from the flow rate measuring unit 13, a driving circuit 15 that inputs a signal from the arithmetic processing unit and outputs a driving signal to the stepping motor 12 of the driving unit, and a driving circuit The voltage control means 16 which changes the output voltage from the pulse from 15 (it abbreviate | omits pulse hereafter) and the battery power supply part 17 are comprised. Reference numeral 18 denotes display means for displaying the flow rate. 3 to 5, the valve portion 11 having the inlet joint 19 and the outlet joint 20 is connected to the linear motion conversion portion 21 that converts the rotation of the stepping motor 12 into the direct motion, and the linear motion conversion portion 21. There is provided a valve body 23 that moves up and down and comes into contact with the valve seat 22 to be closed. 6 and 7, step 1 is a flow rate measuring operation, step 2 is a flow rate integrating operation, step 3 is an operation for comparing the set value of the integrated flow rate stored in the arithmetic processing unit 14 with the value integrated with the flow rate, step 4 is a valve closing signal output operation for instructing valve closing, step 5 is an operation for driving a stepping motor 12 as a driving means at a certain voltage A and a pulse output frequency A, and step 6 is a closing state of the valve unit 11. Indicates. Step 7 is a valve opening signal output operation for commanding valve opening, Step 8 is an operation for driving a stepping motor 12 as a driving means at a certain voltage B and pulse output frequency B, and Step 9 is an opening state of the valve portion 11. .
[0013]
Next, the operation and action of the above configuration will be described with reference to FIGS. First, the valve closing operation of the valve unit 11 shown in FIG. 6 will be described. Normally, the valve body 23 of the valve unit 11 built in the gas meter is in an open state, and in step 1, the flow rate is measured. In step 2, the flow rate integration is performed by the arithmetic processing unit 14 based on the measured flow rate value. Step 3 The flow rate integrated value are compared with a set value of the integrated flow rate stored in the arithmetic processing unit 14, the value of the flow rate integration is below the set value of the integrated flow rate Ru Tei stored in the arithmetic processing unit 14 If it is larger, it is judged as abnormal, a valve closing signal is outputted from the arithmetic processing unit 14 in step 4, voltage A and pulse output frequency A are applied from the drive circuit 15 to the stepping motor 12 in step 5, and the stepping motor 12 is turned on. To drive. The rotation of the stepping motor 12 is converted into a linear motion by the linear motion conversion unit 21, the valve body 23 moves and comes into contact with the valve seat 22, and the valve is closed in Step 6. At this time, since the flow path 10 is closed by the valve portion 11 of the gas meter, the gas does not flow to the instrument side (not shown). Next, the valve opening operation of the valve body shown in FIG. 7 will be described. When it is determined that there is no abnormality on the instrument side, a valve opening signal instructing opening of the valve is output from the arithmetic processing unit 14 in step 7, 8, the voltage B and the pulse output frequency B are applied from the drive circuit 15 to the stepping motor 12, and the stepping motor is driven. The rotation of the stepping motor 12 is converted into a linear motion by the linear motion changing unit 21, the valve body 23 moves, and is disengaged from the valve seat 22, and the valve is opened in Step 9. That is, in the valve portion 11 as in the present embodiment shown in FIGS. 3 to 5, the gas flowing direction and the moving direction of the valve body 23 are reversed during the opening operation, and the gas pressure opposite to the valve opening direction is set to the valve body 23. However, when the valve is closed, the valve body 23 moves in the same direction as the flow of gas flowing from the inlet joint 19 toward the outlet joint 20. When the valve body 23 receives the pressure due to the flow in the valve closing direction, a directional force for closing the valve body 23 acts, and the force necessary for closing the valve body 23 is reduced, and the voltage is lower than that during the opening operation. And can be driven at a high pulse frequency. This low voltage indicates a voltage lower than the maximum output voltage (for example, 3 V) of the battery power supply unit 17. In general, the design value of the operating voltage of the valve is 2 V or less when the maximum output voltage of the battery power supply unit 17 is 3 V, for example, considering the output voltage drop characteristics, temperature characteristics, gas pressure, etc. of the battery power supply unit 17 over time. Designed so that the valve can be opened. Further, the operation voltage at the time of closing is operated below the voltage at the time of opening. Further, the high pulse frequency means a high frequency at which a force necessary for closing the valve body 23 can be obtained below the step-out torque of the stepping motor. The operation pulse frequency at the closing time is operated at a frequency higher than the opening frequency. As described above, since the force and energy required for the valve opening operation and the valve closing operation are different, in this embodiment, the drive voltage and the pulse frequency are changed according to the force and energy required for each operation. The power consumption required for the valve opening operation and the valve closing operation can be reduced by the control, and the capacity of the battery power supply unit 17 can be reduced.
[0014]
(Example 2)
FIG. 8 is a gas meter structure diagram of Embodiment 2 of the present invention. FIG. 9 is a block diagram of the gas meter. FIG. 10 is an operation flowchart at the time of valve opening operation of the valve portion of the gas meter, FIG. 11 is an operation flowchart at the time of valve closing operation of the valve portion of the gas meter, and the point different from the first embodiment is that the time is shown in FIGS. Provided is a timer means 24 for counting, an operation for driving the stepping motor 12 as a driving means with a high voltage, low frequency pulse, step 10, an operation step 11 for counting the timer means 24 and a predetermined time, a low voltage, a high voltage Each operation program of the operation step 12 for driving the stepping motor 12 which is a driving means by the frequency pulse is provided.
[0015]
Next, the operation and action of the above configuration will be described. The opening operation of the valve unit 11 shown in FIG. 10 will be described. In step 7, a valve opening signal instructing opening of the valve is output from the arithmetic processing unit 14, and in step 10, a driving signal by a high voltage, low frequency pulse is processed. The driving circuit 15 output from the unit 14 is driven by applying high voltage and low frequency pulses to the stepping motor 12, and at the same time, the timer means 24 is operated in step 11, and the timer means 24 is activated for a predetermined time (sufficient to open the valve). When the time is counted, a drive signal based on the low voltage and high frequency pulse is output from the arithmetic processing unit 14 in step 12, and the low voltage and high frequency pulse is applied from the drive circuit 15 to the stepping motor 12 for driving. Then, the valve element 23 is moved by the linear motion conversion unit 21 and is separated from the valve seat 22 to reach the valve open state in Step 9. In this operation, when the valve portion 11 is opened, the gas pressure due to the gas flow acts in the direction opposite to the moving direction of the valve body. Therefore, the valve 11 is initially opened with a strong driving force by a high voltage, low frequency pulse to open the valve. When the valve body 23 moves after a sufficient time has passed and the urging force of the pressure affected by the gas flow becomes sufficiently small, control is performed so as to switch to driving with a low voltage, high frequency pulse, thereby opening the valve. It is possible to reduce the power consumption of the driving means required for this.
[0016]
Next, the closing operation and action of the valve unit 11 shown in FIG. 11 will be described. In the comparison operation with the set value in Step 3, the value of the flow rate integration performed in the arithmetic processing unit 14 in Step 2 is stored in the arithmetic processing unit 14. If it is larger than the set value of the integrated flow rate, a valve closing signal is output from the arithmetic processing unit 14 in step 4, and a drive signal based on a low voltage and high frequency pulse is output from the arithmetic processing unit in step 12. The circuit 15 is driven by applying a low voltage, high frequency pulse to the stepping motor 12. At the same time, when a predetermined time (a time sufficient for the valve to close) is counted by the timer means 24 in step 11, a drive signal with a high voltage and low frequency pulse is output from the arithmetic processing unit 14 in step 10 and driven. A high voltage, low frequency pulse is applied from the circuit 15 to the stepping motor 12 to drive with a strong force, and the valve element 23 comes into contact with the valve seat 22 with a strong force by the linear motion conversion unit 21 to close the valve in step 9. To the state. In the closing operation of the valve, the moving direction of the valve body 23 and the direction in which the gas pressure acts are the same. Most of the closing operation of the valve is driven by a low voltage, high frequency pulse, and only in the last stage. By performing strong driving with high voltage and low frequency pulses, power consumption can be reduced and the valve body 23 can be closed against the valve seat 22 with a strong force, and the sealing performance of the valve can be improved. .
[0017]
(Example 3)
FIG. 12 is a configuration diagram of the gas meter according to the third embodiment of the present invention. FIG. 13 is a block diagram of the gas meter. FIG. 14 is an operation flowchart when the valve portion of the gas meter is opened, and FIG. 15 is an operation flowchart when the valve portion of the gas meter is opened.
[0018]
The difference from the first and second embodiments is that the valve opening / closing detection means 25 for detecting the opening / closing of the valve unit 1 is provided in FIGS. 12 to 15, the operation step 14 for detecting the open state of the valve unit 11, and the valve unit 11 has an operation step 15 for detecting the closed state. The valve opening / closing detection means 25 detects the opening / closing state of the valve section 11 by processing the signal of the flow rate measurement means 13 by the arithmetic processing section 14 and determining whether or not there is a flow.
[0019]
Next, the operation and action of the above configuration will be described. The opening operation of the valve unit 11 shown in FIG. 14 will be described. In step 7, a valve opening signal instructing opening of the valve is output from the arithmetic processing unit 14, and in step 10, a driving signal based on high voltage and low frequency pulses is processed. The high pressure and low frequency pulses are applied to the stepping motor 12 from the driving circuit 15 and driven, and the valve element 23 is moved by the linear motion conversion unit 21. Next, in step 14, a valve opening operation for detecting the opening state of the valve portion 11 is performed, and when it is detected that the valve body 23 is opened, a drive signal based on a low voltage, high frequency pulse is calculated in step 12. A low voltage, high frequency pulse is applied from the drive circuit 15 to the stepping motor 12 from the processing unit 14, and driving by the low voltage is continued. In this operation, when the valve portion 11 is opened, the valve body 23 initially moves in opposition to the gas pressure, so that a strong drive with a high voltage and low frequency pulse is required, but when the valve body 23 is slightly opened, The effect of the gas pressure due to the gas flow received by the body 23 is reduced. Accordingly, the valve opening / closing detection means 25 detects that the valve body 23 has been slightly opened, and the power consumption of the drive means required for opening the valve can be reduced by immediately switching to drive with a low voltage, high frequency pulse. it can.
[0020]
Next, the closing operation and action of the valve unit 11 shown in FIG. 15 will be described. In the comparison operation with the set value in Step 3, the value of the flow rate integration performed in the arithmetic processing unit 14 in Step 2 is stored in the arithmetic processing unit 14. When the integrated flow rate is larger than the set value, a valve closing signal is output from the arithmetic processing unit 14 in step 4, and a drive signal based on a low voltage and high frequency pulse is output from the arithmetic processing unit 14 in step 12. Low voltage and high frequency pulses are applied from the drive circuit 15 to the stepping motor 12 to drive the stepping motor 12, and the valve element 23 moves toward the valve seat 22 by the linear motion converter 21. Next, in step 15, when the valve opening / closing detection means 25 detects the closed state of the valve portion 11 and detects that the valve body 23 is closed, a drive signal by a high voltage, low frequency pulse is detected. Is output from the arithmetic processing unit 14, and high voltage and low frequency pulses are applied from the driving circuit 15 to the stepping motor 12. The stepping motor 12 is driven with a strong force and is already in contact with the valve seat 22 by the linear motion conversion unit 21. In a state where the valve body 23 is further urged strongly against the valve seat 22, the valve closing of Step 9 is reached. This action can improve the sealing characteristics of the valve portion 11. Moreover, the power consumption of the drive means required for the valve closing operation can be reduced.
[0021]
【The invention's effect】
As is apparent from the above effects, according to the first aspect of the present invention, the driving power of the driving means during the opening operation and the closing operation of the valve portion is controlled to have different voltages and different pulse output frequencies. by, since it is possible to drive at a voltage corresponding to the respective force required valve opening formed and closed valve formed, it is possible to reduce the power consumption required for driving means. As a result, the capacity of the power supply unit can be reduced.
[0022]
According to the second aspect of the present invention, the driving means is driven with a high voltage and low frequency pulse in the initial stage of the opening operation of the valve body , and after a predetermined time has elapsed, the timer means is driven with the low voltage and high frequency pulse. By controlling to switch to driving, the power consumption of the driving means required for the valve opening operation can be reduced. As a result, the capacity of the power supply unit can be reduced.
[0023]
In the initial stage of the closing operation of the valve body, the driving means is driven with a low voltage and high frequency pulse, and the timer means is controlled to drive the driving means with a high voltage and low frequency pulse after a predetermined time has elapsed. As a result, the power consumption during the valve closing operation from when the valve is opened is reduced, and the valve body is closed when driven by a strong force with a high voltage and low frequency pulse when the valve is closed for a predetermined time. The urging force to the valve seat is increased and the sealing performance of the valve part is improved.
[0024]
Further, according to the third aspect of the present invention, opening operation upon initial valve element drives the driving means high voltage and the low frequency pulse, to detect the opening formed state of the valve unit in the valve closing detecting means, the valve Power consumption of the drive means required for valve opening operation to control to drive with low voltage and high frequency pulse in a state where the body is slightly opened and the urging force of the fluid acting in the opposite direction on the valve body is reduced Can be reduced.
[0025]
Also, the closing formed during operation initially the driving means low voltage of the valve body, and the high-frequency driven by the pulse, the drive means after detecting that the detected valve body valve-closed forming state valve detection means has closed Is controlled so as to switch to driving with a high voltage and low frequency pulse, thereby reducing the power consumption of the driving means required for the valve closing operation and increasing the urging force to the valve seat of the valve body when the valve is closed. It is possible to improve the valve sealing performance.
[Brief description of the drawings]
FIG. 1 is a block diagram of a gas meter in Embodiment 1 of the present invention. FIG. 2 is a block diagram of the gas meter. FIG. 3 is a sectional view of the gas meter when a valve is opened. Sectional view when the valve of the gas meter is opened [Fig. 5] Sectional diagram when the valve portion of the gas meter is closed [Fig. 6] Flow chart when the valve portion of the gas meter is closed [Figure 7] Valve portion of the gas meter FIG. 8 is a block diagram of the gas meter according to the second embodiment of the present invention. FIG. 9 is a block diagram of the gas meter. FIG. 10 is a valve meter of the gas meter. Flowchart [FIG. 11] Operation flow chart during valve closing operation of valve portion of same gas meter [FIG. 12] Block configuration diagram of gas meter in Embodiment 3 of the present invention [FIG. 13] Block configuration diagram of same gas meter [FIG. Flowchart during valve opening operation of the valve portion of the gas meter. FIG. 15 Flowchart of valve operation during valve closing operation of the valve portion of the gas meter. FIG. 16 Block configuration diagram in a conventional valve control method.
10 channel 11 valve part 12 stepping motor (drive means)
DESCRIPTION OF SYMBOLS 13 Flow measurement means 14 Operation processing part 15 Drive circuit 16 Voltage control means 17 Battery power supply part 22 Valve seat 23 Valve body 24 Timer means 25 Valve opening / closing detection means

Claims (3)

流路を開閉する弁部と、前記弁部の内部に設けられた弁体と、前記弁体を駆動する駆動手段と、前記流路を流れる被検出流体の流量を計測する流量計測手段と、前記流量計測手段からの信号を演算処理する演算処理部と、前記演算処理部からの信号を入力して前記駆動手段へ駆動信号をパルス信号として出力する駆動回路と、前記駆動回路の出力電圧を可変制御する電圧制御手段と、電源部とを有し、前記弁の開成動作時と閉成動作時における前記駆動手段への駆動信号は、前記弁体の移動方向に対して流体の流れによる流体圧が順方向に作用する場合の駆動電圧とパルス出力周波数に対して前記弁体の移動方向に対して流体の流れによる流体圧が逆方向に作用する場合の駆動電圧とパルス出力周波数を高電圧、低周波数とした流体制御弁制御装置A valve part that opens and closes the flow path, a valve body provided inside the valve part , a drive unit that drives the valve body , a flow rate measurement unit that measures the flow rate of the fluid to be detected flowing through the flow path, An arithmetic processing unit that performs arithmetic processing on a signal from the flow rate measuring unit, a driving circuit that inputs a signal from the arithmetic processing unit and outputs a driving signal as a pulse signal to the driving unit, and an output voltage of the driving circuit and voltage control means for variably controlling, and a power supply unit, the driving signal to the driving means during the opening operation and the closing operation of the valve body, due to the flow of fluid with respect to the direction of movement of the valve body The drive voltage and pulse output frequency when the fluid pressure due to the flow of fluid acts in the opposite direction to the moving direction of the valve body are higher than the drive voltage and pulse output frequency when the fluid pressure acts in the forward direction. voltage, the low frequency and the fluid control valve Control device. 間をカウントするタイマ手段を有し、弁体の開成動作時には前記弁体の移動方向と逆に流体圧が作用する場合、前記タイマ手段のカウントにより弁開成に十分な時間が経過した後には開成動作初期の駆動電圧とパルス出力周波数より低電圧で且つ高周波数のパルス信号で前記弁体を駆動するとともに、前記弁体の閉成動作時には前記弁体の移動方向と同方向に流体圧が作用する場合、前記タイマ手段のカウントにより前記弁体が閉成するのに十分な時間が経過した後には閉成動作初期の駆動電圧とパルス出力周波数より高電圧で且つ低周波数のパルス信号で前記弁体を駆動する請求項1に記載の流体制御弁制御装置 A timer means to count between time, if at the time of opening operation of the valve element acting fluid pressure in the moving direction opposite of said valve body, sufficient time elapses counted by the valve opening of said timer means After that , the valve body is driven by a pulse signal having a lower frequency and a higher frequency than the drive voltage and the pulse output frequency at the initial stage of the opening operation , and at the same time as the moving direction of the valve body during the closing operation of the valve body. When fluid pressure is applied, after a sufficient time has passed for the valve body to close by counting of the timer means, a pulse having a voltage higher than the driving voltage and pulse output frequency at the initial stage of the closing operation and a low frequency is applied. The fluid control valve control device according to claim 1 , wherein the valve body is driven by a signal. 弁体の開閉を検出する弁開閉検出手段を有し、前記弁の開成動作時には前記弁体の移動方向と逆に流体圧が作用する場合、前記弁開閉検出手段により前記弁体が開成していることが検出されると、検出前の駆動電圧とパルス出力周波数より低電圧で且つ高周波数のパルス信号で前記弁体を駆動するとともに、前記弁体の閉成動作時には前記弁体の移動方向と同方向に流体圧が作用する場合に、前記弁開閉検出手段により前記弁体が閉成していることが検出されると検出前の駆動電圧とパルス出力周波数より高電圧で且つ低周波数のパルス信号で前記弁体を駆動する請求項1に記載の流体制御弁制御装置 Valve opening / closing detecting means for detecting opening / closing of the valve body , and when the valve body is opened, when the fluid pressure acts in the direction opposite to the moving direction of the valve body, the valve body is detected by the valve opening / closing detection means. When it is detected that the valve body is open, the valve body is driven by a pulse signal having a voltage lower than and higher than the drive voltage and pulse output frequency before detection , and at the time of closing the valve body. When the fluid pressure acts in the same direction as the movement direction of the valve, if the valve opening / closing detection means detects that the valve body is closed, the drive voltage before detection and the pulse output frequency are higher than The fluid control valve control device according to claim 1 , wherein the valve body is driven by a low-frequency pulse signal.
JP2354997A 1997-02-06 1997-02-06 Fluid control valve control device Expired - Fee Related JP3885269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2354997A JP3885269B2 (en) 1997-02-06 1997-02-06 Fluid control valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2354997A JP3885269B2 (en) 1997-02-06 1997-02-06 Fluid control valve control device

Publications (2)

Publication Number Publication Date
JPH10220617A JPH10220617A (en) 1998-08-21
JP3885269B2 true JP3885269B2 (en) 2007-02-21

Family

ID=12113575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2354997A Expired - Fee Related JP3885269B2 (en) 1997-02-06 1997-02-06 Fluid control valve control device

Country Status (1)

Country Link
JP (1) JP3885269B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529199B2 (en) * 1999-04-02 2010-08-25 パナソニック株式会社 Gas shut-off control device
JP4238409B2 (en) * 1999-04-02 2009-03-18 パナソニック株式会社 Fluid control valve control device
JP2001141094A (en) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd Fluid control valve
CN109422224A (en) * 2017-08-28 2019-03-05 康美包(苏州)有限公司 The control method and control device of bottle placer and bottle placer
JP7022309B2 (en) * 2018-01-18 2022-02-18 三浦工業株式会社 Flow control device, boiler device and control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571656A (en) * 1991-09-17 1993-03-23 Tohoku Oki Denki Kk Fluid cutoff valve control method
JP3040031B2 (en) * 1992-04-03 2000-05-08 愛知時計電機株式会社 Drive system of stepping motor for shut-off valve operation and safety type gas meter.
JP3417011B2 (en) * 1993-11-11 2003-06-16 株式会社デンソー Valve drive system
JPH08123554A (en) * 1994-10-24 1996-05-17 Matsushita Seiko Co Ltd Controller for flow rate valve
JP3408344B2 (en) * 1994-11-25 2003-05-19 東京瓦斯株式会社 Shut-off valve for gas meter
JP3011043B2 (en) * 1995-03-10 2000-02-21 松下電器産業株式会社 Flow control valve

Also Published As

Publication number Publication date
JPH10220617A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP2005232753A (en) Opening/closing body control unit
CN107849888B (en) Control device for opening/closing member
JP2004003159A (en) Apparatus for sensing object caught in opening/closing body
JP2003021252A (en) Flow rate control valve
JPH08238938A (en) Closing member driving device for automobile
JP3135788B2 (en) Method of electronically monitoring and controlling the opening and closing process of an electric drive unit
JP3885269B2 (en) Fluid control valve control device
KR100414477B1 (en) Power window apparatus
JP3011043B2 (en) Flow control valve
JP3885268B2 (en) Fluid control valve control device
JPH08260810A (en) Control apparatus for opening and shutting of window
JP3804124B2 (en) Fluid control valve control device
US6913122B2 (en) Brake for DC motor
JP3804123B2 (en) Fluid control valve control device
KR950001238A (en) Wind vane control device and control method
JP3578568B2 (en) Power window control device for vehicles
JPH08123554A (en) Controller for flow rate valve
JP2001141096A5 (en)
JP2954471B2 (en) Opening / closing body opening / closing control method
JP4238409B2 (en) Fluid control valve control device
JP3398974B2 (en) Flow control device
JP2000130622A (en) Fluid control valve controlling method
JP2000008704A (en) Opening/closing control device
JPH10267153A (en) Controller for fluid control valve
JP2012036567A (en) Door opening/closing drive unit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees