JP3883366B2 - Highly slidable substrate and manufacturing method thereof - Google Patents
Highly slidable substrate and manufacturing method thereof Download PDFInfo
- Publication number
- JP3883366B2 JP3883366B2 JP2000193650A JP2000193650A JP3883366B2 JP 3883366 B2 JP3883366 B2 JP 3883366B2 JP 2000193650 A JP2000193650 A JP 2000193650A JP 2000193650 A JP2000193650 A JP 2000193650A JP 3883366 B2 JP3883366 B2 JP 3883366B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- substrate
- slidable
- general formula
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Surface Treatment Of Glass (AREA)
- Paints Or Removers (AREA)
Description
【0001】
【発明の属する分野】
本発明は、特に建築用窓ガラス、車両用窓ガラス、鏡、その他産業用窓ガラス等に用いることが可能な、極めて優れた滑水性(水滴滑落性)を示す高滑水性基板およびその製造方法に関する。
【0002】
【従来の技術】
高い撥水耐久性(耐光性や耐摩耗性)を得るために、フルオロアルキル基含有シラン化合物を基材表面に処理した撥水性ガラスについて、非常に多くの発明がなされている。例えば、特開平6-16455号公報には、ガラス表面に凹凸形状を有するシリカなどの下地膜を設けることが非常に有効であることが開示されている。一方、下地膜のないものとしては、特許第2500178号公報には、ガラス表面に撥水撥油性の単分子膜を形成する方法が、特開平10-59745公報には、撥水処理するガラス表面をセリア研摩してさらに酸処理して基材の活性を高める方法や撥水処理液として重合度を増大または制御したフルオロアルキル基含有シラン化合物を用いる方法が開示されている。さらに、特開平8-325037号公報には、ガラス基材表面近傍にアルカリ金属を含まないか、またはアルカリ金属含有量が少ないアルカリバリアー層を形成後、フルオロアルキル基含有シラン化合物を処理することにより、耐久性の高い撥水処理ガラスを得る方法が開示されている。さらにまた、特開平9-48639号公報には、ガラス基材表面を脱アルカリ層とすることによってナトリウム等のアルカリ成分量を減じた表面を形成させた後にフルオロアルキル基含有シラン化合物を処理することにより、耐熱性、耐水性および耐候性を高めることが開示されている。
【0003】
一方、滑水性(水滴滑落性)をより改善することに重点を置いた検討もなされており、高水滴転落性または高滑水性ガラスが提案されている。例えば、シリコーン系ワックス、オルガノポリシロキサン、界面活性剤などを含む組成物が発明されており、特公昭50-15473号公報には、アルキルポリシロキサンおよび酸よりなる組成物、また、特開平5-301742号公報には、アミノ変性シリコーンオイルと界面活性剤とを含有する組成物が開示されている。
【0004】
さらに、特開平11−116943号公報では、パーフルオロアルキル基含有シラン化合物のフルオロアルキル基の少なくとも末端のF原子をH原子で置換した組成物からなる表面処理剤が開示されており、さらにまた、特開2000−26758号公報には、滑水性被膜を形成可能な被覆組成物として、水酸基含有ビニルポリマー、エポキシ末端シロキサンポリマー、スルホン酸化合物およびブロックされていてもよいポリイソシアネート化合物及びメラミン樹脂から選ばれる少なくとも1種の架橋剤成分および特定のジアルキルスルホコハク酸塩及びアルキレンオキシドシランから選ばれる界面活性剤を含有する滑水性被膜を形成可能な被覆組成物により、水滴量10μlでの転落角が5#以下と非常に優れた特性を示すことが開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記の特開平6-16455号公報、特許第2500178号公報、特開平10-59745公報、特開平8-325037号公報、特開平9-48639号公報記載の、高い撥水耐久性(耐光性や耐摩耗性)を有するフルオロアルキル基含有シラン化合物を基材表面に処理した撥水性ガラスでは、水滴滑落性(滑水性)が悪く、例えば、自動車用ウィンドシールドの取り付け角度である30°傾斜においては、静止時に少なくとも水滴の体積が約40〜60μl以上でないと水滴は滑落せずにガラス表面上に残存してしまうという問題がある。
【0006】
また、前記特公昭50-15473号公報、特開平5-301742号公報の方法で得られたものは、滑水性(水滴滑落性)は良好であり、中には30°傾斜で約15μl程度の水滴で滑落するものが得られているが、高い耐久性(耐光性や耐摩耗性)を得るまでには至っていない。
【0007】
さらに、特開平11−116943号公報記載で得られた被膜は耐久性が充分とは言い難く、特開2000−26758号公報記載で得られた滑水性被膜は、透明性が低く、塗料用材料としての用途に限られている。
【0008】
【課題を解決するための手段】
本発明は、従来の前記課題に鑑みてなされたものであって、高い耐久性(耐光性や耐摩耗性)と優れた滑水性(以下「水滴滑落性」という場合もある)を兼ね備えた透明性の高い高滑水性基板およびその製造方法を提供するものである。
【0009】
すなわち、本発明の高滑水性基板は、透明基板表面に形成されたシリカカップリング層上に、一般式[1]で表されるフルオロアルキルトリクロロシランと一般式[2]で表されるシラノール末端ポリジメチルシロキサンの共重合物からなる滑水性被膜が形成されてなることを特徴とする。
【0010】
CF3(CF2)m(CH2)2SiCl3 [1]
(式中、m=0〜11の整数)
HO-[Si(CH3)2O-]nH [2]
(式中、n=1〜50の整数)
また、本発明の高滑水性基板は、前記シリカカップリング層がテトラアルコキシシランの加水分解物または、テトライソシアネートシランを希釈して得た塗布液を、ガラス基板表面に塗布して形成した、膜厚が少なくとも20nm以下のシリカ膜であることを特徴とする。
【0011】
さらに、本発明の高滑水性基板は、前記滑水性被膜が前記一般式[1]で表されるフルオロアルキルトリクロロシランと一般式[2]で表されるシラノール末端ポリジメチルシロキサンの混合モル比を1:0.1〜2として共重合反応を行わせた組成物であることを特徴とする。
【0012】
また、本発明の高滑水性基板の製造方法は、下記の工程により高滑水性基板を製造することを特徴とする。
(1)透明基板表面にテトラアルコキシシランの加水分解物、またはテトライソシアネートシランを主成分とする下地層用の塗布液を塗布する工程、
(2)乾燥及び/又は190℃以下の温度で熱処理を行い下地層としてのシリカカップリング層を形成する工程、
(3)一般式[1]で表されるフルオロアルキルトリクロロシランと一般式[2]で表されるシラノール末端ポリジメチルシロキサンの共重合物からなる滑水性被膜用塗布液を塗布する工程、
(4)乾燥及び/又は190℃以下の温度で熱処理を行い滑水性被膜を形成する工程、
CF3(CF2)m(CH2)2SiCl3 [1]
(式中、m=0〜11の整数)
HO-[Si(CH3)2O-]nH [2]
(式中、n=1〜50の整数)
さらに、本発明の高滑水性基板の製造方法は、下地層用の塗布液は、0.1〜5.0wt%濃度のテトラアルコキシシランの加水分解物、または0.1〜5.0wt%濃度のテトライソシアネートシランよりなることを特徴とする。
【0013】
【発明の実施の形態】
本発明の高滑水性基板は、代表的な方法として下記の工程により製造することができる。
(1)透明基板表面にテトラアルコキシシランの加水分解物、またはテトライソシアネートシランを主成分とする下地層用の塗布液を塗布する工程、
(2)乾燥及び/又は190℃以下の温度で熱処理を行い下地層としてのシリカカップリング層を形成する工程、
(3)一般式[1]で表されるフルオロアルキルトリクロロシランと一般式[2]で表されるシラノール末端ポリジメチルシロキサンの共重合物からなる滑水性被膜用塗布液を塗布する工程、
(4)乾燥及び/又は190℃以下の温度で熱処理を行い滑水性被膜を形成する工程、
CF3(CF2)m(CH2)2SiCl3 [1]
(式中、m=0〜11の整数)
HO-[Si(CH3)2O-]nH [2]
(式中、n=1〜50の整数)
滑水性被膜が形成される基板表面は、シリカカップリング層よりなる下地層を設ける必要がある。
【0014】
該シリカカップリング層は、テトラアルコキシシランの加水分解物、またはテトライソシアネートシランを主成分とする塗布液を基板表面に塗布したのち、乾燥及び/又は190℃以下の温度で熱処理を行い形成することができる。
なお、該塗布液は、0.1〜5.0wt%濃度のテトラアルコキシシランの加水分解物または0.1〜5.0wt%濃度のテトライソシアネートシランよりなることが好ましい。
前記テトラアルコキシシランの加水分解物としては、テトラメトキシシラン、テトラエトキシシラン等を出発原料として、少量の水と塩酸、硝酸、酢酸などの酸触媒を添加して調製したものを用いることが可能であり、また前記テトライソシアネートシランの希釈液を得る場合には、実質的に水を含まない溶媒、すなわち、酢酸エチル、酢酸n−ブチル、酢酸n−ヘキシル等を用いることができる。
【0015】
このようにして得られたカップリング層用の塗布液を、清浄なガラス基板に手塗りまたはスプレー法等で均一に塗布後、室温で5分間程度乾燥させて、膜厚が少なくとも20nm以下のシリカ膜を形成する。このシリカからなるカップリング層の表面には、高い濃度のシラノール基(Si-OH)が生成しており、これらが滑水性組成物を表面に固定化するための反応活性点となり、初期滑水性や耐久性を改善するための重要な役割を果たす。
【0016】
カップリング層用塗布液を塗布した後の乾燥は、風乾により自然乾燥させてもよいし、乾燥後または乾燥と同時に室温を越え190℃以下の温度で熱処理を行うことも出来る。なお、熱処理を行う場合には、室温を越え190℃以下の温度で熱処理を行う必要があり、その処理により膜中から溶媒や水分を除去させるとともに、より多くのシラノール基を生成させることが可能である。しかし、200℃以上の温度で熱処理すると生成したシラノール基が脱水縮合反応によりシロキサン結合が形成し、結果としてシラノール基の濃度が減少するので好ましくない。用いる塗布液の種類にもよるが、室温から100℃程度の温度で膜を十分に乾燥させることが、機械的強度と滑水性組成物との反応性を高めるという点で好ましい。
【0017】
また、前記一般式[1]で表されるパーフルオロアルキルトリクロロシランとしては、例えばCF3(CF2)11CH2CH2SiCl3、CF3(CF2)9CH2CH2SiCl3、CF3(CF2)7CH2CH2SiCl3、CF3(CF2)5CH2CH2SiCl3、CF3CH2CH2SiCl3等を用いることができる。
一般式[2]で表されるシラノール末端ポリジメチルシロキサンとしては、例えば、HO-[Si(CH3)2O-]10H、HO-[Si(CH3)2O-]20H等を用いることができる。
【0018】
実質的に水を含まない溶媒としては、水の溶解度が小さい溶媒であり、例えば、酢酸エチル、酢酸n-ブチル、酢酸n-ヘキシルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類、n−ブタン、n−ヘキサンなどの脂肪族炭化水素類等を用いることができる。
希釈溶媒としては、イソプロピルアルコ−ル(以下、「i−PA」と略す)の他に、メタノ−ル、エタノ−ルなど炭素数が5以下の低級アルコ−ル溶媒であってもよく、アルコ−ル以外にエ−テル類やケトン類を用いることができ、ことにi−PAまたはエタノールを主成分としてなるアルコール類が好ましい。
【0019】
なお、前記パーフルオロアルキルトリクロロシランとシラノール末端ポリジメチルシロキサンの混合モル比は、自在に選択可能であるが、パーフルオロアルキルトリクロロシラン:シラノール末端ポリジメチルシロキサン=1:0.1〜2の条件で共重合反応を行わせることが好ましく、パーフルオロアルキルトリクロロシラン1に対して、シラノール末端ポリジメチルシロキサンが0.1以下の場合には、目的である滑水性の改善効果は得られなくなり、2以上の場合には、良好な滑水性は得られるものの耐光性などの耐久性能が大幅に低下して実用上好ましくない。また、シラノール末端ポリジメチルシロキサンの平均重合度については、重合度が大きくなるにしたがって末端のシラノール基の反応性が低下するので、室温において短時間に共重合反応を進めるためには、平均重合度が50以下であることが望ましい。
【0020】
なお、前記パーフルオロアルキルトリクロロシランとシラノール末端ポリジメチルシロキサンを実質的に水を含まない溶媒中で混合して共重合させる反応時間は2時間を越えて反応させる必要があり、それより短いと共重合反応が殆ど進んでおらず、塗布液中に、パーフルオロアルキルシランのモノマーが多く残存してポリジメチルシロキサン成分が有効に基板表面に固定化されず、高い滑水性が得られないので好ましくない。
【0021】
表面処理剤を塗布した後の乾燥は、表面処理剤を塗布後に風乾により自然乾燥させてもよいし、乾燥後または乾燥と同時に室温を越え190℃以下の温度で熱処理を行うことも出来る。
なお、熱処理を行う場合には、室温を越え190℃以下の温度で熱処理を行う必要があり、その処理により未反応のフルオロアルキル基含有シランのOH基を他のOH基と結合させる。しかし、200℃以上の温度で熱処理すると滑水性を改善するためのポリジメチルシロキサン成分が熱分解し易くなるので、好ましくない。なお、反応効率の点で60〜150℃がより好ましい。
【0022】
本発明についての滑水性とは、後述の実施例の評価方法で述べるような方法、例えば、前記表面処理剤で処理された被膜を有する基板サンプルを30°に傾斜させた状態で、該サンプル表面上にゆっくりとマイクロシリンジで純水を滴下する。このとき、水滴が少なくとも10秒で2cm以上移動する時点の水滴量(体積)を滑水性(水滴転落性)とし、「μl」で示すものである。
なお、本発明の高滑水性とは、前記の方法により得られる滑水性が10μl以下のものをいう。
本発明で得られる高滑水性被膜を有する基板は、シリカカップリング層が基板表面に形成されているため、前記滑水性とともに、優れた撥水性も兼ね備えている。
【0023】
基板としては、ガラス、プラスチック等特に限定されるものではないが、例えば、ガラス基板の場合には、建築用窓ガラスや自動車用窓ガラス等に通常使用されているフロ−トガラスあるいはロ−ルアウト法で製造されたガラス等無機質の透明性がある板ガラスが好ましく、無色または着色、ならびにその種類あるいは色調、他の機能性膜との組み合わせ、ガラスの形状等に特に限定されるものではなく、さらに曲げ板ガラスとしてはもちろん各種強化ガラスや強度アップガラスであり、平板や単板で使用できるとともに、複層ガラスあるいは合わせガラスとしても使用できる。また、被膜はガラス基板の両面に成膜しても構わない。
【0024】
また、基板表面への下地層用塗布液又は滑水性被膜用塗布液の塗布方法としては、手塗り、ノズルフロ−コ−ト法、ディッピング法、スプレー法、リバ−スコ−ト法、フレキソ法、印刷法、フローコート法あるいはスピンコート法、ならびにそれらの併用等既知の塗布手段など各種塗布法が適宜採用し得る。また、簡易なタイプのスプレー式撥水処理剤などとしても使用することができる。
【0025】
【実施例】
以下の実施例および比較例に共通な項目である、基板の作製、滑水液の調製、および得られた滑水性基板の実用耐久性の評価方法については、以下の方法により行った。
【0026】
〔基板の作製〕
(1)基板A;テトラエトキシシラン〔Si(OC2H5)4:以下TEOSと称す〕の加水分解物を用いた処理
200mm×200mm×2mmtサイズのフロートガラスまたは強化ガラスの表面を、研磨液とブラシポリッシャーを用いて研磨し、ガラス洗浄機(当社製作品)にて水洗および乾燥した。なお、ここで用いた研磨液は、約1%のガラス用研摩剤ミレークA(三井金属工業製)を水に混合した懸濁液を用いた。次いで、エキネンで1wt%に希釈したTEOSに0.1N硝酸水溶液を加え、室温で約2h攪拌したものを塗布液とした。成膜は、スプレー法で吐出量を3.2g/pcとし、成膜時の湿度を30%RH以下で成膜後、室温で風乾したものを基板Aとした。得られたシリカカップリング層は、膜厚が20nm以下の透明性の高い均一なシリカ膜であった。
【0027】
(2)基板B;テトライソシアネートシラン〔Si(NCO)4〕を用いた処理ガラスの研磨および洗浄は上記1)と同様に行った。次いで、酢酸エチル、酢酸n−ブチル、酢酸n−ヘキシルなどのエステル系溶媒で2wt%に希釈したテトライソシアネートシラン(品名:SI−400/松本製薬製)を1ml綿布(品名:ベンコット/旭化成製)に染み込ませて手塗後、風乾または室温〜300℃で10分間熱処理したものを基板Bとした。得られたシリカカップリング層は、膜厚が20nm以下の透明性の高い均一なシリカ膜であった。
【0028】
(3)基板C;下地処理なし
ガラスの研磨および洗浄は上記1)と同様に行った。次いで、35℃の0.1N硫酸水溶液中に1分間浸漬し、ガラス洗浄機(当所製作品)で水洗・乾燥したものを基板Cとした。
【0029】
(4)基板D;凹凸状の表面形状を有するシリカ系下地層
ガラスの研磨および洗浄は上記1)と同様に行った。次いで、凹凸状の表面形状を有するシリカ系下地層を形成したものを基板Dとした。
なお、下地層用のコーティング液は、次の要領で調製した。
【0030】
テトラエトキシシラン〔Si(OC2H5)4:TEOS〕の重合ゾル(平均分子量Mw:約1000〜3000)とアセチルアセトンで安定化したテトラブトキシチタン〔Ti(O−Bu)4〕との混合ゾル(アセチルアセトンとで安定化したテトラブトキシチタンの合有量は酸化物換算でSiO2に対してモル比で約20mol%)を、イソプロピルアルコール(i−PA)溶媒を加え、固形分濃度として酸化物換算で5wt%になるまで希釈したものをゾル溶液Aとした。また、メチルトリメトキシシラン〔CH3Si(OCH3)3:MTMS〕の重合ゾル(平均分子量Mw=約1,000)にイソプロピルアルコール(i−PA)を加え、固形分濃度として酸化物換算で約20wt%になるまで希釈したものをゾル溶液Bとした。
【0031】
次に、ゾル溶液A;20g、ゾル溶液B;20g、および、加水分解および脱水縮合反応の速度を調整するための溶媒としてのブタノール(n-BuOH、水分量2000ppm);25gとを混合し、約50℃で約3時間密栓して撹拌した(ゾルC)。さらに、i−PA(90wt%);324gとn-BuOH(10wt%);36gの混合系溶媒約360gで先のゾルCを希釈し、これをスピンコート法で成膜した。次に、該ゲル膜付きガラス基板を250℃で30分間仮焼成を行い、さらにガラス温度で610℃〜620℃の本焼成を行い、表面に微細な凹凸形状を有するSiO2−TiO2薄膜を得た。
【0032】
(5)基板E;フラット状の表面形状を有するシリカ下地層
ガラスの研磨および洗浄は上記1)と同様に行った。次いで、フラット状の表面形状を有するシリカ下地層を形成したものを基板Eとした。なお、下地層用のコーティング液は、次の要領で調製した。
シリカゾルにCSG−DI−0600(チッソ製、溶質濃度6wt%)を用い、エキネンで4wt%に希釈した。次いで、ディップ法で1mm/sで成膜した。次に、該ゲル膜付きガラス基板を250℃で30分間仮焼成を行い、さらにガラス温度で610℃〜620℃の本焼成を行い、表面形状が平滑(フラット)なシリカ薄膜を得た。得られたシリカ薄膜の膜厚はSloan tech製Dektak3030を用いて測定したところ、約40nmであった。
【0033】
〔滑水液の調製〕
滑水液は、パーフルオロアルキルトリクロロシラン(CF3(CF2)mCH2CH2SiCl3:以下CmFASCと記す)と平均重合度7、10および20などのシラノール末端ポリジメチルシロキサン(以下、N7SOL、N10SOLおよびN20SOLなどと記す)を用い、これらの共重合化反応を進めることにより調製した。図1に、滑水液の調製手順と各成分の混合割合(重量比)を示す。なお、FASCの混合の際には、NnSOLを実質的に水を含まない溶媒で所定の濃度に希釈後、攪拌しながらゆっくりと滴下して行った。
【0034】
〔滑水性ガラスの作製〕
上記基板A〜Eに対し、約1〜2mlの上記滑水液を綿布(品名:ベンコット)に染み込ませて手塗した後に風乾または室温〜350℃で10分間熱処理した。次いで、余剰の滑水剤成分を紙タオルで拭き上げて滑水性ガラスを得た。
【0035】
〔実用耐久性の評価〕
滑水性基板の評価方法について記す。
【0036】
(1)初期接触角
純水約2μlを試料に置いたときの水滴と基盤表面とのなす角を接触角計で測定した。なお、接触角計には協和界面科学製CA−X型を用いて大気中(約25℃)で測定した。
【0037】
(2)滑水性(水滴転落性)
サンプルを30゜に傾斜させた状態で、サンプル表面上にゆっくりとマイクロシリンジで純水を滴下し、水滴が少なくとも10秒で2cm以上移動する時点の水滴量(体積)を滑水性(水滴転落性:μl)とした。
【0038】
(3)耐摩耗性
トラバース式摺動試験機(当社製作)を用いて、サンプル表面を荷重0.1kg/cm2の摩擦布で3500往復回で摺動した後の接触角θ(゜)を測定した。
なお、摩擦布は25mm×25mmサイズのキャンバス布(JISL3102−1961−1206)を用い、摺動速度は30往復/分とした。
【0039】
(4)耐光性
岩崎電気製アイスーパーUVテスターSUV-W11を用いて次の条件でUV照射し、接触角が70°に低下するまでの照射時間を耐光性とした
〔耐光性試験(SUV試験)条件〕
UV照射強度 :76mW/cm2
試料環境 :48℃,20〜30%RH
測定方法 :UV照射200時間毎に試料をi−PA払拭後、接触角を測定した。
以下、実施例および比較例を用いて本発明の効果を説明する。
【0040】
【実施例1】
出発原料にヘプタデカフルオロデシルトリクロロシラン(CF3(CF2)7CH2CH2SiCl3:C8FASC)と平均重合度10のシラノール末端ポリジメチルシロキサン(N10SOL)を用い、混合モル比を1:1として上記〔滑水液の調製〕に記載した要領(図1)で滑水液を調製した。これを上記〔ガラス基板の作製−2)〕に準じて風乾して得た基板Bに上記〔撥水性ガラスの作製〕に準じて80℃で熱処理して滑水性ガラスを得た。
上記〔実用耐久性の評価〕に記載した要領でサンプル性能を評価した。
結果、接触角は100゜、滑水性は9μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、98゜と900hと高い実用耐久性を示した。
【0041】
【実施例2】
実施例1において、出発原料の混合モル比をC8FASC:N10SOL=1:2とした以外はすべて実施例1と同じとした。
結果、接触角は98゜、滑水性は9μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、97゜と900hと高い実用耐久性を示した。
【0042】
【実施例3】
実施例1において、ガラス基板を基板Aとした以外はすべて実施例1と同じとした。
結果、接触角は100゜、滑水性は9μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、98゜と900hと高い実用耐久性を示した。
【0043】
【実施例4】
実施例1において、出発原料にトリフルオロプロピルトリクロロシラン(CF3CH2CH2SiCl3:C1FASC)とN10SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角は99゜、滑水性は7μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、97゜と750hと高い実用耐久性を示した。
【0044】
【実施例5】
実施例1において、出発原料にC8FASCと平均重合度7のN7SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角は100゜、滑水性は8μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、97゜と800hと高い実用耐久性を示した。
【0045】
【実施例6】
実施例1において、出発原料にC8FASCと平均重合度7のN7SOLを用い、ガラス基板を基板Aとした以外はすべて実施例1と同じとした。
結果、接触角は100゜、滑水性は9μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、97゜と900hと高い実用耐久性を示した。
【0046】
【実施例7】
実施例1において、出発原料にC8FASCと平均重合度20のN20SOLを用い、混合モル比を1:2とした以外はすべて実施例1と同じとした。
結果、接触角は100゜、滑水性は10μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、98゜と850hと高い実用耐久性を示した。
【0047】
【実施例8】
実施例1において、出発原料にヘインコサンフルオロドデシルトリクロロシラン(CF3(CF2)9CH2CH2SiCl3:C10FASC)とN20SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角は101゜、滑水性は10μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、100゜と900hと高い実用耐久性を示した。
【0048】
【実施例9】
実施例1において、ガラス基板を作製する際のシリカカップリング層の熱処理温度を80℃にした以外はすべて実施例1と同じとした。
結果、接触角は99゜、滑水性は8μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、96゜と850hと高い実用耐久性を示した。
【0049】
【実施例10】
実施例1において、ガラス基板を作製する際のシリカカップリング層の熱処理温度を150℃にした以外はすべて実施例1と同じとした。
結果、接触角は97゜、滑水性は10μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、95゜と850hと高い実用耐久性を示した。
【0050】
【実施例11】
実施例1において、滑水処理後の熱処理を風乾とした以外はすべて実施例1と同じとした。
結果、接触角は96゜、滑水性は8μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、99゜と750hと高い実用耐久性を示した。
【0051】
【実施例12】
実施例1において、滑水処理後の熱処理を150℃とした以外はすべて実施例1と同じとした。
結果、接触角は100゜、滑水性は10μlと非常に高い撥水・滑水性を示した。さらに、耐摩耗性と耐光性はそれぞれ、98゜と900hと高い実用耐久性を示した。
【0052】
【比較例1】
実施例1において、ガラス基板を基板Cとした以外はすべて実施例1と同じとした。
結果、接触角は100゜と高い撥水性を示したが、滑水性は15μlと改善効果は見られたが、依然低いレベルで不合格であった。また、耐摩耗性と耐光性はそれぞれ、98゜と600hであり、耐光性のレベルがやや低下した。
【0053】
【比較例2】
実施例1において、ガラス基板を基板Dとした以外はすべて実施例1と同じとした。
結果、接触角は100゜と高い撥水性を示したが、滑水性は13μlと改善効果は見られたが、依然低いレベルで不合格であった。なお、耐摩耗性と耐光性はそれぞれ、98゜と900hであった。
【0054】
【比較例3】
実施例1において、ガラス基板を基板Eとした以外はすべて実施例1と同じとした。
結果、接触角は98゜と高い撥水性を示したが、滑水性は20μlと改善効果はやや見られたものの依然低いレベルで不合格であった。なお、耐摩耗性と耐光性はそれぞれ、96゜と700hであった。
【0055】
【比較例4】
実施例1において、出発原料にトリフルオロプロピルトリメトキシシラン(CF3CH2CH2Si(OCH3)3:C1FASM)とN10SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角は88゜と撥水性は低かったが、滑水性は9μlと高かった。しかし、耐摩耗性と耐光性はそれぞれ、65゜と350hと耐久性は大幅に低下し好ましいものではなかった。
【0056】
【比較例5】
実施例1において、出発原料にヘプタデカフルオロデシルトリメトキシシラン(CF3(CF2)7CH2CH2Si(OCH3)3:C8FASM)とN10SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角107゜と撥水性は高かったが、滑水性は25μlと低く不合格であった。また、耐摩耗性と耐光性はそれぞれ、103゜と600hであった。
【0057】
【比較例6】
実施例1において、出発原料にヘインコサンフルオロドデシルトリメトキシシラン(CF3(CF2)9CH2CH2Si(OCH3)3:C10FASM)とN10SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角108゜と撥水性は高かったが、滑水性は25μlと低く不合格であった。また、耐摩耗性と耐光性はそれぞれ、104゜と600hであった。
【0058】
【比較例7】
実施例1において、出発原料として、シラノール末端ポリジメチルシロキサンを用いずC8FASCのみを用いた以外はすべて実施例1と同じとした。
結果、接触角111゜と高い撥水性を示したが、滑水性は50μlと非常に低かった。また、耐摩耗性と耐光性はそれぞれ、108゜と900hと良好であった。
【0059】
【比較例8】
実施例1において、出発原料にフルオロアルキルトリクロロシランを用いずN10SOLのみを用いた以外はすべて実施例1と同じとした。
結果、接触角90゜で滑水性は10μlと滑水性は良好であったが、耐摩耗性と耐光性はそれぞれ、73゜と350hと耐久性は非常に低く好ましいものではなかった。
【0060】
【比較例9】
実施例1において、出発原料にC8FASCと平均重合度が56のN56OLを用いた以外はすべて実施例1と同じとした。
結果、接触角110゜と撥水性は高かったが、滑水性は35μlと低かった。また、耐摩耗性と耐光性はそれぞれ、97゜と650hであった。
【0061】
【比較例10】
実施例1において、出発原料にC8FASCと平均重合度が243のN243SOLを用いた以外はすべて実施例1と同じとした。
結果、接触角110゜と撥水性は高かったが、滑水性は35μlと低かった。また、耐摩耗性と耐光性はそれぞれ、97゜と650hであった。
【0062】
【表1】
【0063】
【発明の効果】
本発明は、耐光性や耐摩耗性に優れた高い撥水耐久性と優れた滑水性を兼ね備えているので、例えば車輌用の窓ガラス等に用いた場合には優れた撥水性とともに優れた滑水性をも有するので雨天時に前方、側方、後方の視界が見易くなり安全に運転が出来るとともに長期間にわたり高性能を維持できる等の著効を奏する。
【図面の簡単な説明】
【図1】本発明の滑水液の調製工程を示すフロー図である[0001]
[Field of the Invention]
INDUSTRIAL APPLICABILITY The present invention is a highly slidable substrate exhibiting extremely excellent water slidability (water droplet slidability) that can be used particularly for architectural window glass, vehicle window glass, mirrors, and other industrial window glass, and a method for producing the same. About.
[0002]
[Prior art]
In order to obtain high water repellency durability (light resistance and abrasion resistance), a great many inventions have been made on water-repellent glass obtained by treating a substrate surface with a fluoroalkyl group-containing silane compound. For example, Japanese Patent Application Laid-Open No. 6-16455 discloses that it is very effective to provide a base film such as silica having an uneven shape on the glass surface. On the other hand, as a method without a base film, Japanese Patent No. 2500188 discloses a method for forming a water- and oil-repellent monomolecular film on a glass surface, and Japanese Patent Application Laid-Open No. 10-59745 discloses a glass surface subjected to water-repellent treatment. And a method of using a fluoroalkyl group-containing silane compound having an increased or controlled degree of polymerization as a water-repellent treatment liquid. Further, JP-A-8-325037 discloses that a fluoroalkyl group-containing silane compound is treated after forming an alkali barrier layer containing no alkali metal or having a low alkali metal content in the vicinity of the glass substrate surface. A method for obtaining a highly durable water-repellent treated glass is disclosed. Furthermore, Japanese Patent Laid-Open No. 9-48639 discloses that a fluoroalkyl group-containing silane compound is treated after forming a surface with a reduced amount of alkali components such as sodium by making the glass substrate surface a dealkalized layer. Discloses improving heat resistance, water resistance and weather resistance.
[0003]
On the other hand, studies have been made with an emphasis on further improving the water slidability (water drop slidability), and high water slidability or high water slidability glass has been proposed. For example, a composition containing a silicone wax, an organopolysiloxane, a surfactant and the like has been invented. Japanese Patent Publication No. 50-15473 discloses a composition comprising an alkylpolysiloxane and an acid, No. 301742 discloses a composition containing an amino-modified silicone oil and a surfactant.
[0004]
Furthermore, JP-A-11-116943 discloses a surface treatment agent comprising a composition in which at least the terminal F atom of the fluoroalkyl group of the perfluoroalkyl group-containing silane compound is substituted with an H atom, JP-A-2000-26758 discloses a coating composition capable of forming a water-slidable film selected from a hydroxyl group-containing vinyl polymer, an epoxy-terminated siloxane polymer, a sulfonic acid compound, an optionally blocked polyisocyanate compound, and a melamine resin. The coating composition capable of forming a water-slidable coating containing at least one crosslinking agent component and a surfactant selected from a specific dialkylsulfosuccinate and an alkylene oxide silane has a tumbling angle of 5 μl with a water droplet amount of 10 μl. It is disclosed that it exhibits the following excellent properties The
[0005]
[Problems to be solved by the invention]
However, high water repellency (light resistance) described in JP-A-6-16455, JP-A-2500188, JP-A-10-59745, JP-A-8-325037, and JP-A-9-48639. The water-repellent glass in which the substrate surface is treated with a fluoroalkyl group-containing silane compound having high resistance and wear resistance) has poor water drop slidability (water slidability). However, there is a problem that the water droplets do not slide down and remain on the glass surface unless the volume of the water droplets is at least about 40 to 60 μl or more at rest.
[0006]
Also, those obtained by the methods of Japanese Patent Publication No. 50-15473 and Japanese Patent Application Laid-Open No. 5-301742 have good sliding properties (water droplet sliding properties), in which about 30 μl is inclined at 30 °. Something that slides down with water droplets has been obtained, but it has not yet achieved high durability (light resistance and wear resistance).
[0007]
Furthermore, it is difficult to say that the coating obtained in JP-A-11-116943 is sufficiently durable, and the water-sliding coating obtained in JP-A-2000-26758 has low transparency and is a coating material. As a limited use.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above-described conventional problems, and has both high durability (light resistance and wear resistance) and excellent water slidability (hereinafter sometimes referred to as “water droplet sliding property”). A highly slidable substrate having high properties and a method for producing the same are provided.
[0009]
That is, the highly water-slidable substrate of the present invention has a fluoroalkyltrichlorosilane represented by the general formula [1] and a silanol terminal represented by the general formula [2] on the silica coupling layer formed on the transparent substrate surface. A water-sliding film made of a copolymer of polydimethylsiloxane is formed.
[0010]
CFThree(CF2)m(CH2)2SiClThree [1]
(Where m = 0 to 11)
HO- [Si (CHThree)2O-]nH [2]
(Where n is an integer from 1 to 50)
Moreover, the highly water-slidable substrate of the present invention is a film formed by applying a coating liquid obtained by diluting the tetraalkoxysilane hydrolyzate or tetraisocyanatesilane to the silica substrate. It is a silica film having a thickness of at least 20 nm or less.
[0011]
Further, in the highly water-slidable substrate of the present invention, the water-slidable film has a mixing molar ratio of the fluoroalkyltrichlorosilane represented by the general formula [1] and the silanol-terminated polydimethylsiloxane represented by the general formula [2]. The composition is characterized in that a copolymerization reaction is carried out at 1: 0.1-2.
[0012]
Moreover, the manufacturing method of the highly slidable board | substrate of this invention manufactures a highly slidable board | substrate by the following process.
(1) A step of applying a hydrolyzate of tetraalkoxysilane or a coating solution for a base layer containing tetraisocyanate silane as a main component on the transparent substrate surface,
(2) A step of drying and / or heat-treating at a temperature of 190 ° C. or lower to form a silica coupling layer as an underlayer,
(3) A step of applying a water-slidable coating solution comprising a copolymer of a fluoroalkyltrichlorosilane represented by the general formula [1] and a silanol-terminated polydimethylsiloxane represented by the general formula [2].
(4) a step of drying and / or heat-treating at a temperature of 190 ° C. or lower to form a water-slidable film
CFThree(CF2)m(CH2)2SiClThree [1]
(Where m = 0 to 11)
HO- [Si (CHThree)2O-]nH [2]
(Where n is an integer from 1 to 50)
Furthermore, in the method for producing a highly water-slidable substrate of the present invention, the coating solution for the underlayer is a hydrolyzate of tetraalkoxysilane having a concentration of 0.1 to 5.0 wt%, or a concentration of 0.1 to 5.0 wt%. It is characterized by comprising tetraisocyanate silane.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The highly water-slidable substrate of the present invention can be produced by the following steps as a representative method.
(1) A step of applying a hydrolyzate of tetraalkoxysilane or a coating solution for a base layer containing tetraisocyanate silane as a main component on the transparent substrate surface,
(2) A step of drying and / or heat-treating at a temperature of 190 ° C. or lower to form a silica coupling layer as an underlayer,
(3) A step of applying a water-slidable coating solution comprising a copolymer of a fluoroalkyltrichlorosilane represented by the general formula [1] and a silanol-terminated polydimethylsiloxane represented by the general formula [2].
(4) a step of drying and / or heat-treating at a temperature of 190 ° C. or lower to form a water-slidable film
CFThree(CF2)m(CH2)2SiClThree [1]
(Where m = 0 to 11)
HO- [Si (CHThree)2O-]nH [2]
(Where n is an integer from 1 to 50)
The substrate surface on which the water slidable film is formed needs to be provided with a base layer made of a silica coupling layer.
[0014]
The silica coupling layer is formed by applying a hydrolyzate of tetraalkoxysilane or a coating liquid containing tetraisocyanate silane as a main component to the substrate surface, and then performing a heat treatment at a temperature of 190 ° C. or lower. Can do.
The coating solution is preferably made of a hydrolyzate of tetraalkoxysilane having a concentration of 0.1 to 5.0 wt% or tetraisocyanate silane having a concentration of 0.1 to 5.0 wt%.
As the hydrolyzate of tetraalkoxysilane, it is possible to use a product prepared by adding a small amount of water and an acid catalyst such as hydrochloric acid, nitric acid or acetic acid using tetramethoxysilane or tetraethoxysilane as a starting material. In addition, when a dilute solution of tetraisocyanate silane is obtained, a solvent substantially free of water, that is, ethyl acetate, n-butyl acetate, n-hexyl acetate or the like can be used.
[0015]
The coating solution for the coupling layer thus obtained is uniformly applied to a clean glass substrate by hand coating or spraying, and then dried at room temperature for about 5 minutes to obtain a silica having a film thickness of at least 20 nm or less. A film is formed. A high concentration of silanol groups (Si—OH) is formed on the surface of the coupling layer made of silica, which becomes a reactive site for immobilizing the water-sliding composition on the surface, and provides an initial water-sliding property. And plays an important role in improving durability.
[0016]
The drying after applying the coupling layer coating solution may be performed by air drying, or after drying or simultaneously with drying, heat treatment may be performed at a temperature exceeding 190 ° C. In addition, when performing heat treatment, it is necessary to perform heat treatment at a temperature exceeding 190 ° C. exceeding room temperature, and it is possible to remove more solvent and moisture from the film and generate more silanol groups. It is. However, when the heat treatment is performed at a temperature of 200 ° C. or higher, the generated silanol groups are not preferable because a siloxane bond is formed by a dehydration condensation reaction and, as a result, the concentration of the silanol groups decreases. Although depending on the type of coating solution to be used, it is preferable that the film is sufficiently dried at a temperature from room temperature to about 100 ° C. in terms of enhancing mechanical strength and reactivity with the water-slidable composition.
[0017]
Examples of the perfluoroalkyltrichlorosilane represented by the general formula [1] include CFThree(CF2)11CH2CH2SiClThree, CFThree(CF2)9CH2CH2SiClThree, CFThree(CF2)7CH2CH2SiClThree, CFThree(CF2)FiveCH2CH2SiClThree, CFThreeCH2CH2SiClThreeEtc. can be used.
Examples of the silanol-terminated polydimethylsiloxane represented by the general formula [2] include HO— [Si (CHThree)2O-]TenH, HO- [Si (CHThree)2O-]20H or the like can be used.
[0018]
The solvent substantially free of water is a solvent having low water solubility, for example, esters such as ethyl acetate, n-butyl acetate and n-hexyl acetate, aromatic hydrocarbons such as toluene and xylene, Aliphatic hydrocarbons such as n-butane and n-hexane can be used.
As a diluent solvent, in addition to isopropyl alcohol (hereinafter abbreviated as “i-PA”), a lower alcohol solvent having 5 or less carbon atoms such as methanol and ethanol may be used. Ethers and ketones can be used in addition to the alcohol, and alcohols mainly composed of i-PA or ethanol are particularly preferable.
[0019]
In addition, the mixing molar ratio of the perfluoroalkyltrichlorosilane and the silanol-terminated polydimethylsiloxane can be freely selected. However, the perfluoroalkyltrichlorosilane: silanol-terminated polydimethylsiloxane = 1: 0.1-2. It is preferable to carry out a copolymerization reaction. When the silanol-terminated polydimethylsiloxane is 0.1 or less with respect to the
[0020]
The reaction time for mixing and copolymerizing the perfluoroalkyltrichlorosilane and the silanol-terminated polydimethylsiloxane in a solvent that does not substantially contain water must exceed 2 hours. The polymerization reaction has hardly progressed, and a large amount of perfluoroalkylsilane monomer remains in the coating solution, so that the polydimethylsiloxane component is not effectively immobilized on the substrate surface, and high sliding properties cannot be obtained. .
[0021]
Drying after applying the surface treatment agent may be carried out by air drying after the application of the surface treatment agent, or heat treatment may be performed at a temperature of 190 ° C. or less exceeding room temperature after drying or simultaneously with drying.
When heat treatment is performed, the heat treatment needs to be performed at a temperature exceeding room temperature and 190 ° C. or less, and the OH group of the unreacted fluoroalkyl group-containing silane is bonded to another OH group by the treatment. However, heat treatment at a temperature of 200 ° C. or higher is not preferable because the polydimethylsiloxane component for improving the water slidability is easily decomposed. In addition, 60-150 degreeC is more preferable at the point of reaction efficiency.
[0022]
The slipperiness according to the present invention is a method as described in the evaluation method of the examples described later, for example, in a state in which a substrate sample having a film treated with the surface treatment agent is inclined at 30 °. Slowly add pure water to the top with a micro syringe. At this time, the amount (volume) of water droplets at the time when the water droplets move at least 2 cm in at least 10 seconds is defined as “sliding water (water droplet tumbling property)”, which is indicated by “μl”.
The high water slidability of the present invention means that the water slidability obtained by the above method is 10 μl or less.
The substrate having a highly water-slidable film obtained in the present invention has an excellent water repellency as well as the water slidability because the silica coupling layer is formed on the substrate surface.
[0023]
The substrate is not particularly limited, such as glass or plastic. For example, in the case of a glass substrate, a float glass or a roll-out method usually used for window glass for buildings, window glass for automobiles, etc. Inorganic transparent plate glass such as glass manufactured in (1) is preferred, colorless or colored, as well as its type or color, combination with other functional films, glass shape, etc. Of course, various tempered glass and strength-enhancing glass are used as the plate glass, and can be used as a flat plate or a single plate, and can also be used as a double-layer glass or a laminated glass. The coating may be formed on both sides of the glass substrate.
[0024]
In addition, as a coating method of the base layer coating solution or the water slidable coating solution on the substrate surface, hand coating, nozzle flow coating method, dipping method, spray method, river coating method, flexo method, Various coating methods such as printing methods, flow coating methods or spin coating methods, and known coating means such as a combination thereof can be appropriately employed. It can also be used as a simple type spray-type water repellent agent.
[0025]
【Example】
The following methods were used for the production of the substrate, the preparation of the water-sliding solution, and the method for evaluating the practical durability of the obtained water-sliding substrate, which are items common to the following examples and comparative examples.
[0026]
[Production of substrate]
(1) Substrate A: Tetraethoxysilane [Si (OC2HFive)Four: Hereinafter referred to as TEOS] treatment using hydrolyzate
The surface of float glass or tempered glass having a size of 200 mm × 200 mm × 2 mmt was polished with a polishing liquid and a brush polisher, washed with water and dried with a glass washer (manufactured by our company). In addition, the polishing liquid used here used a suspension obtained by mixing approximately 1% of a glass abrasive miracle A (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) with water. Next, a 0.1N nitric acid aqueous solution was added to TEOS diluted to 1 wt% with echinene, and the mixture was stirred at room temperature for about 2 hours was used as a coating solution. The substrate A was formed by spraying at a discharge rate of 3.2 g / pc, a film thickness of 30% RH or less, and air-dried at room temperature. The obtained silica coupling layer was a highly transparent uniform silica film having a film thickness of 20 nm or less.
[0027]
(2) Substrate B: Tetraisocyanate silane [Si (NCO)FourThe treated glass was polished and washed in the same manner as in 1) above. Next, 1 ml cotton cloth (product name: Bencott / Asahi Kasei) tetraisocyanate silane (product name: SI-400 / manufactured by Matsumoto Pharmaceutical) diluted to 2 wt% with an ester solvent such as ethyl acetate, n-butyl acetate, n-hexyl acetate, etc. Substrate B was coated with air and then air-dried or heat-treated at room temperature to 300 ° C. for 10 minutes. The obtained silica coupling layer was a highly transparent uniform silica film having a film thickness of 20 nm or less.
[0028]
(3) Substrate C: No ground treatment
Glass polishing and cleaning were performed in the same manner as in 1) above. Subsequently, the substrate C was immersed in a 0.1N sulfuric acid aqueous solution at 35 ° C. for 1 minute, washed with water and dried with a glass washer (produced by our company).
[0029]
(4) Substrate D: Silica-based underlayer having an uneven surface shape
Glass polishing and cleaning were performed in the same manner as in 1) above. Next, a substrate D was formed by forming a silica-based underlayer having an uneven surface shape.
The underlayer coating liquid was prepared as follows.
[0030]
Tetraethoxysilane [Si (OC2HFive)Four: TEOS] polymerized sol (average molecular weight Mw: about 1000 to 3000) and tetrabutoxy titanium [Ti (O-Bu) stabilized with acetylacetoneFour] The mixed sol (the amount of tetrabutoxytitanium stabilized with acetylacetone is SiO in terms of oxide)2A sol solution A was prepared by adding isopropyl alcohol (i-PA) solvent to a molar ratio of about 20 mol% to a solid content concentration of 5 wt% in terms of oxide. In addition, methyltrimethoxysilane [CHThreeSi (OCHThree)Three: MTMS] sol alcohol B was prepared by adding isopropyl alcohol (i-PA) to a polymerized sol (average molecular weight Mw = about 1,000) and diluting to a solid content concentration of about 20 wt% in terms of oxide. .
[0031]
Next, sol solution A; 20 g, sol solution B; 20 g, and butanol (n-BuOH, water content 2000 ppm) as a solvent for adjusting the rate of hydrolysis and dehydration condensation reaction; 25 g, The mixture was sealed and stirred at about 50 ° C. for about 3 hours (sol C). Further, the previous sol C was diluted with about 360 g of a mixed solvent of i-PA (90 wt%); 324 g and n-BuOH (10 wt%); 36 g, and this was formed by spin coating. Next, the glass substrate with the gel film is pre-baked at 250 ° C. for 30 minutes, and further subjected to main baking at a glass temperature of 610 ° C. to 620 ° C., and a
[0032]
(5) Substrate E: Silica underlayer having a flat surface shape
Glass polishing and cleaning were performed in the same manner as in 1) above. Next, the substrate E was formed by forming a silica underlayer having a flat surface shape. The underlayer coating liquid was prepared as follows.
CSG-DI-0600 (manufactured by Chisso, solute concentration 6 wt%) was used as silica sol, and diluted to 4 wt% with echinene. Subsequently, it formed into a film at 1 mm / s by the dip method. Next, the glass substrate with the gel film was pre-baked at 250 ° C. for 30 minutes, and further subjected to main baking at a glass temperature of 610 ° C. to 620 ° C. to obtain a silica thin film having a smooth (flat) surface shape. The thickness of the obtained silica thin film was about 40 nm as measured using Dektak 3030 manufactured by Sloantech.
[0033]
(Preparation of synovial fluid)
The synovial fluid is perfluoroalkyltrichlorosilane (CFThree(CF2)mCH2CH2SiClThree: Hereinafter referred to as CmFASC) and silanol-terminated polydimethylsiloxane having an average degree of polymerization of 7, 10 and 20 (hereinafter referred to as N7SOL, N10SOL, N20SOL, etc.) and prepared by advancing their copolymerization reaction. FIG. 1 shows the procedure for preparing the synovial fluid and the mixing ratio (weight ratio) of each component. In mixing FASC, NnSOL was diluted with a solvent substantially free of water to a predetermined concentration, and then slowly dropped with stirring.
[0034]
[Production of water-sliding glass]
The substrates A to E were soaked in about 1 to 2 ml of the slick water solution in a cotton cloth (product name: Bencott) and then hand-coated, and then air-dried or heat-treated at room temperature to 350 ° C. for 10 minutes. Then, the excess water-sliding agent component was wiped off with a paper towel to obtain a sliding glass.
[0035]
[Evaluation of practical durability]
It describes about the evaluation method of a sliding board | substrate.
[0036]
(1) Initial contact angle
The angle formed by the water droplet and the substrate surface when about 2 μl of pure water was placed on the sample was measured with a contact angle meter. In addition, it measured in air | atmosphere (about 25 degreeC) using Kyowa Interface Science CA-X type for a contact angle meter.
[0037]
(2) Lubricity (water drop tumbling)
While the sample is inclined at 30 °, pure water is slowly dropped onto the sample surface with a microsyringe, and the amount (volume) of the water droplet at the time when the water droplet moves 2 cm or more in at least 10 seconds is determined to be slidable : Μl).
[0038]
(3) Abrasion resistance
Using a traverse type sliding tester (manufactured by our company), load the sample surface to 0.1kg / cm2The contact angle θ (°) after sliding with 3500 reciprocations was measured.
The friction cloth used was a 25 mm × 25 mm canvas cloth (JISL 3102-1961-1206), and the sliding speed was 30 reciprocations / minute.
[0039]
(4) Light resistance
Using Iwasaki Electric Eye Super UV Tester SUV-W11, UV irradiation was performed under the following conditions, and the irradiation time until the contact angle decreased to 70 ° was made light-resistant.
[Light resistance test (SUV test) conditions]
UV irradiation intensity: 76 mW / cm2
Sample environment: 48 ° C., 20-30% RH
Measurement method: The contact angle was measured after the sample was wiped off with i-PA every 200 hours of UV irradiation.
Hereinafter, the effects of the present invention will be described using examples and comparative examples.
[0040]
[Example 1]
Heptadecafluorodecyltrichlorosilane (CFThree(CF2)7CH2CH2SiClThree: C8FASC) and silanol-terminated polydimethylsiloxane (N10SOL) having an average degree of polymerization of 10 and a mixing molar ratio of 1: 1 to prepare the synovial fluid according to the procedure described in [Preparation of synovial fluid] (FIG. 1). did. This was air-dried according to the above [Preparation of glass substrate-2)] and heat-treated at 80 ° C. according to the above [Preparation of water-repellent glass] to obtain a water-slidable glass.
The sample performance was evaluated in the manner described in [Evaluation of practical durability].
As a result, the contact angle was 100 °, and the water slidability was 9 μl. Further, the wear resistance and light resistance were 98 ° and 900 h, respectively, indicating high practical durability.
[0041]
[Example 2]
In Example 1, everything was the same as Example 1 except that the mixing molar ratio of the starting materials was C8FASC: N10SOL = 1: 2.
As a result, the contact angle was 98 °, and the water slidability was 9 μl. Furthermore, the wear resistance and light resistance were 97 ° and 900 h, respectively, indicating high practical durability.
[0042]
[Example 3]
In Example 1, everything was the same as Example 1 except that the glass substrate was substrate A.
As a result, the contact angle was 100 °, and the water slidability was 9 μl. Further, the wear resistance and light resistance were 98 ° and 900 h, respectively, indicating high practical durability.
[0043]
[Example 4]
In Example 1, trifluoropropyltrichlorosilane (CFThreeCH2CH2SiClThree: C1FASC) and N10SOL were all used in the same manner as in Example 1.
As a result, the contact angle was 99 °, and the water slidability was 7 μl. Further, the wear resistance and light resistance were 97 ° and 750 h, respectively, indicating high practical durability.
[0044]
[Example 5]
In Example 1, all were the same as Example 1 except that C8FASC and N7SOL having an average degree of polymerization of 7 were used as starting materials.
As a result, the contact angle was 100 °, and the water slidability was 8 μl. Further, the wear resistance and light resistance were 97 ° and 800 h, respectively, indicating high practical durability.
[0045]
[Example 6]
In Example 1, C8FASC and N7SOL having an average degree of polymerization of 7 were used as starting materials, and the glass substrate was changed to Substrate A, and everything was the same as Example 1.
As a result, the contact angle was 100 °, and the water slidability was 9 μl. Furthermore, the wear resistance and light resistance were 97 ° and 900 h, respectively, indicating high practical durability.
[0046]
[Example 7]
In Example 1, all were the same as Example 1 except that C8FASC and N20SOL having an average degree of polymerization of 20 were used as starting materials and the mixing molar ratio was 1: 2.
As a result, the contact angle was 100 °, and the water slidability was 10 μl. Further, the wear resistance and light resistance were 98 ° and 850 h, respectively, indicating high practical durability.
[0047]
[Example 8]
In Example 1, heincosanefluorododecyltrichlorosilane (CFThree(CF2)9CH2CH2SiClThree: C10FASC) and N20SOL were all used in the same manner as in Example 1.
As a result, the contact angle was 101 °, and the water slidability was 10 μl. Further, the wear resistance and light resistance were 100 ° and 900 h, respectively, indicating high practical durability.
[0048]
[Example 9]
In Example 1, everything was the same as Example 1 except that the heat treatment temperature of the silica coupling layer at the time of producing the glass substrate was 80 ° C.
As a result, the contact angle was 99 °, and the water slidability was 8 μl. Further, the wear resistance and light resistance were 96 ° and 850 h, respectively, indicating high practical durability.
[0049]
[Example 10]
In Example 1, everything was the same as Example 1 except that the heat treatment temperature of the silica coupling layer at the time of producing the glass substrate was 150 ° C.
As a result, the contact angle was 97 °, and the water slidability was 10 μl. Further, the wear resistance and light resistance were 95 ° and 850 h, respectively, indicating high practical durability.
[0050]
Example 11
In Example 1, all was the same as Example 1 except that the heat treatment after the water sliding treatment was air-dried.
As a result, the contact angle was 96 °, and the water slidability was 8 μl. Further, the wear resistance and light resistance were 99 ° and 750 h, respectively, indicating high practical durability.
[0051]
Example 12
In Example 1, all was the same as Example 1 except that the heat treatment after the water sliding treatment was 150 ° C.
As a result, the contact angle was 100 °, and the water slidability was 10 μl. Further, the wear resistance and light resistance were 98 ° and 900 h, respectively, indicating high practical durability.
[0052]
[Comparative Example 1]
In Example 1, everything was the same as Example 1 except that the glass substrate was changed to substrate C.
As a result, the contact angle was as high as 100 ° and the water repellency was 15 μl, but the improvement was seen at 15 μl, but it still failed at a low level. The abrasion resistance and light resistance were 98 ° and 600 h, respectively, and the light resistance level was slightly lowered.
[0053]
[Comparative Example 2]
In Example 1, everything was the same as Example 1 except that the glass substrate was the substrate D.
As a result, the contact angle showed a high water repellency of 100 °, but the sliding property was 13 μl, but an improvement effect was seen, but it still failed at a low level. The abrasion resistance and light resistance were 98 ° and 900 h, respectively.
[0054]
[Comparative Example 3]
In Example 1, everything was the same as Example 1 except that the glass substrate was changed to substrate E.
As a result, the contact angle showed a high water repellency of 98 °, but the water slidability was 20 μl, but although the improvement effect was somewhat seen, it still failed at a low level. The abrasion resistance and light resistance were 96 ° and 700 h, respectively.
[0055]
[Comparative Example 4]
In Example 1, trifluoropropyltrimethoxysilane (CFThreeCH2CH2Si (OCHThree)Three: C1FASM) and N10SOL were all used in the same manner as in Example 1.
As a result, the contact angle was 88 ° and the water repellency was low, but the water slidability was as high as 9 μl. However, the wear resistance and light resistance were not preferable because the durability was greatly reduced to 65 ° and 350 h, respectively.
[0056]
[Comparative Example 5]
In Example 1, heptadecafluorodecyltrimethoxysilane (CFThree(CF2)7CH2CH2Si (OCHThree)Three: C8FASM) and N10SOL were all used in the same manner as in Example 1.
As a result, the contact angle was 107 ° and the water repellency was high, but the water slidability was 25 μl, which was unacceptable. The abrasion resistance and light resistance were 103 ° and 600 h, respectively.
[0057]
[Comparative Example 6]
In Example 1, heincosanefluorododecyltrimethoxysilane (CFThree(CF2)9CH2CH2Si (OCHThree)Three: C10FASM) and N10SOL were all used in the same manner as in Example 1.
As a result, the contact angle was 108 ° and the water repellency was high, but the water slidability was as low as 25 μl and was not acceptable. The abrasion resistance and light resistance were 104 ° and 600 h, respectively.
[0058]
[Comparative Example 7]
In Example 1, it was the same as Example 1 except that only C8FASC was used as a starting material without using silanol-terminated polydimethylsiloxane.
As a result, the contact angle was 111 ° and the water repellency was high, but the water slidability was as low as 50 μl. The abrasion resistance and light resistance were good at 108 ° and 900 h, respectively.
[0059]
[Comparative Example 8]
In Example 1, everything was the same as Example 1 except that only N10SOL was used as the starting material without using fluoroalkyltrichlorosilane.
As a result, the sliding angle was 90 ° and the sliding property was 10 μl and the sliding property was good.
[0060]
[Comparative Example 9]
In Example 1, all were the same as Example 1 except that C56FASC and N56OL having an average degree of polymerization of 56 were used as starting materials.
As a result, the contact angle was 110 ° and the water repellency was high, but the water slidability was as low as 35 μl. The abrasion resistance and light resistance were 97 ° and 650 h, respectively.
[0061]
[Comparative Example 10]
In Example 1, all were the same as Example 1 except that C243FASC and N243SOL having an average degree of polymerization of 243 were used as starting materials.
As a result, the contact angle was 110 ° and the water repellency was high, but the water slidability was as low as 35 μl. The abrasion resistance and light resistance were 97 ° and 650 h, respectively.
[0062]
[Table 1]
[0063]
【The invention's effect】
Since the present invention combines excellent water repellency with excellent light resistance and abrasion resistance and excellent water slidability, for example, when used for a window glass for a vehicle, it has excellent water repellency as well as excellent water repellency. Since it is also water-based, it is easy to see the front, side, and rear visibility when it rains, and it can be operated safely and can maintain high performance over a long period of time.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a preparation process of a synovial fluid of the present invention.
Claims (4)
CF3(CF2)m(CH2)2SiCl3 [1]
(式中、m=0〜11の整数)
HO-[Si(CH3)2O-]nH [2]
(式中、n=1〜50の整数)Water slidability comprising a copolymer of a fluoroalkyltrichlorosilane represented by the general formula [1] and a silanol-terminated polydimethylsiloxane represented by the general formula [2] on a silica coupling layer formed on the surface of the transparent substrate. It is a highly water-slidable substrate formed with a coating , and the silica coupling layer is dried and / or dried after applying a hydrolyzate of tetraalkoxysilane or a coating liquid mainly composed of tetraisocyanate silane to the substrate surface. A highly slidable substrate characterized by being a silica film having a thickness of at least 20 nm formed by heat treatment at a temperature of 190 ° C. or less .
CF 3 (CF 2 ) m (CH 2 ) 2 SiCl 3 [1]
(Where m = 0 to 11)
HO— [Si (CH 3 ) 2 O—] n H [2]
(Where n is an integer from 1 to 50)
CF3(CF2)m(CH2)2SiCl3 [1]
(式中、m=0〜11の整数)
HO-[Si(CH3)2O-]nH [2]
(式中、n=1〜50の整数)A method for producing a highly water-slidable substrate comprising producing a highly water-slidable substrate by the following steps. (1) A step of applying a hydrolyzate of tetraalkoxysilane or a coating solution for a base layer mainly composed of tetraisocyanate silane to the surface of the transparent substrate, (2) drying and / or heat treatment at a temperature of 190 ° C. or lower. A step of forming a silica coupling layer as an underlayer, (3) from a copolymer of a fluoroalkyltrichlorosilane represented by the general formula [1] and a silanol-terminated polydimethylsiloxane represented by the general formula [2] A step of applying a coating solution for a water slidable film, (4) a step of drying and / or heat-treating at a temperature of 190 ° C. or lower to form a water slidable film,
CF 3 (CF 2 ) m (CH 2 ) 2 SiCl 3 [1]
(Where m = 0 to 11)
HO— [Si (CH 3 ) 2 O—] n H [2]
(Where n is an integer from 1 to 50)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193650A JP3883366B2 (en) | 2000-06-28 | 2000-06-28 | Highly slidable substrate and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000193650A JP3883366B2 (en) | 2000-06-28 | 2000-06-28 | Highly slidable substrate and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002012452A JP2002012452A (en) | 2002-01-15 |
JP3883366B2 true JP3883366B2 (en) | 2007-02-21 |
Family
ID=18692605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000193650A Expired - Fee Related JP3883366B2 (en) | 2000-06-28 | 2000-06-28 | Highly slidable substrate and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3883366B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3894725B2 (en) * | 2000-12-08 | 2007-03-22 | 積水樹脂株式会社 | Snow-ice coating |
CN1301226C (en) * | 2002-07-30 | 2007-02-21 | 中央硝子株式会社 | Article excellent in waterdrop slippage from article surface and process for producing such article |
JP4876424B2 (en) * | 2005-04-06 | 2012-02-15 | セントラル硝子株式会社 | Manufacturing method for water slidable articles |
EP1792963A4 (en) | 2004-08-27 | 2010-04-21 | Central Glass Co Ltd | Treatment for forming waterdrop slidable films and process for forming waterdrop slidable films |
JP4826226B2 (en) * | 2004-08-27 | 2011-11-30 | セントラル硝子株式会社 | Treatment agent for obtaining water slidable film and method for producing water slidable film |
JP4970803B2 (en) * | 2006-02-10 | 2012-07-11 | 東京応化工業株式会社 | Method for manufacturing film forming material |
US20080240479A1 (en) * | 2006-10-03 | 2008-10-02 | Sonic Innovations, Inc. | Hydrophobic and oleophobic coating and method for preparing the same |
EP2011831B1 (en) | 2007-07-03 | 2013-10-23 | Shin-Etsu Chemical Co., Ltd. | Coating composition and a coating therefrom having waterdrop sliding property |
JP4643696B2 (en) * | 2008-09-03 | 2011-03-02 | 株式会社ソフト99コーポレーション | 2-part water repellent treatment for painted surfaces |
JP5281457B2 (en) * | 2009-03-31 | 2013-09-04 | 日本曹達株式会社 | Partial thin film forming method |
JP5326782B2 (en) * | 2009-04-30 | 2013-10-30 | コニカミノルタ株式会社 | Method for producing water-repellent article |
CN103201331B (en) * | 2010-11-10 | 2014-12-17 | 3M创新有限公司 | Hydrophobic fluorinated coatings |
US10185057B2 (en) * | 2011-11-11 | 2019-01-22 | Ppg Industries Ohio, Inc. | Coated articles having abrasion resistant, glass-like coatings |
CN104169745B (en) * | 2012-11-08 | 2018-08-17 | Ppg工业俄亥俄公司 | The product of the coating of glassy coating with wearability |
JP2020007453A (en) * | 2018-07-09 | 2020-01-16 | 東日本旅客鉄道株式会社 | Dew condensation dripping suppression coating |
-
2000
- 2000-06-28 JP JP2000193650A patent/JP3883366B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002012452A (en) | 2002-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3883366B2 (en) | Highly slidable substrate and manufacturing method thereof | |
JPH0597478A (en) | Water repellent glass article and its production | |
JP2001503100A (en) | Surface-treated substrate and surface treatment method for substrate | |
EP1245658B1 (en) | Hydrophobic article | |
US20040076840A1 (en) | Article superior in making waterdrops slip down surface thereof and process for producing such article | |
KR100894079B1 (en) | Treatment for forming waterdrop slidable films and process for forming waterdrop slidable films | |
JP3649585B2 (en) | Water repellent coating solution | |
JP4014532B2 (en) | High water-sliding film and method for forming the same | |
JPH09202651A (en) | Hydrophilic coating membrane and its formation | |
JP3397394B2 (en) | Coating solution for forming sol-gel film and method for forming water-repellent oxide film using sol-gel film as underlayer | |
JP3961349B2 (en) | High durability sliding coating and method for producing the same | |
JP4826226B2 (en) | Treatment agent for obtaining water slidable film and method for producing water slidable film | |
KR100281993B1 (en) | Durable water-repellent glass and its manufacturing method | |
JP4876424B2 (en) | Manufacturing method for water slidable articles | |
JP3929321B2 (en) | Highly slidable coating and method for producing the same | |
JP3744736B2 (en) | Highly slidable base material and method for producing the same | |
JP3929328B2 (en) | High water-sliding coating and coating method thereof | |
JP4152769B2 (en) | Method for producing highly durable water slidable coating | |
JP4056710B2 (en) | Composite high water-sliding coating and method for producing the same | |
JP3628881B2 (en) | Manufacturing method of water repellent liquid and water repellent substrate | |
JP3929313B2 (en) | High lubricity coating and coating method thereof | |
KR100216872B1 (en) | Manufacturing method for water-repellent glass | |
JP4175880B2 (en) | Sol-gel film having a convex, concave or concave surface shape, coating liquid and production method | |
JP3841653B2 (en) | Highly lubricious coating and method for coating the same | |
JP2003064309A (en) | Film having high water droplet-slipping property and method for applying the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050513 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061114 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091124 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101124 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121124 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131124 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |