JP3881626B2 - Refining method of Fe-Ni alloy - Google Patents
Refining method of Fe-Ni alloy Download PDFInfo
- Publication number
- JP3881626B2 JP3881626B2 JP2003017708A JP2003017708A JP3881626B2 JP 3881626 B2 JP3881626 B2 JP 3881626B2 JP 2003017708 A JP2003017708 A JP 2003017708A JP 2003017708 A JP2003017708 A JP 2003017708A JP 3881626 B2 JP3881626 B2 JP 3881626B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- alloy
- less
- refining
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、電子部品材料として多用されるFe−Ni合金冷延板に係り、特に、エッチング性および表面性状に優れたFe−Ni合金冷延板を製造するにあたって好適なFe−Ni合金の精錬方法に関する。
【0002】
【従来の技術】
Niを20〜50質量%含有するFe−Ni合金は、その特性から電子部品材料に多く用いられている。例えば、Niを36質量%含有するFe−Ni合金は、熱膨張率がきわめて低いことから、シャドウマスク材やバイメタル材に用いられている。また、Niを42質量%含有するFe−Ni合金は、熱膨張率が低く、かつ、電気伝導性に優れていることから、リードフレーム材として用いられている。これらFe−Ni合金は、数百μm以下の冷延板に圧延され、エッチングが施されて製品化される。
【0003】
ところで、このようなFe−Ni合金冷延板の溶製時には、通常、脱酸剤としてAlが添加されていたが、このAlによって冷延板にはAl2O3系の非金属介在物が存在していた。そして、このAl2O3系の非金属介在物がクラスター化して硬質なものになると、表面のすじ状の欠陥や、エッチング孔の不均一あるいは乱れといった不具合を招いていた。Alの添加量が微量であってもAl2O3系の非金属介在物は生成しやすく、しかもその非金属介在物はクラスター化して粗大化しやすいので、表面性状やエッチング性を向上させるためには、除去することが望まれる。しかしながら、クラスター化した非金属介在物は見かけの比重が溶鋼の比重と近くなるため、取鍋、タンディッシュあるいはモールド内で浮上した非金属介在物を除去することは困難であることが知られている。
【0004】
そこで、この問題の解決策として、次の技術が公知である。まず、特開平6−41687号公報では、Mn:0.1〜0.4質量%、Si:0.05〜0.2質量%、酸可溶性Al:0.001〜0.003質量%に規定して非金属介在物の組成をMnO−SiO2−Al2O3系に制御している。また、特開平8−225881号公報では、Al:0.003質量%以下で、かつ、Si(質量%)/Al(質量%)≧10として非金属介在物の組成をMn−シリケート系に制御している。
【0005】
また、特開平9−87813号公報では、Si:0.02〜0.3質量%、Al:0.003質量%に規定する一方、溶湯との接触部分がCr2O3の含有量2質量%以下の耐火物でライニングされ、かつ、前チャージでAlの含有量が0.010質量%以下の溶鋼の精錬に使用された容器によって溶製することにより、非金属介在物のCr2O3の含有量を5質量%以下、Al2O3の含有量を40質量%以下に規定している。さらに、特開平9−125210号公報では、精錬工程において生成するスラグの組成の(%CaO)/(%SiO2)を、重量比で2.5〜3.9に制御している。
上記いずれの公報にあっても、表面傷等の欠陥が生じない表面性状に優れたFe−Ni合金冷延板が得られるとされている。
【0006】
【発明が解決しようとする課題】
ところが、上記の各従来技術では、合金および非金属介在物の組成についての規定はなされているものの、その量や分布についての規定はなされていない。表面傷の発生状況やエッチングの特性は、非金属介在物の組成のみならず、量や分布にも大きく左右され、例えば、量が多かったり密度が高かったりすれば表面性状に悪影響を及ぼす。また、非金属介在物の組成、量あるいは分布は、精錬方法、とりわけ脱酸時に用いる脱酸剤や生成するスラグの組成に大きく影響されるが、これらのファクターに関する規定も、上記各公報では規定されていない。脱酸時にスラグ組成が適正に制御されていないと、Al2O3(アルミナ)やMgO・Al2O3(スピネル)等の非金属介在物がクラスター化し、表面に欠陥が生じたりエッチング性が阻害されたりする不具合を招く。
【0007】
よって本発明は、エッチング性および表面性状のより優れたFe−Ni合金冷延板を好適に製造し得るFe−Ni合金の精錬方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者らは、圧延時や成形時に表面傷が生じたFe−Ni合金冷延板の傷部分を詳細に調査することにより、表面傷の原因はクラスター状のAl2O3およびMgO・Al2O3系の非金属介在物であることを見い出した。この種の非金属介在物は高融点であり、クラスター化しやすいことに加え硬質であるため、傷や割れの基点となっていた。また、クラスター化していない単独の非金属介在物でも、長さが10μmを超える硬質な非金属介在物は、パンチング加工やエッチング加工時に欠陥の原因となっていた。本発明者らは、このような調査結果をもとに非金属介在物の組成について種々検討したところ、非金属介在物の組成が基本的にMnO−SiO2−Al2O3系で、かつ、MnOが5〜50質量%、SiO2が30〜60質量%、Al2O3が5〜30質量%であり、さらに、その中に含有される不可避的不純物であるCaOおよびMgOが合計で30質量%以下のシリケート系非金属介在物である場合に、その非金属介在物はクラスター化しにくく表面傷の発生原因になりにくいことを見い出した。また、そのような非金属介在物は、熱間および冷間圧延で微細に分断され、清浄性に優れることも判った。
【0009】
よって本発明のFe−Ni合金冷延板は上記知見になされたものであり、Si:0.01〜0.03質量%、Mn:0.001〜0.60質量%、Ni:20〜50質量%、Al:0.0001〜0.020質量%、残部はFeおよびC、P、S、Cu等の不可避的不純物からなり、非金属介在物の組成が基本的にMnO−SiO2−Al2O3系で、かつ、MnOが5〜50質量%、SiO2が30〜60質量%、Al2O3が5〜30質量%であり、さらに、その他の不可避的不純物として含まれるCaOおよびMgOが合計で30質量%以下であることを特徴としている。さらに本発明は、必要に応じてNb:0.001〜2.0質量%、Co:1〜8質量%を含有することを特徴としている。
【0010】
以下、上記数値限定の根拠を本発明の作用とともに説明する。
(1)基本元素
・Si:0.01〜0.03質量%
Siは熱膨張率を上げる元素であり、0.30質量%を超えると熱膨張率が大きくなり過ぎて電子部品材料として適当でない。また、0.001質量%未満では脱酸力が弱くなって清浄度が低下する。したがって、Siの含有量は0.001〜0.30質量%が良いが、この範囲では、好ましくは0.005〜0.05質量%であり、より好ましくは0.01〜0.03質量%である。
【0011】
・Mn:0.001〜0.60質量%
Mnは熱膨張率を上げる元素であり、できるだけ低濃度であることが望まれるものの、精錬時において0.001質量%未満まで濃度を下げるには時間がかかり過ぎ、コスト面で適切ではない。そこで、熱膨張率に与える影響を考慮し、Mnの含有量を0.001〜0.60質量%と定めた。この範囲では、好ましくは0.001〜0.05質量%である。
【0012】
・Ni:20〜50質量%
Niは熱膨張率に大きく影響を及ぼす元素であり、200℃では36質量%付近、500℃では42質量%付近で熱膨張率が極小となることが知られている。20質量%未満または50質量%を超えると熱膨張率が大き過ぎ、用途的にシャドウマスク材やリードフレーム材には適さない。したがって、Niの含有量を20〜50質量%と定めた。
【0013】
・Al:0.0001〜0.020質量%
Alは熱膨張率を上げる元素であり、しかも、有害なAl2O3系の非金属介在物を生成する元素であることから、極力低濃度であることが望まれる。しかしながら、非金属介在物を低融点のMnO−SiO2−Al2O3系に制御する上で有用な元素である。これらの観点に加えて、コストを著しく上げない範囲で原料や副原料を選択する必要性を考慮した結果、Alの含有量を0.0001〜0.020質量%と定めた。この範囲では、好ましくは0.0005〜0.015質量%、より好ましくは0.0008〜0.008質量%である。
【0014】
・Nb:0.001〜2.0質量%
Nbは、シャドウマスク材等の材料の強度を向上させるために有用な元素であり、強度の向上を図りながら熱膨張率を大きくさせない観点から、含有量を0.001〜2.0質量%の範囲に定めた。
【0015】
・Co:1〜8質量%
Coはシャドウマスク材等の材料の強度を向上させる元素であるとともに、Niと最適な含有率で組み合わせると、熱膨張率をNiを36質量%含有するFe−Ni合金よりも小さくすることができる。Coの含有量が1〜8質量%を逸脱すると熱膨張率が大きくなってシャドウマスク材等の材料に適さなくなるので、含有量を1〜8質量%とした。
【0016】
(2)非金属介在物
前述の如く、クラスター化しにくく、かつ、熱間および冷間圧延で微細に分断されて清浄性の向上が図られる観点から、本発明のFe−Ni合金冷延板に含有される非金属介在物の組成および種類は、基本的にMnO−SiO2−Al2O3系で、かつ、MnOが5〜50質量%、SiO2が30〜60質量%、Al2O3が5〜30質量%であり、さらに、その中に含有される不可避的不純物であるCaOおよびMgOが合計で30質量%以下のシリケート系非金属介在物であることを特徴としている。
【0017】
さて、本発明者らは、上記本発明のFe−Ni合金冷延板につき、厚さ0.3mm以下に圧延した薄板における圧延方向に平行な断面の「JIS G0555」による清浄度と、同様の薄板における圧延方向に垂直な断面(光学顕微鏡で400倍、60視野)に存在する非金属介在物の粒径およびエッチング加工時の不良品発生の有無を詳細に調査した。その結果、本発明のFe−Ni合金冷延板は、次に挙げる限定要素を好ましい態様としている。
【0018】
厚さ0.3mm以下に圧延した薄板における圧延方向に平行な断面の「JIS G0555」による清浄度が0.05を超えると、加工時にエッチング孔の乱れが生じることが判った。そこで、その清浄度が0.05以下であることを好ましい態様とし、0.02以下であればより好ましいものとする。
【0019】
「JIS G0555」で分類されるA系の非金属介在物が存在すると、エッチング性に悪影響を及ぼすことが判った。したがって、存在する非金属介在物の全てが、「JIS G0555」で分類されたB系およびC系に制御されていることを好ましい態様とする。
【0020】
長さ10μmを超える非金属介在物の100mm2の断面に存在する個数が10個を超えていると、加工時にエッチング孔の乱れが生じることが判った。したがって、その個数が10個以下であることを好ましい態様とし、5個以下であればより好ましいものとする。
【0021】
B系の非金属介在物の一連の最大長さが300μmを超えていると、加工時にエッチング孔の乱れが生じることが判った。したがって、B系の非金属介在物の一連の最大長さが300μm以下であることを好ましい態様とし、150μm以下であればより好ましいものとする。
【0022】
次に、本発明のFe−Ni合金の精錬方法について説明する。
上記の如く基本元素や清浄度、さらには非金属介在物の組成、種類、大きさ等を規定した本発明のFe−Ni合金冷延板を製造する場合においては、特に精錬工程、とりわけ脱酸工程で、SiやAlの含有量、スラグの塩基度および不純物成分に配慮して精錬する必要がある。本発明者らが脱酸工程に関し種々の実験を行って検討したところ、まず、Alを脱酸剤として用いた場合には、スピネルやアルミナ系介在物が生成されることが判った。そして、これらはクラスター化して表面欠陥を招いたりエッチング性を阻害したりすることが判明した。
【0023】
この問題点を根本的に解決するには、脱酸剤としてSiまたはSi合金鉄を用いることが有効である。ただし、Si系の脱酸剤によって生成するスラグの塩基度(CaO/SiO2の濃度比)やMgO、Al2O3等の不純物成分によっては、Alによる脱酸時と同様にアルミナやスピネル介在物が生成する。そのメカニズムは、次の通りである。
まず、以下の反応によってスラグ中のMgOおよびAl2O3が還元される。
【0024】
Si+2(MgO)=(SiO2)+2Mg …(1)
(Siがスラグ中のMgOを還元する反応)
3Si+2(Al2O3)=3(SiO2)+4Al …(2)
(Siがスラグ中のAl2O3を還元する反応)
【0025】
還元されたMgおよびAlは、その濃度のバランスによって、MgO・Al2O3スピネルを生成したりAl2O3アルミナ介在物を生成したりする。この反応に強く関わる因子は、スラグ中の塩基度、MgO濃度、Al2O3濃度および溶鋼中のSi濃度である。以下、これら因子について検証する。
【0026】
まず、スラグ中のMgOの量が多いと、上記(1)式が右に進み、スピネルが生成しやすくなる。MgOは、例えば、AOD(Argon Oxygen Decarburization)炉、VOD(Vacuum Oxygen Decarburization)炉あるいは取鍋等の内張り煉瓦として用いられるMgO系ドロマイト(MgO−CaO)から、溶損によって混入する。また、MgOは、場合によっては溶損防止の目的で積極的に添加される。そこで、精錬温度が必要以上に上がらないようにするために、MgO濃度を20質量%以下に制御することが好ましかった。
【0027】
次に、スラグ中のAl2O3は、石灰石、蛍石あるいは珪砂といったフラックスに微量含まれていること、そして、脱酸剤として用いるSiもしくはSi合金鉄にAlとして含まれるものが酸化して混入することが判った。そこで、スラグ中のAl2O3濃度を15質量%以下に制御すれば、Alの混入量を有効に下げることができることが判った。なお、フラックスやSiもしくはSi合金鉄を添加するにあたっては、コストを著しく上げない範囲で高純度のものを選択することが好ましい。
【0028】
次に、本発明者らは、スラグの塩基度とSi濃度の相関関係を調べたところ、図1に示すa,b,c,dで囲まれる範囲にスラグの塩基度とSi濃度を制御すれば、非金属介在物の生成が抑えられるとともに清浄度が向上した高品質のFe−Ni合金冷延板を得られることを見い出した。まず、Siに関しては、前述したようにSi濃度が高いほど熱膨張率はそれにつれて大きくなる。また、スラグの塩基度が高いとアルミナやスピネル介在物の生成率が高くなる一方、塩基度が低いと清浄度が低下する。ここで、Siは、前述したように熱膨張率の観点から0.001〜0.30質量%が適切である。また、塩基度が1.2未満の場合には、Si濃度に関わらず、「JIS G0555」による清浄度を0.05以下とすることができなかった。また、スラグの塩基度が図1のa(Si濃度:0.001,塩基度5),b(Si濃度:0.3,塩基度3)の2点を結ぶ直線よりも高い範囲ではスラグ中のSiO2の活量が下がり、上記(1)式および(2)式がともに右に進行してアルミナやスピネル介在物が生成することが判った。
【0029】
以上の結果から、本発明のFe−Ni合金の精錬方法は、溶解した原料の酸化精錬後、SiまたはSi合金鉄を添加する脱酸工程において、生成するスラグの塩基度(C/S)とSi濃度を、図1のa,b,c,dで囲まれる範囲に制御することを特徴としている。そして、本方法においては、スラグ中のAl2O3濃度を15質量%以下、かつ、MgO濃度を20質量%以下に制御することを好ましい態様とする。
【0030】
上記本発明の精錬方法を実施するにあたって用いられる原料は、例えば、精錬時に発生するスクラップにNi等の他の元素を適宜に添加したものが適用され、この原料は、通常の電気炉等で溶解される。酸化精錬工程では、前述のAODとVODの両方か、またはいずれか一方の工程により、脱炭、脱りん、脱クロム等が行われる。その後の脱酸工程では、SiまたはSi合金鉄を添加する前に、フラックスとして石灰石、蛍石、珪砂等を添加することが好ましい。
【0031】
ここで、Fe−Ni合金冷延板を製造するにあたって冷延板の素材となる鋼塊の製造工程を説明する。鋼塊の製造工程は、主に表1(a),(b),(c)に示すように、AOD工程、VOD工程およびAOD→VOD工程の3通りに分けられる。
【0032】
【表1】
【0033】
表1(a)に示すAOD工程は、原料を電気炉で溶解して成分調整を行い、次いで、AODで脱炭、除滓した後、フラックス添加、仕上げ脱酸、成分調整を行う。続いて、取鍋精錬装置で成分および温度の微調整を行い、次いで、連続鋳造機(CC)または普通造塊で溶鋼を鋳造し、鋼塊を得る。
【0034】
表1(b)に示すVOD工程は、原料を電気炉で溶解して成分調整を行い、次いで、VODで脱炭後、フラックス添加、仕上げ脱酸、ガス成分除去を行う。続いて、取鍋精錬装置で成分および温度の微調整を行い、次いで、連続鋳造機(CC)または普通造塊で溶鋼を鋳造し、鋼塊を得る。
【0035】
表1(c)に示すAOD→VOD工程は、原料を電気炉で溶解して成分調整を行い、次いで、AODで脱炭、除滓した後、フラックス添加、仕上げ脱酸、成分調整を行う。続いて、取鍋精錬装置で成分および温度の微調整を行い、次いで、VODでガス成分除去を行う。この後、連続鋳造機(CC)または普通造塊で溶鋼を鋳造し、鋼塊を得る。
【0036】
【実施例】
次に、実施例を提示して本発明の効果をより明らかにする。
(1)冷延板の製造
表2に示す金属組成を有する実施例1〜9(本発明例は実施例1,5,9)のFe−Ni合金冷延板(実施例8はFe−36質量%Ni−0.2質量%Nb合金、Fe−32質量%Ni−5質量%Co合金)と、本発明から逸脱する比較例1〜9のFe−Ni合金冷延板とを、以下のようにして製造した。これら冷延板は、実施例9以外はFe−36質量%を基本組成とし、残部は不可避的不純物である。
【0037】
【表2】
【0038】
精錬時に発生するスクラップやNi等からなる原料60tを電気炉で溶解しながら、Fe−36質量%の組成に調整し、次いでこの溶鋼を、上記3種類の工程(AOD工程、VOD工程、AOD→VOD工程)のうちのいずれかの工程により酸化精錬(脱炭、脱りん、脱クロム等)を行った。続いて、AODあるいはVODにおいて、酸化期のスラグを除去し、石灰石、蛍石および珪砂のうちの1種または2種以上をフラックスとして添加し所定の塩基度に調整した。次に、Si合金鉄を添加して溶鋼を脱酸し、取鍋精錬装置で微量成分調整および温度制御を行った後、普通造塊に鋳造するか、または連続鋳造機によって鋳造した。この後、普通造塊の場合は鍛造工程をはさんでから、鋳塊に熱間圧延を経て冷間圧延を施し、0.25mm厚のFe−Ni合金の薄板(冷延板)を得た。なお、表2には、精錬工程の種別を併記している。
【0039】
(2)調査および評価
実施例1〜9および比較例1〜9の冷延板につき、以下の調査および評価を行った。それらの結果を、表3に示す。
【表3】
【0040】
A.非金属介在物の組成
EDS(エネルギー分散型分光分析装置)により、10箇所ずつ定量分析して非金属介在物の組成を調査した。
【0041】
B.清浄度
「JIS G0555」にしたがい、光学顕微鏡によって圧延方向に平行な断面を400倍/60視野の条件で測定した。
【0042】
C.非金属介在物の個数
光学顕微鏡によって、100mm2の断面に長さ10μmを超える非金属介在物がいくつ存在するかを数えた。光学顕微鏡の倍数は400倍、断面は圧延方向に平行な断面とした。
【0043】
D.非金属介在物の最大長さ
光学顕微鏡によって、一連のB系の非金属介在物の最大長さを測定した。光学顕微鏡の倍数は400倍、断面は圧延方向に平行な断面とした。
【0044】
E.スラグの塩基度および組成
蛍光X線分析装置により、精錬時に生成したスラグの組成を調べるとともに、そのスラグの塩基度を求めた。なお、図1で○は各実施例を、また、×は各比較例を示している。
【0045】
F.表面欠陥数
表面の任意の20m2部分に傷等の表面欠陥がいくつ存在するかを目視で観察した。
【0046】
G.エッチング性
エッチングを施した後の表面に形成されるエッチング孔の乱れを、真円度により評価した。真円度に優れる場合を○、真円度に劣る場合を×と評価した。
【0047】
表3から明らかなように、スラグ中のMgO濃度が20質量%以下、Al2O3濃度が15質量%以下で、なおかつスラグ塩基度とSi濃度が図1のa,b,c,dで囲まれる範囲にあり、さらにAl濃度が0.0001〜0.02質量%の各実施例の場合、いずれも非金属介在物はシリケート系に制御され、表面欠陥がなくエッチング性に優れた冷延板であった。
【0048】
これに対し、比較例では、塩基度が高い場合(比較例2,3,9)にはSiによる脱酸でもアルミナやスピネル介在物が生成して表面欠陥を生じ、エッチング性も劣っていた。逆に塩基度が1.2未満と低い場合(比較例4,6,7)には非金属介在物はシリケート系であるものの、清浄度が0.05を超え、さらに非金属介在物の個数が多くなる。比較例5,8はAlによる脱酸の結果であるが、いずれもスピネル介在物が生成され、表面欠陥が顕著に生じた。比較例1はSi濃度が0.3質量%を超える0.35質量%であり、非金属介在物に関しては問題なかったものの、熱膨張率が品質要求を満足する範囲を外れており、実用的でなかった。
【0049】
【発明の効果】
以上説明したように、本発明のFe−Ni合金の精錬方法によれば、スラグ塩基度とSi濃度が適宜範囲に制御されることから、エッチング性および表面性状に優れたFe−Ni合金冷延板を製造する際の精錬方法として有望であり、Fe−Ni合金冷延板を製造する上できわめて好適である。
【図面の簡単な説明】
【図1】 スラグの塩基度とSi濃度の相関関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Fe-Ni alloy cold-rolled sheet frequently used as an electronic component material, and in particular, a refining of an Fe-Ni alloy suitable for producing a Fe-Ni alloy cold-rolled sheet having excellent etching properties and surface properties. Regarding the method.
[0002]
[Prior art]
Fe-Ni alloys containing 20 to 50 % by mass of Ni are often used for electronic component materials because of their characteristics. For example, an Fe—Ni alloy containing 36 % by mass of Ni has a very low coefficient of thermal expansion and is used for a shadow mask material or a bimetal material. An Fe—Ni alloy containing 42 % by mass of Ni is used as a lead frame material because of its low coefficient of thermal expansion and excellent electrical conductivity. These Fe—Ni alloys are rolled into cold-rolled plates of several hundred μm or less and etched to produce products.
[0003]
By the way, when melting such an Fe—Ni alloy cold-rolled sheet, Al is usually added as a deoxidizer, but the Al 2 O 3 -based nonmetallic inclusions are added to the cold-rolled sheet by this Al. Existed. When the Al 2 O 3 -based non-metallic inclusions are clustered and become hard, problems such as surface streak defects and uneven or disordered etching holes are caused. In order to improve surface properties and etching properties, Al 2 O 3 -based non-metallic inclusions are easily generated even when the amount of Al added is small, and the non-metallic inclusions are likely to be clustered and coarsened. Are desired to be removed. However, since the apparent specific gravity of clustered nonmetallic inclusions is close to the specific gravity of molten steel, it is known that it is difficult to remove nonmetallic inclusions floating in a ladle, tundish, or mold. Yes.
[0004]
Therefore, the following technique is known as a solution to this problem. First, in JP-A-6-41687, it is defined as Mn: 0.1 to 0.4 % by mass , Si: 0.05 to 0.2 % by mass , acid-soluble Al: 0.001 to 0.003 % by mass. Thus, the composition of the nonmetallic inclusion is controlled to be MnO—SiO 2 —Al 2 O 3 . In JP-A-8-225881, Al: 0.003 % by mass or less and Si ( mass% ) / Al ( mass% ) ≧ 10 to control the composition of non-metallic inclusions to Mn-silicate system. is doing.
[0005]
In JP-A-9-87813, Si: 0.02 to 0.3 % by mass and Al: 0.003 % by mass , while the contact portion with the molten metal has a Cr 2 O 3 content of 2 mass. % Of non-metallic inclusions Cr 2 O 3 by melting in a vessel used for refining molten steel with a refractory content of not more than 10 % and having an Al content of 0.010 % by mass or less. Is defined as 5 mass% or less, and the content of Al 2 O 3 is defined as 40 mass% or less. Furthermore, in JP-A 9-125210 and JP-composition of slag generated in the refining process of (% CaO) / (% SiO 2), is controlled to 2.5 to 3.9 by weight.
In any of the above publications, it is said that an Fe—Ni alloy cold-rolled sheet excellent in surface properties that does not cause defects such as surface scratches can be obtained.
[0006]
[Problems to be solved by the invention]
However, in each of the above prior arts, the composition of the alloy and the non-metallic inclusion is defined, but the amount and distribution are not defined. The occurrence of surface flaws and etching characteristics greatly depend not only on the composition of non-metallic inclusions but also on the amount and distribution. For example, if the amount is high or the density is high, the surface properties are adversely affected. In addition, the composition, amount or distribution of nonmetallic inclusions is greatly influenced by the refining method, particularly the deoxidizer used during deoxidation and the composition of slag to be produced. It has not been. If the slag composition is not properly controlled at the time of deoxidation, non-metallic inclusions such as Al 2 O 3 (alumina) and MgO · Al 2 O 3 (spinel) are clustered, resulting in defects on the surface and etching properties. It causes troubles that are hindered.
[0007]
Therefore, an object of the present invention is to provide a method for refining an Fe—Ni alloy that can suitably produce an Fe—Ni alloy cold-rolled sheet having better etching properties and surface properties.
[0008]
[Means for Solving the Problems]
The present inventors investigated in detail the scratched portion of the Fe-Ni alloy cold-rolled sheet in which surface scratches occurred during rolling or forming, and the causes of the surface scratches were clustered Al 2 O 3 and MgO · Al It was found to be a non-metallic inclusion of 2 O 3 system. This kind of non-metallic inclusion has a high melting point, and is hard in addition to being easily clustered. In addition, even with non-clustered single non-metallic inclusions, hard non-metallic inclusions having a length exceeding 10 μm cause defects during punching and etching. The present inventors have made various studies on the composition of nonmetallic inclusions based on such investigation results. The composition of the nonmetallic inclusions is basically a MnO—SiO 2 —Al 2 O 3 system, and , MnO is 5 to 50 % by mass , SiO 2 is 30 to 60 % by mass , Al 2 O 3 is 5 to 30 % by mass , and CaO and MgO, which are inevitable impurities contained therein, are in total It was found that in the case of silicate nonmetallic inclusions of 30 % by mass or less, the nonmetallic inclusions are less likely to cluster and cause surface damage. It was also found that such non-metallic inclusions were finely divided by hot and cold rolling and excellent in cleanliness.
[0009]
Therefore, the Fe—Ni alloy cold-rolled sheet of the present invention has been made based on the above knowledge, and Si: 0.01 to 0.03 mass% , Mn: 0.001 to 0.60 mass% , Ni: 20 to 50 Mass% , Al: 0.0001 to 0.020 mass% , the balance is made of inevitable impurities such as Fe and C, P, S, Cu, etc., and the composition of non-metallic inclusions is basically MnO—SiO 2 —Al CaO that is 2 O 3 system, MnO is 5 to 50 % by mass , SiO 2 is 30 to 60 % by mass , Al 2 O 3 is 5 to 30 % by mass , and is included as other inevitable impurities The total amount of MgO is 30 % by mass or less. Furthermore, this invention is characterized by containing Nb: 0.001-2.0 mass% and Co: 1-8 mass% as needed.
[0010]
Hereinafter, the grounds for the above numerical limitation will be described together with the operation of the present invention.
(1) Basic elements Si: 0.01-0.03 mass%
Si is an element that increases the coefficient of thermal expansion, and if it exceeds 0.30 % by mass, the coefficient of thermal expansion becomes too large and is not suitable as an electronic component material. Moreover, if it is less than 0.001 mass% , deoxidizing power will become weak and cleanliness will fall. Accordingly, the content of Si should preferably be 0.001 to 0.30 mass%, but this range is preferably from 0.005 to 0.05 wt%, more preferably 0.01 to 0.03 wt% It is.
[0011]
・ Mn: 0.001 to 0.60 mass%
Mn is an element that increases the coefficient of thermal expansion. Although it is desired that the concentration be as low as possible, it takes too much time to reduce the concentration to less than 0.001 % by mass during refining, which is not appropriate in terms of cost. Therefore, considering the effect on the coefficient of thermal expansion, the Mn content was determined to be 0.001 to 0.60 mass% . In this range, it is preferably 0.001 to 0.05 % by mass .
[0012]
Ni: 20-50 % by mass
Ni is an element that greatly affects the coefficient of thermal expansion. It is known that the coefficient of thermal expansion is minimized at around 36 % by mass at 200 ° C. and around 42 % by mass at 500 ° C. If it is less than 20 % by mass or more than 50 % by mass, the coefficient of thermal expansion is too large, and it is not suitable for use as a shadow mask material or a lead frame material. Therefore, the content of Ni is set to 20 to 50 % by mass .
[0013]
-Al: 0.0001-0.020 mass%
Since Al is an element that increases the coefficient of thermal expansion, and is an element that generates harmful Al 2 O 3 -based non-metallic inclusions, it is desired to have a low concentration as much as possible. However, it is a useful element for controlling non-metallic inclusions to a low melting point MnO—SiO 2 —Al 2 O 3 system. In addition to these viewpoints, the content of Al was determined to be 0.0001 to 0.020 mass% as a result of considering the necessity of selecting raw materials and auxiliary raw materials within a range that does not significantly increase costs. In this range, preferably from 0.0005 to 0.015 wt%, more preferably 0.0008 to 0.008 wt%.
[0014]
・ Nb: 0.001 to 2.0 mass%
Nb is an element useful for improving the strength of a material such as a shadow mask material, and the content is 0.001 to 2.0 % by mass from the viewpoint of not increasing the coefficient of thermal expansion while improving the strength. Determined to range.
[0015]
Co: 1-8 % by mass
Co is an element that improves the strength of a material such as a shadow mask material, and when combined with Ni at an optimum content, the coefficient of thermal expansion can be made smaller than that of an Fe—Ni alloy containing 36 mass% Ni. . If the Co content deviates from 1 to 8 % by mass, the coefficient of thermal expansion increases, making it unsuitable for materials such as shadow mask materials, so the content was set to 1 to 8 % by mass .
[0016]
(2) Non-metallic inclusions As described above, the Fe-Ni alloy cold-rolled sheet of the present invention is less likely to be clustered and is finely divided by hot and cold rolling to improve cleanliness. The composition and type of the non-metallic inclusion contained are basically MnO—SiO 2 —Al 2 O 3 ,
[0017]
The inventors of the present invention have the same cleanliness according to “JIS G0555” of the cross section parallel to the rolling direction in the thin sheet rolled to a thickness of 0.3 mm or less for the cold rolled sheet of the present invention. The particle size of non-metallic inclusions present in a cross section perpendicular to the rolling direction in the thin plate (400 times by optical microscope, 60 fields of view) and the presence or absence of defective products during etching were examined in detail. As a result, the Fe—Ni alloy cold-rolled sheet of the present invention has the following limiting elements as a preferred embodiment.
[0018]
It was found that when the cleanliness according to “JIS G0555” of the cross section parallel to the rolling direction in a thin plate rolled to a thickness of 0.3 mm or less exceeds 0.05, etching holes are disturbed during processing. Therefore, the cleanliness is preferably 0.05 or less, and more preferably 0.02 or less.
[0019]
It has been found that the presence of A-based non-metallic inclusions classified by “JIS G0555” adversely affects the etching property. Therefore, it is a preferred embodiment that all the non-metallic inclusions present are controlled in the B system and the C system classified according to “JIS G0555”.
[0020]
It has been found that when the number of non-metallic inclusions exceeding 10 μm in length in a 100 mm 2 cross section exceeds 10, disorder of etching holes occurs during processing. Therefore, the number is preferably 10 or less, and more preferably 5 or less.
[0021]
It has been found that if the maximum length of the series of B-based non-metallic inclusions exceeds 300 μm, the etching holes are disturbed during processing. Therefore, it is preferable that a series of maximum lengths of the B-based non-metallic inclusions is 300 μm or less, and more preferably 150 μm or less.
[0022]
Next, a method for refining the Fe—Ni alloy of the present invention will be described.
In producing the Fe-Ni alloy cold-rolled sheet of the present invention in which the basic elements and cleanliness as well as the composition, type, size, etc. of non-metallic inclusions are specified as described above, the refining process, particularly deoxidation, is particularly important. In the process, it is necessary to refine in consideration of the content of Si and Al, the basicity of the slag, and the impurity components. As a result of investigations conducted by the present inventors through various experiments on the deoxidation process, it was first found that spinel and alumina inclusions were produced when Al was used as a deoxidizer. And it turned out that these are clustered and a surface defect is caused or etching property is inhibited.
[0023]
To fundamentally solve this problem, it is effective to use Si or Si alloy iron as a deoxidizer. However, depending on the basicity (CaO / SiO 2 concentration ratio) of the slag produced by the Si-based deoxidizer and impurity components such as MgO and Al 2 O 3 , alumina or spinel intervening as in the case of deoxidation with Al Things are generated. The mechanism is as follows.
First, MgO and Al 2 O 3 in the slag are reduced by the following reaction.
[0024]
Si +2 (MgO) = (SiO 2 ) +2 Mg (1)
(Reaction in which Si reduces MgO in slag)
3 Si +2 (Al 2 O 3 ) = 3 (SiO 2 ) +4 Al (2)
(Reaction in which Si reduces Al 2 O 3 in slag)
[0025]
The reduced Mg and Al generate MgO.Al 2 O 3 spinel or Al 2 O 3 alumina inclusions depending on the balance of their concentrations. Factors strongly involved in this reaction are basicity in slag, MgO concentration, Al 2 O 3 concentration, and Si concentration in molten steel. In the following, these factors will be verified.
[0026]
First, when the amount of MgO in the slag is large, the above formula (1) advances to the right, and spinel is easily generated. MgO is mixed by melting damage from, for example, MgO-based dolomite (MgO-CaO) used as lining bricks such as AOD (Argon Oxygen Decarburization) furnace, VOD (Vacuum Oxygen Decarburization) furnace or ladle. In some cases, MgO is positively added for the purpose of preventing melting damage. Therefore, in order to prevent the refining temperature from rising more than necessary, it was preferable to control the MgO concentration to 20 % by mass or less.
[0027]
Next, Al 2 O 3 in the slag is contained in a trace amount in a flux such as limestone, fluorite, or silica sand, and what is contained as Al in Si or Si alloy iron used as a deoxidizer is oxidized. It turns out that it mixes. Thus, it has been found that if the Al 2 O 3 concentration in the slag is controlled to 15 % by mass or less, the amount of mixed Al can be effectively reduced. In addition, when adding a flux, Si, or Si alloy iron, it is preferable to select a high-purity thing in the range which does not raise cost remarkably.
[0028]
Next, the present inventors investigated the correlation between the basicity of slag and the Si concentration. As a result, the basicity of the slag and the Si concentration were controlled within a range surrounded by a, b, c, and d shown in FIG. For example, it has been found that a high-quality Fe—Ni alloy cold-rolled sheet having improved cleanliness and generation of non-metallic inclusions can be obtained. First, regarding Si, as described above, the higher the Si concentration, the greater the thermal expansion coefficient. Further, when the basicity of the slag is high, the production rate of alumina and spinel inclusions is increased, while when the basicity is low, the cleanliness is lowered. Here, as described above, 0.001 to 0.30 mass% of Si is appropriate from the viewpoint of the coefficient of thermal expansion. Further, when the basicity was less than 1.2, the cleanliness degree according to “JIS G0555” could not be reduced to 0.05 or less regardless of the Si concentration. In the slag, the basicity of the slag is higher than the straight line connecting the two points a (Si concentration: 0.001, basicity 5) and b (Si concentration: 0.3, basicity 3) in FIG. It was found that the activity of SiO 2 decreased and both the above formulas (1) and (2) proceeded to the right to produce alumina and spinel inclusions.
[0029]
From the above results, the Fe—Ni alloy refining method of the present invention is based on the basicity (C / S) of slag produced in the deoxidation step of adding Si or Si alloy iron after oxidative refining of the melted raw material. The Si concentration is controlled within a range surrounded by a, b, c, and d in FIG. Then, in this method, 15 wt% of Al 2 O 3 concentration in the slag less and the preferred embodiment to control the MgO concentration below 20 weight%.
[0030]
The raw material used in carrying out the above refining method of the present invention is, for example, applied by appropriately adding other elements such as Ni to scrap generated during refining, and this raw material is melted in a normal electric furnace or the like. Is done. In the oxidative refining process, decarburization, dephosphorization, dechromation, and the like are performed by either or both of the above-described AOD and VOD processes. In the subsequent deoxidation step, it is preferable to add limestone, fluorite, silica sand or the like as a flux before adding Si or Si alloy iron.
[0031]
Here, the manufacturing process of the steel ingot used as the raw material of a cold rolled sheet in manufacturing an Fe-Ni alloy cold rolled sheet is demonstrated. As shown in Tables 1 (a), (b), and (c), the steel ingot manufacturing process is divided into three types: an AOD process, a VOD process, and an AOD → VOD process.
[0032]
[Table 1]
[0033]
In the AOD step shown in Table 1 (a), raw materials are dissolved in an electric furnace to adjust the components, and then decarburized and degassed with AOD, followed by flux addition, finish deoxidation, and component adjustment. Subsequently, fine adjustment of components and temperature is performed with a ladle refining device, and then molten steel is cast with a continuous casting machine (CC) or ordinary ingot to obtain a steel ingot.
[0034]
In the VOD process shown in Table 1 (b), raw materials are dissolved in an electric furnace to adjust the components, and then decarburized with VOD, followed by flux addition, finish deoxidation, and gas component removal. Subsequently, fine adjustment of components and temperature is performed with a ladle refining device, and then molten steel is cast with a continuous casting machine (CC) or ordinary ingot to obtain a steel ingot.
[0035]
In the AOD → VOD step shown in Table 1 (c), raw materials are dissolved in an electric furnace to adjust the components, and then decarburized and degassed with AOD, followed by flux addition, final deoxidation, and component adjustment. Subsequently, components and temperature are finely adjusted with a ladle refining device, and then gas components are removed with VOD. Thereafter, the molten steel is cast with a continuous casting machine (CC) or ordinary ingot to obtain a steel ingot.
[0036]
【Example】
Next, examples will be presented to clarify the effects of the present invention.
(1) Production of cold-rolled sheets Fe-Ni alloy cold-rolled sheets of Examples 1 to 9 (invention examples are Examples 1, 5, and 9) having the metal compositions shown in Table 2 (Example 8 is Fe-36) Mass% Ni-0.2 mass% Nb alloy, Fe-32 mass% Ni-5 mass% Co alloy) and Fe-Ni alloy cold-rolled sheets of Comparative Examples 1 to 9 deviating from the present invention, Was manufactured as described above. These cold-rolled plates have a basic composition of Fe-36 % by mass except for Example 9, and the balance is inevitable impurities.
[0037]
[Table 2]
[0038]
While melting 60t of raw material consisting of scrap and Ni generated during refining in an electric furnace, the composition was adjusted to Fe-36 % by mass , and then this molten steel was mixed with the above three types of processes (AOD process, VOD process, AOD → Oxidative refining (decarburization, dephosphorization, dechromation, etc.) was carried out by any one of the steps (VOD step). Subsequently, in AOD or VOD, slag in the oxidation period was removed, and one or more of limestone, fluorite, and silica sand were added as a flux to adjust to a predetermined basicity. Next, Si alloy iron was added to deoxidize the molten steel, and after adjusting the trace components and controlling the temperature with a ladle refining device, it was cast into a normal ingot, or cast with a continuous casting machine. Thereafter, in the case of ordinary ingots, after the forging process was sandwiched, the ingots were hot-rolled and cold-rolled to obtain a 0.25 mm-thick Fe-Ni alloy thin plate (cold rolled plate). . Table 2 also shows the types of refining processes.
[0039]
(2) Investigation and Evaluation The following investigations and evaluations were performed on the cold rolled sheets of Examples 1 to 9 and Comparative Examples 1 to 9. The results are shown in Table 3.
[Table 3]
[0040]
A. Composition of non-metallic inclusions The composition of non-metallic inclusions was investigated by quantitative analysis at 10 locations using an EDS (energy dispersive spectroscopic analyzer).
[0041]
B. Cleanliness According to “JIS G0555”, a cross section parallel to the rolling direction was measured with an optical microscope under conditions of 400 × / 60 fields of view.
[0042]
C. Number of non-metallic inclusions By an optical microscope, the number of non-metallic inclusions having a length exceeding 10 μm in a cross section of 100 mm 2 was counted. The magnification of the optical microscope was 400 times, and the cross section was a cross section parallel to the rolling direction.
[0043]
D. Maximum length of non-metallic inclusions The maximum length of a series of non-metallic inclusions of the B system was measured by an optical microscope. The magnification of the optical microscope was 400 times, and the cross section was a cross section parallel to the rolling direction.
[0044]
E. Basicity and composition of slag Using a fluorescent X-ray analyzer, the composition of slag produced during refining was examined, and the basicity of the slag was determined. In FIG. 1, each circle indicates each example, and each circle indicates each comparative example.
[0045]
F. The number of surface defects The number of surface defects such as scratches was observed visually at an arbitrary 20 m 2 portion of the surface.
[0046]
G. Etchability The disorder of etching holes formed on the surface after etching was evaluated by roundness. A case where the roundness was excellent was evaluated as ◯, and a case where the roundness was poor was evaluated as x.
[0047]
As is apparent from Table 3, the MgO concentration in the slag is 20 % by mass or less, the Al 2 O 3 concentration is 15 % by mass or less, and the slag basicity and the Si concentration are a, b, c, and d in FIG. In each of the examples in which the Al concentration is within the range of 0.0001 to 0.02 % by mass , the nonmetallic inclusions are controlled in a silicate system, and there are no surface defects and cold rolling excellent in etching properties. It was a board.
[0048]
On the other hand, in the comparative example, when the basicity was high (Comparative Examples 2, 3, and 9), alumina and spinel inclusions were generated even by deoxidation with Si, resulting in surface defects and poor etching. On the contrary, when the basicity is as low as less than 1.2 (Comparative Examples 4, 6, and 7), the nonmetallic inclusions are silicate type, but the cleanliness exceeds 0.05, and the number of nonmetallic inclusions Will increase. Comparative Examples 5 and 8 were the results of deoxidation with Al, but in both cases, spinel inclusions were generated, and surface defects were remarkably generated. In Comparative Example 1, the Si concentration was 0.35 % by mass exceeding 0.3 % by mass , and there was no problem with non-metallic inclusions, but the thermal expansion coefficient was out of the range satisfying the quality requirements, and was practical. It was not.
[0049]
【The invention's effect】
As described above, according to the Fe—Ni alloy refining method of the present invention, since the slag basicity and the Si concentration are appropriately controlled, cold rolling of the Fe—Ni alloy having excellent etching properties and surface properties. It is promising as a refining method for producing a plate, and is extremely suitable for producing a Fe-Ni alloy cold-rolled plate.
[Brief description of the drawings]
FIG. 1 is a diagram showing a correlation between basicity of slag and Si concentration.
Claims (2)
溶解した原料の酸化精錬をAODとVODの両方か、またはいずれか一方の工程で精錬を行った後、SiまたはSi合金鉄を添加する脱酸工程において、生成するスラグの塩基度(C/S)を2.2以上4.8以下の範囲に制御し、非金属介在物の組成がMnO−SiO2−Al2O3系で、かつ、MnOが5〜50質量%、SiO2が30〜60質量%、Al2O3が5〜30質量%であり、さらに、その他の不可避的不純物として含まれるCaOおよびMgOが合計で30質量%以下に制御することを特徴とするFe−Ni合金の精錬方法。Si of 0.01 to 0.03 wt%, Mn: from .001 to 0.60 wt%, Ni: 20 to 50 wt%, Al: .0001-0.020 wt%, the balance being Fe and a refining method for Fe-Ni alloy consisting of non avoidable impurities,
The basicity (C / S) of the slag produced in the deoxidation step in which Si or Si alloy iron is added after oxidative refining of the melted raw material is performed in either AOD or VOD or in one of the steps. ) In the range of 2.2 to 4.8, the composition of the nonmetallic inclusions is MnO—SiO 2 —Al 2 O 3 , MnO is 5 to 50% by mass, and SiO 2 is 30 to 30%. 60% by mass, Al 2 O 3 is 5 to 30% by mass, and CaO and MgO contained as other inevitable impurities are controlled to be 30% by mass or less in total. Refining method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003017708A JP3881626B2 (en) | 2000-04-21 | 2003-01-27 | Refining method of Fe-Ni alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000121470 | 2000-04-21 | ||
JP2000-121470 | 2000-04-21 | ||
JP2003017708A JP3881626B2 (en) | 2000-04-21 | 2003-01-27 | Refining method of Fe-Ni alloy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000400659A Division JP3422772B2 (en) | 2000-04-21 | 2000-12-28 | Fe-Ni alloy cold rolled sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003268436A JP2003268436A (en) | 2003-09-25 |
JP3881626B2 true JP3881626B2 (en) | 2007-02-14 |
Family
ID=29217612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003017708A Expired - Fee Related JP3881626B2 (en) | 2000-04-21 | 2003-01-27 | Refining method of Fe-Ni alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3881626B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7007510B1 (en) * | 2021-03-12 | 2022-02-14 | 日本冶金工業株式会社 | Fe-Ni alloy with excellent surface properties and its manufacturing method, CFRP mold |
JP7050989B1 (en) * | 2021-03-12 | 2022-04-08 | 日本冶金工業株式会社 | Fe-Ni alloy with excellent outgas characteristics and its manufacturing method |
-
2003
- 2003-01-27 JP JP2003017708A patent/JP3881626B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7007510B1 (en) * | 2021-03-12 | 2022-02-14 | 日本冶金工業株式会社 | Fe-Ni alloy with excellent surface properties and its manufacturing method, CFRP mold |
JP7050989B1 (en) * | 2021-03-12 | 2022-04-08 | 日本冶金工業株式会社 | Fe-Ni alloy with excellent outgas characteristics and its manufacturing method |
WO2022190813A1 (en) * | 2021-03-12 | 2022-09-15 | 日本冶金工業株式会社 | Fe-ni alloy having excellent outgas characteristics and method for producing same |
WO2022190814A1 (en) * | 2021-03-12 | 2022-09-15 | 日本冶金工業株式会社 | Fe-ni alloy having excellent surface properties and method of producing same, and mold for cfrp |
Also Published As
Publication number | Publication date |
---|---|
JP2003268436A (en) | 2003-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230077573A1 (en) | Stainless steel for metal foils, stainless steel foil, and methods for producing them | |
JP4280163B2 (en) | Low carbon steel sheet, low carbon steel slab and method for producing the same | |
US20120261085A1 (en) | Extremely low carbon steel plate excellent in surface characteristics, workability, and formability and a method of producing extremely low carbon cast slab | |
JP5428020B2 (en) | Method for producing Fe-Ni alloy slab | |
WO2023062855A1 (en) | Nickel alloy having excellent surface properties and manufacturing method thereof | |
JP6645214B2 (en) | Method for producing low carbon steel thin cast slab, low carbon steel thin cast slab, and method for producing low carbon steel thin steel plate | |
TW202138587A (en) | Stainless steel, stainless steel material, and method for manufacturing stainless steel | |
JP3687644B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP3881626B2 (en) | Refining method of Fe-Ni alloy | |
JP4510787B2 (en) | Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties | |
JP3499349B2 (en) | Fe-Ni alloy cold rolled sheet excellent in surface properties and method for producing the same | |
JP3422773B2 (en) | Refining method of Fe-Ni alloy | |
JP3790690B2 (en) | Fe-Ni alloy plate for highly clean shadow mask and method for producing the same | |
JP3422772B2 (en) | Fe-Ni alloy cold rolled sheet | |
JP3554283B2 (en) | Fe-Ni alloy excellent in surface properties and method for producing the same | |
JP4107801B2 (en) | Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties | |
JP4593313B2 (en) | Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof | |
JP4059118B2 (en) | Method for producing Fe-Ni alloy cold rolled sheet material for shadow mask with excellent etching perforation | |
JP4259097B2 (en) | Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same | |
JP2002327239A (en) | Slab for thin steel sheet with few defect caused by inclusion, and manufacturing method therefor | |
JP3362077B2 (en) | Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss | |
JP3626445B2 (en) | Fe-Ni alloy for low thermal expansion and high rigidity shadow mask excellent in surface property and etching processability and method for producing the same | |
JP5215327B2 (en) | Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties | |
JP7158618B1 (en) | Austenitic Fe-Ni-Cr alloy with excellent oxidation resistance and method for producing the same | |
JP3840096B2 (en) | Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060705 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060815 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |