[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3883885B2 - Single-ended regenerative radiant tube burner device and combustion method thereof - Google Patents

Single-ended regenerative radiant tube burner device and combustion method thereof Download PDF

Info

Publication number
JP3883885B2
JP3883885B2 JP2002056903A JP2002056903A JP3883885B2 JP 3883885 B2 JP3883885 B2 JP 3883885B2 JP 2002056903 A JP2002056903 A JP 2002056903A JP 2002056903 A JP2002056903 A JP 2002056903A JP 3883885 B2 JP3883885 B2 JP 3883885B2
Authority
JP
Japan
Prior art keywords
combustion
tube
pipe
heat storage
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002056903A
Other languages
Japanese (ja)
Other versions
JP2003254509A (en
Inventor
佳史 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2002056903A priority Critical patent/JP3883885B2/en
Priority to TW092103229A priority patent/TWI259257B/en
Priority to KR1020030010079A priority patent/KR100880330B1/en
Priority to CNB031070418A priority patent/CN1259522C/en
Publication of JP2003254509A publication Critical patent/JP2003254509A/en
Application granted granted Critical
Publication of JP3883885B2 publication Critical patent/JP3883885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/07Arrangement or mounting of devices, e.g. valves, for venting or aerating or draining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シングルエンド型蓄熱式ラジアントチューブバーナ装置およびその燃焼方法に関するものである。
【0002】
【従来の技術】
シングルエンド型ラジアントチューブバーナ装置は、U型ラジアントチューブバーナ装置やW型ラジアントチューブバーナ装置の設置が困難な加熱設備に適用されるもので、このシングルエンド型ラジアントチューブバーナ装置は、たとえば、特開平7−83414号公報等で提案されている。
【0003】
すなわち、図2に示すように、前記シングルエンド型ラジアントチューブバーナ装置Tは先端が閉塞された外管1と、この外管1の内部に設けた内管2との二重管構造で構成され、かつ、前記内管2内に燃焼用空気供給管3、さらに、この燃焼用空気供給管3内に燃料ガス供給管4を配設し、前記燃焼用空気供給管3と内管2との間に形成した通路5に燃焼用空気を供給するとともに、燃料ガス供給管4から燃料ガスを供給して燃焼室6で燃焼させ、その燃焼排ガスは外管1の閉塞端部で反転したのち、外管1と内管2とで形成される環状空間7を通って外管1を加熱すると同時に、この燃焼排ガスの流れと対向して供給される燃焼用空気を予熱して排気されるようになっている。
【0004】
しかしながら、前記のように、燃焼排ガスの流れと対向して供給される燃焼用空気を予熱する構成では、熱交換を行なう伝熱面積が制約されるため、熱回収率は炉内温度が950℃において約65%程度であり、熱回収率に限界があった。
【0005】
そこで、図3に示す構成のシングルエンド型蓄熱式ラジアントチューブバーナ装置Tが特開平7−83414号公報にて提案されている。
【0006】
このシングルエンド型蓄熱式ラジアントチューブバーナ装置Tは、先端が閉塞された外管10と、この外管10内に配設した内管11との二重管構造で、外管10と内管11との後端部間に外管蓄熱体12を、内管11の後端部にも内管蓄熱体13を各々備え、外管蓄熱体12と内管蓄熱体13の後端は切換弁Vを介して燃焼用空気供給ブロワ14あるいは排気ブロワ15に連通する。
【0007】
また、内管11内と、外管10と内管11とで形成される通路16内に各々内管燃料ノズル17と外管燃料ノズル18とが配設されている。
【0008】
そして、前記燃焼用空気供給ブロワ14と排気ブロワ15とを駆動するとともに切換弁Vを図示の状態とし内管燃料ノズル17から燃料ガスを供給して点火すると、燃焼ガスは内管11から前記通路16を経て外管10を加熱したのち、燃焼ガスは外管蓄熱体12を通り燃焼排ガスの顕熱を最大限に回収する。
【0009】
その後、切換弁Vを切り換えるとともに外管燃料ノズル18から燃料ガスを供給する。この場合、燃焼用空気は、加熱された外管蓄熱体12を通過して十分予熱されて燃焼に供されるため省エネルギー化が大きく、かつ、効率の高い燃焼を実現することができる。
【0010】
所定時間経過すると切換弁Vを切り換えるとともに内管燃料ノズル17から燃料ガスを供給して燃焼を行なう。以後、前記工程を繰り返し交番燃焼を行なう。
【0011】
【発明が解決しようとする課題】
しかしながら、前記シングルエンド型蓄熱式ラジアントチューブバーナ装置Tでは、高温の予熱空気で燃焼するため燃焼火炎温度が高くなり、サーマルNOxが増大する。また、燃焼用空気の供給と燃焼排ガスの排出を交互に切り換えるために燃焼用空気配管と燃焼排ガス配管中に切換弁を設ける必要があり、炉周りが配管で複雑になる。
【0012】
さらに、内管燃料ノズル17および外管燃料ノズル18が内管蓄熱体13と外管蓄熱体12の下流側(前方)に配置される構造であるため、燃料ガスと燃焼用空気とが均一に混合されにくく、特に、燃料ガスの自己着火温度以下の低炉温時においては着火不良が頻発して安定燃焼ができないという課題を有する。
【0013】
そこで本発明は、低NOx化および省エネルギー化と効率の高い燃焼を燃焼ノズルを損傷することなく同時に実現することのできるシングルエンド型蓄熱式ラジアントチューブバーナ装置および燃料ガスの自己着火温度以下の低炉温時においても安定燃焼が可能なシングルエンド型蓄熱式ラジアントチューブバーナ装置の燃焼方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明は、前記目的を達成するために、一端が閉塞された外管と、この外管の内側に所定間隔をもって配置された内管とからなるシングルエンドラジアントチューブの前記外管と内管とで形成される外管環状空間と内管内に外管蓄熱体と内管蓄熱体とを内蔵するとともに、前記外管環状空間と内管との各後部を交互に空気供給源と排気手段とに連通する2本の給排管に接続し、前記外管環状空間と内管に設けた燃焼ノズルでの燃焼を所定時間毎に交互に切り換えて交番燃焼を行ない、その燃焼排ガスの顕熱を前記内管蓄熱体あるいは外管蓄熱体で交互に回収し、高温の予熱空気で燃焼を行なうシングルエンド型蓄熱式ラジアントチューブバーナ装置において、前記2本の給排管を、先端部にベンチュリ型吸引管を備えた構成とし、この給排管を排ガス排出口を備えたバイパス管で連通し、前記2本の給排管のうちいずれか一方の給排管を切換弁を切り換えて交互に空気供給手段に連通する構成とするとともに、前記燃焼ノズルを、前記外管環状空間に複数設置され、中心部から燃料ガスを噴出し、その外周から冷却空気を噴出する二重管構造の外管燃焼ノズルと、内管の中心部に配置され、かつ、中心部から燃料ガスを噴出し、その外周から冷却空気を噴出する二重管構造の内管燃焼ノズルとで構成するとともに、前記内管蓄熱体を、前記内管と内管燃焼ノズルの先端部との間に装着し、また、前記外管蓄熱体を、前記外管と外管燃焼ノズルの先端部との間に装着したものである。
【0015】
また、一端が閉塞された外管と、この外管の内側に所定間隔をもって配置された内管とからなるシングルエンドラジアントチューブの前記外管と内管とで形成される外管環状空間と内管内に外管蓄熱体と内管蓄熱体とを内蔵するとともに、前記外管環状空間と内管との各後部を交互に空気供給源と排気手段とに連通する2本の給排管に接続し、前記外管環状空間と内管に設けた燃焼ノズルでの燃焼を所定時間毎に交互に切り換えて交番燃焼を行ない、その燃焼排ガスの顕熱を前記内管蓄熱体あるいは外管蓄熱体で交互に回収し、高温の予熱空気で燃焼を行なうシングルエンド型蓄熱式ラジアントチューブバーナ装置の燃焼方法ににおいて、炉内温度が燃料ガスの自己着火温度以下のときは、前記外管環状空間あるいは内管に設けた燃焼ノズルのいずれか一方に予混合燃料ガスを供給して連続燃焼を継続し、炉内温度が燃料ガスの自己着火温度以上になると、前記両燃焼ノズルでの燃焼を所定時間毎に切り換えて交番燃焼を行なうようにしたものである。
【0016】
【発明の実施の形態】
つぎに、本発明の一実施の形態を図1にしたがって説明する。
本発明にかかるシングルエンド型蓄熱式ラジアントチューブバーナ装置Tは、大略、シングルエンドラジアントチューブ20と、内管燃焼ノズル26と、外管燃焼ノズル30と、内管蓄熱体Rと、外管蓄熱体Rと、燃焼用空気供給ブロワ40と燃料ガス供給源41とからなる。
【0017】
そして、前記シングルエンドラジアントチューブ20は、先端(炉内側)が閉塞された外管21と、この外管21の内部に所定間隔をもって配設された前記外管21より短い内管22とで構成され、内管22内部と外管21内方とは外管先端部で連通している。なお、前記外管21と内管22の後端は閉塞されている。
【0018】
前記内管燃焼ノズル26は、前記内管22の中心部に所定間隔をもって後端から装着し、その前方に内管燃焼室Sを形成するもので、中心部に燃料ガスを噴出する第1燃料供給管27と、その外周に所定間隔をもって配設した第1冷却空気供給管28とから構成され、前記第1燃料供給管27と第1冷却空気供給管28との間に第1冷却空気供給路29を形成している。
【0019】
前記外管燃焼ノズル30は、前記外管21と内管22とで形成される環状空間23内に後端から外管21と内管22に対して所定間隔をもって装着し、その前方に外管燃焼室Sを形成するもので、中心部に燃料ガスを噴出する第2燃料供給管31とその外周に所定間隔をもって配設した第2冷却空気供給管32とから構成され、前記第2燃料供給管31と第2冷却空気供給管32との間に第2冷却空気供給路33を形成している。
【0020】
また、前記内管22と第1冷却空気供給管28との間に形成される環状空間の前部には内管蓄熱体Rが、前記環状空間23の前記第2冷却空気供給管32の外周には外管蓄熱体Rが各々装填されている。
【0021】
さらに、前記外管21と内管22との後端部には、第1給排管24aと第2給排管24bとが設けられ、これら第1、第2給排管24a,24bは各々第1、第2ベンチュリ型吸引管34a,34bを備えるとともに、このベンチュリ型吸引管34a,34b部分は排ガス排出口36を備えたバイパス管35で連通している。
【0022】
前記燃焼用空気供給ブロワ40は、外管燃焼用空気切換弁Vを介して第2ベンチュリ型吸引管34bに、また、内管燃焼用空気切換弁Vを介して第1ベンチュリ型吸引管34aに接続するとともに、調節弁Vを介して第1冷却空気供給路29への空気供給管に設けたミキサー42と第2冷却空気供給路33とに連通している。
【0023】
前記燃料ガス供給源41は減圧弁V、昇温用電磁弁Vを介して前記第1冷却空気供給路29への空気供給管に設けたミキサー42に連通するとともに、減圧弁Vを介して内管燃焼用燃料切換弁Vから第1燃料供給管27に、また、外管燃焼用燃料切換弁Vから第2燃料供給管31にそれぞれ連通している。
【0024】
つぎに、前記構成からなるシングルエンド型蓄熱式ラジアントチューブバーナ装置Tの操業について説明する。
【0025】
まず、外管燃焼用空気切換弁Vを閉、内管燃焼用空気切換弁Vを開、調節弁Vを開、昇温用電磁弁Vを開、内管燃焼用燃料切換弁Vと外管燃焼用燃料切換弁Vとを閉とし、燃焼用空気供給ブロワ40から燃焼用空気を第1ベンチュリ型吸引管34aを介して第1給排管24aから内管22内に供給するとともに、前記内管燃焼ノズル26の第1冷却空気通路29には、ミキサー42により予混合された予混合燃料ガスが供給され、内管燃焼室S内に設けた図示しないパイロットバーナやスパークプラグ等を点火することにより着火し、内管燃焼室Sにて燃焼を開始する。
【0026】
そして、前記燃焼により生じた燃焼排ガスは外管21の閉塞した端部で反転し、内管22と外管21とで形成する環状空間23を流れ、外管蓄熱体Rを加熱して第2給排管24bからバイパス管35に設けた排ガス排出口36から排出される。この場合、第1ベンチュリ型吸引管34aから噴出する燃焼用空気による吸引作用で、前記排ガスの一部が燃焼用空気内に吸引されNOxの低下に寄与することになる。
【0027】
前述のように、燃焼排ガスは外管蓄熱体Rとともに外管燃焼ノズル30をも加熱することになるが、外管燃焼ノズル30の第2冷却用空気供給管32には調節弁Vから所定量の冷却用空気が供給されているため、外管燃焼ノズル30の熱的損傷および残留燃料によるクラッキングの発生が防止される。
【0028】
そして、前記内管燃焼ノズル26のみによる燃焼は、炉内温度が所定温度、たとえば、燃料ガスの自己着火温度以上になるまで継続する。
【0029】
これは、炉内温度が、たとえば、燃料ガスの自己着火温度になる前に第1燃料供給管27から燃料ガスを供給すると、この燃料ガスは、たとえば、約100m/秒の高速で噴出するため燃焼用空気との混合が十分に行なわれない等の理由により燃焼が不安定になるからである。
【0030】
したがって、炉内温度が所定温度に達すると、前記内管燃焼用空気切換弁Vと昇温用電磁弁Vとを閉、外管燃焼用空気切換弁Vと外管燃焼用燃料切換弁Vとを開とし、第2燃料供給管31から所定圧力に調節された燃料ガスが供給されるとともに、第2給排管24から燃焼用空気が供給され、外管燃焼室S内に設けた図示しない点火手段で点火燃焼する。この場合、燃焼用空気は外管蓄熱体Rを通過し、その間に予熱されているため、直ちに安定した燃焼を行なう。
【0031】
そして、前記燃焼排ガスは外管21の閉塞した端部で反転し、内管22内を流れて内管蓄熱体Rを加熱して第1給排管24aを通り排ガス排出口36から排出される。
【0032】
この場合においても、高温の燃焼排ガスにより内管燃焼ノズル26が加熱されるが、調節弁Vから供給される所定量の冷却空気が第1冷却空気供給路29へ供給されるため、内管燃焼ノズル26の熱的損傷および残留燃料によるクラッキングの発生が防止される。
【0033】
その後、所定時間、たとえば10秒経過すると、外管燃焼用空気切換弁V、外管燃焼用燃料切換弁Vを閉、内管燃焼用空気切換弁Vと内管燃焼用燃料切換弁Vを開とし、第1燃料供給管27から燃料ガスを、内管蓄熱体Rを介して予熱した燃焼用空気を内管燃焼室Sに噴出させ、図示しない点火手段にて点火し安定した燃焼を行なう。この燃焼排ガスは外管蓄熱体Rを通って加熱したのち第2給排管24bを介して排ガス排出口36から排気される。この場合も、外管燃焼ノズル30が高温の燃焼排ガスにより加熱されるが、第2冷却用空気供給管32には調節弁Vから所定量の冷却用空気が供給されているため、外管燃焼ノズル30の熱的損傷および残留燃料によるクラッキングの発生が防止されることになる。
【0034】
その後、所定時間毎に前記動作を繰り返す。
【0035】
なお、使用される燃料としては、気体燃料であれば特に限定されるものではない。特に、プロパンガスやブタンガス等の高カロリーガスを使用する場合、バーナのターンダウン時の燃焼性の向上および交番燃焼の切り換え時に燃え残り(燃焼が他方のバーナに切り換わっているにもかかわらず一方のバーナに火炎が存在している現象)が生じるため、前記燃料を燃焼用空気で希釈し、低位発熱量をH=5000〜10000kcal/mNに調節した希釈燃料とすることが好ましい。
【0036】
また、交番燃焼時の燃料ガスおよび燃焼用空気の切換時において、切換弁の開動作は燃焼用空気切換弁が先に開となったのち燃焼用燃料切換弁を開とし、閉動作は燃焼用燃料切換弁を先に閉としたのち燃焼用空気切換弁を閉じるように制御することは言うまでもない。
【0037】
さらに、前記実施の形態では、第1、第2給排管24a,24bにベンチュリ型吸引管34a,34bを設け、一方の給排管からの燃焼用空気のベンチュリ型吸引管からの噴出運動量によって,他方の給排管から燃焼排ガスの一部をバイパス管35を介して燃焼用空気に吸引させ、排ガス循環により低NOx化を図っているが、低NOx化を図るには他の構成でもよいことは勿論である。ただ、前記構成とすると、燃焼用空気供給ブロワ40の吸引側に排ガス循環配管や排ガス切換弁を設ける必要がなく、構成が簡単で安価な設備とすることができる。
【0038】
また、前記実施の形態では、炉内温度が燃料ガスの自己着火温度以下のときは、内管燃焼ノズル26の第1冷却空気供給路29から予混合燃料ガスを供給して燃焼させるようにしたものを示したが、第1燃料供給管27から予混合燃料ガスを供給してもよい。
【0039】
さらに、予混合燃料ガスを外管燃焼ノズル30の第2冷却空気供給路33あるいは第2燃料供給管31から供給するようにしてもよい。
【0040】
【発明の効果】
以上の説明で明らかなように、請求項1の発明によると、燃焼方法が交番燃焼であり、その燃焼排ガスが内管内および内管と外管間の空間に設けた蓄熱体を交互に通過し、燃焼用空気は前工程で加熱された蓄熱体を通って予熱されるため熱回収効率は80〜50%にも達し、省エネルギーと熱効率の高い燃焼を行なうことができる。しかも、内管および内管と外管との環状空間に設ける燃焼ノズルを、中央部から燃料ガスを噴出し、その外周から冷却空気を噴出する二重管構造としているため、燃焼ノズルが燃焼排ガスにより熱的に焼損することはない。
【0041】
また、2本の給排管はベンチュリ型吸引管を備え、かつ、このベンチュリ型吸引管部分を排ガス排出口を備えたバイパス管で連通しているため、燃焼排ガスの一部はベンチュリ型吸引管から噴出する燃焼用空気により吸引されて供給(自己排ガス循環)されるため、排ガス切換弁が不要であるとともに、燃焼用空気供給ブロワの吸引側に排ガス循環配管等をする必要がなく簡単な構成で低NOx化を図ることができる。
【0042】
また、請求項2の発明によると、炉内温度が燃料ガスの自己着火温度以下のときには、外管環状空間あるいは内管に設けた燃焼ノズルのいずれか一方に予混合燃料ガスを供給して連続燃焼を行なうため、低炉温時においても安定した燃焼を行なうことができる。
【図面の簡単な説明】
【図1】 本発明にかかるシングルエンド型蓄熱式ラジアントチューブバーナ装置の概略図。
【図2】 従来のシングルエンド型ラジアントチューブバーナの概略図。
【図3】 従来のシングルエンド型蓄熱式ラジアントチューブバーナの概略図。
【符号の説明】
20〜シングルエンドラジアントチューブ、21〜外管、22〜内管、23〜環状空間、24a,24b〜給排管、26〜内管燃焼ノズル、27〜第1燃料供給管、28〜第1冷却空気供給管、31〜第2燃料供給管、32〜第2冷却空気供給管、34a,34b〜ベンチュリ型吸引管、35〜バイパス管、36〜排ガス排出口、40〜空気供給源、41〜燃料ガス供給源、42〜ミキサー、R〜内管蓄熱体、R〜外管蓄熱体、T〜シングルエンド型蓄熱式ラジアントチューブバーナ装置、V〜外管燃焼用空気切換弁、V〜内管燃焼用空気切換弁、V〜調節弁、V〜昇温用電磁弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single-ended heat storage type radiant tube burner device and a combustion method thereof.
[0002]
[Prior art]
The single-ended radiant tube burner apparatus is applied to a heating facility in which it is difficult to install a U-type radiant tube burner apparatus or a W-type radiant tube burner apparatus. 7-83414 gazette etc. are proposed.
[0003]
That is, as shown in FIG. 2, the single-ended radiant tube burner device T 1 is configured by a double tube structure of an outer tube 1 whose tip is closed and an inner tube 2 provided inside the outer tube 1. In addition, a combustion air supply pipe 3 is disposed in the inner pipe 2, and a fuel gas supply pipe 4 is disposed in the combustion air supply pipe 3, and the combustion air supply pipe 3, the inner pipe 2, The combustion air is supplied to the passage 5 formed between the fuel gas, the fuel gas is supplied from the fuel gas supply pipe 4 and burned in the combustion chamber 6, and the combustion exhaust gas is reversed at the closed end of the outer pipe 1. The outer tube 1 is heated through the annular space 7 formed by the outer tube 1 and the inner tube 2, and at the same time, the combustion air supplied opposite to the flow of the combustion exhaust gas is preheated and exhausted. It has become.
[0004]
However, as described above, in the configuration in which the combustion air supplied in opposition to the flow of the combustion exhaust gas is preheated, the heat transfer area for heat exchange is limited, so the heat recovery rate is 950 ° C. in the furnace. The heat recovery rate was limited to about 65%.
[0005]
Therefore, single-ended regenerative radiant tube burner apparatus T 2 of the configuration shown in FIG. 3 has been proposed in Japanese Patent 7-83414 discloses.
[0006]
This single-end heat storage type radiant tube burner device T 2 has a double tube structure of an outer tube 10 whose tip is closed and an inner tube 11 disposed in the outer tube 10. 11 is provided with an outer pipe heat storage body 12 between the rear end portions of the inner pipe 11 and an inner pipe heat storage body 13 also at the rear end portion of the inner pipe 11, and the rear ends of the outer pipe heat storage body 12 and the inner pipe heat storage body 13 are switching valves. The combustion air supply blower 14 or the exhaust blower 15 communicates with the exhaust gas via V.
[0007]
Further, an inner tube fuel nozzle 17 and an outer tube fuel nozzle 18 are disposed in a passage 16 formed by the inner tube 11 and the outer tube 10 and the inner tube 11, respectively.
[0008]
Then, when the combustion air supply blower 14 and the exhaust blower 15 are driven and the switching valve V is in the state shown in the figure, fuel gas is supplied from the inner pipe fuel nozzle 17 and ignited, so that the combustion gas passes from the inner pipe 11 to the passage. After the outer tube 10 is heated through 16, the combustion gas passes through the outer tube heat storage body 12 and collects the sensible heat of the combustion exhaust gas to the maximum extent.
[0009]
Thereafter, the switching valve V is switched and fuel gas is supplied from the outer pipe fuel nozzle 18. In this case, since the combustion air passes through the heated outer tube heat storage body 12 and is sufficiently preheated and used for combustion, energy saving is large and highly efficient combustion can be realized.
[0010]
When a predetermined time elapses, the switching valve V is switched and fuel gas is supplied from the inner pipe fuel nozzle 17 to perform combustion. Thereafter, the above process is repeated to perform alternating combustion.
[0011]
[Problems to be solved by the invention]
However, the the single-ended regenerative radiant tube burner apparatus T 2, the higher the combustion flame temperature for combustion at a high temperature of preheated air, thermal NOx is increased. In addition, in order to alternately switch the supply of combustion air and the discharge of combustion exhaust gas, it is necessary to provide a switching valve in the combustion air piping and the combustion exhaust gas piping, and the surroundings of the furnace are complicated by piping.
[0012]
Further, since the inner pipe fuel nozzle 17 and the outer pipe fuel nozzle 18 are arranged on the downstream side (front side) of the inner pipe heat storage body 13 and the outer pipe heat storage body 12, the fuel gas and the combustion air are uniformly distributed. It is difficult to mix, and in particular at the low furnace temperature below the self-ignition temperature of the fuel gas, there is a problem that ignition failure frequently occurs and stable combustion cannot be performed.
[0013]
Accordingly, the present invention provides a single-ended regenerative radiant tube burner device capable of simultaneously realizing low NOx and energy saving and high-efficiency combustion without damaging the combustion nozzle, and a low furnace having a fuel gas self-ignition temperature or lower. It is an object of the present invention to provide a combustion method for a single-ended regenerative radiant tube burner apparatus capable of stable combustion even at warm temperatures.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the outer tube and the inner tube of a single-end radiant tube comprising an outer tube whose one end is closed and an inner tube disposed at a predetermined interval inside the outer tube. An outer tube heat storage body and an inner tube heat storage body are built in the outer tube annular space and the inner tube formed by the above, and each rear part of the outer tube annular space and the inner tube is alternately used as an air supply source and an exhaust means. Connected to two communicating supply / exhaust pipes, the combustion at the combustion nozzle provided in the outer annular space and the inner pipe is alternately switched every predetermined time to perform alternating combustion, and the sensible heat of the combustion exhaust gas is In a single-ended regenerative radiant tube burner device that alternately collects with an inner tube heat storage body or an outer tube heat storage body and burns with high-temperature preheated air, the two supply / discharge tubes are connected to a venturi-type suction tube at the tip. This supply and exhaust pipe The combustion nozzle is configured to communicate with a bypass pipe having an exhaust gas discharge port, and to switch one of the two supply / discharge pipes to the air supply unit by switching a switching valve. Are disposed in the annular space of the outer tube, and are disposed in the center portion of the inner tube, an outer tube combustion nozzle having a double tube structure that ejects fuel gas from the central portion and ejects cooling air from the outer periphery thereof, and And an inner pipe combustion nozzle having a double pipe structure in which fuel gas is jetted from the center and cooling air is jetted from the outer periphery thereof, and the inner pipe heat accumulator is formed at the tip of the inner pipe and the inner pipe combustion nozzle. The outer tube heat storage body is mounted between the outer tube and the tip of the outer tube combustion nozzle.
[0015]
An outer tube annular space formed by the outer tube and the inner tube of a single-end radiant tube comprising an outer tube whose one end is closed and an inner tube disposed at a predetermined interval inside the outer tube. The outer pipe heat storage body and the inner pipe heat storage body are built in the pipe, and the rear portions of the outer pipe annular space and the inner pipe are connected to two supply / discharge pipes alternately communicating with the air supply source and the exhaust means. Then, the combustion at the combustion nozzle provided in the outer pipe annular space and the inner pipe is alternately switched every predetermined time to perform alternating combustion, and the sensible heat of the combustion exhaust gas is transferred to the inner pipe heat storage body or the outer pipe heat storage body. In a combustion method of a single-ended regenerative radiant tube burner apparatus that alternately collects and burns with high-temperature preheated air, when the furnace temperature is equal to or lower than the self-ignition temperature of the fuel gas, Combustion nozzle provided on the pipe Continuous combustion is continued by supplying a premixed fuel gas to one of the two, and when the furnace temperature becomes equal to or higher than the self-ignition temperature of the fuel gas, the combustion in both the combustion nozzles is switched every predetermined time to perform alternate combustion. It is what I did.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIG.
Single-ended regenerative radiant tube burner apparatus T according to the present invention, generally, a single-ended radiant tubes 20, the inner tube fuel nozzle 26, the outer tube fuel nozzle 30, the inner tube regenerator R 1, the outer tube heat storage It comprises a body R 2 , a combustion air supply blower 40 and a fuel gas supply source 41.
[0017]
The single end radiant tube 20 includes an outer tube 21 whose tip (furnace inner side) is closed, and an inner tube 22 shorter than the outer tube 21 disposed inside the outer tube 21 at a predetermined interval. The inside of the inner tube 22 and the inside of the outer tube 21 communicate with each other at the outer tube tip. The rear ends of the outer tube 21 and the inner tube 22 are closed.
[0018]
The inner pipe combustion nozzle 26 at predetermined intervals in the center portion of the inner tube 22 is mounted from the rear end, it forms a inner tube combustion chamber S 1 in front, first for ejecting fuel gas to the central portion A fuel supply pipe 27 and a first cooling air supply pipe 28 disposed on the outer periphery of the fuel supply pipe 27 at a predetermined interval, and the first cooling air is provided between the first fuel supply pipe 27 and the first cooling air supply pipe 28. A supply path 29 is formed.
[0019]
The outer tube combustion nozzle 30 is mounted in an annular space 23 formed by the outer tube 21 and the inner tube 22 with a predetermined distance from the rear end to the outer tube 21 and the inner tube 22, and the outer tube is disposed in front of the outer tube combustion nozzle 30. forms a combustion chamber S 2, is composed of the second fuel supply pipe 31 for ejecting a fuel gas in the center portion and the second cooling air supply pipe 32 which is disposed at predetermined intervals on the outer circumference, the second fuel A second cooling air supply path 33 is formed between the supply pipe 31 and the second cooling air supply pipe 32.
[0020]
In addition, an inner pipe heat storage body R 1 is provided at the front portion of the annular space formed between the inner pipe 22 and the first cooling air supply pipe 28, and the second cooling air supply pipe 32 of the annular space 23. the outer tube regenerator R 2 is loaded each on the outer periphery.
[0021]
Further, a first supply / exhaust pipe 24a and a second supply / exhaust pipe 24b are provided at the rear ends of the outer pipe 21 and the inner pipe 22, and the first and second supply / exhaust pipes 24a, 24b are respectively provided. The first and second venturi-type suction pipes 34 a and 34 b are provided, and the venturi-type suction pipes 34 a and 34 b are communicated with a bypass pipe 35 having an exhaust gas discharge port 36.
[0022]
The combustion air supply blower 40, the second venturi-type suction pipe 34b via the outer tube combustion air switching valve V 1, The first venturi type suction pipe through the inner tube combustion air switching valve V 2 while connected to 34a, and communicates with the mixer 42 provided in the air supply pipe to the first cooling air supply passage 29 via a regulating valve V 3 and a second cooling air supply passage 33.
[0023]
The fuel gas supply source 41 communicates with a mixer 42 provided in an air supply pipe to the first cooling air supply passage 29 via a pressure reducing valve V 4 and a temperature raising electromagnetic valve V 6, and a pressure reducing valve V 5 is connected. The inner pipe combustion fuel switching valve V 7 communicates with the first fuel supply pipe 27, and the outer pipe combustion fuel switching valve V 8 communicates with the second fuel supply pipe 31.
[0024]
Next, the operation of the single-ended regenerative radiant tube burner apparatus T having the above-described configuration will be described.
[0025]
First, the outer pipe combustion air switching valve V 1 is closed, the inner pipe combustion air switching valve V 2 is opened, the control valve V 3 is opened, the temperature raising solenoid valve V 6 is opened, and the inner pipe combustion fuel switching valve is opened. and V 7 and the outer tube combustion fuel changeover valve V 8 is closed, into the inner tube 22 and combustion air from the first Kyuhaikan 24a via the first venturi type suction pipe 34a from the combustion air supply blower 40 supplies, the first cooling air passage 29 of the inner tube the combustion nozzle 26 is premixed premixed fuel gas is supplied by the mixer 42, a pilot burner (not shown) provided on the inner tube combustion chamber S 1 Ya ignited by igniting the spark plug or the like, to initiate combustion at an internal tube combustion chamber S 1.
[0026]
Then, the combustion exhaust gas produced by combustion is inverted with occluded end of the outer tube 21, the annular space 23 formed between the inner tube 22 and outer tube 21 flows, first heating the outer tube regenerator R 2 2 is discharged from an exhaust gas discharge port 36 provided in the bypass pipe 35 from the supply / discharge pipe 24b. In this case, a part of the exhaust gas is sucked into the combustion air by the suction action by the combustion air ejected from the first venturi type suction pipe 34a and contributes to the reduction of NOx.
[0027]
As described above, the combustion exhaust gas is so that together with the outer tube regenerator R 2 also heat the outer tube combustion nozzle 30, from regulating valve V 3 to the second cooling air supply pipe 32 of the outer tube combustion nozzle 30 Since a predetermined amount of cooling air is supplied, thermal damage to the outer tube combustion nozzle 30 and cracking due to residual fuel are prevented.
[0028]
The combustion only by the inner pipe combustion nozzle 26 continues until the furnace temperature reaches a predetermined temperature, for example, the self-ignition temperature of the fuel gas.
[0029]
For example, if the fuel gas is supplied from the first fuel supply pipe 27 before the furnace temperature reaches, for example, the self-ignition temperature of the fuel gas, the fuel gas is ejected at a high speed of, for example, about 100 m / second. This is because the combustion becomes unstable due to reasons such as insufficient mixing with the combustion air.
[0030]
Therefore, when the furnace temperature reaches a predetermined temperature, and the inner pipe combustion air switching valve V 2 and the solenoid valve V 6 for heating the closed outer tube the combustion air switching valve V 1 and the outer tube combustion fuel switching and a valve V 8 open, the fuel gas is adjusted from the second fuel supply pipe 31 to a predetermined pressure is supplied, the combustion air is supplied from the second Kyuhaikan 24 b, the outer tube combustion chamber S 2 Ignition combustion is performed by an ignition means (not shown) provided inside. In this case, the combustion air passes through the outer tube regenerator R 2, because it is pre-heated during performs immediately stable combustion.
[0031]
Then, the combustion gas is inverted in the occluded end of the outer tube 21, is discharged first Kyuhaikan 24a by heating the inner tube regenerator R 1 flows through the inner tube 22 from the street gas outlet 36 The
[0032]
In this case, because although the inner pipe combustion nozzle 26 is heated by the hot combustion exhaust gas, a predetermined amount of cooling air supplied from the control valve V 3 is supplied to the first cooling air supply passage 29, the inner tube Thermal damage to the combustion nozzle 26 and cracking due to residual fuel are prevented.
[0033]
Thereafter, when a predetermined time, for example, 10 seconds elapses, the outer tube combustion air switching valve V 1 and the outer tube combustion fuel switching valve V 8 are closed, and the inner tube combustion air switching valve V 2 and the inner tube combustion fuel switching valve. the V 7 is opened, the fuel gas from the first fuel supply pipe 27, is ejected combustion air preheated through the inner tube regenerator R 1 in the inner tube combustion chamber S 1, and ignited by the ignition means (not shown) Stable combustion. The combustion exhaust gas is exhausted from the exhaust gas outlet 36 via the second Kyuhaikan 24b after heating through the outer tube regenerator R 2. Again, although the outer tube combustion nozzle 30 is heated by the hot combustion exhaust gas, the cooling air from the control valve V 3 predetermined amount in the second cooling air supply pipe 32 is supplied, the outer tube Thermal damage to the combustion nozzle 30 and cracking due to residual fuel are prevented.
[0034]
Thereafter, the above operation is repeated every predetermined time.
[0035]
The fuel used is not particularly limited as long as it is a gaseous fuel. In particular, when using high-calorie gas such as propane gas or butane gas, combustion is improved when the burner is turned down and unburned when alternating combustion is switched (even though the combustion is switched to the other burner) Therefore, it is preferable to dilute the fuel with combustion air to obtain a diluted fuel in which the lower heating value is adjusted to H L = 5000 to 10,000 kcal / m 3 N.
[0036]
When switching between fuel gas and combustion air during alternating combustion, the switching valve is opened when the combustion air switching valve is opened first, then the combustion fuel switching valve is opened, and the closing operation is performed for combustion. It goes without saying that the control is performed so that the combustion air switching valve is closed after the fuel switching valve is closed first.
[0037]
Further, in the above-described embodiment, the first and second supply / discharge pipes 24a and 24b are provided with the venturi-type suction pipes 34a and 34b, and the combustion air from one of the supply / discharge pipes is ejected from the venturi-type suction pipe. , A part of the combustion exhaust gas is sucked into the combustion air from the other supply / exhaust pipe through the bypass pipe 35 to reduce NOx by exhaust gas circulation, but other configurations may be used to reduce NOx. Of course. However, if it is set as the said structure, it is not necessary to provide exhaust gas circulation piping and an exhaust gas switching valve in the suction side of the combustion air supply blower 40, and it can be set as a simple and cheap installation.
[0038]
In the above embodiment, when the furnace temperature is equal to or lower than the self-ignition temperature of the fuel gas, the premixed fuel gas is supplied from the first cooling air supply passage 29 of the inner pipe combustion nozzle 26 and burned. Although shown, premixed fuel gas may be supplied from the first fuel supply pipe 27.
[0039]
Further, the premixed fuel gas may be supplied from the second cooling air supply path 33 or the second fuel supply pipe 31 of the outer pipe combustion nozzle 30.
[0040]
【The invention's effect】
As apparent from the above description, according to the invention of claim 1, the combustion method is alternating combustion, and the combustion exhaust gas alternately passes through the heat storage body provided in the inner pipe and in the space between the inner pipe and the outer pipe. Since the combustion air is preheated through the heat storage body heated in the previous step, the heat recovery efficiency reaches 80 to 50%, and combustion with high energy efficiency and heat efficiency can be performed. In addition, the combustion nozzle provided in the annular space between the inner tube and the inner tube and the outer tube has a double tube structure in which fuel gas is ejected from the central portion and cooling air is ejected from the outer periphery thereof. Will not burn out thermally.
[0041]
In addition, since the two supply and exhaust pipes are provided with a venturi type suction pipe, and this venturi type suction pipe part is connected with a bypass pipe having an exhaust gas discharge port, a part of the combustion exhaust gas is a venturi type suction pipe. Since it is sucked and supplied by the combustion air ejected from (self-exhaust exhaust gas circulation), there is no need for an exhaust gas switching valve, and there is no need for an exhaust gas circulation pipe or the like on the suction side of the combustion air supply blower. Thus, low NOx can be achieved.
[0042]
According to the invention of claim 2, when the furnace temperature is equal to or lower than the self-ignition temperature of the fuel gas, the premixed fuel gas is continuously supplied to either the outer annular space or the combustion nozzle provided in the inner tube. Since combustion is performed, stable combustion can be performed even at a low furnace temperature.
[Brief description of the drawings]
FIG. 1 is a schematic view of a single-ended heat storage type radiant tube burner device according to the present invention.
FIG. 2 is a schematic view of a conventional single-ended radiant tube burner.
FIG. 3 is a schematic view of a conventional single-ended regenerative radiant tube burner.
[Explanation of symbols]
20 to single-end radiant tube, 21 to outer tube, 22 to inner tube, 23 to annular space, 24a, 24b to supply / discharge tube, 26 to inner tube combustion nozzle, 27 to first fuel supply tube, 28 to first cooling Air supply pipe, 31-2nd fuel supply pipe, 32-2nd cooling air supply pipe, 34a, 34b-Venturi type suction pipe, 35-Bypass pipe, 36-Exhaust gas outlet, 40-Air supply source, 41-Fuel Gas supply source, 42 to mixer, R 1 to inner pipe heat storage body, R 2 to outer pipe heat storage body, T to single-end type heat storage radiant tube burner device, V 1 to outer pipe combustion air switching valve, V 2 to inner tube combustion air switching valve, V 3 ~ regulating valve, V 6 ~ solenoid valve for Atsushi Nobori.

Claims (2)

一端が閉塞された外管と、この外管の内側に所定間隔をもって配置された内管とからなるシングルエンドラジアントチューブの前記外管と内管とで形成される外管環状空間と内管内に外管蓄熱体と内管蓄熱体とを内蔵するとともに、前記外管環状空間と内管との各後部を交互に空気供給源と排気手段とに連通する2本の給排管に接続し、前記外管環状空間と内管に設けた燃焼ノズルでの燃焼を所定時間毎に交互に切り換えて交番燃焼を行ない、その燃焼排ガスの顕熱を前記内管蓄熱体あるいは外管蓄熱体で交互に回収し、高温の予熱空気で燃焼を行なうシングルエンド型蓄熱式ラジアントチューブバーナ装置において、
前記2本の給排管を、先端部にベンチュリ型吸引管を備えた構成とし、この給排管を排ガス排出口を備えたバイパス管で連通し、前記2本の給排管のうちいずれか一方の給排管を切換弁を切り換えて交互に空気供給手段に連通する構成とするとともに、前記燃焼ノズルを、前記外管環状空間に複数設置され、中心部から燃料ガスを噴出し、その外周から冷却空気を噴出する二重管構造の外管燃焼ノズルと、内管の中心部に配置され、かつ、中心部から燃料ガスを噴出し、その外周から冷却空気を噴出する二重管構造の内管燃焼ノズルとで構成するとともに、前記内管蓄熱体を、前記内管と内管燃焼ノズルの先端部との間に装着し、また、前記外管蓄熱体を、前記外管と外管燃焼ノズルの先端部との間に装着したことを特徴とするシングルエンド型蓄熱式ラジアントチューブバーナ装置。
An outer tube annular space formed by the outer tube and the inner tube of a single-end radiant tube composed of an outer tube whose one end is closed and an inner tube disposed inside the outer tube at a predetermined interval. The outer pipe heat storage body and the inner pipe heat storage body are built in, and each rear part of the outer pipe annular space and the inner pipe is connected to two supply / exhaust pipes alternately communicating with the air supply source and the exhaust means, The combustion at the combustion nozzle provided in the outer pipe annular space and the inner pipe is alternately switched every predetermined time to perform alternating combustion, and the sensible heat of the combustion exhaust gas is alternately transferred from the inner pipe heat storage body or the outer pipe heat storage body. In a single-ended heat storage radiant tube burner that recovers and burns with high-temperature preheated air,
The two supply / exhaust pipes are provided with a venturi-type suction pipe at the tip, and the supply / exhaust pipes are communicated with a bypass pipe provided with an exhaust gas discharge port, and one of the two supply / exhaust pipes One of the supply and exhaust pipes is configured to alternately communicate with the air supply means by switching the switching valve, and a plurality of the combustion nozzles are installed in the annular space of the outer pipe, and fuel gas is ejected from the center portion, and the outer periphery thereof The outer tube combustion nozzle with a double tube structure that discharges cooling air from the inner tube, and the double tube structure that is arranged at the center of the inner tube and that discharges the fuel gas from the center and the cooling air from its outer periphery. An inner pipe combustion nozzle, and the inner pipe heat storage body is mounted between the inner pipe and the tip of the inner pipe combustion nozzle, and the outer pipe heat storage body is connected to the outer pipe and the outer pipe. A single engine that is mounted between the tip of the combustion nozzle Type regenerative radiant tube burner apparatus.
一端が閉塞された外管と、この外管の内側に所定間隔をもって配置された内管とからなるシングルエンドラジアントチューブの前記外管と内管とで形成される外管環状空間と内管内に外管蓄熱体と内管蓄熱体とを内蔵するとともに、前記外管環状空間と内管との各後部を交互に空気供給源と排気手段とに連通する2本の給排管に接続し、前記外管環状空間と内管に設けた燃焼ノズルでの燃焼を所定時間毎に交互に切り換えて交番燃焼を行ない、その燃焼排ガスの顕熱を前記内管蓄熱体あるいは外管蓄熱体で交互に回収し、高温の予熱空気で燃焼を行なうシングルエンド型蓄熱式ラジアントチューブバーナ装置の燃焼方法ににおいて、
炉内温度が燃料ガスの自己着火温度以下のときは、前記外管環状空間あるいは内管に設けた燃焼ノズルのいずれか一方に予混合燃料ガスを供給して連続燃焼を継続し、炉内温度が燃料ガスの自己着火温度以上になると、前記両燃焼ノズルでの燃焼を所定時間毎に切り換えて交番燃焼を行なうことを特徴とするシングルエンド型蓄熱式ラジアントチューブバーナ装置の燃焼方法。
An outer tube annular space formed by the outer tube and the inner tube of a single-end radiant tube composed of an outer tube whose one end is closed and an inner tube disposed inside the outer tube at a predetermined interval. The outer pipe heat storage body and the inner pipe heat storage body are built in, and each rear part of the outer pipe annular space and the inner pipe is connected to two supply / exhaust pipes alternately communicating with the air supply source and the exhaust means, The combustion at the combustion nozzle provided in the outer pipe annular space and the inner pipe is alternately switched every predetermined time to perform alternating combustion, and the sensible heat of the combustion exhaust gas is alternately transferred from the inner pipe heat storage body or the outer pipe heat storage body. In the combustion method of the single-ended regenerative radiant tube burner device that recovers and burns with high-temperature preheated air,
When the furnace temperature is equal to or lower than the self-ignition temperature of the fuel gas, the premixed fuel gas is supplied to either the outer annular space or the combustion nozzle provided in the inner pipe and continuous combustion is continued. When the fuel gas reaches or exceeds the self-ignition temperature of the fuel gas, the combustion method of the single-end type regenerative radiant tube burner apparatus is characterized in that the combustion at both the combustion nozzles is switched every predetermined time to perform alternating combustion.
JP2002056903A 2002-03-04 2002-03-04 Single-ended regenerative radiant tube burner device and combustion method thereof Expired - Fee Related JP3883885B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002056903A JP3883885B2 (en) 2002-03-04 2002-03-04 Single-ended regenerative radiant tube burner device and combustion method thereof
TW092103229A TWI259257B (en) 2002-03-04 2003-02-17 Single end regenerative radiant tube burner and combustion method thereof
KR1020030010079A KR100880330B1 (en) 2002-03-04 2003-02-18 Single end regenerative radiant tube burner and combustion method thereof
CNB031070418A CN1259522C (en) 2002-03-04 2003-02-28 Single end heat storage type radiation pipe burner device and its burning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056903A JP3883885B2 (en) 2002-03-04 2002-03-04 Single-ended regenerative radiant tube burner device and combustion method thereof

Publications (2)

Publication Number Publication Date
JP2003254509A JP2003254509A (en) 2003-09-10
JP3883885B2 true JP3883885B2 (en) 2007-02-21

Family

ID=27800104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056903A Expired - Fee Related JP3883885B2 (en) 2002-03-04 2002-03-04 Single-ended regenerative radiant tube burner device and combustion method thereof

Country Status (4)

Country Link
JP (1) JP3883885B2 (en)
KR (1) KR100880330B1 (en)
CN (1) CN1259522C (en)
TW (1) TWI259257B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110030235A1 (en) * 2008-01-10 2011-02-10 Zdenek Brancuzsky Method for continuously drying bulk goods, in particular wood fibers and/or wood chips

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121329A (en) 2003-10-20 2005-05-12 Chugai Ro Co Ltd Single end type heat accumulation radiant tube burner
KR100583819B1 (en) * 2004-09-30 2006-05-26 한국에너지기술연구원 Self regenerative type single radiant tube burner
JP2007101129A (en) * 2005-10-06 2007-04-19 Tokyo Gas Engineering Co Ltd Heat storage type burner device and its operation method
JP4757596B2 (en) * 2005-10-06 2011-08-24 東京ガス・エンジニアリング株式会社 Thermal storage burner device and its operation method
DE202007010480U1 (en) * 2006-08-24 2007-10-04 Lbe Feuerungstechnik Gmbh Radiant heater for heating an industrial furnace
SE532339C2 (en) * 2007-12-10 2009-12-15 Aga Ab Burner method and apparatus
KR101692209B1 (en) * 2008-09-10 2017-01-03 파이브스 스탕 Recuperator for a radiating tube burner
RU2477425C2 (en) 2008-12-10 2013-03-10 АйЭйчАй КОРПОРЕЙШН Combustion chamber
CN101639218B (en) * 2009-09-01 2011-08-31 顾向涛 Flameless combustion heat accumulating type flat flame combustion nozzle
JP6242203B2 (en) * 2013-12-16 2017-12-06 大阪瓦斯株式会社 Single-ended radiant tube combustion device
JP6483169B2 (en) * 2017-02-14 2019-03-13 中外炉工業株式会社 Regenerative burner fuel nozzle cooling structure
CN106838901B (en) * 2017-02-27 2023-09-01 海湾环境科技(北京)股份有限公司 Burner with a burner body
CN109631574B (en) * 2018-12-20 2024-01-16 唐山钢铁集团有限责任公司 Double heat accumulating roller bottom type heating furnace
CN115585458B (en) * 2022-11-29 2023-03-21 佛山市德力泰科技有限公司 High-speed preheating premixing combustion device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219411A (en) * 1988-02-26 1989-09-01 Tokyo Gas Co Ltd Switching burning device
JP3478009B2 (en) 1996-07-16 2003-12-10 Jfeスチール株式会社 Heating furnace with regenerative burner
JP3911102B2 (en) * 1999-05-26 2007-05-09 大阪瓦斯株式会社 Radiant tube combustion device
KR100480004B1 (en) * 1999-12-28 2005-03-30 주식회사 포스코 REGENERATIVE COMBUSTION APPARATUS WITH RADIANT TUBE AND METHOD FOR LOWERING NOx BY USING THIS APPARATUS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110030235A1 (en) * 2008-01-10 2011-02-10 Zdenek Brancuzsky Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
US20170051972A1 (en) * 2008-01-10 2017-02-23 Douglas Technical Limited Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
US10551121B2 (en) * 2008-01-10 2020-02-04 Douglas Technical Limited Method for continuously drying bulk goods, in particular wood fibers and/or wood chips
US10690409B2 (en) * 2008-01-10 2020-06-23 Douglas Technical Limited Method for continuously drying bulk goods, in particular wood fibers and/or wood chips

Also Published As

Publication number Publication date
CN1442629A (en) 2003-09-17
KR20030072222A (en) 2003-09-13
CN1259522C (en) 2006-06-14
JP2003254509A (en) 2003-09-10
KR100880330B1 (en) 2009-01-28
TW200303971A (en) 2003-09-16
TWI259257B (en) 2006-08-01

Similar Documents

Publication Publication Date Title
JP3883885B2 (en) Single-ended regenerative radiant tube burner device and combustion method thereof
CN101338894A (en) Low-calorie fuel dual prewarming and thermal storage type energy-saving boiler
CN101655239B (en) Ceramic high-efficiency air self-preheating type combustor
CN201944845U (en) Gas burner
WO2024104430A1 (en) Gas water heating device and control method thereof
JPH09229349A (en) Heating fluid generating furnace
CN101451767A (en) Thermal storage type energy-saving boiler and burning method thereof
CN2890657Y (en) Heat storage type pulse burning nozzle
CN208170380U (en) Middle fuel gas with low heat value regenerative radiant tube burner
JP2002139217A (en) Premixing heat storage alternating combustion apparatus
CN215062041U (en) Multistage burning nozzle case
CN211779142U (en) Duplex pneumatic inserting plate type cut-off valve for heat accumulating type reversing
CN105509053A (en) Heat storage type burner used for radiant tube
JP4229502B2 (en) Thermal storage radiant tube burner
CN102966942A (en) Non-reversing flame-heat-accumulating-type combustion device
JP3880725B2 (en) Thermal storage radiant tube burner
CN201521961U (en) Flameless burning and heat accumulating type high-speed burner
CN201476014U (en) Ceramic high-efficient air self-preheating combustor
CN211694873U (en) Heat accumulating type radiant tube burner
JP3332306B2 (en) Radiant tube heating device
JP2002221091A (en) Exhaust gas boiler and combustion method in exhaust gas boiler
JP2002061833A (en) Regenerative combustion device and combustion method
CN214700692U (en) Gas furnace pipeline structure capable of realizing four-section combustion
KR101078845B1 (en) Full-Time Regenerative Compact Burner
CN222012329U (en) Gas water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees