[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3879423B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP3879423B2
JP3879423B2 JP2001086645A JP2001086645A JP3879423B2 JP 3879423 B2 JP3879423 B2 JP 3879423B2 JP 2001086645 A JP2001086645 A JP 2001086645A JP 2001086645 A JP2001086645 A JP 2001086645A JP 3879423 B2 JP3879423 B2 JP 3879423B2
Authority
JP
Japan
Prior art keywords
flow path
circulation
fuel cell
control valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001086645A
Other languages
Japanese (ja)
Other versions
JP2002289225A (en
Inventor
泰之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001086645A priority Critical patent/JP3879423B2/en
Publication of JP2002289225A publication Critical patent/JP2002289225A/en
Application granted granted Critical
Publication of JP3879423B2 publication Critical patent/JP3879423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムの冷却水供給やガス供給等に係わる循環系の圧力制御に関する。
【0002】
【従来の技術と解決すべき課題】
燃料電池の循環系の圧力制御に関する従来技術として、例えば特開平5-41232号公報に開示された燃料電池システムでは、循環系の圧力検出結果に基づいてポンプ回転数などを変化させることで圧力の補正を行うようにしている。しかしながら、このシステムでは冷却水経路が気水分離器などでガス供給ラインとつながっているために、冷却水と供給ガスそれぞれの圧力制御を行うことができず、したがって燃料電池を必ずしも効率よく運転することができない。
【0003】
これに対して、特開平9-320627号公報に開示されたものでは、燃料電池とガス製造装置の冷却を行うためにポンプを介して冷却水を循環させる構成を備え、冷却水と供給ガスそれぞれの圧力制御を行うことが可能となっている。ただし、このシステムでは冷却水ラインにおいてポンプ回転数が変化したときなどに密閉経路内に急激な圧力変動が起こり、この圧力変動に原因して燃料電池自体や冷却水供給ラインの耐久性が損なわれるおそれがある。
【0004】
本発明は、このような従来の問題点に着目してなされたもので、燃料電池システムにおいて、冷却水等の循環系の供給圧力を適切に制御しつつポンプ回転数変化などによる急激な圧力変動を抑制することを目的としている。
【0005】
【課題を解決するための手段】
第1の発明は、燃料電池システムに備えられた循環流路前記循環流路に流体を循環させる循環ポンプと、前記循環ポンプを迂回するバイパス流路と、前記バイパス流路を開閉する弁装置と、前記循環流路の圧力変動を検出する圧力変動検出装置と、前記圧力変動量が大きくなるのに応じて前記循環流路からバイパス流路への流量が多くなるように前記弁装置の開度を制御する制御装置とを備えた。
【0006】
第2の発明は、前記第1の発明の弁装置を、前記バイパス流路のポンプ上流側を開閉する上流側制御弁と、ポンプ下流側を開閉する下流側制御弁とで構成し、前記循環ポンプ下流側の圧力上昇時は、前記下流側制御弁を開いた後、上流側制御弁を開くようにした
【0007】
第3の発明は、前記第1の発明の弁装置を、前記バイパス流路のポンプ上流側を開閉する上流側制御弁と、ポンプ下流側を開閉する下流側制御弁とで構成し、前記循環ポンプ下流側の圧力下降時は、前記上流側制御弁を開いた後、下流側制御弁を開くようにした
【0008】
第4の発明は、前記第1〜第3の発明の圧力変動検出装置を、前記循環ポンプの回転数に基づいて圧力変動を検出するように構成した
【0009】
第5の発明は、前記第1〜第3の発明の圧力変動検出装置を、前記循環ポンプ出口部の圧力を検出する圧力センサで構成した
【0010】
第6の発明は、前記第1〜第5の発明のバイパス流路に、ガス流路内の凝縮水を貯蔵する水タンクを接続した
【0011】
第7の発明は、前記第1〜第5の発明のバイパス流路に、ガス流路内の凝縮水を分離する気液分離器を接続した
【0012】
第8の発明は、前記第1〜第7の発明の循環流路を、燃料電池に冷却水を循環させる冷却水流路とした
【0013】
第9の発明は、前記第1〜第7の発明の循環流路を、燃料電池の加湿装置に水を供給する加湿水供給流路とした
【0014】
【作用・効果】
第1の発明以下の各発明によれば、冷却水流路あるいは加湿水供給流路などの循環流路内での循環ポンプの起動、停止または過渡的な回転変化のときに生じる急激な圧力変動は、弁装置を開くことでバイパス流路から逃がすことができるので、循環流路または循環流路に接続する燃料電池等の機器類を保護することができる。
【0015】
なお、循環流路としては冷却水流路と加湿水供給流路など複数のものを共通化した構成でもよく、当該共通化した循環流路にバイパス流路および弁装置を設けることにより、単一のバイパス流路および弁装置により複数の循環流路の保護を図ることができる。
【0016】
前記弁装置は、第2〜第3の発明として示したようにバイパス流路の入口部と出口部にそれぞれ上流側制御弁、下流側制御弁を設けた構成とすることができ、この場合、圧力吸収装置をバイパス流路の途中に接続する構成とすることにより、制御弁を開いてバイパス流路に圧力を逃がすことによる圧力変動の緩和効果をより高めることができる。
【0017】
前記圧力吸収装置として、第6の発明として示した燃料電池のガス配管内の凝縮水を貯蔵する水タンクまたは第7の発明として示した気液分離装置を適用することができ、これにより圧力吸収のために新規部品を設ける必要が無いのでシステムを簡素化でき、小型化、コストダウンを図ることができる。なお、圧力吸収装置として前記気液分離器と水タンクとを一体化した構成のものを適用することもでき、この場合は循環流路内の圧力変動を緩和する際のガス圧力と水圧力の差圧を小さくして燃料電池の制御性を改善することができる。
【0018】
却水供給配管または加湿水供給配管内圧力を循環ポンプの回転変動により検出し、下流にある弁装置を制御することで、より簡素なシステムにおいて制御性の良い燃料電池システムを提供可能となる。
【0019】
前記循環流路の圧力変動は、第の発明として示したように循環ポンプの回転数から、または第の発明として示したように循環ポンプ出口部に設けた圧力センサにより検出することができる。
【0020】
第2の発明のように、圧力上昇時には下流側制御弁を開いたのちに上流側制御弁を開き、または第3の発明のように圧力下降時には上流側制御弁を開いたのちに下流側制御弁を開くことにより、循環ポンプの空回りによって生じる循環流路内の圧力抜けを防止しつつ、循環ポンプ前後の急激な圧力変動をより効果的に吸収することができる。
【0021】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。図1は燃料電池の冷却系に本発明を適用した実施形態のシステム構成を表している。燃料電池1にはそれぞれ空気流路100、燃料流路200、冷却水循環流路300が接続されている。空気流路100には、上流から供給流量を計測する空気流量計2、空気を圧送するコンプレッサ3、燃料電池入口空気圧力を計測する圧力センサ4が設けられ、燃料電池1下流には気液分離器5、圧力調整用の制御弁8が設けられ、気液分離器5で分離された水分は配管7を通り水タンク6に貯えられる。
【0022】
燃料流路200には、上流から燃料貯蔵用タンク9、燃料循環用のエゼクタポンプ10、燃料電池入口燃料圧力を計測する圧力センサ11が設けられている。燃料循環機構としては、エゼクタを用いず、コンプレッサを燃料循環路14に設けることもできる。燃料電池1下流には気液分離器12、圧力調整用の制御弁13が設けられている。
【0023】
冷却水循環流路300には、電動ファンを備えたラジエータ15、駆動速度を無段階調節可能な循環ポンプ16が設けられている。流路300にはポンプ16を迂回すると共に水タンク6に連通するバイパス流路301が設けられ、バイパス流路の上流側端部と下流側端部にそれぞれ上流側制御弁18、下流側制御弁19が設けられ、各制御弁18,19手前には排水用バルブ17が接続されている。
【0024】
制御装置(図示せず)は、燃料電池1の発電状態に応じて、燃料ガス圧力、空気圧力をそれぞれ調圧弁8,13で調整するとともに、空気流量をコンプレッサ3の回転数により調整し、さらに冷却系循環流路300の圧力変動状態に応じて各制御弁18,19の開閉を制御する。
【0025】
図2は加湿水系を有する燃料電池システムに本発明を適用した実施形態のシステム構成である。図1と異なるのは、冷却水循環流路300の代わりに、加湿器20と加湿水タンク21とを備えた加湿水循環流路400の循環ポンプ20を迂回するようにバイパス流路401を形成し、その上流側端部と下流側端部にそれぞれ制御弁18,19を設けたことである。また、図3は冷却系と加湿系とで共通の循環流路500を備えた燃料電池システムに本発明を適用した実施形態のシステム構成である。この実施形態ではラジエータ15を有する循環流路500により燃料電池1に冷却水を循環させると共に加湿器20に水を供給するようにしている。循環流路500に対するバイパス流路501および制御弁18,19等の構成は図1と同様である。図2または図3において図1と同一の部分には同一の符号を付してその説明を省略する。
【0026】
なお、前記各システムでは、空気系流路100に設けた気液分離器5から水タンク6まで配管でつなぐ構造としているが、このようにする代わりに、気液分離器5と水タンク6を一体にする構造としてもよく、その結果、循環流路内の圧力変動の吸収を空気ラインに吸収させることで効率よく行うことができる。さらに、循環が冷却水流路に形成される場合には、燃料電池内部における空気ラインの圧力と冷却水の圧力との圧力差を解消させる方向で循環流路の圧力変動を吸収させることができる。
【0027】
次に、前記各システム構成下でその制御装置により実行される制御弁開度制御につき図4に示した流れ図に沿って説明する。図4は制御装置を構成するマイクロコンピュータが周期的に実行する処理ルーチンを表しており、図中の符号Sは処理ステップを示している。この制御は冷却系流路の圧力変動をポンプ16の回転数変動に代表させ、その回転数変動に基づいて各制御弁18,19の開閉を制御するようにした例である。以下、順を追って説明する。
S1:ポンプ16の回転変動量Hを検出する。回転変動量Hは、例えば単位時間あたりの回転数変化として検出する。
S2:回転変動Hに応じて制御弁18,19の開閉を判断する。ここで、回転数上昇時のしきい値をα、回転数下降時のしきい値をβとするとき、α>H>βのときにはS6に進み、各制御弁18,19を閉ざした状態として今回の処理を終了する。ポンプ16は一定条件で制御していても必ず回転のバラツキは出てしまうので、圧力に影響のでない程度の回転変動は取り除くように前記しきい値を設定している。α>H>β以外の条件のときにはS3に進む。
S3:回転変動が増加方向か減少方向かを判断する。H>αの回転数上昇時にはS4の回転上昇時の弁制御処理へ、H<βの回転数下降時にはS5の回転数下降時の弁制御処理へ進み、各々の処理の後に今回のルーチンを終了する。
【0028】
図5と図6に、それぞれ前記回転数上昇時の下流側制御弁19、上流側制御弁18の開度制御ルーチンを示す。回転数上昇時にはポンプ吐出側(下流側)に圧力上昇が起こるので、図5の処理によりただち下流側制御弁19を開くと共に、図6の処理により所定時間遅らせて上流側制御弁18を開く。
・図5 下流側制御弁19の開度制御
S1:回転変動量Hを読み込む。
S2:回転変動量Hに応じた制御弁開度データを設定する。これは例えば図9に示したように回転変動量Hに応じて弁開度を与えるように予め設定されたテーブルを検索することで設定する。回転変動量が大きいほど圧力変動が大きいと考えられるので、図9のように回転変動が大きいほど弁開度を大きく設定して、圧力吸収を適切に行うようにしている。
S3:前記S2で設定した開度となるように制御弁19の開度を制御する。
・図6 上流側制御弁18の開度制御
S1:回転変動量Hを読み込む。
S2:ディレイ時間設定用のタイマ値Tをリセットする。
S3:回転変動量Hに応じた制御弁開度データを設定する。これは例えば図10に示したように回転変動量Hに応じて弁開度を与えるように予め設定されたテーブルを検索することで設定する。回転変動量が大きいほど圧力変動が大きいと考えられるので、図10のように回転変動が大きいほど弁開度を大きく設定して、圧力吸収を適切に行うようにしている。
S4:回転変動量Hに基づいてディレイ時間γを設定する。これは例えば図11に示したように回転変動量Hに応じてディレイ時間γを与えるように予め設定されたテーブルを検索することで設定する。特性としては図11のように回転変動が大であるほどディレイ時間が短くなるように設定されている。
S5〜S6:タイマ値Tの積算を、ディレイ時間γを超過するまで繰り返す。
S7:タイマ値Tがディレイ時間γを超えたらS3で設定した弁開度となるように制御弁18の開度を制御する。
【0029】
次に、図7と図8に、それぞれ前記回転数下降時の下流側制御弁19、上流側制御弁18の開度制御ルーチンを示す。回転数下降時にはポンプ吐出側(下流側)に圧力低下が起こるので、図8の処理によりただちに上流側制御弁18を開き、一方図8の処理により所定時間遅らせて下流側制御弁19を開く。
・図7 下流側制御弁19の開度制御
S1:回転変動量Hを読み込む。
S2:ディレイ時間設定用のタイマ値Tをリセットする。
S3:回転変動量Hに応じた制御弁開度データを設定する。これは例えば図10に示したように回転変動量Hに応じて弁開度を与えるように予め設定されたテーブルを検索することで設定する。
S4:回転変動量Hに基づいてディレイ時間γを設定する。これは例えば図11に示したように回転変動量Hに応じてディレイ時間γを与えるように予め設定されたテーブルを検索することで設定する。
S5〜S6:タイマ値Tの積算を、ディレイ時間γを超過するまで繰り返す。
S7:タイマ値Tがディレイ時間γを超えたらS3で設定した弁開度となるように制御弁19の開度を制御する。
・図8 上流側制御弁18の開度制御
S1:回転変動量Hを読み込む。
S2:回転変動量Hに応じた制御弁開度データを設定する。これは例えば図9に示したように回転変動量Hに応じて弁開度を与えるように予め設定されたテーブルを検索することで設定する。
S3:前記S2で設定した開度となるように制御弁19の開度を制御する。
【0030】
この制御では既述したようにポンプ16の回転変動で圧力変動を代表させているが、ポンプ16の出口付近もしくは下流側制御弁19の近傍に圧力センサ23を設け、その検出値に基づいて制御を実行するようにすればより精度および制御性を高めることができる。このような圧力検出による制御ルーチンの例を図12〜15に示す。図12と図13は、それぞれ検出圧力上昇時の下流側制御弁19、上流側制御弁18の開度制御ルーチン、図14と図15は、それぞれ検出圧力下降時の下流側制御弁19、上流側制御弁18の開度制御ルーチンである。制御ルーチンとしては、回転変動量Hに代えて単位時間における圧力偏差ΔPを検出する点のみが異なるので各ステップの説明は省略する。
【0031】
図16〜図18は前記制御ルーチンで使用するテーブルの特性を示したもので、図16または図17は圧力偏差ΔPに応じて弁開度データを与えるテーブル、図18は圧力偏差ΔPに応じてディレイ時間データを与えるテーブルにそれぞれ相当する。
【0032】
これまでに示した何れの実施形態においても、第1の制御ののち第2の制御を行うタイミングを所定時間経過後としているが、循環流路にそれぞれ上流側制御弁18と下流側制御弁19の近傍に圧力センサを設置し、第2の制御が行われる制御弁近傍の圧力変動検出値を前記タイミングとして指定して同様の制御を行った場合にも、制度の高い制御を行うことができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態のシステム構成図。
【図2】 本発明の第2の実施形態のシステム構成図。
【図3】 本発明の第3の実施形態のシステム構成図。
【図4】 制御動作に関する第1の実施形態の流れ図。
【図5】 制御動作に関する第1の実施形態の流れ図。
【図6】 制御動作に関する第1の実施形態の流れ図。
【図7】 制御動作に関する第1の実施形態の流れ図。
【図8】 制御動作に関する第1の実施形態の流れ図。
【図9】 循環ポンプの回転変動量と制御弁開度の関係を示す特性図。
【図10】 循環ポンプの回転変動量と制御弁開度の関係を示す特性図。
【図11】 循環ポンプの回転変動量とディレイ時間の関係を示す特性図。
【図12】 制御動作に関する第2の実施形態の流れ図。
【図13】 制御動作に関する第2の実施形態の流れ図。
【図14】 制御動作に関する第2の実施形態の流れ図。
【図15】 制御動作に関する第2の実施形態の流れ図。
【図16】 圧力偏差と制御弁開度の関係を示す特性図。
【図17】 圧力偏差と制御弁開度の関係を示す特性図。
【図18】 圧力偏差とディレイ時間の関係を示す特性図。
【符号の説明】
1 燃料電池
2 空気流量計
3 コンプレッサ
4 圧力センサ
5 気液分離器
6 水タンク
7 配管
8 圧力調整用制御弁
9 燃料貯蔵用タンク
10 エゼクタポンプ
11 圧力センサ
12 気液分離器
13 圧力調整用制御弁
14 燃料循環路
15 ラジエータ
16 循環ポンプ
17 排水用バルブ
18 上流側制御弁
19 下流側制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to pressure control of a circulation system related to cooling water supply, gas supply, etc. of a fuel cell system.
[0002]
[Prior art and problems to be solved]
As a conventional technique related to the pressure control of the circulation system of the fuel cell, for example, in the fuel cell system disclosed in Japanese Patent Laid-Open No. 5-41232, the pressure is controlled by changing the pump rotation speed based on the pressure detection result of the circulation system. Correction is made. However, in this system, since the cooling water path is connected to the gas supply line by an air-water separator or the like, the pressure control of the cooling water and the supply gas cannot be performed, and thus the fuel cell is not necessarily operated efficiently. I can't.
[0003]
On the other hand, the one disclosed in Japanese Patent Laid-Open No. 9-320627 has a configuration in which cooling water is circulated through a pump in order to cool the fuel cell and the gas manufacturing apparatus, and each of the cooling water and the supply gas It is possible to control the pressure. However, in this system, sudden pressure fluctuations occur in the closed path when the pump rotation speed changes in the cooling water line, and the durability of the fuel cell itself and the cooling water supply line is impaired due to this pressure fluctuation. There is a fear.
[0004]
The present invention has been made paying attention to such a conventional problem, and in a fuel cell system, sudden pressure fluctuation due to a change in the number of revolutions of the pump or the like while appropriately controlling the supply pressure of a circulating system such as cooling water. The purpose is to suppress.
[0005]
[Means for Solving the Problems]
The first invention includes a circulation flow path provided in the fuel cell system, a circulation pump for circulating the fluid in the circulation passage, a bypass passage which bypasses the circulation pump, a valve for opening and closing said bypass passage An apparatus, a pressure fluctuation detection device for detecting pressure fluctuations in the circulation flow path, and the valve device so that the flow rate from the circulation flow path to the bypass flow path increases as the pressure fluctuation amount increases . And a control device for controlling the opening degree.
[0006]
According to a second aspect of the present invention, the valve device according to the first aspect of the present invention includes an upstream control valve that opens and closes a pump upstream side of the bypass flow path, and a downstream control valve that opens and closes a pump downstream side, and the circulation When the pressure on the downstream side of the pump is increased, the upstream control valve is opened after the downstream control valve is opened .
[0007]
According to a third aspect of the present invention, the valve device according to the first aspect of the present invention includes an upstream control valve that opens and closes a pump upstream side of the bypass flow path and a downstream control valve that opens and closes a pump downstream side, and the circulation When the pressure on the downstream side of the pump was lowered, the downstream control valve was opened after the upstream control valve was opened .
[0008]
In a fourth aspect of the invention, the pressure fluctuation detection device according to the first to third aspects of the invention is configured to detect a pressure fluctuation based on the rotational speed of the circulation pump .
[0009]
5th invention comprised the pressure fluctuation detection apparatus of the said 1st-3rd invention with the pressure sensor which detects the pressure of the said circulation pump outlet part .
[0010]
In a sixth aspect of the present invention, a water tank for storing condensed water in the gas flow path is connected to the bypass flow path of the first to fifth aspects of the invention .
[0011]
In a seventh aspect of the present invention, a gas-liquid separator that separates condensed water in the gas flow path is connected to the bypass flow path of the first to fifth aspects of the invention .
[0012]
In an eighth aspect of the invention, the circulation passage of the first to seventh aspects is a cooling water passage for circulating cooling water through the fuel cell .
[0013]
In a ninth aspect, the circulation flow path of the first to seventh aspects is a humidified water supply flow path for supplying water to the humidifier of the fuel cell .
[0014]
[Action / Effect]
According to each invention below, the rapid pressure fluctuation that occurs when the circulating pump is started, stopped, or transiently changed in the circulating flow path such as the cooling water flow path or the humidified water supply flow path is Since the valve device can be opened to escape from the bypass channel, it is possible to protect the circulation channel or the devices such as the fuel cell connected to the circulation channel.
[0015]
Note that the circulation channel may have a configuration in which a plurality of channels such as a cooling water channel and a humidified water supply channel are shared, and a single unit can be provided by providing a bypass channel and a valve device in the shared circulation channel. A plurality of circulation channels can be protected by the bypass channel and the valve device.
[0016]
The valve device, the second and third bypass channel, as shown as an invention of the inlet and each outlet portion upstream control valve may be a structure in which a downstream control valve, this case , it can be by the structure for connecting the pressure absorbing device in the middle of the bypass passage, enhance the relaxation effect of the pressure variation due to escape pressure in the bypass flow passage by opening the control valve.
[0017]
As the pressure absorbing device, the water tank for storing condensed water in the gas pipe of the fuel cell shown as the sixth invention or the gas-liquid separation device shown as the seventh invention can be applied. For this reason, it is not necessary to provide new parts, so that the system can be simplified, and the size and cost can be reduced. In addition, it is also possible to apply a structure in which the gas-liquid separator and the water tank are integrated as a pressure absorbing device. In this case, the gas pressure and the water pressure when the pressure fluctuation in the circulation flow path is reduced. The controllability of the fuel cell can be improved by reducing the differential pressure.
[0018]
The cooling water supply pipe or humidification water supply pipe pressure detected by the rotation variation of the circulation pump, by controlling the valve device downstream, it is possible to provide a good fuel cell system controllability in a simpler system .
[0019]
The pressure fluctuation in the circulation channel can be detected from the rotational speed of the circulation pump as shown as the fourth invention or by the pressure sensor provided at the outlet of the circulation pump as shown as the fifth invention. .
[0020]
As in the second invention, the upstream control valve is opened after the downstream control valve is opened when the pressure is increased, or the upstream control valve is opened when the pressure is lowered as in the third invention. By opening the valve, it is possible to more effectively absorb sudden pressure fluctuations before and after the circulation pump while preventing a pressure drop in the circulation flow path caused by idling of the circulation pump.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a system configuration of an embodiment in which the present invention is applied to a fuel cell cooling system. An air flow path 100, a fuel flow path 200, and a cooling water circulation flow path 300 are connected to the fuel cell 1, respectively. The air flow path 100 is provided with an air flow meter 2 that measures the supply flow rate from the upstream, a compressor 3 that pumps air, and a pressure sensor 4 that measures the fuel cell inlet air pressure, and a gas-liquid separation downstream of the fuel cell 1. 5 and a control valve 8 for pressure adjustment are provided, and the water separated by the gas-liquid separator 5 passes through the pipe 7 and is stored in the water tank 6.
[0022]
The fuel flow path 200 is provided with a fuel storage tank 9, an ejector pump 10 for fuel circulation, and a pressure sensor 11 for measuring fuel pressure at the fuel cell inlet from upstream. As the fuel circulation mechanism, a compressor may be provided in the fuel circulation path 14 without using an ejector. A gas-liquid separator 12 and a pressure adjusting control valve 13 are provided downstream of the fuel cell 1.
[0023]
The cooling water circulation passage 300 is provided with a radiator 15 having an electric fan and a circulation pump 16 capable of continuously adjusting the driving speed. The flow path 300 is provided with a bypass flow path 301 that bypasses the pump 16 and communicates with the water tank 6. The upstream control valve 18 and the downstream control valve are provided at the upstream end and the downstream end of the bypass flow path, respectively. 19 is provided, and a drain valve 17 is connected in front of the control valves 18 and 19.
[0024]
The control device (not shown) adjusts the fuel gas pressure and the air pressure with the pressure regulating valves 8 and 13 according to the power generation state of the fuel cell 1, respectively, and adjusts the air flow rate with the rotation speed of the compressor 3, Opening and closing of the control valves 18 and 19 is controlled according to the pressure fluctuation state of the cooling system circulation passage 300.
[0025]
FIG. 2 shows a system configuration of an embodiment in which the present invention is applied to a fuel cell system having a humidified water system. The difference from FIG. 1 is that instead of the cooling water circulation channel 300, a bypass channel 401 is formed so as to bypass the circulation pump 20 of the humidification water circulation channel 400 including the humidifier 20 and the humidification water tank 21, Control valves 18 and 19 are provided at the upstream end and the downstream end, respectively. FIG. 3 shows a system configuration of an embodiment in which the present invention is applied to a fuel cell system having a common circulation channel 500 for the cooling system and the humidification system. In this embodiment, cooling water is circulated in the fuel cell 1 and water is supplied to the humidifier 20 by the circulation flow path 500 having the radiator 15. The configuration of the bypass channel 501 and the control valves 18 and 19 with respect to the circulation channel 500 is the same as that in FIG. In FIG. 2 or FIG. 3, the same parts as those in FIG.
[0026]
In addition, in each said system, it is set as the structure connected with the pipe from the gas-liquid separator 5 provided in the air system flow path 100 to the water tank 6, but instead of doing in this way, the gas-liquid separator 5 and the water tank 6 are connected. The structure may be integrated, and as a result, absorption of pressure fluctuations in the circulation flow path can be efficiently performed by absorbing the air line. Further, when the circulation is formed in the cooling water flow path, it is possible to absorb the pressure fluctuation of the circulation flow path in a direction that eliminates the pressure difference between the pressure of the air line inside the fuel cell and the pressure of the cooling water.
[0027]
Next, control valve opening control executed by the control device under each system configuration will be described with reference to the flowchart shown in FIG. FIG. 4 shows a processing routine that is periodically executed by a microcomputer constituting the control device, and a symbol S in the figure indicates a processing step. This control is an example in which the pressure fluctuation in the cooling system flow path is represented by the fluctuation in the rotational speed of the pump 16 and the opening / closing of the control valves 18 and 19 is controlled based on the fluctuation in the rotational speed. In the following, description will be given in order.
S1: The rotational fluctuation amount H of the pump 16 is detected. The rotational fluctuation amount H is detected as, for example, a rotational speed change per unit time.
S2: It is determined whether the control valves 18 and 19 are opened or closed according to the rotation fluctuation H. Here, when the threshold value at the time of increasing the rotational speed is α and the threshold value at the time of decreasing the rotational speed is β, when α>H> β, the process proceeds to S6 and the control valves 18 and 19 are closed. This process is terminated. Even if the pump 16 is controlled under a certain condition, variations in rotation always occur. Therefore, the threshold value is set so as to remove rotation fluctuations that do not affect the pressure. If the condition is other than α>H> β, the process proceeds to S3.
S3: It is determined whether the rotational fluctuation is increasing or decreasing. When the rotational speed increases when H> α, the routine proceeds to the valve control process when the rotational speed increases at S4, and when the rotational speed decreases when H <β, the routine proceeds to the valve control process when the rotational speed decreases at S5. To do.
[0028]
FIGS. 5 and 6 show the opening control routines of the downstream control valve 19 and the upstream control valve 18 when the rotational speed is increased. Since the pressure rises on the pump discharge side (downstream side) when the rotational speed rises, the downstream control valve 19 is opened immediately by the processing of FIG. 5, and the upstream control valve 18 is opened after being delayed by a predetermined time by the processing of FIG. .
FIG. 5 Opening degree control S1 of the downstream side control valve 19: The rotation fluctuation amount H is read.
S2: Control valve opening data corresponding to the rotation fluctuation amount H is set. This is set, for example, by searching a table set in advance so as to give the valve opening according to the rotation fluctuation amount H as shown in FIG. Since the pressure fluctuation is considered to be larger as the rotation fluctuation amount is larger, the valve opening is set larger as the rotation fluctuation is larger as shown in FIG.
S3: The opening degree of the control valve 19 is controlled to be the opening degree set in S2.
FIG. 6 Opening control S1 of the upstream control valve 18: Read the rotation fluctuation amount H.
S2: The timer value T for setting the delay time is reset.
S3: Control valve opening data corresponding to the rotation fluctuation amount H is set. This is set, for example, by searching a table set in advance so as to give the valve opening according to the rotation fluctuation amount H as shown in FIG. Since the pressure fluctuation is considered to be larger as the rotation fluctuation amount is larger, the valve opening is set larger as the rotation fluctuation is larger as shown in FIG.
S4: The delay time γ is set based on the rotation fluctuation amount H. This is set, for example, by searching a table set in advance so as to give the delay time γ according to the rotation fluctuation amount H as shown in FIG. As shown in FIG. 11, the delay time is set shorter as the rotational fluctuation is larger as shown in FIG.
S5 to S6: The integration of the timer value T is repeated until the delay time γ is exceeded.
S7: When the timer value T exceeds the delay time γ, the opening degree of the control valve 18 is controlled so as to be the valve opening degree set in S3.
[0029]
Next, FIGS. 7 and 8 show the opening control routines of the downstream control valve 19 and the upstream control valve 18 when the rotational speed is lowered. Since the pressure drop occurs on the pump discharge side (downstream side) when the rotational speed is lowered, the upstream control valve 18 is immediately opened by the processing of FIG. 8, while the downstream control valve 19 is opened by being delayed by a predetermined time by the processing of FIG.
-FIG. 7 Opening degree control S1: Downstream fluctuation amount H of the downstream side control valve 19 is read.
S2: The timer value T for setting the delay time is reset.
S3: Control valve opening data corresponding to the rotation fluctuation amount H is set. This is set, for example, by searching a table set in advance so as to give the valve opening according to the rotation fluctuation amount H as shown in FIG.
S4: The delay time γ is set based on the rotation fluctuation amount H. This is set, for example, by searching a table set in advance so as to give the delay time γ according to the rotation fluctuation amount H as shown in FIG.
S5 to S6: The integration of the timer value T is repeated until the delay time γ is exceeded.
S7: When the timer value T exceeds the delay time γ, the opening degree of the control valve 19 is controlled so as to be the valve opening degree set in S3.
FIG. 8 Opening control S1 of the upstream control valve 18: Reads the rotation fluctuation amount H.
S2: Control valve opening data corresponding to the rotation fluctuation amount H is set. This is set, for example, by searching a table set in advance so as to give the valve opening according to the rotation fluctuation amount H as shown in FIG.
S3: The opening degree of the control valve 19 is controlled to be the opening degree set in S2.
[0030]
In this control, as described above, the pressure fluctuation is represented by the rotation fluctuation of the pump 16, but a pressure sensor 23 is provided in the vicinity of the outlet of the pump 16 or in the vicinity of the downstream control valve 19, and control is performed based on the detected value. If this is executed, the accuracy and controllability can be improved. Examples of control routines based on such pressure detection are shown in FIGS. FIGS. 12 and 13 are the opening control routines of the downstream control valve 19 and the upstream control valve 18 when the detected pressure is increased, respectively. FIGS. 14 and 15 are the downstream control valve 19 and the upstream when the detected pressure is decreased. This is an opening control routine of the side control valve 18. Since the control routine is different only in that the pressure deviation ΔP per unit time is detected instead of the rotation fluctuation amount H, description of each step is omitted.
[0031]
16 to 18 show the characteristics of the table used in the control routine. FIG. 16 or FIG. 17 is a table for giving valve opening data in accordance with the pressure deviation ΔP, and FIG. 18 is a table in accordance with the pressure deviation ΔP. Each table corresponds to a table giving delay time data.
[0032]
In any of the embodiments described so far, the timing for performing the second control after the first control is after a predetermined time has elapsed. However, the upstream control valve 18 and the downstream control valve 19 are respectively connected to the circulation flow path. Even when a pressure sensor is installed in the vicinity of the control valve and the pressure fluctuation detection value in the vicinity of the control valve in which the second control is performed is designated as the timing and the same control is performed, high control can be performed. .
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a first embodiment of the present invention.
FIG. 2 is a system configuration diagram of a second embodiment of the present invention.
FIG. 3 is a system configuration diagram of a third embodiment of the present invention.
FIG. 4 is a flowchart of the first embodiment relating to a control operation.
FIG. 5 is a flowchart of the first embodiment regarding the control operation;
FIG. 6 is a flowchart of the first embodiment relating to a control operation.
FIG. 7 is a flowchart of the first embodiment regarding the control operation;
FIG. 8 is a flowchart of the first embodiment regarding the control operation;
FIG. 9 is a characteristic diagram showing the relationship between the rotational fluctuation amount of the circulation pump and the control valve opening.
FIG. 10 is a characteristic diagram showing the relationship between the rotational fluctuation amount of the circulation pump and the control valve opening.
FIG. 11 is a characteristic diagram showing the relationship between the rotational fluctuation amount of the circulation pump and the delay time.
FIG. 12 is a flowchart of the second embodiment regarding the control operation;
FIG. 13 is a flowchart of the second embodiment regarding the control operation;
FIG. 14 is a flowchart of the second embodiment regarding the control operation;
FIG. 15 is a flowchart of the second embodiment regarding the control operation;
FIG. 16 is a characteristic diagram showing the relationship between pressure deviation and control valve opening.
FIG. 17 is a characteristic diagram showing the relationship between pressure deviation and control valve opening.
FIG. 18 is a characteristic diagram showing the relationship between pressure deviation and delay time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Air flow meter 3 Compressor 4 Pressure sensor 5 Gas-liquid separator 6 Water tank 7 Piping 8 Pressure control valve 9 Fuel storage tank 10 Ejector pump 11 Pressure sensor 12 Gas-liquid separator 13 Pressure control valve 14 Fuel Circulation Path 15 Radiator 16 Circulation Pump 17 Drainage Valve 18 Upstream Control Valve 19 Downstream Control Valve

Claims (12)

燃料電池システムに備えられた循環流路
前記循環流路に流体を循環させる循環ポンプと、
前記循環ポンプを迂回するバイパス流路と、
前記バイパス流路を開閉する弁装置と、
前記循環流路の圧力変動を検出する圧力変動検出装置と、
前記圧力変動量が大きくなるのに応じて前記循環流路からバイパス流路への流量が多くなるように前記弁装置の開度を制御する制御装置
とを備えた燃料電池システム。
A circulating passage provided in the fuel cell system,
A circulation pump for circulating fluid in the circulation channel ;
A bypass flow path bypassing the circulation pump ;
A valve device for opening and closing the bypass flow path;
A pressure fluctuation detection device for detecting pressure fluctuations in the circulation channel;
A fuel cell system comprising: a control device that controls an opening degree of the valve device so that a flow rate from the circulation flow path to the bypass flow path increases as the pressure fluctuation amount increases .
前記弁装置を、前記バイパス流路のポンプ上流側を開閉する上流側制御弁と、ポンプ下流側を開閉する下流側制御弁とで構成し、
前記循環ポンプ下流側の圧力上昇時は、前記下流側制御弁を開いた後、上流側制御弁を開くようにした
請求項1に記載の燃料電池システム。
The valve device comprises an upstream control valve that opens and closes the pump upstream side of the bypass flow path, and a downstream control valve that opens and closes the pump downstream side,
2. The fuel cell system according to claim 1, wherein when the pressure on the downstream side of the circulation pump is increased, the upstream control valve is opened after the downstream control valve is opened.
前記弁装置を、前記バイパス流路のポンプ上流側を開閉する上流側制御弁と、ポンプ下流側を開閉する下流側制御弁とで構成し、
前記循環ポンプ下流側の圧力下降時は、前記上流側制御弁を開いた後、下流側制御弁を開くようにした
請求項1に記載の燃料電池システム。
The valve device comprises an upstream control valve that opens and closes the pump upstream side of the bypass flow path, and a downstream control valve that opens and closes the pump downstream side,
2. The fuel cell system according to claim 1, wherein when the pressure on the downstream side of the circulation pump is lowered, the downstream control valve is opened after the upstream control valve is opened.
前記圧力変動検出装置は、前記循環ポンプの回転数に基づいて圧力変動を検出するように構成されている請求項1から請求項3の何れかに記載の燃料電池システム。  The fuel cell system according to any one of claims 1 to 3, wherein the pressure fluctuation detection device is configured to detect a pressure fluctuation based on a rotational speed of the circulation pump. 前記圧力変動検出装置は、前記循環ポンプ出口部の圧力を検出する圧力センサで構成されている請求項1から請求項3の何れかに記載の燃料電池システム。  The fuel cell system according to any one of claims 1 to 3, wherein the pressure fluctuation detection device includes a pressure sensor that detects a pressure at the outlet of the circulation pump. 前記バイパス流路に、ガス流路内の凝縮水を貯蔵する水タンクを接続した請求項1から請求項5の何れかに記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 5, wherein a water tank that stores condensed water in the gas flow path is connected to the bypass flow path . 前記バイパス流路に、ガス流路内の凝縮水を分離する気液分離器を接続した請求項1から請求項5の何れかに記載の燃料電池システム。 The fuel cell system according to any one of claims 1 to 5, wherein a gas-liquid separator that separates condensed water in the gas flow path is connected to the bypass flow path . 前記循環流路は、燃料電池に冷却水を循環させる冷却水流路である請求項1から請求項7の何れかに記載の燃料電池システム。  The fuel cell system according to any one of claims 1 to 7, wherein the circulation channel is a coolant channel that circulates coolant in the fuel cell. 前記循環流路は、燃料電池の加湿装置に水を供給する加湿水供給流路である請求項1から請求項7の何れかに記載の燃料電池システム。  The fuel cell system according to any one of claims 1 to 7, wherein the circulation channel is a humidified water supply channel for supplying water to a humidifier of the fuel cell. 燃料電池に接続する冷却水循環流路と、
前記冷却水循環流路に冷却水を循環させる循環ポンプと、
前記循環ポンプを迂回するバイパス流路と、
前記バイパス流路を循環ポンプの上流側で開閉する上流側制御弁と、下流側で開閉する下流側制御弁からなる弁装置と、
前記循環流路の圧力変動を検出する圧力変動検出装置と、
前記圧力変動量が大きくなるのに応じて前記循環流路からバイパス流路への流量が多くなるように前記弁装置の開度を制御する制御装置
とを備えた燃料電池システム。
A coolant circulation path connected to the fuel cell;
A circulation pump for circulating cooling water through the cooling water circulation passage;
A bypass flow path bypassing the circulation pump;
An upstream control valve that opens and closes the bypass flow path on the upstream side of the circulation pump, and a valve device that includes a downstream control valve that opens and closes on the downstream side;
A pressure fluctuation detection device for detecting pressure fluctuations in the circulation channel;
A fuel cell system comprising: a control device that controls an opening degree of the valve device so that a flow rate from the circulation flow path to the bypass flow path increases as the pressure fluctuation amount increases.
燃料電池の加湿器と水タンクとを接続する加湿水循環流路と、
前記加湿水循環流路に加湿水を循環させる循環ポンプと、
前記循環ポンプを迂回するバイパス流路と、
前記バイパス流路を循環ポンプの上流側で開閉する上流側制御弁と、下流側で開閉する下流側制御弁からなる弁装置と、
前記循環流路の圧力変動を検出する圧力変動検出装置と、
前記圧力変動量が大きくなるのに応じて前記循環流路からバイパス流路への流量が多くなるように前記弁装置の開度を制御する制御装置
とを備えた燃料電池システム。
A humidified water circulation passage connecting the humidifier of the fuel cell and the water tank;
A circulation pump for circulating the humidified water in the humidified water circulation channel;
A bypass flow path bypassing the circulation pump;
An upstream control valve that opens and closes the bypass flow path on the upstream side of the circulation pump, and a valve device that includes a downstream control valve that opens and closes on the downstream side;
A pressure fluctuation detection device for detecting pressure fluctuations in the circulation channel;
A fuel cell system comprising: a control device that controls an opening degree of the valve device so that a flow rate from the circulation flow path to the bypass flow path increases as the pressure fluctuation amount increases.
燃料電池と加湿器と水タンクとを接続する水循環流路と、
前記水循環流路に水を循環させる循環ポンプと、
前記循環ポンプを迂回するバイパス流路と、
前記バイパス流路を循環ポンプの上流側で開閉する上流側制御弁と、下流側で開閉する下流側制御弁からなる弁装置と、
前記循環流路の圧力変動を検出する圧力変動検出装置と、
前記圧力変動量が大きくなるのに応じて前記循環流路からバイパス流路への流量が多くなるように前記弁装置の開度を制御する制御装置
とを備えた燃料電池システム。
A water circulation passage connecting the fuel cell, the humidifier, and the water tank;
A circulation pump for circulating water in the water circulation channel;
A bypass flow path bypassing the circulation pump;
An upstream control valve that opens and closes the bypass flow path on the upstream side of the circulation pump, and a valve device that includes a downstream control valve that opens and closes on the downstream side;
A pressure fluctuation detection device for detecting pressure fluctuations in the circulation channel;
A fuel cell system comprising: a control device that controls an opening degree of the valve device so that a flow rate from the circulation flow path to the bypass flow path increases as the pressure fluctuation amount increases.
JP2001086645A 2001-03-26 2001-03-26 Fuel cell system Expired - Fee Related JP3879423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001086645A JP3879423B2 (en) 2001-03-26 2001-03-26 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001086645A JP3879423B2 (en) 2001-03-26 2001-03-26 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2002289225A JP2002289225A (en) 2002-10-04
JP3879423B2 true JP3879423B2 (en) 2007-02-14

Family

ID=18941990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001086645A Expired - Fee Related JP3879423B2 (en) 2001-03-26 2001-03-26 Fuel cell system

Country Status (1)

Country Link
JP (1) JP3879423B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555601B2 (en) * 2003-04-30 2010-10-06 本田技研工業株式会社 Fuel cell cooling system
JP4555600B2 (en) * 2003-04-30 2010-10-06 本田技研工業株式会社 Fuel cell cooling system
JP4564247B2 (en) * 2003-08-28 2010-10-20 本田技研工業株式会社 Fuel cell power generator and pressure adjustment method
JP4667902B2 (en) * 2005-02-18 2011-04-13 パナソニック株式会社 Cogeneration system
JP7575233B2 (en) 2020-09-17 2024-10-29 株式会社Subaru Fuel Cell Systems

Also Published As

Publication number Publication date
JP2002289225A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
JP4209611B2 (en) Control device for fuel cell system
JP6766638B2 (en) Fuel cell cooling system
JP4997804B2 (en) Fuel cell system
JP6992601B2 (en) Fuel cell system and method for deriving wind speed in fuel cell system
US9991528B2 (en) Fuel cell system
JP3656613B2 (en) Fuel cell system
JP3879423B2 (en) Fuel cell system
JP4844352B2 (en) Control device for fuel cell system
JP3879435B2 (en) Fuel cell system
JP2008226810A (en) Fuel cell power generation system
JP2003178778A (en) Fuel cell system
JP4515362B2 (en) Fuel cell vehicle and fuel cell control method
JP2009522723A (en) Response to gas uptake into the fuel cell refrigerant
JP2009123600A (en) Fuel cell system, abnormality detecting method of fuel cell system, and vehicle
JP2002115925A (en) Operation method for oil cooling compression freezer
JP2007247936A (en) Air conditioner
JP2011049040A (en) Fuel cell system
JP2005259528A (en) Fuel cell system
JP2005235489A (en) Fuel cell system
JP4388487B2 (en) Chemical injection control device, chemical injection control method, and plant using this control device
JPH05222904A (en) Control device for turbine exhaust condensing system
JP2005078997A (en) Fuel cell apparatus
JP5875444B2 (en) Fuel cell system
CN118336033A (en) Fuel cell low-temperature cold start and cooling system and control method thereof
JP2004259468A (en) Fuel-cell system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees