[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3874635B2 - Sewage treatment method and treatment apparatus - Google Patents

Sewage treatment method and treatment apparatus Download PDF

Info

Publication number
JP3874635B2
JP3874635B2 JP2001254818A JP2001254818A JP3874635B2 JP 3874635 B2 JP3874635 B2 JP 3874635B2 JP 2001254818 A JP2001254818 A JP 2001254818A JP 2001254818 A JP2001254818 A JP 2001254818A JP 3874635 B2 JP3874635 B2 JP 3874635B2
Authority
JP
Japan
Prior art keywords
filtration
water
tank
sludge
sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001254818A
Other languages
Japanese (ja)
Other versions
JP2003062407A (en
Inventor
甬生 葛
聡史 小西
克之 片岡
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001254818A priority Critical patent/JP3874635B2/en
Publication of JP2003062407A publication Critical patent/JP2003062407A/en
Application granted granted Critical
Publication of JP3874635B2 publication Critical patent/JP3874635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚水処理に関するもので、有機性汚水や下水2次処理水の高度処理、染色排水、紙パルプ排水のSS、COD、色度等の除去に用いることができる汚水の処理方法、及び処理装置に関する。
【0002】
【従来の技術】
従来、有機性汚水等の汚水(以下「原水」という)の高度処理、特にリン、難分解COD、色度の除去方法として、凝集沈殿法がある。この場合、原水に対し、予め無機凝集剤を注入して凝集反応させた後、高分子凝集剤を添加する混和槽に導入し、汚泥フロックが形成してから、さらに沈殿池に導入して固液分離を行わなければならない。通常では、凝集汚泥の混合液を沈殿池に導入させ、重力沈降によって汚泥を沈降させた後の上澄液を、処理水として沈殿池から流出させる方法が用いられる。
【0003】
【発明が解決しようとする課題】
しかし、凝集汚泥を沈降させるため、混和槽に高分子凝集剤を添加して、汚泥フロックを大きくしなければならない。また、凝集汚泥を十分沈降させ、良好な処理水を得るためには、それに必要な広い沈降面積を有し、かつ長い滞留時間を与える沈降池が必要であり、処理装置の大型化と設置容積の増大要因となっている。さらに、沈殿池からの流出水中に微細なSSを含有することがあるため、SSの無い高度な処理水を得るためには、砂ろ過等による後段処理が必要となる。
近年、沈殿池に代わって、膜ろ過と凝集反応処理を組み合わせた凝集膜ろ過が用いられている。この場合、固液分離膜として、一般的に精密ろ過膜や限外ろ過膜が用いられる。
【0004】
しかし、ろ過分離手段として、ポンプによる吸引や加圧が必要であり、通常数+kPa〜数百kPaの圧力で行うため、ポンプによる動力が大きく、ランニングコストの増大となっている。また、膜分離ではSSのない清澄な処理水が得られる一方、透過Fluxが低く、膜汚染を防止するため、定期的に薬洗する必要がある。
本発明は、このような従来の課題に鑑みてなされたものであり、小型の装置で、動力所要量を低下でき、低いランニングコストで、安定したFluxで長期間運転できる汚水の処理方法及び処理装置を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記の課題は、以下に記載する各種の手段により解決される。
(1)汚水を凝集反応槽に流入させ、酸性凝集処理した後、該凝集混合液を通水性ろ過体を浸漬したろ過分離槽上部に供給し、該通水性ろ過体表面に凝集汚泥のダイナミックろ過層を形成させ、該通水性ろ過体より水頭圧ででろ過水を得ることを特徴とする汚水の処理方法。
(2)凝集反応槽のpHが4.5〜6.5であることを特徴とする前記(1)記載の汚水の処理方法。
(3)凝集混合液をろ過分離槽に供給するラインに対し、高分子凝集剤を注入することを特徴とする前記(1)又は(2)記載の汚水の処理方法。
【0006】
(4)汚水の供給管を接続し汚水を流入させて凝集反応させる凝集反応槽、前記凝集反応槽からの凝集混合液の供給管を槽の上部に設け、かつ槽内に浸漬したろ過モジュールを設け、前記ろ過モジュールの下方に空洗用散気管を配設したろ過分離槽、前記ろ過モジュール頂部に接続したろ過水を取り出し処理水槽に供給するろ過水ライン、及びpH調整後の処理水を放流する処理水排出管を接続した処理水槽を有し、前記ろ過分離槽の、前記凝集混合液供給ラインに高分子凝集剤の供給管を接続したことを特徴とする汚水の処理装置。
【0007】
【発明の実施の形態】
本発明によれば、有機性汚水等の高度処理として用いられてきた、従来の凝集反応槽の後段にろ過分離槽を設置し、該ろ過分離槽に通水性ろ過体を浸漬し、凝集処理を受けた原水をろ過分離槽上部に供給すれば、ろ過分離槽内の通水性ろ過体により、少ない水頭圧で清澄なろ過水を得ることができる。必要な水頭圧の大きさは通常数cmから数十cmで十分である。
凝集汚泥混合液に対し、低い水頭圧で通水性ろ過体によりろ過を行うと、通水性ろ過体表面に比較的均一であり、ろ過性能の高い凝集汚泥層が形成される。これは1種のダイナミックろ過膜となり、凝集混合液は、ろ過体表面の汚泥ろ過層によってSSが完全に阻止され、清澄なろ過水を得ることができる。
【0008】
本発明者等は、凝集反応槽では、酸性凝集を行い、例えば、pHを4.5〜6.5と設定すると、凝集処理後の汚泥フロックが大きく、透水性の良いものであるため、ろ過体表面に短時間で汚泥のダイナミックろ過層が形成できることを見出した。該汚泥ろ過層はろ過体への付着力が弱く、ろ過時間とともに汚泥ろ過層が肥大し、ろ過抵抗の増加を生じた時、ろ過モジュール下部の空気洗浄管による曝気、及びろ過体内部へ清水を用いた水逆洗を行うことで、容易に剥離することが可能である。更に長時間無機凝集剤添加による凝集処理を行っても、ろ過体表面に無機質のスケールの生成がほとんどなく、ろ過体に対し、酸等の薬品による洗浄は不要である。
【0009】
通水性ろ過体としては、不織布、織布、ろ布、金属網等のいずれを用いても同様な効果が得られる。また、ろ過体形状としては、平面型、円筒型、中空型のいずれを用いることも可能であり、複数個を束ねてろ過体モジュールとして用いることが可能である。
汚泥の流入をろ過分離槽の上部とした結果、凝集汚泥混合液がろ過モジュールより固液分離される際に、凝集汚泥混合液がろ過モジュールのろ過面に沿って層状の流れを形成するため、ダイナミックろ過が行われ、そのろ過により濃縮した汚泥がろ過分離槽下部に沈降する。しかも、定期的な逆洗の際にはろ過面から剥離された汚泥が重力沈降で同槽の下部に沈降して、濃縮汚泥を形成する。ろ過分離槽下部よりこの濃縮汚泥を定常的に排出すれば、ろ過分離槽内部の汚泥混合液の濃度が高くなることがなく、ろ過体表面に常時安定した汚泥のダイナミックろ過層を形成することができる。ダイナミックろ過とは、ろ過の進行によりろ過体のろ布表面に形成された活性汚泥粒子の付着物層により行うろ過である。
【0010】
ろ過体表面に汚泥のダイナミックろ過層が形成されるまでに、ろ過モジュール内に汚泥侵入が生じる。このため、モジュール内部に汚泥の堆積を無くすために、定期的な排泥を行うことが必要となる。この排泥方法としては、ろ過モジュール下部より内部に貫通する排泥管を設け、排出汚泥を凝集反応槽に導入するように設置する。なお、排出動力としては、水頭圧による自然流下が好ましく、水頭圧は、ろ過時水頭圧と同程度とする。
【0011】
【実施例】
以下に、本発明を実施態様の一例を示す図面を用いて詳細に説明する。ただし、本発明は、この実施例のみに限定されるものではない。
【0012】
実施例1
図1は、有機性排水に対する本発明による処理法の一例のフローシートである。
図1に示す如く、流入原水1が凝集反応槽2に流入し、無機凝集剤3とpH調整用の酸またはアルカリ4を添加し、攪拌機5により常時攪拌しながら凝集処理を行っている。凝集処理後の汚泥混合液は、凝集混合液供給ポンプ6より、ろ過分離槽8の上部に送られる。ここで、凝集汚泥のろ過性状に対応して、高分子凝集剤10が凝集混合液供給ライン13に注入される。ろ過分離槽8の上部に流入した凝集混合液がろ過分離槽8内のろ過モジュール9の膜面に沿って流下し、ろ過モジュール9より水頭圧差でろ過を行い、ろ過水ライン14を通じて得られるろ過水が処理水槽17に流入し、処理水20としてNaOH添加でpH調整してから放流される。
【0013】
ろ過体表面に汚泥ろ過層が過剰に成長し、ろ過水量が低下した時、ろ過モジュール9の洗浄を行う。洗浄方法としては、一旦ろ過水弁19を閉じ、ろ過停止してから、ろ過モジュール9下方の空気用散気管12を通じて空洗ブロワ7より曝気して、ろ過体表面の汚泥ろ過層を剥離する。曝気による空洗後は、逆洗ポンプ18よりろ過水をろ過水ライン14からろ過モジュール内部に導入する水逆洗操作で、ろ過体表面付着汚泥の剥離を行った。
【0014】
なお、汚泥のダイナミックろ過層が形成するまでは、ろ過モジュール9内部に汚泥の侵入が起こる。モジュール9内部侵入汚泥を外部に排出するために、水逆洗時に排泥弁15を開放すれば、導入された逆洗排水の一部が、内部侵入汚泥とともに排出汚泥16として、凝集反応槽2に排出することが可能である。水逆洗終了後もさらに排泥弁15を数分間開放して、排出汚泥の排除を行う。
【0015】
ろ過分離槽8のろ過モジュール9よりろ過水を得た後、ろ過分離槽8下部に濃縮した凝集汚泥が沈降し、これを濃縮汚泥11として汚泥濃縮槽や汚泥脱水設備に供給して、濃縮・脱水等の処理を行う。
第1表に本実施例での凝集反応槽の処理条件を示す。また、第2表にろ過分離槽の処理条件を示す。
【0016】
【表1】

Figure 0003874635
【0017】
第1表に示すように、凝集反応槽2への原水流入量が10m3/dであり、無機凝集剤3として塩化第2鉄100mg/リットルを連続注入した。反応槽2の凝集pHを5.0になるように、常時H2SO4又はNaOHの注入で制御を行った。反応時間は約20分とした。
【0018】
第2表にろ過分離槽8の処理条件を示す。本実施例では、通水性ろ過体として、有効面積0.4m2の平面型織布ろ過体5枚を束ねて、ろ過体モジュール9としてろ過分離槽8に設置した。ろ過時の平均水頭圧を約10cmとした。ろ過水量は約10m3/dである。
【0019】
【表2】
Figure 0003874635
【0020】
ろ過体に対する洗浄は、ろ過を一旦停止し、ろ過モジュール9に対する空洗及び水逆洗を行う。空洗は風量135リットル/minで3分間行った。水逆洗は、空洗後に水量55リットル/minで約1分間行った。水逆時間は排泥弁15を開放して、内部侵入汚泥が逆洗水の一部とともに10cmの水頭圧により排出した。水逆洗終了後もさらに排泥弁15を約1〜3分間開放して、モジュール9内部の残留汚泥混合液を排出した。
【0021】
図2に、第2表の処理条件で2ヶ月連続処理時のろ過フラックスの経過を示す。連続処理において、ろ過Fluxが常時5m/d程度であり、安定した処理が得られた。
このように約2ヶ月連続した時の、原水1及び処理水20の平均値を第3表に示す。
【0022】
【表3】
Figure 0003874635
【0023】
第3表に示すように、原水1のpHが7.1、濁度320度、SS150mg/リットル、色度120度であるのに対し、ろ過後の処理水20では、pH7.0、濁度5.0度以下、SS5mg/リットル以下、色度10度となり、ろ過水が清澄であると認められた。また、CODについては、原水1の130mg/リットルであるのに対し、処理水20では、20mg/リットルとなり、凝集処理で良好な水質が得られた。
【0024】
【発明の効果】
本発明によれば、有機性汚水等の高度処理として用いられてきた、従来の凝集反応槽の後段にろ過分離槽を設置し、該ろ過分離槽に通水性ろ過体を浸漬し、凝集処理を受けた原水をろ過分離槽上部に供給すれば、ろ過分離槽内の通水性ろ過体により、少ない水頭圧で清澄なろ過水を得ることができる。
凝集汚泥混合液に対し、低い水頭圧で通水性ろ過体よりろ過を行うと、ろ過体表面に比較的均一であり、ろ過性能の高い凝集汚泥層が形成される。この汚泥ろ過層によってSSが完全に阻止され、清澄なろ過水を得ることができる。
【0025】
凝集反応槽では、酸性凝集を行い、例えば、pHを4.5〜6.5と設定すると、凝集処理後の汚泥フロックが大きく、透水性の良いものであるため、ろ過体表面に短時間で汚泥のダイナミックろ過層が形成できる。該汚泥ろ過層はろ過体への付着力が弱く、ろ過時間とともに汚泥ろ過層が肥大し、ろ過抵抗の増加を生じた時、ろ過モジュール下部の空気洗浄管による曝気、及びろ過体内部へ清水を用いた水逆洗を行うことで、容易に剥離することが可能である。さらに長時間無機凝集剤添加による凝集処理を行っても、ろ過体表面に無機質のスケールの生成がほとんどなく、ろ過体に対し、酸等の薬品による洗浄は不要である。
【図面の簡単な説明】
【図1】本発明の汚水の処理を実施する装置の概略説明図である。
【図2】本発明の実施例1のろ過水Fluxの経時変化を示すグラフである。
【符号の説明】
1 流入原水
2 凝集反応槽
3 無機凝集剤
4 酸またはアルカリ
5 攪拌機
6 凝集混合液供給ポンプ
7 空洗用ブロワ
8 ろ過分離槽
9 ろ過モジュール
10 高分子凝集剤
11 濃縮汚泥
12 空洗用散気管
13 凝集混合液供給ライン
14 ろ過水ライン
15 排泥弁
16 排出汚泥
17 処理水槽
18 逆洗ポンプ
19 ろ過水弁
20 処理水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to sewage treatment, a method for treating sewage that can be used for advanced treatment of organic sewage and sewage secondary treated water, dyeing wastewater, SS, COD, chromaticity, etc. of paper wastewater, and The present invention relates to a processing apparatus.
[0002]
[Prior art]
Conventionally, there is a coagulation precipitation method as a method for removing advanced treatment of sewage such as organic sewage (hereinafter referred to as “raw water”), in particular phosphorus, persistent COD, and chromaticity. In this case, an inorganic flocculant is injected into the raw water in advance to cause an agglomeration reaction, and then introduced into a mixing tank to which a polymer flocculant is added. After sludge flocs are formed, the raw water is further introduced into a sedimentation basin and solidified. Liquid separation must be performed. Usually, a method is used in which a mixed liquid of coagulated sludge is introduced into a sedimentation basin, and the supernatant liquid after sedimentation of the sludge by gravity sedimentation is discharged from the sedimentation basin as treated water.
[0003]
[Problems to be solved by the invention]
However, in order to settle the coagulated sludge, a polymer coagulant must be added to the mixing tank to increase the sludge floc. In addition, in order to sufficiently settle the coagulated sludge and obtain good treated water, a sedimentation basin having a wide sedimentation area necessary for it and providing a long residence time is required. It is an increase factor. Furthermore, since fine SS may be contained in the outflow water from the settling basin, a post-treatment by sand filtration or the like is required to obtain advanced treated water without SS.
In recent years, instead of a sedimentation basin, agglomerated membrane filtration combining membrane filtration and agglomeration reaction treatment has been used. In this case, a microfiltration membrane or an ultrafiltration membrane is generally used as the solid-liquid separation membrane.
[0004]
However, suction or pressurization by a pump is necessary as a filtration separation means, and since it is normally performed at a pressure of several + kPa to several hundred kPa, the power by the pump is large, and the running cost is increased. In addition, in the membrane separation, clear treated water without SS is obtained. On the other hand, the permeation flux is low, and it is necessary to periodically wash the medicine in order to prevent membrane contamination.
The present invention has been made in view of such conventional problems, and is a method and a method for treating sewage that can reduce the power requirement with a small device, can be operated for a long time with a stable flux at a low running cost. It is an object to provide an apparatus.
[0005]
[Means for Solving the Problems]
The above problem is solved by various means described below.
(1) After allowing sewage to flow into the flocculation reaction tank and performing an acidic flocculation treatment, the flocculated mixed liquid is supplied to the upper part of the filtration separation tank in which the aqueous filter is immersed, and the flocculated sludge is dynamically filtered on the surface of the water permeable filter. A method for treating sewage, characterized in that a layer is formed, and filtered water is obtained from the water-permeable filter at a water head pressure.
(2) The method for treating sewage as described in (1) above, wherein the pH of the coagulation reaction tank is 4.5 to 6.5.
(3) The method for treating sewage according to (1) or (2) above, wherein a polymer flocculant is injected into a line for supplying the flocculated liquid mixture to the filtration / separation tank.
[0006]
(4) A filtration module in which a sewage supply pipe is connected and a flocculation reaction tank in which sewage is introduced to cause agglomeration reaction, a supply pipe for agglomerated mixed liquid from the agglomeration reaction tank is provided in the upper part of the tank, and the filtration module is immersed in the tank. A filtration separation tank provided with an air-washing air diffuser below the filtration module, a filtrate water line that takes out the filtrate water connected to the top of the filtration module and supplies the treated water tank, and the treated water after pH adjustment is discharged. An apparatus for treating sewage, comprising a treated water tank to which a treated water discharge pipe is connected, wherein a supply pipe for a polymer flocculant is connected to the flocculated liquid supply line of the filtration / separation tank.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, a filtration separation tank has been installed after the conventional flocculation reaction tank, which has been used as an advanced treatment for organic sewage, etc., and a water-permeable filter is immersed in the filtration separation tank to perform the flocculation treatment. If the received raw water is supplied to the upper part of the filtration / separation tank, clear filtered water can be obtained with a small head pressure by the water-permeable filter in the filtration / separation tank. The required hydraulic head pressure is usually sufficient from several centimeters to several tens of centimeters.
When the flocculated sludge mixed liquid is filtered with a water-permeable filter at a low water head pressure, a flocculated sludge layer having a relatively uniform and high filtration performance is formed on the surface of the water-permeable filter. This becomes one kind of dynamic filtration membrane, and SS is completely blocked by the sludge filtration layer on the surface of the filter body, and clear filtered water can be obtained in the flocculated mixed liquid.
[0008]
The present inventors perform acidic flocculation in the flocculation reaction tank. For example, when the pH is set to 4.5 to 6.5, the sludge floc after the flocculation treatment is large and water permeability is good. It was found that a sludge dynamic filtration layer can be formed on the body surface in a short time. The sludge filtration layer has weak adhesion to the filter body.When the sludge filtration layer enlarges with the filtration time and the filtration resistance increases, aeration by the air washing tube at the bottom of the filtration module and clean water inside the filter body It can peel easily by performing the water backwashing used. Further, even when the coagulation treatment is performed by adding an inorganic coagulant for a long time, almost no inorganic scale is generated on the surface of the filter body, and the filter body is not required to be washed with a chemical such as an acid.
[0009]
The same effect can be obtained by using any of nonwoven fabric, woven fabric, filter fabric, metal net, etc. as the water-permeable filter. Moreover, as a filter body shape, any of a plane type, a cylindrical type, and a hollow type can be used, and a plurality can be bundled and used as a filter body module.
As a result of the inflow of sludge as the upper part of the filtration separation tank, when the agglomerated sludge mixed liquid is solid-liquid separated from the filtration module, the agglomerated sludge mixed liquid forms a layered flow along the filtration surface of the filtration module. Dynamic filtration is performed, and sludge concentrated by the filtration settles in the lower part of the filtration separation tank. In addition, during regular backwashing, the sludge peeled off from the filtration surface settles in the lower part of the tank by gravity sedimentation to form concentrated sludge. If this concentrated sludge is regularly discharged from the lower part of the filtration separation tank, the concentration of the sludge mixed liquid inside the filtration separation tank will not increase, and a stable sludge dynamic filtration layer can be formed on the surface of the filter body at all times. it can. Dynamic filtration is filtration performed by an adhering layer of activated sludge particles formed on the filter cloth surface of the filter body as the filtration proceeds.
[0010]
By the time the sludge dynamic filtration layer is formed on the surface of the filter body, sludge intrusion occurs in the filtration module. For this reason, in order to eliminate the accumulation of sludge inside the module, it is necessary to periodically drain the mud. As this waste mud method, a waste pipe that penetrates from the lower part of the filtration module is provided, and installed so that the discharged sludge is introduced into the coagulation reaction tank. The discharge power is preferably natural flow due to water head pressure, and the water head pressure is approximately the same as the head pressure during filtration.
[0011]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment. However, the present invention is not limited to this example.
[0012]
Example 1
FIG. 1 is a flow sheet of an example of a treatment method according to the present invention for organic waste water.
As shown in FIG. 1, the influent raw water 1 flows into the agglomeration reaction tank 2, an inorganic flocculant 3 and an acid or alkali 4 for pH adjustment are added, and the agglomeration treatment is performed with constant stirring by the agitator 5. The sludge mixed liquid after the flocculation treatment is sent to the upper part of the filtration separation tank 8 from the flocculated mixed liquid supply pump 6. Here, the polymer flocculant 10 is injected into the flocculated liquid supply line 13 in accordance with the filtration properties of the flocculated sludge. The agglomerated liquid mixture that has flowed into the upper part of the filtration separation tank 8 flows down along the membrane surface of the filtration module 9 in the filtration separation tank 8, is filtered with a head pressure difference from the filtration module 9, and is obtained through the filtered water line 14. Water flows into the treated water tank 17 and is discharged after adjusting pH by adding NaOH as treated water 20.
[0013]
When the sludge filtration layer grows excessively on the surface of the filter body and the amount of filtered water decreases, the filtration module 9 is washed. As a washing method, the filtration water valve 19 is once closed and the filtration is stopped, and then aeration is performed from the air washing blower 7 through the air diffuser 12 below the filtration module 9 to peel off the sludge filtration layer on the surface of the filter body. After air washing by aeration, the filter surface adhering sludge was peeled off by a water backwashing operation in which filtered water was introduced from the backwash pump 18 through the filtrate water line 14 into the filtration module.
[0014]
Until the sludge dynamic filtration layer is formed, the sludge enters the filtration module 9. If the sludge valve 15 is opened at the time of back washing with water in order to discharge the intruding sludge inside the module 9 to the outside, a part of the introduced back washing drainage is discharged as sludge 16 together with the intruding sludge into the coagulation reaction tank 2. Can be discharged. Even after the end of the water backwash, the drainage valve 15 is further opened for several minutes to remove the discharged sludge.
[0015]
After obtaining filtered water from the filtration module 9 of the filtration / separation tank 8, the condensed sludge concentrated in the lower part of the filtration / separation tank 8 settles, and this is supplied as a concentrated sludge 11 to a sludge concentration tank or sludge dewatering equipment. Processing such as dehydration is performed.
Table 1 shows the processing conditions of the agglomeration reaction tank in this example. Moreover, the processing conditions of the filtration separation tank are shown in Table 2.
[0016]
[Table 1]
Figure 0003874635
[0017]
As shown in Table 1, the amount of raw water flowing into the agglomeration reaction tank 2 was 10 m 3 / d, and ferric chloride 100 mg / liter was continuously injected as the inorganic flocculant 3. Control was always performed by injecting H 2 SO 4 or NaOH so that the coagulation pH of the reaction tank 2 was 5.0. The reaction time was about 20 minutes.
[0018]
Table 2 shows the processing conditions of the filtration separation tank 8. In this example, five flat woven fabric filter bodies having an effective area of 0.4 m 2 were bundled as a water-permeable filter body and installed in the filtration separation tank 8 as a filter body module 9. The average head pressure during filtration was about 10 cm. The amount of filtered water is about 10 m 3 / d.
[0019]
[Table 2]
Figure 0003874635
[0020]
For the washing of the filter body, the filtration is temporarily stopped, and the filtration module 9 is washed with water and backwashed with water. The air washing was performed for 3 minutes at an air volume of 135 l / min. The water backwashing was performed for about 1 minute at a water volume of 55 liters / min after air washing. During the water reversal time, the mud valve 15 was opened, and the invading sludge was discharged with a head pressure of 10 cm together with a part of the backwash water. The drainage valve 15 was further opened for about 1 to 3 minutes after the end of the water backwashing, and the residual sludge mixed liquid in the module 9 was discharged.
[0021]
In FIG. 2, the progress of the filtration flux at the time of 2 months continuous processing on the processing conditions of Table 2 is shown. In the continuous treatment, the filtration flux was always about 5 m / d, and a stable treatment was obtained.
Thus, the average value of the raw water 1 and the treated water 20 when it continues for about two months is shown in Table 3.
[0022]
[Table 3]
Figure 0003874635
[0023]
As shown in Table 3, the raw water 1 has a pH of 7.1, a turbidity of 320 degrees, an SS of 150 mg / liter, and a chromaticity of 120 degrees, whereas the treated water 20 after filtration has a pH of 7.0 and turbidity. It became 5.0 degrees or less, SS5 mg / liter or less, and chromaticity 10 degrees, and it was recognized that filtered water was clear. The COD was 130 mg / liter for the raw water 1, whereas it was 20 mg / liter for the treated water 20, and good water quality was obtained by the coagulation treatment.
[0024]
【The invention's effect】
According to the present invention, a filtration separation tank has been installed after the conventional flocculation reaction tank, which has been used as an advanced treatment for organic sewage, etc., and a water-permeable filter is immersed in the filtration separation tank to perform the flocculation treatment. If the received raw water is supplied to the upper part of the filtration / separation tank, clear filtered water can be obtained with a small head pressure by the water-permeable filter in the filtration / separation tank.
When the flocculated sludge mixed liquid is filtered from the water-permeable filter at a low water head pressure, a flocculated sludge layer that is relatively uniform and has high filtration performance is formed on the surface of the filter. SS is completely blocked by the sludge filtration layer, and clear filtered water can be obtained.
[0025]
In the flocculation reaction tank, acidic flocculation is performed. For example, if the pH is set to 4.5 to 6.5, the sludge floc after the flocculation treatment is large and has good water permeability. A sludge dynamic filtration layer can be formed. The sludge filtration layer has weak adhesion to the filter body.When the sludge filtration layer enlarges with the filtration time and the filtration resistance increases, aeration by the air washing tube at the bottom of the filtration module and clean water inside the filter body It can peel easily by performing the water backwashing used. Further, even when the coagulation treatment is performed by adding an inorganic coagulant for a long time, almost no inorganic scale is generated on the surface of the filter body, and the filter body does not need to be cleaned with chemicals such as acid.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic explanatory diagram of an apparatus for carrying out wastewater treatment according to the present invention.
FIG. 2 is a graph showing a change with time of filtered water Flux of Example 1 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inflow raw water 2 Coagulation reaction tank 3 Inorganic flocculant 4 Acid or alkali 5 Stirrer 6 Coagulation liquid mixture supply pump 7 Air-washing blower 8 Filtration separation tank 9 Filtration module 10 Polymer flocculant 11 Concentrated sludge 12 Air-washing air diffuser 13 Coagulated liquid supply line 14 Filtration water line 15 Drainage valve 16 Drainage sludge 17 Treated water tank 18 Backwash pump 19 Filtration water valve 20 Treated water

Claims (4)

汚水を凝集反応槽に流入させ、酸性凝集処理した後、該凝集混合液を通水性ろ過体を浸漬したろ過分離槽上部に供給し、該通水性ろ過体表面に凝集汚泥のダイナミックろ過層を形成させ、該通水性ろ過体より水頭圧ででろ過水を得ることを特徴とする汚水の処理方法。After the sewage is introduced into the flocculation reaction tank and subjected to acidic flocculation treatment, the flocculated mixture is supplied to the upper part of the filtration separation tank in which the aqueous filter is immersed, and a dynamic filtration layer of flocculated sludge is formed on the surface of the water permeable filter. A method for treating sewage, characterized in that filtered water is obtained at a water head pressure from the water-permeable filter. 凝集反応槽のpHが4.5〜6.5であることを特徴とする請求項1記載の汚水の処理方法。2. The method for treating sewage according to claim 1, wherein the pH of the coagulation reaction tank is 4.5 to 6.5. 凝集混合液をろ過分離槽に供給するラインに対し、高分子凝集剤を注入することを特徴とする請求項1又は請求項2記載の汚水の処理方法。The method for treating sewage according to claim 1 or 2, wherein a polymer flocculant is injected into a line for supplying the flocculated liquid mixture to the filtration separation tank. 汚水の供給管を接続し汚水を流入させて凝集反応させる凝集反応槽、前記凝集反応槽からの凝集混合液の供給管を槽の上部に設け、かつ槽内に浸漬したろ過モジュールを設け、前記ろ過モジュールの下方に空洗用散気管を配設したろ過分離槽、前記ろ過モジュール頂部に接続したろ過水を取り出し処理水槽に供給するろ過水ライン、及びpH調整後の処理水を放流する処理水排出管を接続した処理水槽を有し、前記ろ過分離槽の、前記凝集混合液供給ラインに高分子凝集剤の供給管を接続したことを特徴とする汚水の処理装置。A flocculation reaction tank for connecting a sewage supply pipe and causing sewage to flow into the flocculation reaction, a flocculation mixture supply pipe from the flocculation reaction tank is provided at the upper part of the tank, and a filtration module immersed in the tank is provided, A filtration / separation tank in which an air diffusing pipe for air washing is disposed below the filtration module, a filtrate water line that takes out the filtrate water connected to the top of the filtration module and supplies the treated water tank, and treated water that releases the treated water after pH adjustment An apparatus for treating sewage, comprising a treated water tank to which a discharge pipe is connected, wherein a supply pipe for a polymer flocculant is connected to the aggregated liquid supply line of the filtration / separation tank.
JP2001254818A 2001-08-24 2001-08-24 Sewage treatment method and treatment apparatus Expired - Fee Related JP3874635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001254818A JP3874635B2 (en) 2001-08-24 2001-08-24 Sewage treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001254818A JP3874635B2 (en) 2001-08-24 2001-08-24 Sewage treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2003062407A JP2003062407A (en) 2003-03-04
JP3874635B2 true JP3874635B2 (en) 2007-01-31

Family

ID=19082920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001254818A Expired - Fee Related JP3874635B2 (en) 2001-08-24 2001-08-24 Sewage treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3874635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935230A (en) * 2017-10-30 2018-04-20 中国制浆造纸研究院有限公司 A kind of composite seal paper machine white water ceramics membrane processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167218A (en) * 2020-03-11 2020-05-19 安徽华骐环保科技股份有限公司 Filter bead water quality clarification and filtration device and use method thereof
CN112237787B (en) * 2020-10-23 2022-04-01 马鞍山中经悦怿生命科技有限公司 Production equipment and method of filter particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935230A (en) * 2017-10-30 2018-04-20 中国制浆造纸研究院有限公司 A kind of composite seal paper machine white water ceramics membrane processing method

Also Published As

Publication number Publication date
JP2003062407A (en) 2003-03-04

Similar Documents

Publication Publication Date Title
US6582605B2 (en) Method of treating industrial waste waters
JP3853657B2 (en) Wastewater treatment method and apparatus
CN108793642A (en) A kind of dyeing waste water advanced treatment system and processing method
KR101343930B1 (en) Method of reutilizing wastewater
KR101199583B1 (en) Equipment for treating waste water using integrated membrane-clarification system
JP2007289847A (en) Raw tap water purification method and its apparatus
KR20070016079A (en) Method of treating organic waste water
JP4408524B2 (en) Fresh water system
KR20180008175A (en) Pressurized membrane water treatment apparatus
JP2002177956A (en) Water cleaning method and water cleaning plant
JP3874635B2 (en) Sewage treatment method and treatment apparatus
JP2003236558A (en) Water cleaning system
WO2017159303A1 (en) Method for treating waste water having high hardness
CN208762364U (en) Dyeing waste water advanced treatment system
KR101637049B1 (en) Apparatus for treating water
JP2002346347A (en) Method and apparatus for filtration
JP3891739B2 (en) Operation method of membrane filtration device
JP3889254B2 (en) Solid-liquid separation method and apparatus for biological treatment liquid of organic wastewater
KR101091092B1 (en) Two step advanced water purification apparatus
JP2005246157A (en) Water treatment method and water treatment apparatus
JP3859402B2 (en) Filtration basin washing wastewater treatment method
JP3883358B2 (en) Filtration separation method and apparatus for sewage treatment
JP4124957B2 (en) Filter body washing method and apparatus
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees