JP3874943B2 - Film thickness control device - Google Patents
Film thickness control device Download PDFInfo
- Publication number
- JP3874943B2 JP3874943B2 JP26952198A JP26952198A JP3874943B2 JP 3874943 B2 JP3874943 B2 JP 3874943B2 JP 26952198 A JP26952198 A JP 26952198A JP 26952198 A JP26952198 A JP 26952198A JP 3874943 B2 JP3874943 B2 JP 3874943B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- thickness
- film
- layer
- operation end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/92—Measuring, controlling or regulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92009—Measured parameter
- B29C2948/92114—Dimensions
- B29C2948/92152—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92323—Location or phase of measurement
- B29C2948/92438—Conveying, transporting or storage of articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92504—Controlled parameter
- B29C2948/92609—Dimensions
- B29C2948/92647—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2948/00—Indexing scheme relating to extrusion moulding
- B29C2948/92—Measuring, controlling or regulating
- B29C2948/92819—Location or phase of control
- B29C2948/92857—Extrusion unit
- B29C2948/92904—Die; Nozzle zone
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はフィルム(シートとも呼ばれる)の厚み制御装置に関し、さらに詳しくは、溶融樹脂からなるフィルムを成型するダイの厚み調整手段がダイの全幅に亘って配設されたダイの所定幅毎の吐出量を操作して厚みを調整する複数の操作端からなり、少なくとも該操作端に対応する各測定点で検出したフィルムの厚みに基づいて該操作端を操作して厚みを制御する複数の制御ループからなる制御手段によりフィルムの厚みプロフィールを制御するフィルムの厚み制御装置において、厚みプロフィールを効果的に、しかも短時間で安定した定常制御状態に収束できるフィルムの厚み制御装置に関する。
【0002】
【従来の技術】
シート状物、たとえばプラスチックフィルムの幅方向の厚みを所定のプロフィールたとえば均一に制御するフィルムの厚み制御は、特公平6−75906号公報、特公平6−75907号公報、特公平6−75908号公報等の記載のとおり、これを形成する押し出し成形装置、流延成形装置の広幅のダイの全幅に亘って配置された所定幅の吐出量が制御して厚みを調整する複数の操作端、具体的にはヒーター、ギャップ調整具等の操作端ユニットからなる厚み調整手段のそれぞれをこれに対応する下流の各測定点で測定したフィルムの厚みに基づいて制御する多数の制御ループからなる多点の制御手段によるのが一般である。
【0003】
そして、その多点制御手段としては、各制御ループは独立で、検出した厚みと目標値との偏差に周知の制御動作のP,PIあるいはPIDの演算を施して得られる制御出力を操作量として厚み調整手段に出力するPID制御が、構成の簡単な割には安定した効果が得られる点、チューニングが容易である点等の理由により広く利用されている。
【0004】
【発明が解決しようとする課題】
前述の多点制御手段による制御方法は、通常の単層の場合は定常運転状態では実用上ほぼ問題のないプロフィール制御を与える。しかし、立ち上げ時、大きな条件変更時等には目的とする品質となる厚み斑に収束させるには無駄時間が多く、膨大な時間がかかっている問題があった。
【0005】
また多層フィルムの各層のプロフィールを調整する場合、各層間で干渉を起こし収束するのに単層の場合に比べて非常に時間のかかる問題があった。
【0006】
本発明はかかる問題を解消するもので、厚みプロフィールを効果的に、しかも短時間で安定した定常制御状態に収束できるフィルムの厚み制御装置を目的としたものである。
【0007】
【課題を解決するための手段】
本発明は、かかる目的を達成するために鋭意研究した結果、実験等で求めた数式モデルからなるプロセスモデルに、測定した厚み測定値を入力し、制御シミュレーションを行い、目標の厚みプロファイルを収束させたときのシミュレーション結果の制御出力を実プロセスの操作端に操作量として出力する事で、短時間で厚みプロフィールを調整できる事を見出し、なされたものである。
【0008】
すなわち、本発明は、溶融樹脂からフィルムを成型するダイの全幅に亘って配設されたダイの所定幅毎の厚みを調整する複数の操作端と、フィルム幅方向における少なくとも該操作端の夫々に対応する各測定点でフィルムの厚みを測定する厚み計と、所定の周期で測定された各厚み測定値と予め設定された各目標値とから各操作端を制御する制御手段とを備え、製造されるフィルムの厚みを該目標値に制御するようにしたフィルムの厚み制御装置において、前記制御手段が、数式モデルからなるプロセスモデルに基いて設定した所定の制御動作の制御結果を前記厚み測定値と目標値からシミュレーションする制御シミュレーション手段を備え、この制御シミュレーション手段で得られる制御出力により前記操作端を制御し、フィルムの厚み制御状態を非定常制御状態から定常制御状態へ収束させることを特徴とするフィルムの厚み制御装置である。
【0009】
上記本発明において、制御シミュレーション手段は、演算した制御結果が収束したか否かを判定する収束判定手段を備え、入力された前記厚み測定値及び目標値に基いて求めた第1の制御結果が収束判定手段で収束と判定されない時は、該第1の制御結果を次の厚み測定値として第2の制御結果を求め、収束判定手段で判定する手順をその制御結果が収束判定手段で収束と判定されまで繰り返し演算し、収束と判定された時の制御出力を前記操作端に出力する構成がデータ処理、特にオンライン処理の面から好ましい。
【0010】
このオンライン処理の面から、前記プロセスモデルは静的な一次線形モデルであることが、中でも近隣の複数の操作端の相互干渉を干渉率を係数とした一次式で近似した線形干渉モデルが、高速処理ができ、かつ制御結果も良好である点で好ましい。
【0011】
なお、フィルムが2層以上の複層フィルムの場合は、前記プロセルモデルを拡張した、他層の操作端からの当該層への影響をプロセスゲインを係数とした一次式で近似した線形多層モデルが同様の理由から好ましい。
以下、本発明の詳細を説明する。
【0012】
【発明の実施の形態】
以下に図を引用しながら本発明を3層構成の多層フィルムのダイを用いた製造プロセスに適用した実施例に基いて説明する。
【0013】
図1は、本発明の実施例の基本構成の概略説明図である。図1に於いて、ダイ1は、特開平8-52782号公報、実開平7-15321号公報等で公知の、溶融樹脂を層状にする複数の流路を備え、これを合流して複数層のフィルム状にして連続的に押出す複層押出ダイ、各層に厚み調整手段2,3を設けた第1の表層/隣接層/第2の表層の3層の複層フィルムを製膜するようになっており、各層の原料樹脂は図示省略された表層樹脂用押し出し機と隣接層樹脂用押し出し機より溶融押し出され、ダイ1の各層のマニホールド(図示省略)に供給される。なお、各層の厚み調整手段2,3は公知の後述の構成で、所定幅を調整する調整ユニットをフィルム全幅に亙って並べて設けた構成となっている。
【0014】
フィルムの層構成としては、本例では3層構成となっているが、単層であっても、2層以上からなる多層フィルムであってもよい。フィルム5の構成が2層であれば、各層の樹脂はダイに供給される上流で合流されダイスリットより押し出されても良いし、ダイ内で合流されても良い。3層以上であれば、各層の厚みを制御するためにダイ1内で合流させる方が、制御性がよい。
【0015】
多層フィルムの層構成が3層以上であれば、本例のように表層用樹脂はダイ内で隣接層を挟み込むようにしてダイ1のスリットから押し出される。押し出された多層フィルム5は冷却ドラム4によって冷却固化され、延伸装置6によって延伸され、巻き取り装置9によって巻き取られる。
【0016】
延伸されたフィルムの総厚は、放射線の透過を利用して厚さを測定する放射線透過型厚み計7によってフィルムの幅方向に走査しながら測定することによってフィルムの幅方向に測定することができる。延伸されたフィルムの表層厚みは、表層のみの厚みを測定する表層厚み計8によって放射線透過型厚み計7同様フィルムの幅方向に走査しながら測定されることによって測定される。このとき、放射線透過型厚み計7と表層厚み計8の位置は同期して走査することが隣接層の厚みを求める上で好ましい。
【0017】
測定された各層の厚みデータはフィルムの幅方向の測定位置データと共にコンピュータからなるコントローラ10に入力され、フィードバックされる。コントローラ10は、複層フィルム5の表層と全層の厚み測定値とその測定位置データが入力される入力装置と、各層毎に各操作端に対応する各測定位置での厚み測定値と予め設定された各目標厚みと比較してその差がゼロになるように各制御出力を演算する演算装置と、処理手順、演算結果等の必要データを記憶するメモリと、演算装置からの各制御出力に従って厚みを調整する各操作端からなる厚み調整手段2,3と、モニタ、キーボード、マウスなどの入出力装置から構成される。
【0018】
なお、隣接層の厚み測定値は、コントローラ10で各測定位置での全層の厚み測定値から表層の厚み測定値を減ずることによって求めるようになっている。
【0019】
また、厚み調整手段2,3の操作端は、ダイ幅方向に沿って所定幅の各層の厚みを制御可能なものならばいかような構成でも良く、従来技術で述べた各種の公知の方式が適用できる。。しかし、表層の厚み調整手段2は、操作性、保全性、ダイの構造の簡易化等の面から、ヒーターを用いてダイリップ温度を変化させることによって樹脂流量を変化させる温度調整方式が好ましい。一方、隣接層の厚み調整手段3は、操作性、保全性、ダイの構造の簡易化の面から、ヒートボルトを用いてダイ内流路の開度を変化させることによって樹脂流量を変化させるヒートボルト方式が好ましい。
【0020】
ところで、複層フィルムが表層と隣接層とで屈折率が異なるものでは、両層の界面において反射があるため、その表層の厚みは、この界面の反射光と表層の表面での反射光の光干渉を用いて層厚みを測定する光干渉型膜厚計によって薄い場合にも安定して測定することができ、本例の表層厚み計にはこの膜厚計を適用した。
【0021】
本発明の適用できる複層フィルムの表層の材は、光線を透過し、ダイで押出成型可能な全ての樹脂を包含する。またその隣接層の材は、ダイで押出成型可能な全ての樹脂を包含するが、表層と独立に制御する場合は表層膜厚の測定の面から表層と屈折率が異なるものが好ましい。これらの樹脂の代表的な例としては、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリエチレンなどが挙げられる。また、これらの共重合体、混合体であっても、さらに他の添加剤などが含有されたものであってもよい。
【0022】
ところで、本例の演算装置は、以下の制御手段で構成されている。図2は厚み制御の基本構成のブロック図で、図3は図2の基本構成のコントローラ部を構成する制御手段の構成のフローチャート図である。
【0023】
図3に示すように、制御手段は、各層の各操作端について厚み偏差が予め設定された製品品質目標である厚み斑などの管理値からそれぞれの層について定めた閾値内か否かで厚み制御が目標厚みに収束したかを判定する収束判定手段を備え、一定の周期で先ず厚み測定値と目標厚みとの厚み偏差入力を求め、これの収束判定を行うようになっている。そして、厚み偏差が閾値以内と収束していれば、現在の制御出力のままとし、同じ操作量を操作端に継続出力する。
【0024】
厚み偏差が閾値を越えて収束していないと収束判定手段が判定すると、以下の制御シミュレーション手段により制御を行う。すなわち、図示のように、制御シミュレーション手段は、先ず、前記の厚み偏差入力に基いて各層厚み制御演算部で予め設定された制御動作の制御アルゴリズム(本例では周知のPID制御を用いた)により制御演算をして、各層の各操作端に対する第1回目の制御出力を得る。そしてこの第1回目の制御出力から実験或いは理論又はこの両者を併用して求めた図2のフィルムの厚み制御の実際のプロセスを数式モデルで近似表現したプロセスモデルに基いて制御結果を演算してシミュレーションによる第1回目の制御結果すなわち第1回目の制御出力で生ずる第1回目の各層厚みプロファイルのシミュレーションによる結果を得る。次いで、この制御シミュレーション手段の結果を収束判定手段で判定し、収束していないと判定された場合は、第1回目の制御結果を第2回目の厚み測定として第1回目と同じ演算をして第2回目の制御結果を求め、この第2回目目の制御結果を収束判定手段で判断する。そして、収束していないと判定されるとこの第2回目の制御結果を第3回目の厚み測定として、この手順をシミュレーションの制御結果が収束するまで繰り返す。そして、該制御結果が収束判定手段により収束と判定された際のシミュレーション手段の制御出力を各操作端に操作量として出力するようになっている。
【0025】
このようにプロセスモデルを用いて制御シミュレーション手段により制御出力を求めることによって、厚みが収束するであろう制御出力を出力できることから、従来のPID制御に比べて、非常に短時間で厚みプロフィールを調整できる。なお、本例では制御動作にPID制御を用いたものを示したが、その他P,PI制御、最短時間制御等種々の制御動作が適用できる。また、実プロセスの厚み制御の制御結果と制御シミュレーション手段での制御結果の判定を同一の収束判定手段で判定するものを例示したが、実プロセスの制御結果は変動幅が一定範囲内の定常状態を判定する状態判定手段として、両者に個別の判定手段を用いるようにしてもよい。この方式では、より広範なプロセスに対応できる利点がある。
【0026】
上述の制御シミュレーション手段に用いるプロセスモデルは、本例では図4にフローチャートで示したものを用いた。このプロセスモデルは多層フィルムの製膜工程を簡単な数式モデルで近似表現したもので、以下の構成となっている。
【0027】
まず、前述の制御動作の制御演算で得られた各層の各操作端に対する制御出力が入力されると、その変化分を求めて変化分に対し、プロセスゲインを乗ずることによって制御出力の変化分を厚み変化分に換算する。この換算において、各操作端nに対応する第1、第2の表層の厚み変化△H1(n),△H2(n)および隣接層の厚み変化△R(n)はその層間干渉をプロセスゲインAijで評価し、次の一次式の線形多層モデルで求めた。ここで、△OH1(n)、△OH2(n)、 △OR(n)は各層の各操作端nの制御出力の変化分である。
【0028】
【数1】
△H1(n)=A11・△OH1(n)+A1r・△OR(n)+A12・△OH2(n)
△R(n)=Ar1・△OH1(n)+Arr・△OR(n)+Ar2・△OH2(n)
△H2(n)=A21・△OH1(n)+A2r・△OR(n)+A22・△OH2(n)
【0029】
そして、各層のフィルムに対する各操作端nに対応する厚み測定値としての厚み変化H1(n)、H2(n)、R(n)は、各層におけるフィルムの幅方向の操作端の間の干渉、および延伸倍率を考慮し、干渉率Bk,nを係数とした次式の一次式による線形干渉モデルで求めた。
【0030】
【数2】
【0031】
なお、上式では、当該操作端nに対して左右の各側で近接する2個の操作端n−2、n−1及びn+1、n+2まで干渉ありとし、それより遠い操作端の影響はないとした。なお、この個数はプロセスに応じて実験等により求めることが好ましい。
【0032】
なお、実プロセスでは、通常操作端に出力を出してからその変化を測定するまで時定数と無駄時間を伴うので、プロセスモデルとしてはこの動的プロセスも近似した図4の〔〕内の時定数計算、無駄時間計算を含めた数式モデルが正確であるが、厚みプロファイルを求めるのが目的であるので、この動的プロセスを無視した静的モデルを用いた。これにより演算処理が大幅に簡略化し、オンライン処理に適したモデルが得られた。
【0033】
制御シミュレーション手段は、以上のプロセスモデルで得られた厚み変化量を、実プロセスではダイより押し出される樹脂の量が時間当たりほぼ一定となるので、これを考慮してフィルムの幅方向の厚み変化量の総和が一定になるように均一化の補正をする。そして、この補正後の厚み変化分を前回の制御結果に加算することによって、新しいシミュレーション結果すなわち各層の厚み出力を得るようになっている。
以下、上述の実施例による製膜例を説明する。
【0034】
【製膜例】
第1の表層/隣接層(芯層)/第2の表層の3層構成の複層フィルムを製膜した。両表層はそれぞれ同じ樹脂を用いた。表層用のポリエステル原料として、酢酸カリウムをジカルボン酸成分に対し12mmol%、平均粒子径0.9μmのカオリンを0.3wt%添加した固有粘度が0.60のポリエチレンテレフタレートのペレットを用い、これを170℃で3時間乾燥した後、押出機に供給し、280℃で溶融押出した。
【0035】
一方、芯層用のポリオレフィン原料としてアナターゼ型チタンを1.0wt%と3,5−ジカルボキシベンゼンスルホン酸テトラ−n−ブチルホスホニウムを0.05wt%含有させたポリプロピレン(溶融温度Tm:152℃、メルトフローレイト:5g/10分、エチレン共重合ポリプロピレンであり、エチレン共重合量3mol%)のペレットを用い、100℃で1時間乾燥した後、別の押出機に供給し、ポリエチレンテレフタレートと同様の温度280℃で溶融押出した。
【0036】
各々の溶融ポリマーをダイ内部で合流させ、ポリエチレンテレフタレート/ポリプロピレン/ポリエチレンテレフタレートの3層多層構造とした後、口金から吐出させ、次いで20℃に保たれた冷却ドラムに静電荷を印加しながら巻き付けることにより冷却固化させて3層の未延伸多層フィルムとした。この未延伸多層フィルムを加熱ロールに接触させて80℃に加熱した後、長手方向に3.6倍延伸し、直ちに20℃まで冷却した。続いて横方向にテンター式横延伸装置を用いて90℃で3.9倍延伸した後、120℃で熱処理を施し、室温まで冷却した後巻き取った。
【0037】
かくして得られた二軸延伸多層フィルムは、表層のポリエチレンテレフタレート層の平均厚みが1.5μm、芯層のポリプロピレン層の平均厚みが5μmであった。
【0038】
該フィルムを製造する際、全層を測定するための放射線透過型厚み計として、β線厚み計で全層の厚みを測定した。また、表層の厚みを測定するための光干渉型膜厚計として、ハロゲンランプの光を光ファイバーを通してフィルムに照射し、反射した光を同軸の光ファイバーで分光光度計(具体的には、大塚電子(株)製分光光度計MCPD−2000)に導きそのときに発生する光干渉波形をフーリエ変換し厚みの成分に分解し、最大のピークをとる厚みをフィルム表面の厚みとする構成を用い、これを図示のようにフィルム5の両側に設け、両面の表層を夫々測定した。また、本測定はオンラインで行い、これらのデーターをもとに各層の厚みを調整した。また、β線のヘッドのフィルムの幅方向位置と光ファイバーのフィルムの幅方向位置は同期しており、幅方向に置いては同じ時刻に同じ場所で測定できるようにした。
【0039】
各厚み計で測定されたフィルムの幅方向の厚みデータはコンピュータからなるコントローラに入力し、下式によって各測定位置での芯層厚みを計算した。
芯層厚み測定値=全層厚み測定値−表層厚み測定値
以上の各層の厚み測定値をコントローラに入力することによって表層においてはヒーターからなる操作端に対して、また芯層においてはヒートボルトからなる操作端に対する出力が演算され、各操作量を操作端に出力することによって幅方向に各層の厚み斑が良好なフィルムを得ることができた。
【0040】
この時コントローラ内の制御手段の制御シミュレーション手段に用いたプロセスモデルのプロセスゲインAijの値を表1に示す。表で自層が制御対象の当該層である。
【0041】
【表1】
【0042】
表1より、本例での前述の線形多層モデルは次式となる。
【0043】
【数3】
△H1(n)=0.5 △OH1(n)+0.3△OR(n)+0.1△OH2(n)
△R(n)=0.2△OH1(n)+0.4△OR(n)+0.2△OH2(n)
△H2(n)=0.1△OH1(n)+0.3△OR(n)+0.5△OH2(n)
また、干渉率Bk,nの値を表2に示す。
【0044】
【表2】
【0045】
表2より、本例での線形干渉モデルは次式となる。
【0046】
【数4】
【0047】
この時各層各操作端毎のプロセスゲイン、干渉率を入力すべきであるが、測定、入力が煩雑であること、同じ層であれば、ばらつきを無視しても制御性に大きな影響がなかったことから同層の各操作端で同一とした。
【0048】
各層厚みプロファイルにおける厚み斑のばらつきが調整前に20%であり、調整後5%以内に入るまでの時間が従来の方法では8時間費やした。これに対し本調整方法で製膜した結果、1時間で厚み斑のばらつきを5%以内に収束させることができた。
【0049】
【発明の効果】
以上のとおり、本発明では従来の多点制御手段で多層フィルム各層の厚みプロファイルを調整するのに非常に多くの時間を費やしていたのに対し、短時間で目標品質である厚みに制御でき、歩留まりを飛躍的に向上できる。
【図面の簡単な説明】
【図1】図1は、本発明の実施例の基本構成の説明図である。
【図2】図2は、厚み制御の基本構成のブロック図である。
【図3】図3は、実施例の制御手段のフローチャート図である。
【図4】図4は、実施例のプロセスモデルのフローチャート図である。
【符号の説明】
1 ダイ
2 表層厚みアクチュエータ
3 芯層厚みアクチュエータ
4 冷却ドラム
5 フィルム
6 延伸装置
7 全層厚み計
8 表層厚み計
9 巻き取り装置
10 コントローラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thickness control device for a film (also referred to as a sheet), and more specifically, discharge at a predetermined width of a die in which a die thickness adjusting means for forming a film made of a molten resin is disposed over the entire width of the die. A plurality of control loops comprising a plurality of operation ends for adjusting the thickness by manipulating the amount, and controlling the thickness by operating the operation ends based on at least the thickness of the film detected at each measurement point corresponding to the operation end. The present invention relates to a film thickness control apparatus for controlling a film thickness profile by a control means comprising: a film thickness control apparatus capable of converging a thickness profile effectively and in a stable steady state in a short time.
[0002]
[Prior art]
The thickness control of a sheet-like material, for example, a film for uniformly controlling the thickness in the width direction of a plastic film, for example, a film thickness control is performed in JP-B-6-75906, JP-B-6-75907, and JP-B-6-75908. As described in the above, a plurality of operation ends for adjusting the thickness by controlling the discharge amount of a predetermined width arranged over the entire width of the wide die of the extrusion molding apparatus and the casting molding apparatus for forming this, specifically Multi-point control consisting of a number of control loops for controlling the thickness adjusting means consisting of operation end units such as heaters and gap adjusters based on the thickness of the film measured at the corresponding downstream measuring points. Generally by means.
[0003]
And as the multipoint control means, each control loop is independent, and the control output obtained by calculating P, PI or PID of a known control operation to the deviation between the detected thickness and the target value is used as the operation amount. The PID control output to the thickness adjusting means is widely used for the reason that a stable effect can be obtained for the simple structure and the tuning is easy.
[0004]
[Problems to be solved by the invention]
The control method using the above-described multipoint control means provides profile control that is practically no problem in a steady operation state in the case of a normal single layer. However, there is a problem that a lot of time is wasted and it takes an enormous amount of time to converge on the thickness unevenness of the target quality at the time of start-up, a large change of conditions, and the like.
[0005]
Further, when adjusting the profile of each layer of the multilayer film, there is a problem that it takes much time to cause interference between the layers and converge as compared with the case of a single layer.
[0006]
The present invention solves such a problem, and an object of the present invention is to provide a film thickness control device capable of converging a thickness profile effectively and in a stable steady state in a short time.
[0007]
[Means for Solving the Problems]
As a result of earnest research to achieve such an object, the present invention inputs a measured thickness measurement value into a process model consisting of a mathematical model obtained through experiments, etc., performs control simulation, and converges the target thickness profile. It was discovered that the thickness profile can be adjusted in a short time by outputting the control output of the simulation result as the operation amount to the operation end of the actual process.
[0008]
That is, the present invention provides a plurality of operation ends for adjusting the thickness for each predetermined width of a die disposed over the entire width of a die for forming a film from a molten resin, and at least each of the operation ends in the film width direction. A thickness meter that measures the thickness of the film at each corresponding measurement point, and a control means that controls each operation end from each thickness measurement value measured at a predetermined cycle and each preset target value, in the thickness control device for the film as the thickness of the the film is controlled to the target value, said control means, said thickness measurement result of the control of a predetermined control operation is set based on a process model consisting of several expression model includes the value and the target value mustard simulation control simulation means, controls the operation end by the obtained control output by the control simulation means, the thickness of the film system A thickness control system of the film, characterized in that for converging the state from the non-stationary control state to the steady control state.
[0009]
In the present invention, the control simulation means includes convergence determination means for determining whether or not the calculated control result has converged, and the first control result obtained based on the inputted thickness measurement value and target value is When the convergence determination means does not determine convergence, the second control result is obtained using the first control result as the next thickness measurement value, and the procedure for determining by the convergence determination means is determined as convergence by the convergence determination means. It is preferable from the viewpoint of data processing, particularly online processing, to repeatedly calculate until it is determined and output the control output when it is determined to converge to the operation end.
[0010]
From the viewpoint of online processing, the process model is a static first-order linear model, and in particular, a linear interference model that approximates the mutual interference of a plurality of neighboring operation ends with a first-order equation with a coefficient of interference is a high-speed. It is preferable in that it can be processed and the control result is good.
[0011]
When the film is a multi-layer film having two or more layers, a linear multilayer model that extends the above-mentioned process model and approximates the influence on the layer from the operation end of the other layer by a linear expression with a process gain as a coefficient. It is preferable for the same reason.
Details of the present invention will be described below.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on an example in which the present invention is applied to a manufacturing process using a multilayer film die having a three-layer structure with reference to the drawings.
[0013]
FIG. 1 is a schematic explanatory diagram of a basic configuration of an embodiment of the present invention. In FIG. 1, a
[0014]
The layer structure of the film is a three-layer structure in this example, but may be a single layer or a multilayer film composed of two or more layers. If the structure of the film 5 is two layers, the resin of each layer may be merged upstream from the die and extruded from the die slit, or may be merged in the die. If there are three or more layers, controllability is better when they are merged in the
[0015]
If the multilayer film has three or more layers, the surface layer resin is extruded from the slit of the
[0016]
The total thickness of the stretched film can be measured in the width direction of the film by measuring while scanning in the width direction of the film with a radiation transmission type thickness meter 7 that measures the thickness using transmission of radiation. . The surface layer thickness of the stretched film is measured by measuring the surface layer thickness meter 8 measuring the thickness of only the surface layer while scanning in the width direction of the film in the same manner as the radiation transmission type thickness meter 7. At this time, it is preferable that the positions of the radiation transmission type thickness meter 7 and the surface layer thickness meter 8 are scanned in synchronization in order to obtain the thickness of the adjacent layer.
[0017]
The measured thickness data of each layer is input to the controller 10 including a computer together with measurement position data in the width direction of the film and fed back. The controller 10 includes a thickness measurement value at each measurement position corresponding to each operation end for each layer, and an input device for inputting thickness measurement values and measurement position data of the surface layer and all layers of the multilayer film 5 in advance. In accordance with each control output from the arithmetic device that calculates each control output so that the difference is zero compared with each target thickness that has been performed, a memory that stores necessary data such as processing procedures and calculation results, etc. It is composed of thickness adjusting means 2 and 3 each having an operation end for adjusting the thickness, and input / output devices such as a monitor, a keyboard and a mouse.
[0018]
In addition, the thickness measurement value of an adjacent layer is calculated | required by subtracting the thickness measurement value of a surface layer from the thickness measurement value of all the layers in each measurement position with the controller 10. FIG.
[0019]
Further, the operation ends of the thickness adjusting means 2 and 3 may have any configuration as long as the thickness of each layer having a predetermined width can be controlled along the die width direction, and various known methods described in the prior art can be used. Applicable. . However, the surface layer thickness adjusting means 2 is preferably a temperature adjusting method in which the resin flow rate is changed by changing the die lip temperature using a heater from the viewpoints of operability, maintainability, and simplification of the die structure. On the other hand, the thickness adjusting means 3 of the adjacent layer is a heat that changes the resin flow rate by changing the opening of the flow path in the die using a heat bolt from the viewpoint of operability, maintainability, and simplification of the die structure. The bolt system is preferred.
[0020]
By the way, when the multilayer film has a refractive index different between the surface layer and the adjacent layer, there is reflection at the interface between the two layers, so the thickness of the surface layer is the light reflected from the interface and the surface of the surface layer. Even when it is thin, it can be measured with an optical interference type film thickness meter that measures the layer thickness using interference, and this film thickness meter was applied to the surface layer thickness meter of this example.
[0021]
The surface layer material of the multilayer film to which the present invention can be applied includes all resins that transmit light and can be extruded by a die. Further, the material of the adjacent layer includes all resins that can be extruded by a die, but when controlled independently from the surface layer, a material having a refractive index different from that of the surface layer is preferable in terms of measurement of the surface layer thickness. Typical examples of these resins include polyesters such as polyethylene terephthalate and polyethylene naphthalate, and polyethylene. Also, these copolymers and mixtures may be those containing other additives.
[0022]
By the way, the arithmetic unit of this example is composed of the following control means. FIG. 2 is a block diagram of the basic configuration of thickness control, and FIG. 3 is a flowchart of the configuration of the control means constituting the controller unit of the basic configuration of FIG.
[0023]
As shown in FIG. 3, the control means controls the thickness based on whether or not the thickness deviation at each operation end of each layer is within a threshold value determined for each layer from a management value such as thickness unevenness, which is a preset product quality target. Convergence determining means for determining whether or not has converged to the target thickness is obtained, and a thickness deviation input between the thickness measurement value and the target thickness is first obtained at a constant period, and the convergence determination is performed. If the thickness deviation converges within the threshold value, the current control output is maintained and the same operation amount is continuously output to the operation end.
[0024]
If the convergence determination means determines that the thickness deviation has not converged beyond the threshold, control is performed by the following control simulation means. That is, as shown in the figure, the control simulation means first uses a control algorithm of a control operation preset in each layer thickness control calculation unit based on the thickness deviation input (in this example, a well-known PID control is used). A control operation is performed to obtain a first control output for each operation end of each layer. Then, a control result is calculated based on a process model obtained by approximating the actual process of film thickness control in FIG. 2 obtained from the first control output by experiment or theory or a combination of both with a mathematical model. A first control result by simulation, that is, a result by simulation of each first layer thickness profile generated by the first control output is obtained. Next, the result of this control simulation means is determined by the convergence determination means, and if it is determined that the convergence has not occurred, the first control result is calculated as the first thickness measurement as the second thickness measurement. The second control result is obtained, and the second control result is determined by the convergence determination means. And if it determines with not having converged, this 2nd control result will be made into the 3rd thickness measurement, and this procedure will be repeated until the control result of simulation converges. Then, the control output of the simulation means when the control result is determined to be converged by the convergence determining means is output as an operation amount to each operation end.
[0025]
By obtaining the control output by the control simulation means using the process model in this way, it is possible to output the control output where the thickness will converge, so the thickness profile can be adjusted in a very short time compared to conventional PID control it can. In this example, the control operation using PID control is shown, but various control operations such as P, PI control, and shortest time control can be applied. Moreover, although the control result of the thickness control of the actual process and the determination of the control result by the control simulation unit are exemplified by the same convergence determination unit, the control result of the actual process is a steady state with a fluctuation range within a certain range. As the state determination means for determining whether or not, separate determination means may be used for both. This method has an advantage that it can cope with a wider range of processes.
[0026]
In this example, the process model shown in the flowchart of FIG. 4 is used for the above-described control simulation means. This process model is an approximate expression of a multilayer film forming process using a simple mathematical model and has the following configuration.
[0027]
First, when the control output for each operation end of each layer obtained by the control calculation of the control operation is input, the change is obtained and the change in the control output is calculated by multiplying the change by the process gain. Convert to thickness change. In this conversion, the thickness changes ΔH1 (n) and ΔH2 (n) of the first and second surface layers corresponding to each operation end n and the thickness change ΔR (n) of the adjacent layer are the process gain. Evaluation was made using Aij, and the linear linear model of the following linear expression was used. Here, ΔOH1 (n), ΔOH2 (n), and ΔOR (n) are changes in the control output of each operation end n of each layer.
[0028]
[Expression 1]
△ H1 (n) = A11 ・ △ OH1 (n) + A1r ・ △ OR (n) + A12 ・ △ OH2 (n)
△ R (n) = Ar1 ・ △ OH1 (n) + Arr ・ △ OR (n) + Ar2 ・ △ OH2 (n)
△ H2 (n) = A21 ・ △ OH1 (n) + A2r ・ △ OR (n) + A22 ・ △ OH2 (n)
[0029]
The thickness changes H1 (n), H2 (n), and R (n) as thickness measurement values corresponding to each operation end n for the film of each layer are the interference between the operation ends in the width direction of the film in each layer, In consideration of the stretching ratio, the linear interference model was obtained by a linear expression of the following expression using the interference rate Bk, n as a coefficient.
[0030]
[Expression 2]
[0031]
In the above equation, there is interference between the two operation ends n-2, n-1 and n + 1, n + 2 that are close to the operation end n on the left and right sides, and there is no influence from the operation end farther than that. It was. This number is preferably obtained by experiments or the like according to the process.
[0032]
In the actual process, there is a time constant and dead time from the output to the normal operation end until the change is measured, so the time constant in [] in FIG. 4 that approximates this dynamic process is used as a process model. The mathematical model including calculation and dead time calculation is accurate, but since the purpose is to obtain the thickness profile, a static model that ignores this dynamic process was used. This greatly simplified the arithmetic processing, and a model suitable for online processing was obtained.
[0033]
The control simulation means considers the amount of thickness change in the width direction of the film in consideration of the amount of thickness change obtained by the above process model, since the amount of resin extruded from the die is almost constant per time in the actual process. The uniformity is corrected so that the sum of the values becomes constant. Then, by adding the corrected thickness change to the previous control result, a new simulation result, that is, the thickness output of each layer is obtained.
Hereinafter, the example of film forming by the above-mentioned Example is demonstrated.
[0034]
[Example of film formation]
A multilayer film having a three-layer structure of first surface layer / adjacent layer (core layer) / second surface layer was formed. The same resin was used for both surface layers. As a polyester raw material for the surface layer, polyethylene terephthalate pellets having an intrinsic viscosity of 0.60 obtained by adding potassium acetate in an amount of 12 mmol% with respect to the dicarboxylic acid component and 0.3 wt% of kaolin having an average particle diameter of 0.9 μm were used. After drying at 0 ° C. for 3 hours, the mixture was supplied to an extruder and melt-extruded at 280 ° C.
[0035]
On the other hand, polypropylene containing 1.0 wt% anatase type titanium and 0.05 wt% 3,5-dicarboxybenzenesulfonic acid tetra-n-butylphosphonium as a polyolefin raw material for the core layer (melting temperature Tm: 152 ° C., Melt flow rate: 5 g / 10 min, ethylene copolymerized polypropylene, ethylene copolymerization amount 3 mol%), dried at 100 ° C. for 1 hour, then fed to another extruder, the same as polyethylene terephthalate Melt extrusion was performed at a temperature of 280 ° C.
[0036]
Each molten polymer is merged inside the die to form a multilayer structure of polyethylene terephthalate / polypropylene / polyethylene terephthalate, then discharged from the die, and then wound around a cooling drum kept at 20 ° C. while applying an electrostatic charge. Was cooled and solidified to obtain a three-layer unstretched multilayer film. The unstretched multilayer film was brought into contact with a heating roll and heated to 80 ° C., then stretched 3.6 times in the longitudinal direction, and immediately cooled to 20 ° C. Subsequently, the film was stretched 3.9 times at 90 ° C. using a tenter-type lateral stretching apparatus in the transverse direction, then heat treated at 120 ° C., cooled to room temperature, and wound up.
[0037]
The biaxially stretched multilayer film thus obtained had an average thickness of the surface polyethylene terephthalate layer of 1.5 μm and an average thickness of the core polypropylene layer of 5 μm.
[0038]
When manufacturing the film, the thickness of all layers was measured with a β-ray thickness meter as a radiation transmission type thickness meter for measuring all layers. In addition, as an optical interference type film thickness meter for measuring the thickness of the surface layer, the film is irradiated with light from a halogen lamp through an optical fiber, and the reflected light is spectrophotometer (specifically, Otsuka Electronics ( Incorporated spectrophotometer MCPD-2000), the optical interference waveform generated at that time is Fourier transformed and decomposed into thickness components, and the maximum peak thickness is used as the thickness of the film surface. As shown in the figure, the film 5 was provided on both sides, and the surface layers on both sides were measured. Moreover, this measurement was performed online and the thickness of each layer was adjusted based on these data. In addition, the position of the β-ray head in the width direction of the film and the position of the optical fiber in the width direction are synchronized so that measurement can be performed at the same time at the same time in the width direction.
[0039]
The thickness data in the width direction of the film measured by each thickness gauge was input to a controller composed of a computer, and the core layer thickness at each measurement position was calculated by the following equation.
Core layer thickness measurement value = total layer thickness measurement value-surface layer thickness measurement value or more, by inputting the thickness measurement value of each layer to the controller, in the surface layer from the operation end consisting of a heater, and in the core layer from a heat bolt The output with respect to the operation end to be obtained was calculated, and by outputting each operation amount to the operation end, it was possible to obtain a film with favorable thickness unevenness in each layer in the width direction.
[0040]
Table 1 shows the value of the process gain Aij of the process model used for the control simulation means of the control means in the controller at this time. Self layers are the layers of the controlled plant in a table.
[0041]
[Table 1]
[0042]
From Table 1, the above-mentioned linear multilayer model in this example is as follows.
[0043]
[Equation 3]
△ H1 (n) = 0.5 △ OH1 (n) + 0.3 △ OR (n) + 0.1 △ OH2 (n)
ΔR (n) = 0.2ΔOH1 (n) + 0.4ΔOR (n) + 0.2ΔOH2 (n)
△ H2 (n) = 0.1 △ OH1 (n) + 0.3 △ OR (n) + 0.5 △ OH2 (n)
Table 2 shows the values of the interference rate Bk, n.
[0044]
[Table 2]
[0045]
From Table 2, the linear interference model in this example is as follows.
[0046]
[Expression 4]
[0047]
At this time, the process gain and interference rate should be input for each operation end of each layer, but measurement and input are complicated, and if the same layer is used, ignoring variations did not significantly affect controllability. Therefore, it was made the same at each operation end of the same layer.
[0048]
The variation in thickness unevenness in each layer thickness profile was 20% before adjustment, and 8 hours was spent in the conventional method until it became within 5% after adjustment. On the other hand, as a result of film formation by this adjustment method, the variation in thickness variation could be converged within 5% in 1 hour.
[0049]
【The invention's effect】
As described above, in the present invention, while spending a great deal of time to adjust the thickness profile of each layer of the multilayer film with the conventional multipoint control means, the thickness can be controlled to the target quality in a short time, Yield can be dramatically improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a basic configuration of an embodiment of the present invention.
FIG. 2 is a block diagram of a basic configuration of thickness control.
FIG. 3 is a flowchart of the control means of the embodiment.
FIG. 4 is a flowchart of the process model of the embodiment.
[Explanation of symbols]
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26952198A JP3874943B2 (en) | 1998-09-24 | 1998-09-24 | Film thickness control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26952198A JP3874943B2 (en) | 1998-09-24 | 1998-09-24 | Film thickness control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000094497A JP2000094497A (en) | 2000-04-04 |
JP3874943B2 true JP3874943B2 (en) | 2007-01-31 |
Family
ID=17473560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26952198A Expired - Fee Related JP3874943B2 (en) | 1998-09-24 | 1998-09-24 | Film thickness control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3874943B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1232392C (en) | 2000-09-21 | 2005-12-21 | 东丽株式会社 | Method of manufacturing sheet, device and program for controling sheet thickness , and sheet |
JP4834946B2 (en) * | 2000-09-21 | 2011-12-14 | 東レ株式会社 | Sheet manufacturing method and sheet thickness control apparatus |
DE102018111764A1 (en) | 2018-05-16 | 2019-11-21 | Windmöller & Hölscher Kg | Method for the automated control of the size of a gap of a nozzle arrangement and control and / or regulating system |
DE102018111766A1 (en) | 2018-05-16 | 2019-11-21 | Windmöller & Hölscher Kg | Method for the automated control of the size of a gap of a nozzle arrangement and control and / or regulating system |
DE102018127670A1 (en) | 2018-11-06 | 2020-05-07 | Windmöller & Hölscher Kg | Actuating device for checking an exit thickness of a nozzle exit gap of a flat film machine |
DE102018127671A1 (en) | 2018-11-06 | 2020-05-07 | Windmöller & Hölscher Kg | Procedure for the control of a thickness profile of a film web |
DE102018127673A1 (en) * | 2018-11-06 | 2020-05-07 | Windmöller & Hölscher Kg | Method for the control of a nozzle gap of an outlet nozzle for a film web of a flat film machine |
JP7496940B2 (en) * | 2020-12-09 | 2024-06-07 | スリーエム イノベイティブ プロパティズ カンパニー | Slot die positioning with ringing constraints |
-
1998
- 1998-09-24 JP JP26952198A patent/JP3874943B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000094497A (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3828950B2 (en) | Method for calculating position corresponding to die bolt on biaxially stretched film and method for controlling thickness of biaxially stretched film using the same calculation method | |
JP3874943B2 (en) | Film thickness control device | |
EP0273985A1 (en) | Method and apparatus for producing thermoplastic resin film | |
KR0170434B1 (en) | Process for producing flat and annular-cross-section extrudates and device for implementing the process | |
US5059265A (en) | Method of controlling thickness of oriented resin film | |
EP0662036B1 (en) | Device and process for controlling the bead size in the glazing rolls | |
EP0608918B1 (en) | Film thickness controller | |
JP2001030340A (en) | Apparatus and method for controlling thickness of film | |
JP2000071309A (en) | Manufacture of film | |
Hur et al. | Modeling and control of a plastic film manufacturing web process | |
JPS6034827A (en) | Controlling method of power for heating primary molded article for molding bottle by biaxial orientation blow molding | |
CN108016027B (en) | A kind of control method of BOPP bidirectional stretching system | |
JP2014061615A (en) | Extrusion t die apparatus | |
JP2001030339A (en) | Film taking-up method | |
CA1060172A (en) | Process for producing polymeric film and apparatus therefor | |
CN104723581A (en) | Preparation method of fluorine layer-containing polyimide composite material and equipment for method | |
JP2000211016A (en) | Method for controlling thickness profile of film | |
JP2002187196A (en) | Method for controlling film thickness | |
JP2002028972A (en) | Method for producing film roll | |
KR100942328B1 (en) | One-dimensional modeling of the manufacture of multi-layered material | |
JP2000141447A (en) | Thickness control device for multilayer film | |
JP2002037490A (en) | Film-roll wound-shape measuring device | |
JPS6315725A (en) | Manufacture of thermoplastic resin film | |
JP3260581B2 (en) | Sheet thickness control system | |
CN204526188U (en) | For the preparation of the equipment of fluorine-containing layer composite polyimide material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061025 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |