[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3874454B2 - Waste incineration equipment - Google Patents

Waste incineration equipment Download PDF

Info

Publication number
JP3874454B2
JP3874454B2 JP16623396A JP16623396A JP3874454B2 JP 3874454 B2 JP3874454 B2 JP 3874454B2 JP 16623396 A JP16623396 A JP 16623396A JP 16623396 A JP16623396 A JP 16623396A JP 3874454 B2 JP3874454 B2 JP 3874454B2
Authority
JP
Japan
Prior art keywords
catalyst
waste
packed tower
gas
waste incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16623396A
Other languages
Japanese (ja)
Other versions
JPH105548A (en
Inventor
明治 伊東
学 山本
均 山崎
勇人 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP16623396A priority Critical patent/JP3874454B2/en
Publication of JPH105548A publication Critical patent/JPH105548A/en
Application granted granted Critical
Publication of JP3874454B2 publication Critical patent/JP3874454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、触媒充填塔を備えたごみ焼却設備に係り、特に、触媒充填塔内に充填された触媒の活性を随時回復するための手段に関する。
【0002】
【従来の技術】
従来より、排ガス中の窒素酸化物及びダイオキシンを処理するための触媒充填塔が備えられたごみ焼却設備が知られている。一般のボイラ排ガス処理において触媒は、良好な活性を発現する300〜400℃の温度範囲で使用されることが多いが、ごみ焼却炉の排ガス処理では、▲1▼ダストの被毒が大きいために触媒充填塔の前段にバグフィルタを備える必要があり、バグフィルタで塩化水素やダストを除去するためには排ガス温度を150〜200℃に冷却しなければならず、この温度の排ガスをシステム内で常時300℃以上に加熱することは事実上困難であること、▲2▼触媒を300〜400℃で使用すると煙道空間でダイオキシンが生成されたり再生成されることなどから、通常200〜300℃の温度範囲で使用される。
【0003】
ところで、燃料性状が不安定な廃棄物を燃焼するごみ焼却炉においては、時折不完全燃焼を生じて油分を含む未燃分を突出して発生する。また、燃焼が良好に行われているときにも、ダイオキシンやダイオキシン濃度の数百倍の濃度のクロロベンゼン類、クロロフェノール類及びその他の芳香族炭化水素からなる油分が火炉排ガス中に存在し、皆無になることはない。これらの油分は、沸点が350℃以下のものがほとんどである。
【0004】
触媒充填塔内に充填される触媒としては、表面及び内部に微細孔を発達させ、内部表面積を大きくして高い活性が得られるようにしたものが用いられる。例えば、酸化チタン系の触媒は、数Åの微細孔が発達しており、これによって実現される大きな内部表面に脱硝用のアンモニア及び処理すべき窒素酸化物並びにダイオキシンを吸着して反応させるようになっている。したがって、200〜300℃の温度範囲で使用される高活性な触媒には、ダイオキシンに類似した芳香族炭化水素からなる油分も良く吸着される。
【0005】
触媒の油分吸着量が少量である場合には、油分は触媒上で分解されてガス中に放出されるので、触媒上に蓄積されることはない。ところが、触媒の一時的な温度低下や一時的な排ガス中の油分濃度の上昇によって吸着される油分量が分解処理される油分量よりも多くなったり、あるいは分解されないタール分の吸着量が増加すると、触媒の微細孔が閉塞されたり、微細孔の表面が被膜されて触媒活性が低下し、最悪の場合には失活する。また、このように触媒上への油分の吸着量が増加すると、触媒に吸着された油分が自然発火しやすくなり、触媒を損傷させる原因にもなる。
【0006】
【発明が解決しようとする課題】
従来のごみ焼却設備においては、触媒に吸着した油分を除去するための配慮がなされておらず、触媒寿命が短いという不都合がある。
本発明は、かかる従来技術の不都合を解決するためになされたものであって、その課題とするとことは、良好な触媒性能を長期間にわたって維持することができる触媒充填塔を備えたごみ焼却設備を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、前記の課題を達成するため、ごみ焼却炉と、当該ごみ焼却炉で発生した排ガスを300℃以下の温度で触媒に接触させ、排ガス中の窒素酸化物及びダイオキシンを処理する触媒充填塔とを備えたごみ焼却設備であって、前記触媒充填塔中に充填された触媒を随時350℃以上に加熱して当該触媒に吸収された油分を分解し、当該触媒の活性を回復する触媒加熱手段を設けたものにおいて、前記触媒加熱手段として、ごみ供給停止後に前記ごみ焼却炉内に継続して空気を導入し、当該空気をごみ焼却炉の余熱で加熱することにより得られる加熱ガスを、前記触媒充填塔に随時導入する加熱ガス導入管を備えるという構成にした。
【0008】
前記したように、排ガス中に含まれる油分は、沸点が350℃以下のものがほとんどであるので、触媒充填塔内の触媒を350℃以上に加熱すれば、当該触媒に吸着された油分を気化することができ、触媒表面から取り除くことができる。触媒表面から油分を取り除くと、微細孔による大面積の触媒表面が清浄化されて露出するので、触媒の活性を回復することができる。また、自然発火を起こしにくくなるので、過熱による触媒の損傷も防止される。さらに、ごみ供給停止後にごみ焼却炉内に継続して空気を導入し、当該空気をごみ焼却炉の余熱で加熱すると、燃焼排ガスに比べて格段に清浄な350℃以上の加熱ガスが得られる。したがって、この手段によれば、この加熱排ガスを利用することによって、他に特別な熱源を備えることなく触媒活性の回復を行うことができる。
【0010】
なお、触媒を加熱しても触媒に吸着された油分が全て酸化されるわけではないので、触媒から脱着される油分を処理する必要がある。このための手段としては、脱着ガスを脱着ガス排出管を介して導入し、吸着剤に吸着させて無害化する吸着塔を備えるという手段をとることができる。この手段によれば、活性炭等の吸着剤に脱着ガスを吸着させるので、油分の除去効率を高めることができる。
【0011】
【発明の実施の形態】
図1に、本発明に係るごみ焼却設備の実施形態例を示す。この図において、1はごみ焼却炉、2はごみ焼却炉1の排ガス温度を調節する冷却塔、3は排ガス中のダストや酸性ガスを除去するバグフィルタ、4は排ガス中の窒素酸化物やダイオキシン等を除去する触媒充填塔、5は排ガスを吸引して大気に放出するブロワ、6は活性炭等の吸着剤が充填された吸着塔、7は触媒充填等4で発生する脱着ガスを吸引して吸着塔6に導入するブロワを示している。
【0012】
ごみ焼却炉1で発生した排ガスは、排ガス煙道11を通って冷却塔2に導入され、廃熱回収若しくは水が噴霧されて約200℃まで冷却される。冷却された排ガスは、バグフィルタ入口煙道12において消石灰供給管13より供給された塩化水素処理用の消石灰が添加され、バグフィルタ3に導入されて塩化水素等の酸性ガスとダストとが除去される。バグフィルタ3を通過した排ガスは、触媒充填塔入口煙道14においてアンモニア供給管15より供給されたアンモニアが添加され、触媒充填塔4において窒素酸化物の還元除去とダイオキシンの分解とが行われる。触媒充填塔4を通過した排ガスは、ブロワ5に吸引され、触媒充填塔出口煙道16及び大気放出管17を通って大気中に放出される。ここまでの構成は、従来より知られている都市ごみ焼却設備と何ら変わるものではない。
【0013】
本発明の特徴とするところは、▲1▼ごみ焼却炉1の余熱にて加熱された空気を排ガス煙道11を介して触媒充填塔4に導入し、触媒を350℃以上に加熱する加熱ガス導入管21を備えたこと、▲2▼触媒充填塔4で発生する脱着ガスを脱着ガス排出管23を介して導入し、脱着ガス中の油分を吸着除去する吸着塔6を備えたこと、▲3▼触媒の加熱処理時に排ガス煙道11、冷却塔2、バグフィルタ入口煙道12、バグフィルタ3を経て触媒充填塔入口煙道14に流入するガスを触媒充填塔4を迂回して直接触媒充填塔出口煙道16に流すバイパス煙道22を設けたことにある。
【0014】
ごみ焼却炉1には、図示しないごみ供給機から圧送されたごみをごみ焼却炉1内に供給するごみ供給管41と、炉内のごみを流動化して燃焼する空気を炉内に供給する流動空気配管42とが設けられている。ごみ供給管41からのごみの供給を停止した後も流動空気配管42からの流動空気の供給を継続すると、当該流動空気はごみ焼却炉1の余熱によって350℃以上に加熱され、燃焼排ガスよりも格段に清浄な加熱ガスが発生する。そこで、触媒充填塔入口煙道14及び触媒充填塔出口煙道16に備えられた開閉弁32,33を閉じると共にバイパス煙道22及び加熱ガス導入管21に備えられた開閉弁34,31を開くと、冷却塔2にて冷却され、バグフィルタ4を通過した加熱ガスは、バイパス煙道22及び大気放出管17を通って大気中に放出され、排ガス煙道11から加熱ガス導入管21に導入された高温の加熱ガスは、触媒充填塔4に直接導入される。
【0015】
触媒充填塔4内の触媒は、触媒充填塔4内に導入された高温の加熱ガスによって350℃以上に加熱される。前記したように、触媒に吸着される油分の沸点はそのほとんどが350℃以下であるので、この加熱処理によって触媒に吸着された油分はそのほとんどが分解し、触媒から除去される。これによって、触媒の活性が回復され、触媒に吸着された油分の自然発火も防止される。触媒充填塔4で発生した脱着ガスは、ブロワ7によって吸引され、脱着ガス排出管23を介して吸着塔6に導入される。吸着塔6内には活性炭等の吸着剤が充填されており、脱着ガス中の油分は当該吸着剤に吸着されて除去される。吸着処理後のガスは、ブロワ7によって吸引され、処理ガス排出管24を介して大気放出管17に導入される。
【0016】
本例のごみ焼却設備は、触媒を加熱処理するための熱源としてごみ焼却炉1の余熱を利用するので、触媒加熱処理用の特別な熱源を必要とせず、構造が簡単で安価に実施できるという特徴がある。また、触媒充填塔4で発生した脱着ガスを吸着塔6に導入して吸着処理するので、脱着ガスの清浄化効果が高いという特徴もある。
【0017】
図2に、本発明に係るごみ焼却設備の第1参考例を示す。この図において、51は電熱式空気ヒータ、52は電熱式空気ヒータ51より発生した加熱空気を触媒充填塔4に導入する加熱空気導入管、53は加熱空気導入管52に備えられた開閉弁、54は触媒充填塔4で発生した脱着ガスをごみ焼却炉1に導入する脱着ガス搬出管、55は脱着ガス搬出管54に備えられたブロワを示し、その他前出の図1と対応する部分にはそれと同一の符号が表示されている。
【0018】
この図から明らかなように、本例のごみ焼却設備は、触媒を加熱処理するための熱源として、電熱式空気ヒータ51を用いることを特徴とする。触媒の加熱処理に際しては、電熱式空気ヒータ51を起動した状態で触媒充填塔入口煙道14及び触媒充填塔出口煙道16に備えられた開閉弁32,33を閉じ、加熱空気導入管52に備えられた開閉弁53を開く。これによって、電熱式空気ヒータ51にて加熱された空気が加熱空気導入管52を介して触媒充填塔4に導入され、触媒充填塔4内の触媒が350℃以上に加熱されて、触媒に吸着された油分が除去される。また、触媒充填塔4で発生した脱着ガスは、ブロワ55によって吸引され、脱着ガス搬出管54を介してごみ焼却炉1に導入され、ごみ焼却炉1で焼却されて無害化される。その他の部分については、実施形態例に係るごみ焼却設備と同じであるので、重複を避けるために説明を省略する。
【0019】
本例のごみ焼却設備は、電熱式空気ヒータ51で発生する加熱空気により触媒を加熱処理するので、ごみ焼却炉1におけるごみの焼却処理を継続的に行いつつ随時触媒の加熱処理を行うことができるという特徴がある。また、触媒充填塔4で発生した脱着ガスをごみ焼却炉1に導入して焼却処理するので、吸着塔などの特別な脱着ガス処理装置を必要とせず、安価に実施できるという特徴もある。
【0020】
図3に、本発明に係るごみ焼却設備の第2参考例を示す。この図において、51は電熱式空気ヒータ、52は電熱式空気ヒータ51より発生した加熱空気を触媒充填塔4に導入する加熱空気導入管、53は加熱空気導入管52に備えられた開閉弁を示し、その他前出の図1と対応する部分にはそれと同一の符号が表示されている。
【0021】
この図から明らかなように、本例のごみ焼却設備は、触媒を加熱処理するための熱源として電熱式空気ヒータ51を用いると共に、脱着ガスの処理装置として吸着塔6を用いたことを特徴とする。触媒の加熱処理に際しては、電熱式空気ヒータ51を起動した状態で触媒充填塔入口煙道14及び触媒充填塔出口煙道16に備えられた開閉弁32,33を閉じ、加熱空気導入管52に備えられた開閉弁53を開く。これによって、電熱式空気ヒータ51にて加熱された空気が加熱空気導入管52を介して触媒充填塔4に導入され、触媒充填塔4内の触媒が350℃以上に加熱されて、触媒に吸着された油分が除去される。また、触媒充填塔4で発生した脱着ガスは、ブロワ7によって吸引され、脱着ガス排出管23を介して吸着塔6に導入される。そして、脱着ガス中の油分が活性炭等の吸着剤に吸着され、無害化される。その他の部分については、実施形態例に係るごみ焼却設備と同じであるので、重複を避けるために説明を省略する。
【0022】
本例のごみ焼却設備は、電熱式空気ヒータ51で発生する加熱空気により触媒を加熱処理するので、ごみ焼却炉1におけるごみの焼却処理を継続的に行いつつ随時触媒の加熱処理を行うことができるという特徴がある。また、触媒充填塔4で発生した脱着ガスを吸着塔6に導入して吸着処理するので、脱着ガスの清浄化効果が高いという特徴もある。
【0023】
【発明の効果】
以上説明したように、本発明によると、ごみ供給停止後にごみ焼却炉内に継続して空気を導入し、当該空気をごみ焼却炉の余熱で加熱することにより得られる加熱ガスを触媒充填塔に随時導入する加熱ガス導入管をごみ焼却設備に備えたので、触媒加熱処理用の特別な熱源を必要とすることなく、触媒充填塔内の触媒の活性を回復することができる。
【図面の簡単な説明】
【図1】 実施形態例に係るごみ焼却設備のフロー図である。
【図2】 第1参考例に係るごみ焼却設備のフロー図である。
【図3】 第2参考例に係るごみ焼却設備のフロー図である。
【符号の説明】
1 ごみ焼却炉
2 冷却塔
3 バグフィルタ
4 触媒充填塔
5 ブロワ
6 吸着塔
7 ブロワ
11 排ガス煙道
12 バグフィルタ入口煙道
13 消石灰供給管
14 触媒充填塔入口煙道
15 アンモニア供給管
16 触媒充填塔出口煙道
17 大気放出管
21 加熱ガス導入管
22 バイパス煙道
23 脱着ガス排出管
24 処理ガス排出管
31,32,33,34 開閉弁
41 ごみ供給管
42 流動空気配管
51 電熱式空気ヒータ
52 加熱空気導入管
53 開閉弁
54 脱着ガス搬出管
55 ブロワ
[0001]
[Industrial application fields]
The present invention relates to a waste incineration facility equipped with a catalyst packed tower, and more particularly to a means for recovering the activity of the catalyst packed in the catalyst packed tower as needed.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is known a waste incineration facility equipped with a catalyst packed tower for treating nitrogen oxides and dioxins in exhaust gas. In general boiler exhaust gas treatment, the catalyst is often used in a temperature range of 300 to 400 ° C., which exhibits good activity. However, in exhaust gas treatment of a waste incinerator, (1) because dust is highly poisonous. It is necessary to provide a bag filter in front of the catalyst packed tower, and in order to remove hydrogen chloride and dust with the bag filter, the exhaust gas temperature must be cooled to 150 to 200 ° C. It is usually difficult to heat to 300 ° C or higher at all times. (2) Dioxins are generated or regenerated in the flue space when the catalyst is used at 300 to 400 ° C. Used in the temperature range of.
[0003]
By the way, in a refuse incinerator that burns waste whose fuel properties are unstable, incomplete combustion is occasionally generated, and unburned matter including oil is projected and generated. In addition, even when combustion is performed well, dioxins and oils composed of chlorobenzenes, chlorophenols and other aromatic hydrocarbons at concentrations several hundred times the dioxin concentration are present in the furnace exhaust gas, and there is no Never become. Most of these oils have a boiling point of 350 ° C. or lower.
[0004]
As the catalyst packed in the catalyst packed tower, a catalyst in which fine pores are developed on the surface and inside to increase the internal surface area to obtain high activity is used. For example, a titanium oxide-based catalyst has several micropores developed so that ammonia for denitrification, nitrogen oxide to be treated, and dioxin are adsorbed and reacted on a large internal surface realized by this. It has become. Therefore, the highly active catalyst used in the temperature range of 200 to 300 ° C. is also well adsorbed with oils composed of aromatic hydrocarbons similar to dioxins.
[0005]
When the amount of oil adsorbed by the catalyst is small, the oil is decomposed on the catalyst and released into the gas, so that it does not accumulate on the catalyst. However, if the amount of oil adsorbed becomes larger than the amount of oil to be decomposed due to a temporary decrease in the temperature of the catalyst or a temporary increase in the oil concentration in the exhaust gas, or the amount of adsorbed tar content that is not decomposed increases. The fine pores of the catalyst are blocked, or the surface of the fine pores is coated to reduce the catalytic activity. In the worst case, the catalyst is deactivated. Further, if the amount of oil adsorbed on the catalyst increases in this way, the oil adsorbed on the catalyst is likely to spontaneously ignite, which may cause damage to the catalyst.
[0006]
[Problems to be solved by the invention]
In the conventional waste incineration equipment, no consideration is given to removing the oil adsorbed on the catalyst, and there is a disadvantage that the catalyst life is short.
The present invention has been made to solve the disadvantages of the prior art, and the problem is that a waste incineration facility equipped with a catalyst packed tower capable of maintaining good catalyst performance over a long period of time. Is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a waste incinerator and a catalyst filling for treating nitrogen oxides and dioxins in the exhaust gas by bringing the exhaust gas generated in the waste incinerator into contact with a catalyst at a temperature of 300 ° C. or lower. met waste incineration system and a tower, a catalyst wherein the catalyst-packed tower catalyst packed in heated from time to time 350 ° C. or higher to decompose the oil that is absorbed to the catalyst, to recover the activity of the catalyst In the case where a heating means is provided, as the catalyst heating means, a heating gas obtained by continuously introducing air into the waste incinerator after the refuse supply is stopped and heating the air with the residual heat of the waste incinerator. and the configuration of Ru with a heating gas inlet pipe from time to time introduced into the catalyst-packed column.
[0008]
As described above, since most of the oil contained in the exhaust gas has a boiling point of 350 ° C. or lower, if the catalyst in the catalyst packed tower is heated to 350 ° C. or higher, the oil adsorbed on the catalyst is vaporized. Can be removed from the catalyst surface. When the oil component is removed from the catalyst surface, the catalyst surface having a large area due to the fine pores is cleaned and exposed, so that the activity of the catalyst can be recovered. Moreover, since it becomes difficult to cause spontaneous ignition, damage to the catalyst due to overheating is also prevented. Furthermore, when air is continuously introduced into the waste incinerator after the supply of the waste is stopped and the air is heated with the residual heat of the waste incinerator, a heated gas of 350 ° C. or higher that is much cleaner than the combustion exhaust gas is obtained. Therefore, according to this means, the catalytic activity can be recovered by using this heated exhaust gas without providing any other special heat source.
[0010]
Note that even if the catalyst is heated, not all of the oil adsorbed on the catalyst is oxidized, so it is necessary to treat the oil desorbed from the catalyst. As a means for this, the desorbed gas was introduced through the de Chakugasu discharge pipe, it is possible to take measures that includes an adsorption tower for harmless adsorbed on the adsorbent. According to this means , since the desorption gas is adsorbed by the adsorbent such as activated carbon, the oil removal efficiency can be increased.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a waste incineration facility according to the present invention. In this figure, 1 is a waste incinerator, 2 is a cooling tower that adjusts the exhaust gas temperature of the waste incinerator 1, 3 is a bag filter that removes dust and acid gas in the exhaust gas, and 4 is nitrogen oxides and dioxins in the exhaust gas. The catalyst packed tower 5 removes the exhaust gas and the like, 5 is a blower that sucks the exhaust gas and releases it to the atmosphere, 6 is an adsorption tower filled with an adsorbent such as activated carbon, 7 is the suction of the desorbed gas generated in the catalyst packed etc. 4 The blower introduced into the adsorption tower 6 is shown.
[0012]
The exhaust gas generated in the waste incinerator 1 is introduced into the cooling tower 2 through the exhaust gas flue 11 and is cooled to about 200 ° C. by recovering waste heat or spraying water. The cooled exhaust gas is added with slaked lime for hydrogen chloride treatment supplied from the slaked lime supply pipe 13 in the bag filter inlet flue 12 and introduced into the bag filter 3 to remove acid gases such as hydrogen chloride and dust. The The exhaust gas that has passed through the bag filter 3 is added with ammonia supplied from the ammonia supply pipe 15 in the flue 14 at the inlet of the catalyst packed tower, and reduction and removal of nitrogen oxides and decomposition of dioxin are performed in the catalyst packed tower 4. The exhaust gas that has passed through the catalyst packed tower 4 is sucked into the blower 5 and discharged into the atmosphere through the catalyst packed tower outlet flue 16 and the atmospheric discharge pipe 17. The configuration so far is not different from the conventionally known municipal waste incineration facilities.
[0013]
The features of the present invention are as follows. (1) Heated gas for introducing air heated by the residual heat of the waste incinerator 1 into the catalyst packed tower 4 via the exhaust gas flue 11 and heating the catalyst to 350 ° C. or higher. (2) equipped with an adsorption tower (6) for introducing the desorption gas generated in the catalyst packed tower (4) through the desorption gas discharge pipe (23) and adsorbing and removing the oil in the desorption gas; 3 ▼ The gas flowing into the catalyst packed tower inlet flue 14 via the exhaust gas flue 11, the cooling tower 2, the bag filter inlet flue 12, and the bag filter 3 during the catalyst heat treatment bypasses the catalyst packed tower 4 and is directly catalysted. This is because a bypass flue 22 flowing to the packed tower outlet flue 16 is provided.
[0014]
The waste incinerator 1 includes a waste supply pipe 41 for supplying the waste pressure fed from a waste supply machine (not shown) into the waste incinerator 1 and a flow for fluidizing and burning the waste in the furnace to supply the air into the furnace. An air pipe 42 is provided. If the supply of the fluid air from the fluid air pipe 42 is continued even after the supply of the dust from the waste supply pipe 41 is stopped, the fluid air is heated to 350 ° C. or more by the residual heat of the waste incinerator 1 and is more than the combustion exhaust gas. A remarkably clean heated gas is generated. Accordingly, the on-off valves 32 and 33 provided in the catalyst packed tower inlet flue 14 and the catalyst packed tower outlet flue 16 are closed, and the on-off valves 34 and 31 provided in the bypass flue 22 and the heated gas introduction pipe 21 are opened. Then, the heated gas cooled by the cooling tower 2 and passed through the bag filter 4 is discharged into the atmosphere through the bypass flue 22 and the atmospheric discharge pipe 17 and introduced into the heated gas introduction pipe 21 from the exhaust gas flue 11. The high-temperature heated gas is directly introduced into the catalyst packed tower 4.
[0015]
The catalyst in the catalyst packed tower 4 is heated to 350 ° C. or higher by the high-temperature heated gas introduced into the catalyst packed tower 4. As described above, since most of the boiling point of the oil adsorbed on the catalyst is 350 ° C. or less, most of the oil adsorbed on the catalyst by this heat treatment is decomposed and removed from the catalyst. As a result, the activity of the catalyst is recovered, and spontaneous ignition of the oil adsorbed on the catalyst is also prevented. The desorption gas generated in the catalyst packed tower 4 is sucked by the blower 7 and introduced into the adsorption tower 6 through the desorption gas discharge pipe 23. The adsorption tower 6 is filled with an adsorbent such as activated carbon, and the oil in the desorption gas is adsorbed by the adsorbent and removed. The gas after the adsorption processing is sucked by the blower 7 and introduced into the atmospheric discharge pipe 17 through the processing gas discharge pipe 24.
[0016]
Since the waste incineration facility of this example uses the residual heat of the waste incinerator 1 as a heat source for heat-treating the catalyst, it does not require a special heat source for catalyst heat-treatment, and the structure is simple and can be implemented at low cost. There are features. Further, since the desorption gas generated in the catalyst packed tower 4 is introduced into the adsorption tower 6 and subjected to the adsorption treatment, there is a feature that the effect of cleaning the desorption gas is high.
[0017]
FIG. 2 shows a first reference example of the waste incineration facility according to the present invention. In this figure, 51 is an electrothermal air heater, 52 is a heated air introduction pipe for introducing heated air generated by the electrothermal air heater 51 into the catalyst packed tower 4, 53 is an on-off valve provided in the heated air introduction pipe 52, Reference numeral 54 denotes a desorption gas discharge pipe for introducing the desorption gas generated in the catalyst packed tower 4 into the refuse incinerator 1, 55 denotes a blower provided in the desorption gas discharge pipe 54, and other parts corresponding to FIG. Is displayed with the same symbol.
[0018]
As is apparent from this figure, the waste incineration facility of this example is characterized by using an electrothermal air heater 51 as a heat source for heat-treating the catalyst. In the heat treatment of the catalyst, the open / close valves 32 and 33 provided in the catalyst packed tower inlet flue 14 and the catalyst packed tower outlet flue 16 are closed with the electrothermal air heater 51 activated, and the heated air introduction pipe 52 is connected. The provided on-off valve 53 is opened. As a result, the air heated by the electrothermal air heater 51 is introduced into the catalyst packed tower 4 through the heated air introduction pipe 52 , and the catalyst in the catalyst packed tower 4 is heated to 350 ° C. or higher and adsorbed on the catalyst. The removed oil is removed. Further, the desorption gas generated in the catalyst packed tower 4 is sucked by the blower 55 and introduced into the garbage incinerator 1 through the desorption gas carry-out pipe 54 and incinerated in the garbage incinerator 1 to be rendered harmless. Since the other portions are the same as waste incineration facility according to implementation embodiments, the description thereof is omitted to avoid duplication.
[0019]
Since the waste incineration facility of this example heats the catalyst with the heated air generated by the electrothermal air heater 51, the catalyst can be heat-treated at any time while continuously performing the waste incineration treatment in the waste incinerator 1. There is a feature that can be done. Further, since the desorption gas generated in the catalyst packed tower 4 is introduced into the refuse incinerator 1 and incinerated, it does not require a special desorption gas processing apparatus such as an adsorption tower and can be implemented at low cost.
[0020]
FIG. 3 shows a second reference example of the waste incineration facility according to the present invention. In this figure, 51 is an electrothermal air heater, 52 is a heated air introduction pipe for introducing the heated air generated by the electrothermal air heater 51 into the catalyst packed tower 4, and 53 is an on-off valve provided in the heated air introduction pipe 52. The other parts corresponding to those in FIG. 1 are indicated by the same reference numerals.
[0021]
As is clear from this figure, the waste incineration facility of this example is characterized in that an electrothermal air heater 51 is used as a heat source for heat-treating the catalyst and an adsorption tower 6 is used as a desorption gas processing device. To do. In the heat treatment of the catalyst, the open / close valves 32 and 33 provided in the catalyst packed tower inlet flue 14 and the catalyst packed tower outlet flue 16 are closed with the electrothermal air heater 51 activated, and the heated air introduction pipe 52 is connected. The provided on-off valve 53 is opened. As a result, the air heated by the electrothermal air heater 51 is introduced into the catalyst packed tower 4 through the heated air introduction pipe 52, and the catalyst in the catalyst packed tower 4 is heated to 350 ° C. or higher and adsorbed on the catalyst. The removed oil is removed. Further, the desorption gas generated in the catalyst packed tower 4 is sucked by the blower 7 and introduced into the adsorption tower 6 through the desorption gas discharge pipe 23. Then, the oil in the desorption gas is adsorbed by an adsorbent such as activated carbon and rendered harmless. Since the other portions are the same as waste incineration facility according to implementation embodiments, the description thereof is omitted to avoid duplication.
[0022]
Since the waste incineration facility of this example heats the catalyst with the heated air generated by the electrothermal air heater 51, the catalyst can be heat-treated at any time while continuously performing the waste incineration treatment in the waste incinerator 1. There is a feature that can be done. Further, since the desorption gas generated in the catalyst packed tower 4 is introduced into the adsorption tower 6 and subjected to the adsorption treatment, there is a feature that the effect of cleaning the desorption gas is high.
[0023]
【The invention's effect】
As described above, according to the present invention, after the supply of waste is stopped, air is continuously introduced into the waste incinerator, and the heated gas obtained by heating the air with the residual heat of the waste incinerator is supplied to the catalyst packed tower. Since the waste gas incinerator is equipped with the heated gas introduction pipe introduced as needed, the activity of the catalyst in the catalyst packed tower can be recovered without requiring a special heat source for the catalyst heat treatment.
[Brief description of the drawings]
FIG. 1 is a flowchart of a waste incineration facility according to an embodiment .
FIG. 2 is a flowchart of the waste incineration facility according to the first reference example.
FIG. 3 is a flow diagram of a waste incineration facility according to a second reference example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waste incinerator 2 Cooling tower 3 Bag filter 4 Catalyst packed tower 5 Blower 6 Adsorption tower 7 Blower 11 Flue gas flue 12 Bag filter inlet flue 13 Slaked lime supply pipe 14 Catalyst packed tower inlet flue 15 Ammonia supply pipe 16 Catalyst packed tower Outlet flue 17 Atmospheric discharge pipe 21 Heated gas introduction pipe 22 Bypass flue 23 Desorption gas discharge pipe 24 Process gas discharge pipe 31, 32, 33, 34 On-off valve 41 Garbage supply pipe 42 Fluid air pipe 51 Electric heating air heater 52 Heating Air introduction pipe 53 On-off valve 54 Desorption gas discharge pipe 55 Blower

Claims (2)

ごみ焼却炉と、当該ごみ焼却炉で発生した排ガスを300℃以下の温度で触媒に接触させ、排ガス中の窒素酸化物及びダイオキシンを処理する触媒充填塔とを備えたごみ焼却設備であって、前記触媒充填塔中に充填された触媒を随時350℃以上に加熱して当該触媒に吸収された油分を分解し、当該触媒の活性を回復する触媒加熱手段を設けたものにおいて、前記触媒加熱手段として、ごみ供給停止後に前記ごみ焼却炉内に継続して空気を導入し、当該空気をごみ焼却炉の余熱で加熱することにより得られる加熱ガスを、前記触媒充填塔に随時導入する加熱ガス導入管を備えたことを特徴とするごみ焼却設備。  A waste incineration facility comprising a waste incinerator and a catalyst packed tower for contacting exhaust gas generated in the waste incinerator with a catalyst at a temperature of 300 ° C. or less to treat nitrogen oxides and dioxins in the exhaust gas, The catalyst heating means is provided with a catalyst heating means for heating the catalyst packed in the catalyst packed tower to 350 ° C. or higher as necessary to decompose oil absorbed in the catalyst and recovering the activity of the catalyst. As described above, heating gas introduction that continuously introduces air into the waste incinerator after stopping the waste supply, and introduces the heating gas obtained by heating the air with the residual heat of the waste incinerator to the catalyst packed tower as needed Waste incineration equipment characterized by having a pipe. 請求項1に記載のごみ焼却設備において、前記触媒充填塔から発生した脱着ガスを脱着ガス排出管を介して導入し、吸着剤に吸着させて無害化する吸着塔を備えたことを特徴とするごみ焼却設備。2. The waste incineration facility according to claim 1, further comprising an adsorption tower that introduces desorption gas generated from the catalyst packed tower through a desorption gas discharge pipe and adsorbs it to an adsorbent to render it harmless. Waste incineration equipment.
JP16623396A 1996-06-26 1996-06-26 Waste incineration equipment Expired - Fee Related JP3874454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16623396A JP3874454B2 (en) 1996-06-26 1996-06-26 Waste incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16623396A JP3874454B2 (en) 1996-06-26 1996-06-26 Waste incineration equipment

Publications (2)

Publication Number Publication Date
JPH105548A JPH105548A (en) 1998-01-13
JP3874454B2 true JP3874454B2 (en) 2007-01-31

Family

ID=15827587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16623396A Expired - Fee Related JP3874454B2 (en) 1996-06-26 1996-06-26 Waste incineration equipment

Country Status (1)

Country Link
JP (1) JP3874454B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615502B2 (en) * 2009-02-24 2014-10-29 バブコック日立株式会社 Denitration catalyst protection method and denitration catalyst protection device
JP2012011346A (en) * 2010-07-02 2012-01-19 Iwamoto:Kk Deodorizing and smoke-eliminating apparatus
JP6416845B2 (en) * 2016-10-19 2018-10-31 株式会社プランテック Exhaust gas treatment equipment
US10814277B2 (en) * 2018-08-22 2020-10-27 Shell Oil Company Selective catalytic reduction process and off-line regeneration of deactivated catalyst of the process
CN114950032A (en) * 2022-06-13 2022-08-30 湖南奇思环保设备制造有限公司 Garbage pyrolysis treatment system

Also Published As

Publication number Publication date
JPH105548A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US5405812A (en) Method and arrangement for purifying a carbon-containing adsorption medium
JPH11114374A (en) Regenerating method of activated carbon used in activated carbon circulation bag filter
JP3874454B2 (en) Waste incineration equipment
JPH01159514A (en) Method of decomposing noxious compound
CN110448992A (en) Dioxins in flue gas emission-reducing system and method in a kind of Refuse Incineration Process
JP3411482B2 (en) Operating method of exhaust gas treatment device in garbage incinerator
JP4124584B2 (en) Removal method of dioxins in exhaust gas from waste treatment furnace
JPH10180038A (en) Waste gas simultaneous treating device and method thereof
KR102472334B1 (en) Dust collector for the simultaneous treatment of dust and volatile organic compounds from exhaust gas
JPH09248425A (en) Dioxine removing material, dioxine removing method, exhaust gas treatment equipment and dioxine removing material-regenerating method
JP4332941B2 (en) Hazardous exhaust gas treatment method using fluidized bed
JP2003159510A (en) Exhaust gas treatment apparatus
JP3858137B2 (en) Apparatus and method for decomposing and treating harmful substances in exhaust gas
JPH07265834A (en) Treatment of fly ash by irradiation with microwave
JP4891887B2 (en) Heat treatment method and heat treatment apparatus for waste containing organic halogen compound using platinum catalyst device or palladium catalyst device
JP4062558B2 (en) Dioxin release prevention method
JP3925890B2 (en) Method and apparatus for treating PCB-contaminated waste cleaning exhaust gas
JP3966485B2 (en) Method and apparatus for treating exhaust gas generated during incineration of waste containing chlorine compounds
JPH11314073A (en) Process of turning incineration ash harmless
JPH1176758A (en) Method and device for treating waste gas
JP3640111B2 (en) Apparatus and method for removing dioxin from ash melting furnace exhaust gas
KR19990049357A (en) Incinerator Exhaust Purifier
JPH11314018A (en) Method for regenerating adsorbent for harmful substance removal from waste gas
JPH08323128A (en) Method for self-reproducing adsorption tower
CN116673305A (en) System and method for removing heavy metals in coal-fired power plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees