[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3883222B2 - Granulation dephosphorization equipment - Google Patents

Granulation dephosphorization equipment Download PDF

Info

Publication number
JP3883222B2
JP3883222B2 JP27606095A JP27606095A JP3883222B2 JP 3883222 B2 JP3883222 B2 JP 3883222B2 JP 27606095 A JP27606095 A JP 27606095A JP 27606095 A JP27606095 A JP 27606095A JP 3883222 B2 JP3883222 B2 JP 3883222B2
Authority
JP
Japan
Prior art keywords
ammonium phosphate
solid particles
waste water
magnesium ammonium
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27606095A
Other languages
Japanese (ja)
Other versions
JPH09117774A (en
Inventor
中村  剛
伸子 杉森
富夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Unitika Ltd
Original Assignee
Japan Sewage Works Agency
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Unitika Ltd filed Critical Japan Sewage Works Agency
Priority to JP27606095A priority Critical patent/JP3883222B2/en
Publication of JPH09117774A publication Critical patent/JPH09117774A/en
Application granted granted Critical
Publication of JP3883222B2 publication Critical patent/JP3883222B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアンモニウムイオン及びリン酸イオンを含む廃水に、マグネシウム化合物を添加するとともにpHを8以上に調整し、廃水中のリン酸イオンをリン酸マグネシウムアンモニウムの固体粒子として除去する際に、生成したリン酸マグネシウムアンモニウムの固体粒子を効率良く廃水中から分離する手段を有する造粒脱リン装置に関するものである。
【0002】
【従来の技術】
近年、閉鎖性水域で特に問題となっている富栄養化の一因子であるリンの除去技術にはアルミニウム塩や鉄塩等の金属塩とリンを反応させる凝集分離法、リン鉱石や骨炭等の種晶にヒドロキシアパタイトの形でリンを析出させる晶析法(接触脱リン法)、微生物のリン過剰摂取作用を利用した生物学的脱リン法、例えば嫌気・好気法などがある。
【0003】
しかし、これらの処理プロセスから発生するリン化合物を含有した2次生成物の処分及び安定化が問題となっている。
このような状況に鑑み、近年、アンモニウムイオン及びリン酸イオンを含む廃水に、マグネシウム化合物を添加するとともにpHを8以上に調整し、廃水中のリン酸イオンをリン酸マグネシウムアンモニウムの固体粒子として除去し、生成したリン酸マグネシウムアンモニウムの固体粒子を有効利用する技術が開発された。すなわち、特開平1−119392号公報には、アンモニウムイオン及びリン酸イオンを含む廃水に、マグネシウム化合物を添加するとともにpHを8以上に調整し、通気によって廃水を攪拌し、リン酸マグネシウムアンモニウムの微細結晶を生成させ、廃水中の浮遊物質と上記リン酸マグネシウムアンモニウムの微細結晶とを分離して浮遊物質を系外に排出し、さらに上記リン酸マグネシウムアンモニウムの微細結晶を含む廃水を通気によって攪拌しながら連続的に廃水を供給し、上記リン酸マグネシウムアンモニウムの微細結晶核としてリン酸マグネシウムアンモニウムの固体粒子を形成し、これを除去する装置及び方法が記載されている。
【0004】
さらに、特開平5−154487号公報には、上記の方法によって生成された装置内のリン酸マグネシウムアンモニウム化合物及び廃水中の浮遊物質を空気攪拌し、空気を止め静置して、比重の差異によってリン酸マグネシウムアンモニウム化合物を下部に、他の浮遊物質を上部に分離させた後、処理装置の下部からリン酸マグネシウムアンモニウム化合物を取り出すリン酸マグネシウムアンモニウム化合物の分離方法が記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、前述の方法によって生成されたリン酸マグネシウムアンモニウムの固体粒子を装置本体から排出するには、一般的に装置底部からの攪拌のための曝気を一時的に停止し、リン酸マグネシウムアンモニウムの固体粒子を沈澱させてから、装置底部の払い出し管より一定量を引き抜く方法が採られてきたため、一時的にしろ、装置底部からの攪拌のための曝気を停止することによって、リン酸マグネシウムアンモニウムの固体粒子が払い出し管に詰まったり、あるいは、沈殿した固体粒子を一度に引き抜くのであるから、得られるリン酸マグネシウムアンモニウムの粒径に不揃いが生じるという問題があった。
【0006】
本発明はこのような課題を解決するもので、粒径の揃ったリン酸マグネシウムアンモニウムの固体粒子を効率良く回収することのできる造粒脱リン装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、このような課題を解決するために、廃水中のリン酸イオンをリン酸マグネシウムアンモニウムの固体粒子として除去する装置において、廃水と固体粒子とをリン酸マグネシウムアンモニウム造粒塔に返送するための返送管の途中にスクリーンへの分岐弁を設け、この分岐弁の開口時に前記返送管を流れる廃水と固体粒子をスクリーンに供給して所定の粒径以上の固体粒子をスクリーンによって分離し、スクリーンを通過しない固体粒子のみを回収することにより、粒径の揃ったリン酸マグネシウムアンモニウムの固体粒子を効率良く回収することができるという事実を見出した。
【0008】
すなわち本発明は、リン酸マグネシウムアンモニウムを造粒するためのリン酸マグネシウムアンモニウム造粒塔を備え、この造粒塔の内部にアンモニウムイオン及びリン酸イオンを含む廃水を注入するための注入管と、同じく造粒塔の内部にマグネシウム化合物を注入するための注入管と、同じく造粒塔の内部に苛性ソーダを注入するための注入管をそれぞれ設け、前記造粒塔の底部に攪拌用気体吹き込み管と、固体粒子と廃水とを造粒塔の外に引き抜くための固体粒子払い出し管とを設け、さらに、固体粒子払い出し管により引き抜かれた固体粒子と廃水とを造粒塔に返送するための第1の返送管と、この第1の返送管の途中に開閉自在な分岐弁を介して接続され所定の粒径以上の固体粒子を分離し回収するためのスクリーンと、このスクリーンを通過した固体粒子と廃水とを前記造粒塔に返送するための第2の返送管とを設けたことを特徴とする造粒脱リン装置を要旨とするものである。
【0009】
ここでの返送として、リン酸マグネシウムアンモニウムの引き抜き時のみ、返送管の洗浄液及びスクリーン通過液を塔上部へ返送するものであり、従来のリン酸マグネシウムアンモニウム肥大化や反応塔内部のスケール付着防止のために処理水を塔下部に循環する循環手段とは異なるものである。
【0010】
以下、図面を参照しつつ、本発明を具体的に説明する。
図1は、本発明の造粒脱リン装置の一例を示す概略図である。図1において、アンモニウムイオン及びリン酸イオンを含む廃水は、原水注入ポンプ1によって廃水注入管2からリン酸マグネシウムアンモニウム造粒塔3に注入される。また、マグネシウム槽4内のマグネシウム化合物は、廃水中のリン酸と等モルになるように、マグネシウム供給ポンプ5によってマグネシウム化合物注入管6から前記造粒塔3に注入され、アルカリ槽7内の苛性ソーダは、アルカリ供給ポンプ8によって苛性ソーダ注入管9から造粒塔3に注入される。このときのpHは、pHセンサー10で8以上に調整される。11は攪拌ブロワー12に一端が連結された攪拌用気体吹き込み管で、この攪拌用気体吹き込み管11の他端は造粒塔3の底部に連通され、攪拌ブロワー12の動作により造粒塔3の内部に攪拌用気体を供給して曝気・攪拌に供せられるものである。このように、アンモニウムイオン及びリン酸イオンを含む廃水にマグネシウム化合物及び苛性ソーダを添加するとともに、pHを8以上に調整して攪拌を行なうことにより、直径0.2〜0.3mmのリン酸マグネシウムアンモニウムの固体粒子が生成し、造粒塔3の内部にリン酸マグネシウムアンモニウムの固体粒子が蓄積される1〜2週間の間隔で、リン酸マグネシウムアンモニウムの引き抜き運転を行なう。一方、処理水は、造粒塔3上部の分離部より越流堰13を経て、処理水タンク14に貯留される。リン酸マグネシウムアンモニウムの引き抜き運転においては、運転切換弁15、洗浄弁16、循環弁17を開き、リン酸マグネシウムアンモニウム引き抜きポンプ18を作動させ、造粒塔3の底部の固体粒子払い出し管19から廃水とリン酸マグネシウムアンモニウムの固体粒子を引き抜き、第1の返送管20を経てこれらを造粒塔3の上部に返送するとともに、この第1の返送管20の途中に設けられた分岐弁21を開き、廃水と固体粒子とをスクリーン22に供給する。
【0011】
本発明で用いられるスクリーン22の材質としては、ステンレス等の耐蝕性のあるものが好ましい。
本発明で用いられるスクリーン22としては、例えば、ロータリースクリーン、ドラムスクリーン、ワイヤスクリーン、円弧スクリーン等があげられる。このスクリーン22上へ前記固体粒子払い出し管19より引き抜いた廃水と固体粒子とを供給し、スクリーン22を通過しない粒径を持つリン酸マグネシウムアンモニウムの固体粒子23は回収される。
【0012】
一方、スクリーン22を通過した廃水及び固体粒子は分岐水移送ポンプ24によって、第2の返送管25を経て造粒塔3の上部に返送される。このようにして、スクリーン22で分離可能なリン酸マグネシウムアンモニウムの固体粒子を造粒塔3の内部より分離し回収した後、運転切替弁15を閉じ、原水でスクリーン22への導入管及びスクリーン22を洗浄し、続いて分岐弁21を閉じ、造粒塔3の上部への第1の返送管20を洗浄する。これらの一連の工程は、シーケンサーにより自動制御で行なわれる。
【0013】
【発明の実施の形態】
次に、本発明を実施の形態によって具体的に説明する。
図1に示す造粒脱リン装置を用いて、廃水の処理を行なった。
【0014】
廃水注入管から注入させる廃水としては、消化汚泥脱水ろ液を用い、実効容積10m3 のリン酸マグネシウムアンモニウム造粒塔の底部に、6.25m3 /hrの流量で廃水を供給した。マグネシウム槽内の30%の塩化マグネシウムを、廃水中のリン酸と等モルになるように造粒塔内部にマグネシウム化合物注入管から注入し、また、アルカリ槽内の48%の苛性ソ−ダを造粒塔内部に苛性ソーダ注入管から注入して、pHを9.0に調整して造粒塔内部の攪拌を行なった。これによって、直径0.2〜0.8mmのリン酸マグネシウムアンモニウムの固体粒子が生成し、造粒塔の内部にリン酸マグネシウムアンモニウムの固体粒子が蓄積される1〜2週間の間隔で、リン酸マグネシウムアンモニウムの引き抜き運転を行なった。一方、処理水は、造粒塔上部の分離部より越流堰を経て、処理水タンクに貯留した。リン酸マグネシウムアンモニウムの引き抜き運転においては、運転切換弁、洗浄弁、循環弁を開き、リン酸マグネシウムアンモニウム引き抜きポンプを作動させて、廃水とリン酸マグネシウムアンモニウムの固体粒子を造粒塔の底部の固体粒子払い出し管から引き抜き、第1の返送管を経てこれらを造粒塔の上部に返送するとともに、この第1の返送管の途中に設けられた分岐弁を開き、廃水と固体粒子とをスクリーンに分岐させた。スクリーンとしては、目開き0.5mmのウェッジワイヤースクリーンを用い、このスクリーン上へ固体粒子払い出し管より引き抜いた廃水と固体粒子とを供給し、スクリーンを通過しない粒径を持つリン酸マグネシウムアンモニウムの固体粒子は回収され、スクリーンを通過した廃水及び固体粒子は分岐水移送ポンプによって、第2の返送管を経て造粒塔上部に返送した。
【0015】
表1に本発明の造粒脱リン装置による水質処理状況を示す。
【0016】
【表1】

Figure 0003883222
【0017】
表1より明らかなように、本発明の造粒脱リン装置を用いた場合では、リン酸態リンの除去率が96%と高く、さらに、アンモニア態窒素も18%除去することができた。
【0018】
また、本発明の造粒脱リン装置において、上記の運転条件で回収されたリン酸マグネシウムアンモニウムの固体粒子の粒径分布と、装置底部より引き抜いたリン酸マグネシウムアンモニウムの固体粒子をスクリ−ンを通さず、そのまま回収する従来の方法によるリン酸マグネシウムアンモニウムの固体粒子の粒径分布をそれぞれ図2に示す。
【0019】
従来法に比べ、本発明の造粒脱リン装置を用いた場合では、0.5mm以下のリン酸マグネシウムアンモニウムの固体粒子の割合が低く、0.5mm以上のリン酸マグネシウムアンモニウムの固体粒子に粒径が揃っていた。
【0020】
【発明の効果】
以上のように本発明の造粒脱リン装置は、原水中のリンを効率良く除去することができ、さらに、粒径の揃ったリン酸マグネシウムアンモニウムの固体粒子を効率良く回収することができる。また、スクリーンの目開きを変更するだけで、所望の粒径のリン酸マグネシウムアンモニウムの固体粒子を回収することができる。
【図面の簡単な説明】
【図1】本発明の造粒脱リン装置の実施の形態の一例を示す概略図である。
【図2】本発明の造粒脱リン装置により回収されたリン酸マグネシウムアンモニウムの固体粒子の粒径分布と従来の方法により回収されたリン酸マグネシウムアンモニウムの固体粒子の粒径分布を比較したグラフである。
【符号の説明】
2 廃水注入管
3 リン酸マグネシウムアンモニウム造粒塔
6 マグネシウム化合物注入管
9 苛性ソーダ注入管
11 攪拌用気体吹き込み管
19 固体粒子払い出し管
20 第1の返送管
21 分岐弁
22 スクリーン
23 リン酸マグネシウムアンモニウム固体粒子
25 第2の返送管[0001]
BACKGROUND OF THE INVENTION
The present invention was produced when a magnesium compound was added to waste water containing ammonium ions and phosphate ions, the pH was adjusted to 8 or more, and phosphate ions in the waste water were removed as magnesium ammonium phosphate solid particles. The present invention relates to a granulation dephosphorization apparatus having a means for efficiently separating solid particles of magnesium ammonium phosphate from waste water.
[0002]
[Prior art]
In recent years, phosphorus removal technology, which is one of the eutrophication factors that are particularly problematic in closed water areas, includes a coagulation separation method in which metal salts such as aluminum salts and iron salts react with phosphorus, phosphorus ore, bone charcoal, etc. There are a crystallization method (catalytic dephosphorization method) in which phosphorus is precipitated in the form of hydroxyapatite on a seed crystal, and a biological dephosphorization method using the excessive phosphorus intake of microorganisms, such as an anaerobic / aerobic method.
[0003]
However, disposal and stabilization of secondary products containing phosphorus compounds generated from these treatment processes are problematic.
In view of such circumstances, in recent years, magnesium compounds are added to waste water containing ammonium ions and phosphate ions, and the pH is adjusted to 8 or more, and phosphate ions in the waste water are removed as solid particles of magnesium ammonium phosphate. Then, a technology for effectively using the produced solid particles of magnesium ammonium phosphate has been developed. That is, in JP-A-1-119392, a magnesium compound is added to wastewater containing ammonium ions and phosphate ions, the pH is adjusted to 8 or more, the wastewater is stirred by aeration, and the fineness of magnesium ammonium phosphate is reduced. Crystals are generated, the suspended matter in the waste water is separated from the fine crystals of magnesium ammonium phosphate, the suspended matter is discharged out of the system, and the waste water containing the fine crystals of magnesium ammonium phosphate is stirred by aeration. An apparatus and a method for supplying waste water continuously while forming solid particles of magnesium ammonium phosphate as fine crystal nuclei of the magnesium ammonium phosphate and removing them are described.
[0004]
Furthermore, in JP-A-5-154487, the magnesium ammonium phosphate compound in the apparatus produced by the above method and the suspended solids in the wastewater are agitated with air, the air is stopped, and the difference in specific gravity is determined. A method for separating a magnesium ammonium phosphate compound is described in which a magnesium ammonium phosphate compound is separated at the bottom and other floating substances are separated at the top, and then the magnesium ammonium phosphate compound is taken out from the bottom of the processing apparatus.
[0005]
[Problems to be solved by the invention]
However, in order to discharge the solid particles of magnesium ammonium phosphate produced by the above-described method from the apparatus main body, generally, aeration for stirring from the bottom of the apparatus is temporarily stopped, and the magnesium ammonium phosphate solids are Since a method has been adopted in which a predetermined amount is pulled out from the discharge pipe at the bottom of the apparatus after the particles have settled, the agitation for stirring from the bottom of the apparatus is temporarily stopped, but the magnesium ammonium phosphate solids are stopped. Since the particles are clogged in the discharge pipe, or the precipitated solid particles are pulled out at once, there is a problem that the particle diameter of the obtained magnesium ammonium phosphate is uneven.
[0006]
This invention solves such a subject, and it aims at providing the granulation dephosphorization apparatus which can collect | recover efficiently the solid particle of the magnesium ammonium phosphate with which the particle size was equal.
[0007]
[Means for Solving the Problems]
In order to solve such problems, the present inventors have removed waste water and solid particles in a magnesium ammonium phosphate granulation tower in an apparatus for removing phosphate ions in waste water as solid particles of magnesium ammonium phosphate. A branch valve to the screen is provided in the middle of the return pipe for returning, and when the branch valve is opened, waste water and solid particles flowing through the return pipe are supplied to the screen to separate the solid particles having a predetermined particle size or more by the screen. In addition, the present inventors have found that by collecting only solid particles that do not pass through the screen, solid particles of magnesium ammonium phosphate having a uniform particle size can be efficiently recovered.
[0008]
That is, the present invention comprises a magnesium ammonium phosphate granulation tower for granulating magnesium ammonium phosphate, and an injection tube for injecting waste water containing ammonium ions and phosphate ions into the granulation tower, Similarly, an injection pipe for injecting a magnesium compound into the granulation tower and an injection pipe for injecting caustic soda into the granulation tower are provided, respectively, and a stirring gas blowing pipe is provided at the bottom of the granulation tower. And a solid particle discharge pipe for extracting the solid particles and waste water out of the granulation tower, and a first for returning the solid particles and waste water extracted by the solid particle discharge pipe to the granulation tower. A return pipe, a screen connected in the middle of the first return pipe through an openable / closable valve for separating and collecting solid particles having a predetermined particle size or more, and the screen. It is an gist granulation dephosphorization apparatus characterized in that a second return pipe for returning the solid particles and waste water passed through the over on to the prilling tower.
[0009]
The return here is to return the washing liquid of the return pipe and the liquid passing through the screen to the top of the tower only when the magnesium ammonium phosphate is withdrawn, to prevent the conventional magnesium ammonium phosphate enlargement and scale adhesion inside the reaction tower. Therefore, it is different from the circulation means for circulating the treated water to the lower part of the tower.
[0010]
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a schematic view showing an example of the granulation dephosphorization apparatus of the present invention. In FIG. 1, waste water containing ammonium ions and phosphate ions is injected from a waste water injection pipe 2 into a magnesium ammonium phosphate granulation tower 3 by a raw water injection pump 1. Further, the magnesium compound in the magnesium tank 4 is injected into the granulation tower 3 from the magnesium compound injection pipe 6 by the magnesium supply pump 5 so as to be equimolar with the phosphoric acid in the waste water, and caustic soda in the alkali tank 7. Is injected into the granulation tower 3 from the caustic soda injection pipe 9 by the alkali supply pump 8. The pH at this time is adjusted to 8 or more by the pH sensor 10. Reference numeral 11 denotes a stirring gas blowing pipe having one end connected to the stirring blower 12, and the other end of the stirring gas blowing pipe 11 communicates with the bottom of the granulating tower 3. An agitation gas is supplied to the interior for aeration and agitation. Thus, by adding a magnesium compound and caustic soda to waste water containing ammonium ions and phosphate ions, and adjusting the pH to 8 or more and stirring, magnesium ammonium phosphate having a diameter of 0.2 to 0.3 mm Are extracted, and magnesium ammonium phosphate is extracted at intervals of 1 to 2 weeks when the solid particles of magnesium ammonium phosphate are accumulated in the granulation tower 3. On the other hand, the treated water is stored in the treated water tank 14 through the overflow weir 13 from the separation part at the top of the granulation tower 3. In the extraction operation of magnesium ammonium phosphate, the operation switching valve 15, the washing valve 16 and the circulation valve 17 are opened, the magnesium ammonium phosphate extraction pump 18 is operated, and the waste water is discharged from the solid particle discharge pipe 19 at the bottom of the granulation tower 3. The solid particles of magnesium ammonium phosphate are drawn out, returned to the upper part of the granulating tower 3 through the first return pipe 20, and the branch valve 21 provided in the middle of the first return pipe 20 is opened. The waste water and solid particles are supplied to the screen 22.
[0011]
The material of the screen 22 used in the present invention is preferably a corrosion-resistant material such as stainless steel.
Examples of the screen 22 used in the present invention include a rotary screen, a drum screen, a wire screen, and an arc screen. Waste water and solid particles drawn out from the solid particle discharge pipe 19 are supplied onto the screen 22, and the solid particles 23 of magnesium ammonium phosphate having a particle diameter that does not pass through the screen 22 are recovered.
[0012]
On the other hand, the waste water and solid particles that have passed through the screen 22 are returned to the upper part of the granulation tower 3 via the second return pipe 25 by the branch water transfer pump 24. In this way, after the solid particles of magnesium ammonium phosphate that can be separated by the screen 22 are separated and recovered from the inside of the granulating tower 3, the operation switching valve 15 is closed, and the introduction pipe to the screen 22 and the screen 22 with raw water are closed. Next, the branch valve 21 is closed, and the first return pipe 20 to the upper part of the granulating tower 3 is washed. These series of steps are performed automatically by a sequencer.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be specifically described with reference to embodiments.
Wastewater was treated using the granulation dephosphorization apparatus shown in FIG.
[0014]
As waste water to be injected from the waste water injection pipe, digested sludge dehydrated filtrate was used, and waste water was supplied at a flow rate of 6.25 m 3 / hr to the bottom of a magnesium ammonium phosphate granulation tower having an effective volume of 10 m 3 . 30% magnesium chloride in the magnesium tank is injected from the magnesium compound injection pipe into the granulation tower so as to be equimolar with phosphoric acid in the wastewater, and 48% caustic soda in the alkali tank is added. The inside of the granulation tower was poured from a caustic soda injection pipe, the pH was adjusted to 9.0, and the inside of the granulation tower was stirred. As a result, solid ammonium magnesium phosphate particles having a diameter of 0.2 to 0.8 mm are generated, and the solid particles of magnesium ammonium phosphate are accumulated in the granulation tower at intervals of 1 to 2 weeks. A magnesium ammonium extraction operation was performed. On the other hand, the treated water was stored in the treated water tank through the overflow weir from the separation part at the upper part of the granulation tower. In the extraction operation of magnesium ammonium phosphate, the operation switching valve, the washing valve, and the circulation valve are opened, the magnesium ammonium phosphate extraction pump is operated, and the solid particles of waste water and magnesium ammonium phosphate are solidified at the bottom of the granulation tower. Pull out from the particle discharge pipe, return them to the upper part of the granulation tower via the first return pipe, and open the branch valve provided in the middle of the first return pipe to put the waste water and solid particles on the screen Branched. As the screen, a wedge wire screen with a mesh opening of 0.5 mm is used. The waste water and solid particles drawn from the solid particle discharge pipe are supplied onto this screen, and the solid magnesium ammonium phosphate has a particle size that does not pass through the screen. The particles were collected, and the waste water and solid particles that passed through the screen were returned to the upper part of the granulation tower via the second return pipe by the branch water transfer pump.
[0015]
Table 1 shows the water quality treatment by the granulation dephosphorization apparatus of the present invention.
[0016]
[Table 1]
Figure 0003883222
[0017]
As apparent from Table 1, when the granulation dephosphorization apparatus of the present invention was used, the removal rate of phosphorous phosphorus was as high as 96%, and ammonia nitrogen could be removed by 18%.
[0018]
In the granulation dephosphorization apparatus of the present invention, the particle size distribution of the solid particles of magnesium ammonium phosphate collected under the above operating conditions and the solid particles of magnesium ammonium phosphate extracted from the bottom of the apparatus are screened. FIG. 2 shows the particle size distribution of the solid particles of magnesium ammonium phosphate by the conventional method of collecting the particles as they are without passing through them.
[0019]
Compared with the conventional method, when the granulation dephosphorization apparatus of the present invention is used, the proportion of magnesium ammonium phosphate solid particles of 0.5 mm or less is low, and the particles are divided into magnesium ammonium phosphate solid particles of 0.5 mm or more. The diameter was uniform.
[0020]
【The invention's effect】
As described above, the granulation dephosphorization apparatus of the present invention can efficiently remove phosphorus in raw water, and can efficiently recover solid particles of magnesium ammonium phosphate having a uniform particle diameter. Moreover, the solid particles of magnesium ammonium phosphate having a desired particle diameter can be recovered simply by changing the opening of the screen.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an embodiment of a granulation dephosphorization apparatus of the present invention.
FIG. 2 is a graph comparing the particle size distribution of magnesium ammonium phosphate solid particles recovered by the granulation dephosphorization apparatus of the present invention with the particle size distribution of magnesium ammonium phosphate solid particles recovered by a conventional method. It is.
[Explanation of symbols]
2 Wastewater injection pipe 3 Magnesium ammonium phosphate granulation tower 6 Magnesium compound injection pipe 9 Caustic soda injection pipe 11 Stirring gas blowing pipe 19 Solid particle discharge pipe 20 First return pipe 21 Branch valve 22 Screen 23 Magnesium ammonium phosphate solid particles 25 Second return tube

Claims (1)

リン酸マグネシウムアンモニウムを造粒するためのリン酸マグネシウムアンモニウム造粒塔を備え、この造粒塔の内部にアンモニウムイオン及びリン酸イオンを含む廃水を注入するための注入管と、同じく造粒塔の内部にマグネシウム化合物を注入するための注入管と、同じく造粒塔の内部に苛性ソーダを注入するための注入管をそれぞれ設け、前記造粒塔の底部に攪拌用気体吹き込み管と、固体粒子と廃水とを造粒塔の外に引き抜くための固体粒子払い出し管とを設け、さらに、固体粒子払い出し管により引き抜かれた固体粒子と廃水とを造粒塔に返送するための第1の返送管と、この第1の返送管の途中に開閉自在な分岐弁を介して接続され所定の粒径以上の固体粒子を分離し回収するためのスクリーンと、このスクリーンを通過した固体粒子と廃水とを前記造粒塔に返送するための第2の返送管とを設けたことを特徴とする造粒脱リン装置。A magnesium ammonium phosphate granulation tower for granulating magnesium ammonium phosphate is provided, and an injection pipe for injecting waste water containing ammonium ions and phosphate ions into the granulation tower, An injection pipe for injecting a magnesium compound therein and an injection pipe for injecting caustic soda into the granulation tower are provided, respectively, and a stirring gas blowing pipe, solid particles and waste water are provided at the bottom of the granulation tower. And a first return pipe for returning the solid particles drawn out by the solid particle discharge pipe and the waste water to the granulation tower, A screen that is connected to the middle of the first return pipe through an openable / closable branch valve for separating and collecting solid particles having a predetermined particle size or more, and a solid that has passed through the screen. Granulating dephosphorization apparatus characterized in that a second return pipe for returning the particles and Wastewater to the prilling tower.
JP27606095A 1995-10-25 1995-10-25 Granulation dephosphorization equipment Expired - Lifetime JP3883222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27606095A JP3883222B2 (en) 1995-10-25 1995-10-25 Granulation dephosphorization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27606095A JP3883222B2 (en) 1995-10-25 1995-10-25 Granulation dephosphorization equipment

Publications (2)

Publication Number Publication Date
JPH09117774A JPH09117774A (en) 1997-05-06
JP3883222B2 true JP3883222B2 (en) 2007-02-21

Family

ID=17564244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27606095A Expired - Lifetime JP3883222B2 (en) 1995-10-25 1995-10-25 Granulation dephosphorization equipment

Country Status (1)

Country Link
JP (1) JP3883222B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220445B2 (en) 2020-03-27 2022-01-11 Sergey Lobanov Process and apparatus for sized nutrient recovery from wastewater by elutriation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519965B2 (en) * 1999-08-10 2010-08-04 三菱化工機株式会社 Crystallization dephosphorization apparatus and crystallization dephosphorization method
JP4519986B2 (en) * 2000-04-11 2010-08-04 三菱化工機株式会社 Crystallization reactor and crystallization dephosphorization method using the same
JP2004002071A (en) * 2002-05-30 2004-01-08 Jfe Engineering Kk Manufacturing method and manufacturing apparatus of fertilizer raw material
JP4713201B2 (en) * 2005-04-05 2011-06-29 株式会社ハウステック Phosphorus remover supply device and small-scale wastewater septic tank equipped with the same
JP4821173B2 (en) * 2005-05-20 2011-11-24 日本錬水株式会社 Treatment method for waste water containing fluoride ions

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103973A (en) * 1977-02-23 1978-09-09 Ebara Infilco Co Ltd Removing method for phosphoric acid salts in liquid
JPS607992A (en) * 1983-06-29 1985-01-16 Kurita Water Ind Ltd Fluidized bed type dephosphorization apparatus
JPS6012191A (en) * 1983-07-04 1985-01-22 Kurita Water Ind Ltd Fluidized bed type dephosphorization apparatus
JPS61157393A (en) * 1984-12-28 1986-07-17 Kurita Water Ind Ltd Dephosphorization apparatus
JPS61178090A (en) * 1985-02-04 1986-08-09 Ebara Infilco Co Ltd Fluidized bed type dephosphorization method
JPH0712477B2 (en) * 1987-02-16 1995-02-15 ユニチカ株式会社 How to remove phosphorus in water
JP2578136B2 (en) * 1987-10-30 1997-02-05 ユニチカ株式会社 Wastewater treatment method and apparatus
JPH07124571A (en) * 1993-11-04 1995-05-16 Ngk Insulators Ltd Treatment process for organic drainage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220445B2 (en) 2020-03-27 2022-01-11 Sergey Lobanov Process and apparatus for sized nutrient recovery from wastewater by elutriation

Also Published As

Publication number Publication date
JPH09117774A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
JP4367876B2 (en) Waste treatment method and apparatus
JPWO2006078012A1 (en) Wastewater and sludge treatment equipment
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP6592406B2 (en) Crystallizer, methane fermentation facility, and scale prevention method in methane fermentation facility
KR20140131239A (en) Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery
JP3883222B2 (en) Granulation dephosphorization equipment
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
JPH10113673A (en) Waste water treating device and method therefor
JP3876489B2 (en) Waste water treatment equipment
JPH0712477B2 (en) How to remove phosphorus in water
JP3681073B2 (en) Granulation dephosphorization equipment
JP2576679B2 (en) Dephosphorization device
JP4568391B2 (en) Fluidized bed crystallization reactor
JPH10323677A (en) Waste water treatment device
JP4439040B2 (en) Wastewater treatment equipment
JP2000301166A (en) Waste water treatment apparatus
JP4147609B2 (en) Dephosphorization device
JP3589911B2 (en) Sludge scale removal equipment
JP3921922B2 (en) Dephosphorization method
JPH0824875A (en) Granulation dephosphorization device
JPH1157748A (en) Method of removing phosphorus
JP3723601B2 (en) How to remove phosphorus
JP3649471B2 (en) Granulation dephosphorization equipment
JP4519965B2 (en) Crystallization dephosphorization apparatus and crystallization dephosphorization method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term