[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3872112B2 - Magnetic tape - Google Patents

Magnetic tape Download PDF

Info

Publication number
JP3872112B2
JP3872112B2 JP24861394A JP24861394A JP3872112B2 JP 3872112 B2 JP3872112 B2 JP 3872112B2 JP 24861394 A JP24861394 A JP 24861394A JP 24861394 A JP24861394 A JP 24861394A JP 3872112 B2 JP3872112 B2 JP 3872112B2
Authority
JP
Japan
Prior art keywords
magnetic
young
modulus
layer
nonmagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24861394A
Other languages
Japanese (ja)
Other versions
JPH0887735A (en
Inventor
正義 河原井
嗣裕 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP24861394A priority Critical patent/JP3872112B2/en
Publication of JPH0887735A publication Critical patent/JPH0887735A/en
Application granted granted Critical
Publication of JP3872112B2 publication Critical patent/JP3872112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、物理的・機械的性質の改良によつて電磁変換特性や保存性などを向上させた磁気テ―プ関する。
【0002】
【従来の技術】
映像用やコンピユ―タ用の磁気テ―プでは、高密度記録化や長時間記録化の要請が強まり、これに伴いテ―プの全体厚を薄くしてテ―プ巻回数を可及的に多くすることが望まれ、また短波長域での再生出力のアツプ、トラツクピツチ幅の狭小化より、磁気ヘツドのチツプ幅やコア厚も小さくなり、磁気テ―プのヘツドコンタクトやリニアリテイ(直線性)が重要となつている。
【0003】
これに対し、従来では、強磁性粉末を結合剤に分散させた磁性層をできるだけ薄くする一方、強度アツプのためフイラ―の増加や超高圧カレンダ処理を行い、また下地として非磁性中間層を設けたり、さらには非磁性支持体の材質の面からの強度アツプを図り、磁気テ―プとしての物理的・機械的性質の改良によつて、ヘツドコンタクトやリニアリテイを向上させる工夫がなされている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような工夫にもかかわらず、ヘツドコンタクトやリニアリテイは十分に満足できなかつた。たとえば、磁気テ―プ全体のヤング率や磁性層のヤング率を高めたとしても、ヘツドコンタクトは腰が強くなりすぎて不良となり、また、磁気テ―プのスリツト性(裁断性)が悪くなつて、ウエ―ビングやひび割れが生じ、リニアリテイが不良となる。
【0005】
また、磁気テ―プでは、テ―プ厚を薄くしてテ―プ巻回数を多くした場合、巻回による締め付け圧がハブ内側部分でより大きくなるため、テ―プ背面に通常設けられるバツクコ―ト層の微小凹凸が磁性層の表面に経時的に転写し、これが電磁変換特性を劣化させる、いわゆる保存性の悪さという問題があるが、上記従来の工夫はこの保存性の改良になんら効果を示さなかつた。
【0006】
この発明は、このような事情に鑑み、磁気テ―プ薄型化に際し、従来とは異なる物理的・機械的性質の改良により、ヘツドコンタクトやリニアリテイを向上させ、もつて電磁変換特性や保存性などを向上させた磁気テ―プ提供することを目的としている。
【0007】
【課題を解決するための手段】
この発明者らは、上記の目的を達成するため、鋭意検討した結果、非磁性支持体と磁性層との間に非磁性中間層を介在させた構造の磁気テ―プにおいて、磁性層とテ―プ全体のヤング率を規制するとともに、磁性層と非磁性中間層とのヤング率との比を特定範囲に設定したときに、ヘツドコンタクトやリニアリテイが向上し、電磁変換特性や保存性にすぐれた磁気テ―プが得られることを見い出し、この発明を完成するに至つたものである。
【0008】
すなわち、この発明は、非磁性支持体上に非磁性粉末およびカ―ボンブラツクを結合剤に分散させた非磁性中間層を設け、この上に強磁性粉末を結合剤に分散させた磁性層を設けてなる、テ―プ全体の厚さが11μm以下の磁気テ―プにおいて、上記磁性層のヤング率をE1 、上記非磁性中間層のヤング率をE2 テ―プ全体のヤング率をEtとしたとき、Et≧1,000Kg/mm2 、E1 ≧1,700Kg/mm2 、2.5≧E1 /E2 ≧1.1であることを特徴とする磁気テ―プに係るものである。
【0009】
【発明の構成・作用】
この発明における非磁性支持体としては、ポリエチレンテレフタレ―トフイルム、ポリエチレンナフタレ―トフイルム、ポリアラミドフイルム(芳香族ポリアミド樹脂フイルム)などの各種のプラスチツクフイルムが用いられる。その厚さは、この支持体と磁性層と非磁性中間層とさらに必要により設けられるバツクコ―ト層などを含むテ―プ全体の厚さが11μm以下、好ましくは8μm以下、さらに好ましくは7μm以下となるように、磁性層や非磁性中間層などの厚さに応じて適宜決めることができる。
【0010】
この発明における非磁性中間層は、非磁性粉末およびカ―ボンブラツクを結合剤に分散させてなるものであり、必要により脂肪酸、脂肪酸エステルなどの潤滑剤を、非磁性粉末およびカ―ボンブラツクの合計量に対し、3重量%以下となる割合で含ませることができ、またその他各種の添加剤を含ませることができる。厚さは、通常0.2〜2.5μm程度とするのがよく、とくに好ましくは0.5〜1.5μm程度である。
【0011】
非磁性粉末としては、TiO2 、ZnO、α−Fe2 3 などの金属酸化物のほか、SiC、TiC、有機フイラ―などがある。この非磁性粉末とこれと併用するカ―ボンブラツクは、平均粒子径が0.1μm以下であるのがよい。また、カ―ボンブラツクの平均粒子径をd1 、非磁性粉末の平均粒子径をd2 としたとき、d1 /d2 ≦2に関係にあるとき、非磁性中間層およびこれに接触する磁性層の表面粗度が適度なものとなり、電磁変換特性に好結果が得られる。
【0012】
結合剤としては、リン酸基や硫酸基などの極性基を有する塩化ビニル系樹脂、ポリウレタン樹脂などの各種樹脂を広く使用でき、好ましくはこれら樹脂成分とともにポリイソシアネ―ト化合物などの架橋剤が併用される。これら結合剤は、非磁性粉末およびカ―ボンブラツクの合計量に対し、通常10〜50重量%の範囲内で使用するのが望ましい。
【0013】
この発明における磁性層は、強磁性粉末を結合剤に分散させてなるもので、通常は上記強磁性粉末とともに、α−Fe2 3 、Al2 3 、Cr2 3 などのフイラ―やカ―ボンブラツク、また脂肪酸、脂肪酸エステルなどの潤滑剤、その他の各種添加剤が添加される。その厚さは、高密度記録や長時間記録化のため、1.5μm以下、好ましくは1.0μm以下、さらに好ましくは0.5μm以下とされているのがよく、用途目的に応じて適宜設定できる。
【0014】
強磁性粉末としては、平均長軸径が0.2μm以下で、保磁力が1,700〜2,300Oeとなる鉄系金属磁性粉末が好ましく用いられるが、その他の金属磁性粉末や、γ−Fe2 3 、Co含有γ−Fe2 3 などの酸化物系磁性粉末など従来公知のものを使用してもよい。また、結合剤は、非磁性中間層の場合と同様の極性基を有する塩化ビニル系樹脂、ポリウレタン樹脂などの各種樹脂やこれにポリイソシアネ―ト化合物などの架橋剤を含ませたものなど、従来公知のものをすべて使用できる。この結合剤は、強磁性粉末に対し、通常8〜25重量%の範囲内で使用するのが望ましい。
【0015】
本発明において、非磁性中間層と磁性層の形成は、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、トルエンなどの汎用溶剤を用いて、非磁性粉末、カ―ボンブラツク、結合剤およびその他の必要成分を含む非磁性中間層用塗料と、磁性粉末、結合剤およびその他の必要成分を含む磁性塗料とを調製し、この両塗料を非磁性支持体上にグラビアコ―タ、ダイコ―タなどを用いて順次塗布すればよく、その際非磁性中間層用塗料が湿潤状態にある間に磁性塗料を塗布する、いわゆる同時重層塗布を行うのが望ましい。
【0016】
その後は、乾燥工程、磁場配向処理工程およびカレンダ―処理工程などの適宜の処理工程に通される。また、バツクコ―ト層を形成する場合は、非磁性支持体の背面側、つまり非磁性中間層および磁性層とは反対側の面にバツクコ―ト層用塗料を所望厚さに塗布、乾燥すればよい。
【0017】
この発明では、このように作製される磁気テ―プにおいて、テ―プ全体のヤング率および磁性層のヤング率を規制するとともに、磁性層と非磁性中間層とのヤング率との比を特定範囲に設定したことを特徴とする。すなわち、磁性層のヤング率をE1 、非磁性中間層のヤング率をE2 テ―プ全体のヤング率をEtとしたとき、下記の関係を満たすようにしたものである。
▲1▼ Et≧1,000Kg/mm2
(好ましくは1,400Kg/mm2 ≧Et≧1,100Kg/mm2
▲2▼ E1 ≧1,700Kg/mm2
(好ましくは2,300Kg/mm2 ≧E1 ≧1,750Kg/mm2
▲3▼ 2.5≧E1 /E2 ≧1.1
(好ましくは2.2≧E1 /E2 ≧1.8)
【0018】
このような関係を満たすとき、ヘツドコンタクトやリニアリテイが向上し、電磁変換特性や保存性に好結果が得られる。テ―プ全体のヤング率や磁性層のヤング率が上記より小さくなると、ヘツドコンタクトが悪くなり、また磁性層のヤング率の低下は保存性を悪化させる。磁性層と非磁性中間層のヤング率の比が上記範囲を逸脱すると、ウエ―ビングが大きくなつてリニアリテイが悪化し、また非磁性中間層のヤング率の増大はヘツドコンタクトを悪くする。
【0019】
非磁性中間層および磁性層のヤング率の設定は、各層に含ませるフイラ―、カ―ボンブラツク、潤滑剤、結合剤などの含有量や架橋剤の比率などを調整して、また磁性層では上記調整のほかカレンダ―処理時の圧力や温度などを調整して、行えばよい。テ―プ全体のヤング率は、上記両層のヤング率に応じて、また必要に設けられるバツクコ―ト層のヤング率などをも考慮して、非磁性支持体の材質を適宜選択することにより、容易に設定することができる。
【0020】
このように構成されるこの発明の磁気テ―プは、たとえば、薄型テ―プなどとして、樹脂製ハブなどに1,100回以上、好ましくは1,500回以上、さらに好ましくは1,600回以上の巻き数にて巻回されたテ―プ巻回体として、中心記録波長が通常0.7μm以下の情報を記録する用途に供されて、良好な保存性のもとに、すぐれた電磁変換特性を発揮する。
【0021】
【実施例】
つぎに、この発明の実施例を記載して、より具体的に説明する。なお、以下において、部とあるのは重量部を意味するものとする。
【0022】
実施例1
下記の各成分を連続ニ―ダで混練したのち、サンドグラインドミルを用いて、分散させ、この分散液にポリイソシアネ―ト化合物5部を加え、さらにメチルエチルケトン/トルエンの重量比1/1の混合溶剤20部を加えて、混合したのち、平均孔径1μmのフイルタ―でろ過し、非磁性中間層用塗料を調製した。
【0023】
非磁性粉末 80部
(α−Fe2 3 ;pH7.0、Fe2 3 97重量%以上、
平均粒子径0.03μm、BET比表面積40m2 /g、
DBP吸油量27〜34ml/100g)
カ―ボンブラツク 20部
(DBP吸油量68〜75ml/100g、
平均粒子径0.017μm、揮発分1.5重量%、
BET比表面積200m2 以下/g)
塩化ビニル系樹脂 16部
(−SO3 K基0.063モル/g、
水酸基0.3モル/g、重合度300)
ポリウレタン樹脂 10部
(−SO3 Na基3.36ミリモル/g、
数平均分子量3.2±0.4、Tg=25℃)
ミリスチン酸 1部
ステアリン酸n−ブチル 1.5部
シクロヘキサノン/メチルエチルケトン/トルエン 270部
(重量比1/1/1の混合溶剤)
【0024】
下記の各成分を連続ニ―ダで混練したのち、サンドグラインドミルを用いて、分散させ、この分散液にポリイソシアネ―ト化合物6部を加え、さらにメチルエチルケトン/トルエンの重量比1/1の混合溶剤20部を加えて、混合したのち、平均孔径1μmのフイルタ―でろ過し、磁性塗料を調製した。
【0025】
強磁性金属粉末 100部
〔Fe/Co/Yの重量比89/8.3/2.7の合金磁性粉末、
保磁力(Hc)1,820Oe、BET比表面積57m2 /g、
結晶サイズ162Å、粒子サイズ:平均長軸径0.13μm、
飽和磁化(σs)131emu/g〕
塩化ビニル系樹脂 11部
(重合度420、リン酸基0.6重量%)
ポリウレタン樹脂 7部
(−SO3 Na基3.36ミリモル/g、
数平均分子量3.2±0.4、Tg=25℃)
α−アルミナ(平均粒子径0.2μm) 5部
カ―ボンブラツク(平均粒子径0.08μm) 1部
ミリスチン酸 0.5部
ステアリン酸n−ブチル 1部
シクロヘキサノン/メチルエチルケトン/トルエン 250部
(重量比1/1/1の混合溶剤)
【0026】
つぎに、厚さ4.4μmのポリエチレンナフタレ―トフイルムの片面に、上記の非磁性中間層用塗料を、乾燥後の厚さが1.6μmとなるように塗布し、その上に、この塗料がまだ湿潤状態にあるうちに、上記の磁性塗料を、乾燥後の厚さが0.3μmとなるように塗布した。この塗布後、乾燥処理とともに、3KGの磁力を持つコバルト磁石と2KGの磁力を持つソレノイドとの間を通して、面内磁場配向処理を施した。しかるのち、金属ロ―ルのみからなるカレンダ―処理に供し、フイルム背面側に0.4μm厚さのバツクコ―ト処理を施したのち、8mm幅にスリツトして、磁気テ―プを作製した。これを樹脂製ハブに1,550回以上の巻き数で巻回して、磁気テ―プ巻回体とした。
【0027】
この磁気テ―プにおけるテ―プ全体のヤング率Et、磁性層のヤング率E1 、非磁性中間層のヤング率E2 を、引張試験機(0.3%歪時)にて測定したところ、Et=1,100Kg/mm2 、E1 =1,820Kg/mm2 、E2 =850Kg/mm2 であり、E1 /E2 =2.14であつた。また、この磁気テ―プの全体(バツクコ―ト層を含む)の厚さは6.7μmであつた。
【0028】
なお、上記ヤング率の測定にあたり、磁性層と非磁性中間層とのヤング率は、Et×tt =E1 ×t1 +E2 ×t2 +Eb ×tb (tt ,t1 ,t2 ,tb はテ―プ全体、磁性層、非磁性中間層、支持フイルムの各厚さ、Eb は支持フイルムのみのヤング率)の関係があるため、各層を形成したのちのヤング率と各層の厚さを求め、これを上記式にあてはめて、算出することができる。
【0029】
実施例2
非磁性支持体として厚さ5.5μmのポリエチレンナフタレ―トフイルムを用い、かつ非磁性中間層の厚さを2.0μmとした以外は、実施例1と同様にして磁気テ―プを作製し、これより磁気テ―プ巻回体を得た。この磁気テ―プのヤング率は、Et=1,100Kg/mm2 、E1 =1,780Kg/mm2 、E2 =850Kg/mm2 であり、E1 /E2 =2.09であつた。また、この磁気テ―プの全体(バツクコ―ト層を含む)の厚さは8.2μmであつた。
【0030】
実施例3
非磁性粉末(α−Fe2 3 )の使用量を60部に変更し、かつ塩化ビニル系樹脂として重合度420、リン酸基0.6重量%の塩化ビニル系樹脂16部を用い、他は実施例1と同様にして、非磁性中間層用塗料を調製した。また、α−アルミナの使用量を5部に、ポリウレタン系樹脂の使用量を4部に、ポリイソシアネ―ト化合物の使用量を9部に、それぞれ変更し、他は実施例1と同様にして、磁性塗料を調製した。
【0031】
つぎに、この非磁性中間層用塗料および磁性塗料を用いて、実施例1と同様にして、磁気テ―プを作製し、これより磁気テ―プ巻回体を得た。この磁気テ―プのヤング率は、Et=1,300Kg/mm2 、E1 =2,200Kg/mm2 、E2 =1,200Kg/mm2 であり、E1 /E2 =1.83であつた。また、この磁気テ―プの全体(バツクコ―ト層を含む)の厚さは6.7μmであつた。
【0032】
比較例1〜3
非磁性中間層用塗料または磁性塗料において、用いる非磁性粉末の使用量や、結合剤の種類および使用量を適宜変更することにより、後記の表1に示す如く、ヤング率Et、E1 あるいはE1 /E2 の比のいずれかがこの発明の範囲外となる3種の磁気テ―プを作製し、これより磁気テ―プ巻回体を得た。なお、各磁気テ―プの非磁性中間層および磁性層の厚さは、実施例1と同じであり、したがつてテ―プ全体の厚さはいずれも6.7μmであつた。
【0033】
以上の実施例1〜3および比較例1〜3の各磁気テ―プ巻回体について、電磁変換特性として、Hi8VCR(小径シリンダ)により、RF出力(中心記録波長0.54μm)を測定した。また、保存性試験として、各巻回体を60℃,80%RHの条件下に72時間保存したのちに、上記同様のRF出力を測定した。さらに、各磁気テ―プのリニアリテイ特性に関与するウエ―ビング(μm)を測定した。この測定は、小坂研究所製(ZDR−8型)8mmVTR動的幅測定器を用いて、テンシヨン20g、速度2cm/秒の条件で行つたものである。このように測定される磁気テ―プのウエ―ビング(μm)は小さいほど良い。これらの試験結果を、下記の表1に示した。同表には、参考のため、実施例1〜3の各磁気テ―プのヤング率Et、E1 、E1 /E2 の各値を併記した。
【0034】
【表1】

Figure 0003872112
【0035】
【発明の効果】
表1の結果からも明らかなように、この発明の実施例1〜3の磁気テ―プは、保存前および保存後のRF出力が大きく、しかもウエ―ビングが小さくなつており、これより、この発明の磁気テ―プは、ヘツドコンタクトおよびリニアリテイが良好で、電磁変換特性および保存性にすぐれたものであることがわかる。これに対し、ヤング率Et、E1 またはE1 /E2 の比のいずれかがこの発明の範囲外となる比較例1〜3の磁気テ―プは、ヘツドコンタクトやリニアリテイに劣り、電磁変換特性や保存性を満足させにくいものであることがわかる。[0001]
[Industrial application fields]
The present invention, by the improvement of the physical and mechanical properties connexion electromagnetic characteristics and storage stability such as a magnetic tape with improved - about the flop.
[0002]
[Prior art]
In magnetic tapes for video and computers, demands for high-density recording and long-time recording have increased, and as a result, the tape thickness has been reduced to minimize the number of tape windings. In addition, the increase in the reproduction output in the short wavelength range and the narrowing of the track pitch width also reduce the chip width and core thickness of the magnetic head, thereby reducing the head contact and linearity (linearity) of the magnetic tape. ) Is becoming important.
[0003]
In contrast, conventionally, the magnetic layer in which the ferromagnetic powder is dispersed in the binder is made as thin as possible, while increasing the strength and carrying out the ultra-high pressure calendar treatment to increase the strength, and a nonmagnetic intermediate layer is provided as the underlayer. In addition, the strength of the nonmagnetic support material is improved, and the physical and mechanical properties of the magnetic tape are improved to improve the head contact and linearity.
[0004]
[Problems to be solved by the invention]
However, despite such ingenuity, head contact and linearity were not fully satisfactory. For example, even if the Young's modulus of the magnetic tape as a whole and the Young's modulus of the magnetic layer are increased, the head contact becomes too stiff and defective, and the slitting property (cutting property) of the magnetic tape is poor. As a result, webbing and cracks occur, resulting in poor linearity.
[0005]
In the case of a magnetic tape, if the tape thickness is reduced and the number of tape windings is increased, the tightening pressure due to winding becomes larger at the inner part of the hub. -There is a problem of so-called poor storage stability that minute irregularities of the layer are transferred to the surface of the magnetic layer over time, which degrades electromagnetic conversion characteristics. Was not indicated.
[0006]
In view of such circumstances, the present invention improves the head contact and linearity by improving the physical and mechanical properties different from the conventional ones in reducing the thickness of the magnetic tape. magnetic tape with improved like - are intended to provide a flop.
[0007]
[Means for Solving the Problems]
The inventors, in order to achieve the above object, a result of intensive studies, magnetic tape having a structure in which is interposed a non-magnetic intermediate layer between the nonmagnetic support and the magnetic layer - In-flop, a magnetic layer and Te -Regulating the Young's modulus of the entire tape and setting the ratio of the Young's modulus between the magnetic layer and the non-magnetic intermediate layer to a specific range improves head contact and linearity, providing excellent electromagnetic conversion characteristics and storage stability. The present inventors have found that a magnetic tape can be obtained and have completed the present invention.
[0008]
That is, according to the present invention, a nonmagnetic intermediate layer in which nonmagnetic powder and carbon black are dispersed in a binder is provided on a nonmagnetic support, and a magnetic layer in which ferromagnetic powder is dispersed in a binder is provided thereon. In a magnetic tape having a total tape thickness of 11 μm or less, the Young's modulus of the magnetic layer is E 1 , the Young's modulus of the nonmagnetic intermediate layer is E 2 , and the Young's modulus of the entire tape is when a Et, magnetic tape, characterized in that Et ≧ 1,000Kg / mm 2, E 1 ≧ 1,700Kg / mm 2, a 2.5 ≧ E 1 / E 2 ≧ 1.1 - according to the flop Is.
[0009]
[Configuration and operation of the invention]
As the nonmagnetic support in the present invention, various plastic films such as polyethylene terephthalate film, polyethylene naphthalate film, polyaramid film (aromatic polyamide resin film) are used. The thickness of the entire tape including the support, the magnetic layer, the nonmagnetic intermediate layer, and the backcoat layer provided if necessary is 11 μm or less, preferably 8 μm or less, more preferably 7 μm or less. Thus, the thickness can be appropriately determined according to the thickness of the magnetic layer, the nonmagnetic intermediate layer, or the like.
[0010]
The nonmagnetic intermediate layer according to the present invention is formed by dispersing nonmagnetic powder and carbon black in a binder, and if necessary, a lubricant such as fatty acid and fatty acid ester is added to the total amount of nonmagnetic powder and carbon black. On the other hand, it can be contained at a ratio of 3% by weight or less, and various other additives can be contained. The thickness is usually about 0.2 to 2.5 μm, and particularly preferably about 0.5 to 1.5 μm.
[0011]
Nonmagnetic powders include metal oxides such as TiO 2 , ZnO, α-Fe 2 O 3 , SiC, TiC, and organic fillers. The non-magnetic powder and the carbon black used in combination with the non-magnetic powder preferably have an average particle size of 0.1 μm or less. Further, mosquito - average particle diameter d 1 of Bonburatsuku, when the average particle diameter of the nonmagnetic powder was d 2, when in relation to d 1 / d 2 ≦ 2, the non-magnetic intermediate layer and the magnetic in contact therewith The surface roughness of the layer becomes appropriate, and good results are obtained in electromagnetic conversion characteristics.
[0012]
As the binder, various resins such as a vinyl chloride resin having a polar group such as a phosphate group or a sulfate group, and a polyurethane resin can be widely used. Preferably, a crosslinking agent such as a polyisocyanate compound is used in combination with these resin components. The These binders are preferably used in the range of usually 10 to 50% by weight based on the total amount of the nonmagnetic powder and the carbon black.
[0013]
The magnetic layer in the present invention is formed by dispersing ferromagnetic powder in a binder. Usually, together with the ferromagnetic powder, a filler such as α-Fe 2 O 3 , Al 2 O 3 , Cr 2 O 3, etc. Carbon black, lubricants such as fatty acids and fatty acid esters, and other various additives are added. The thickness should be 1.5 μm or less, preferably 1.0 μm or less, and more preferably 0.5 μm or less for high-density recording and long-time recording, and is set appropriately according to the purpose of use. it can.
[0014]
As the ferromagnetic powder, an iron-based metal magnetic powder having an average major axis diameter of 0.2 μm or less and a coercive force of 1,700 to 2,300 Oe is preferably used, but other metal magnetic powders, γ-Fe Conventionally known materials such as oxide magnetic powders such as 2 O 3 and Co-containing γ-Fe 2 O 3 may be used. In addition, conventionally known binders include various resins such as vinyl chloride resins having the same polar groups as in the case of the nonmagnetic intermediate layer and polyurethane resins, and those containing a crosslinking agent such as a polyisocyanate compound. You can use everything. This binder is preferably used in an amount of usually 8 to 25% by weight based on the ferromagnetic powder.
[0015]
In the present invention, the nonmagnetic intermediate layer and the magnetic layer are formed by using a general-purpose solvent such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, etc., including nonmagnetic powder, carbon black, binder, and other necessary components. Prepare magnetic intermediate layer paint and magnetic paint containing magnetic powder, binder and other necessary components, and apply both paints on non-magnetic support using a gravure coater, die coater, etc. In this case, it is desirable to perform so-called simultaneous multilayer coating in which the magnetic coating material is applied while the non-magnetic intermediate layer coating material is in a wet state.
[0016]
Thereafter, it is passed through appropriate processing steps such as a drying step, a magnetic field orientation processing step, and a calendar processing step. Also, when forming a backcoat layer, apply the backcoat layer paint to the desired thickness on the back side of the nonmagnetic support, that is, the side opposite to the nonmagnetic intermediate layer and magnetic layer. That's fine.
[0017]
In the present invention, in the magnetic tape thus manufactured, the Young's modulus of the entire tape and the Young's modulus of the magnetic layer are regulated, and the ratio of the Young's modulus between the magnetic layer and the nonmagnetic intermediate layer is specified. It is characterized by being set to a range. That is, when the Young's modulus of the magnetic layer is E 1 , the Young's modulus of the nonmagnetic intermediate layer is E 2 , and the Young's modulus of the entire tape is Et, the following relationship is satisfied.
▲ 1 ▼ Et ≧ 1,000Kg / mm 2
(Preferably 1,400 kg / mm 2 ≧ Et ≧ 1,100 kg / mm 2 )
(2) E 1 ≧ 1,700Kg / mm 2
(Preferably 2,300 kg / mm 2 ≧ E 1 ≧ 1,750 kg / mm 2 )
(3) 2.5 ≧ E 1 / E 2 ≧ 1.1
(Preferably 2.2 ≧ E 1 / E 2 ≧ 1.8)
[0018]
When such a relationship is satisfied, head contact and linearity are improved, and good results are obtained in electromagnetic conversion characteristics and storage stability. If the Young's modulus of the entire tape or the Young's modulus of the magnetic layer is smaller than the above, the head contact becomes worse, and the decrease in Young's modulus of the magnetic layer deteriorates the storage stability. If the ratio of the Young's modulus between the magnetic layer and the nonmagnetic intermediate layer deviates from the above range, the webbing becomes large and the linearity deteriorates, and the increase in the Young's modulus of the nonmagnetic intermediate layer deteriorates the head contact.
[0019]
The Young's modulus of the nonmagnetic intermediate layer and magnetic layer can be set by adjusting the content of the filler, carbon black, lubricant, binder, etc. contained in each layer, the ratio of the crosslinking agent, etc. In addition to adjustment, the pressure and temperature during the calendar process may be adjusted. The Young's modulus of the entire tape is determined by selecting the material of the non-magnetic support appropriately according to the Young's modulus of both layers and taking into account the Young's modulus of the backcoat layer provided as necessary. Can be set easily.
[0020]
The magnetic tape of the present invention configured as described above is, for example, a thin tape or the like on a resin hub or the like 1,100 times or more, preferably 1,500 times or more, more preferably 1,600 times. As a tape wound body wound with the above number of windings, it is used for recording information whose central recording wavelength is usually 0.7 μm or less, and has excellent electromagnetic properties with good storage stability. Demonstrate conversion characteristics.
[0021]
【Example】
Next, an embodiment of the present invention will be described in more detail. In the following, “parts” means parts by weight.
[0022]
Example 1
After kneading each of the following components with a continuous kneader, the mixture is dispersed using a sand grind mill, and 5 parts of a polyisocyanate compound is added to the dispersion, and a mixed solvent having a weight ratio of methyl ethyl ketone / toluene of 1/1. After adding 20 parts and mixing, the mixture was filtered with a filter having an average pore diameter of 1 μm to prepare a coating for a nonmagnetic intermediate layer.
[0023]
Nonmagnetic powder 80 parts (α-Fe 2 O 3 ; pH 7.0, Fe 2 O 3 97 wt% or more,
Average particle size 0.03 μm, BET specific surface area 40 m 2 / g,
DBP oil absorption 27-34ml / 100g)
Carbon black 20 parts (DBP oil absorption 68-75ml / 100g,
Average particle size 0.017 μm, volatile matter 1.5 wt%,
BET specific surface area 200m 2 or less / g)
16 parts of vinyl chloride resin (-SO 3 K group 0.063 mol / g,
Hydroxyl group 0.3 mol / g, polymerization degree 300)
10 parts of polyurethane resin (3.36 mmol / g of —SO 3 Na group,
Number average molecular weight 3.2 ± 0.4, Tg = 25 ° C.)
Myristic acid 1 part n-butyl stearate 1.5 parts cyclohexanone / methyl ethyl ketone / toluene 270 parts (mixed solvent with a weight ratio of 1/1/1)
[0024]
After kneading each of the following components with a continuous kneader, the mixture is dispersed using a sand grind mill, 6 parts of a polyisocyanate compound is added to the dispersion, and a mixed solvent having a methyl ethyl ketone / toluene weight ratio of 1/1 is added. After adding 20 parts and mixing, the mixture was filtered through a filter having an average pore diameter of 1 μm to prepare a magnetic paint.
[0025]
Ferromagnetic metal powder 100 parts [Fe / Co / Y weight ratio 89 / 8.3 / 2.7 alloy magnetic powder,
Coercive force (Hc) 1,820 Oe, BET specific surface area 57 m 2 / g,
Crystal size 162Å, particle size: average major axis diameter 0.13 μm,
Saturation magnetization (σs) 131 emu / g]
11 parts of vinyl chloride resin (polymerization degree 420, phosphate group 0.6% by weight)
7 parts of a polyurethane resin (3.36 mmol / g —SO 3 Na group,
Number average molecular weight 3.2 ± 0.4, Tg = 25 ° C.)
α-alumina (average particle size 0.2 μm) 5 parts carbon black (average particle size 0.08 μm) 1 part myristic acid 0.5 part n-butyl stearate 1 part cyclohexanone / methyl ethyl ketone / toluene 250 parts (weight ratio 1) / 1/1 mixed solvent)
[0026]
Next, the nonmagnetic intermediate layer coating is applied to one side of a 4.4 μm thick polyethylene naphthalate film so that the thickness after drying is 1.6 μm. While the film was still wet, the magnetic coating material was applied so that the thickness after drying was 0.3 μm. After this coating, along with a drying process, an in-plane magnetic field orientation process was performed between a cobalt magnet having a magnetic force of 3KG and a solenoid having a magnetic force of 2KG. Thereafter, it was subjected to a calendering process consisting of only a metal roll, a 0.4 μm-thick back coating was applied to the back side of the film, and then slitted to a width of 8 mm to produce a magnetic tape. This was wound around a resin hub with a winding number of 1,550 times or more to obtain a magnetic tape wound body.
[0027]
In this magnetic tape, the Young's modulus Et of the entire tape, the Young's modulus E 1 of the magnetic layer, and the Young's modulus E 2 of the nonmagnetic intermediate layer were measured with a tensile tester (at 0.3% strain). Et = 1,100 kg / mm 2 , E 1 = 1,820 kg / mm 2 , E 2 = 850 kg / mm 2 , and E 1 / E 2 = 2.14. The entire thickness of the magnetic tape (including the backcoat layer) was 6.7 μm.
[0028]
In the measurement of the Young's modulus, the Young's modulus between the magnetic layer and the nonmagnetic intermediate layer is Et × t t = E 1 × t 1 + E 2 × t 2 + E b × t b (t t , t 1 , t 2, t b Te - flop whole, the magnetic layer, a nonmagnetic intermediate layer, the thickness of the support film, because E b have a relationship only Young's modulus) of the support film, and the Young's modulus of after forming the respective layers The thickness of each layer can be calculated and applied to the above formula to calculate.
[0029]
Example 2
A magnetic tape was prepared in the same manner as in Example 1 except that a polyethylene naphthalate film having a thickness of 5.5 μm was used as the nonmagnetic support and the thickness of the nonmagnetic intermediate layer was 2.0 μm. From this, a magnetic tape roll was obtained. The Young's modulus of this magnetic tape is Et = 1,100 kg / mm 2 , E 1 = 1,780 kg / mm 2 , E 2 = 850 kg / mm 2 and E 1 / E 2 = 2.09. It was. The entire thickness of this magnetic tape (including the backcoat layer) was 8.2 μm.
[0030]
Example 3
The amount of nonmagnetic powder (α-Fe 2 O 3 ) was changed to 60 parts, and 16 parts of vinyl chloride resin having a polymerization degree of 420 and a phosphate group of 0.6% by weight was used as the vinyl chloride resin. In the same manner as in Example 1, to prepare a coating for a nonmagnetic intermediate layer. Also, the amount of α-alumina used was changed to 5 parts, the amount of polyurethane resin used was 4 parts, and the amount of polyisocyanate compound was changed to 9 parts. A magnetic paint was prepared.
[0031]
Next, using this nonmagnetic intermediate layer coating material and magnetic coating material, a magnetic tape was produced in the same manner as in Example 1, and a magnetic tape wound body was obtained therefrom. The magnetic tape - Young's modulus of the flop is Et = 1,300Kg / mm 2, E 1 = 2,200Kg / mm 2, E 2 = 1,200Kg / mm 2, E 1 / E 2 = 1.83 It was hot. The entire thickness of the magnetic tape (including the backcoat layer) was 6.7 μm.
[0032]
Comparative Examples 1-3
In the coating material for nonmagnetic intermediate layer or magnetic coating material, the Young's modulus Et, E 1 or E as shown in Table 1 below can be obtained by appropriately changing the amount of nonmagnetic powder used and the type and amount of binder used. Three types of magnetic tape in which one of the ratios 1 / E 2 is out of the scope of the present invention were produced, and a magnetic tape wound body was obtained from this. The thicknesses of the nonmagnetic intermediate layer and the magnetic layer of each magnetic tape were the same as those in Example 1. Therefore, the thickness of the entire tape was 6.7 μm.
[0033]
About each magnetic tape winding body of the above Examples 1-3 and Comparative Examples 1-3, RF output (center recording wavelength 0.54 micrometer) was measured by Hi8VCR (small diameter cylinder) as an electromagnetic conversion characteristic. Further, as a preservability test, each wound body was stored for 72 hours under conditions of 60 ° C. and 80% RH, and then the RF output similar to the above was measured. Furthermore, the waving (μm) involved in the linearity characteristics of each magnetic tape was measured. This measurement was performed under the conditions of a tension of 20 g and a speed of 2 cm / sec using an 8 mm VTR dynamic width measuring device manufactured by Kosaka Laboratory (ZDR-8 type). The smaller the webbing (μm) of the magnetic tape measured in this way, the better. The test results are shown in Table 1 below. For reference, the values of Young's modulus Et, E 1 and E 1 / E 2 of each magnetic tape of Examples 1 to 3 are also shown in the table.
[0034]
[Table 1]
Figure 0003872112
[0035]
【The invention's effect】
As is apparent from the results in Table 1, the magnetic tapes of Examples 1 to 3 of the present invention have a large RF output before and after storage and a small wavebing. It can be seen that the magnetic tape of the present invention has good head contact and linearity, and excellent electromagnetic conversion characteristics and storage stability. On the other hand, the magnetic tapes of Comparative Examples 1 to 3 in which any of the Young's modulus Et, E 1 or E 1 / E 2 ratio is outside the scope of the present invention are inferior to the head contact and linearity, and electromagnetic conversion It can be seen that it is difficult to satisfy the characteristics and storage stability.

Claims (4)

非磁性支持体上に非磁性粉末およびカ―ボンブラツクを結合剤に分散させた非磁性中間層を設け、この上に強磁性粉末を結合剤に分散させた磁性層を設けてなる、テ―プ全体の厚さが11μm以下の磁気テ―プにおいて、上記磁性層のヤング率をE1 、上記非磁性中間層のヤング率をE2 テ―プ全体のヤング率をEtとしたとき、Et≧1,000Kg/mm2 、E1 ≧1,700Kg/mm2 、2.5≧E1 /E2 ≧1.1であることを特徴とする磁気テ―プNonmagnetic on a support a non-magnetic powder and mosquito - a non-magnetic intermediate layer dispersed in a binder Bonburatsuku provided, formed by providing a magnetic layer comprising ferromagnetic powder dispersed in a binder on the hands - flop In a magnetic tape having an overall thickness of 11 μm or less , when the Young's modulus of the magnetic layer is E 1 , the Young's modulus of the nonmagnetic intermediate layer is E 2 , and the Young's modulus of the entire tape is Et, ≧ 1,000Kg / mm 2, E 1 ≧ 1,700Kg / mm 2, magnetic tape characterized in that it is a 2.5 ≧ E 1 / E 2 ≧ 1.1 - flop. 非磁性中間層におけるカ―ボンブラツクの平均粒子径をd1 、非磁性粉末の平均粒子径をd2 としたとき、d1 /d2 ≦2である請求項1に記載の磁気テ―プ2. The magnetic tape according to claim 1 , wherein d 1 / d 2 ≦ 2 where d 1 is an average particle diameter of carbon black in the nonmagnetic intermediate layer and d 2 is an average particle diameter of the nonmagnetic powder. 非磁性支持体の非磁性中間層および磁性層とは反対側の面にバツクコ―ト層を有する請求項1または請求項2に記載の磁気テ―プ3. The magnetic tape according to claim 1, further comprising a backcoat layer on a surface opposite to the nonmagnetic intermediate layer and the magnetic layer of the nonmagnetic support. ブに1,100回以上巻回されて、中心記録波長が0.7μm以下の情報を記録する用途に用いられる請求項1〜3のいずれかに記載の磁気テ―プWound more than 1,100 times the hub, the magnetic tape according to claim 1 for use in applications where the center recording wavelength is recorded the following information 0.7 [mu] m - flop.
JP24861394A 1994-09-17 1994-09-17 Magnetic tape Expired - Lifetime JP3872112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24861394A JP3872112B2 (en) 1994-09-17 1994-09-17 Magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24861394A JP3872112B2 (en) 1994-09-17 1994-09-17 Magnetic tape

Publications (2)

Publication Number Publication Date
JPH0887735A JPH0887735A (en) 1996-04-02
JP3872112B2 true JP3872112B2 (en) 2007-01-24

Family

ID=17180727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24861394A Expired - Lifetime JP3872112B2 (en) 1994-09-17 1994-09-17 Magnetic tape

Country Status (1)

Country Link
JP (1) JP3872112B2 (en)

Also Published As

Publication number Publication date
JPH0887735A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
JPH09134522A (en) Magnetic recording medium
JP3872112B2 (en) Magnetic tape
JP2831101B2 (en) Magnetic recording media
US6086981A (en) Magnetic recording medium
JPH0836734A (en) Magnetic recording medium
JP2820913B2 (en) Magnetic recording media
JP3012190B2 (en) Magnetic recording media
JP3021173B2 (en) Video tape
JP3625783B2 (en) Magnetic recording medium
JP2813157B2 (en) Magnetic recording media
JP2790802B2 (en) Magnetic recording media
JP2001319316A (en) Magnetic recording medium
JPH11219512A (en) Magnetic recording medium
JPH0817041A (en) Magnetic recording medium
JPH0449515A (en) Magnetic recording medium
JPH11110745A (en) Magnetic recording medium
JPH0845057A (en) Magnetic recording medium
WO1990012392A1 (en) Magnetic recording medium
JPH08180364A (en) Magnetic recording medium
JP2001344728A (en) Magnetic tape
JPH0349024A (en) Magnetic recording medium
JPH052734A (en) Magnetic recording medium
JPH05210839A (en) Magnetic recording medium and its production
JPH10293919A (en) Magnetic recording medium
JPH1166538A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term