JP3871442B2 - Peritoneal dialysate - Google Patents
Peritoneal dialysate Download PDFInfo
- Publication number
- JP3871442B2 JP3871442B2 JP22643698A JP22643698A JP3871442B2 JP 3871442 B2 JP3871442 B2 JP 3871442B2 JP 22643698 A JP22643698 A JP 22643698A JP 22643698 A JP22643698 A JP 22643698A JP 3871442 B2 JP3871442 B2 JP 3871442B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- liquid
- peritoneal dialysis
- glucose
- sodium lactate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- External Artificial Organs (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、腹膜透析液の技術分野に属し、詳しくは、腹膜透析液に含有されるブドウ糖の安定性を向上させた腹膜透析液に関する。
【0002】
【従来の技術】
腎不全の対症療法の1つである腹膜透析療法は、人工腎臓によって行われる透析療法に比して装置や器具が大がかりとならず、時間的な拘束も少ないことから在宅医療の一つとして注目されている。
【0003】
しかし、腹膜透析療法は腹膜炎の危険性を常に伴っている。そのことが腹膜透析療法の継続を妨げる最大の原因と考えられてきたが、カテーテルや無菌接続法の改良等により、腹膜炎の発症率は年々減少しており、そのため長期にわたる腹膜透析継続例が増加しつつある。
ところが、腹膜炎の既往歴がないにも関わらず、腹膜の透析膜としての機能が次第に低下して、除水量の減少や老廃物の除去効果が低下してしまい、腹膜透析の継続が困難になる例が出てきた。
【0004】
この原因は未だ確定されてはいないが、一般的には、チューブと腹膜が直接接触することや薬液の注排液による腹膜への物理的なストレス、さらには薬液のpHや浸透圧が生理的範囲から逸脱していることなどに由来する刺激が、腹膜中皮細胞の損傷・剥離、腹膜の繊維化(肥厚)など一連の組織反応を起こし、それによって腹膜の機能が低下して引き起こされると考えられている。
【0005】
例えば、従来使用されている腹膜透析液は、ブドウ糖(グルコース)の分解・着色を防止するために、薬液のpHが5.0〜5.5の範囲になるように処方されているが、最近の研究によると、このようなpHの腹膜透析液は、腹腔マクロファージの免疫防御機構を実質的に低下させてしまい、細菌の進入に対して腹膜炎の危険性を増大させることが報告されている。
さらに、pHが5.0〜5.5の腹膜透析液は、培養腹膜中皮細胞への障害性が著しく高く、障害性を軽減するためには、腹膜透析液のpHを6.5以上にすることが有効であることが報告されている。
【0006】
しかしながら、腹膜透析液のpHは、現在使用されている腹膜透析液に配合されているブドウ糖の安定性に大きな影響を与えており、そのままpHを高くすると、製造時や保管時にブドウ糖が分解して薬液が着色してしまい、製品価値が著しく低下してしまうことになる。
そこで、ブドウ糖の分解・着色を抑制したまま、腹膜透析液のpHを高くする方法として、ブドウ糖を含む薬液成分と、pHの高い薬液成分とを使用時まで別々に収容し、使用直前に無菌的に混合する製剤が開発されている。
【0007】
このように、薬液成分を分離することにより、高pHで、かつブドウ糖の分解・着色を抑制した腹膜透析液として、例えば、特表平7−500992号公報には、10〜50%以上の高濃度ブドウ糖液を、それ以外の電解質およびアルカリ剤と分離した腹膜透析液が開示されている。
この腹膜透析液によれば、ブドウ糖の分解生成物に起因する228nmの吸光度は減少するものの、ブドウ糖の主たる分解生成物である5−ヒドロキシメチルフルフラール(5−HMF)の指標である284nmの吸光度は、経時的に増加してしまい、すなわち、ブドウ糖の分解を十分に抑制することはできない。
【0008】
さらに、特開平8−131542公報には、ブドウ糖を含有し、かつ、乳酸イオンを含有しないpH4〜5の第1液と、乳酸ナトリウムを含有し、かつ、ブドウ糖を含有しない第2液とからなることにより、ブドウ糖の分解を抑制して、すなわち5−HMFの指標である284nmの吸光度を低減した腹膜透析液が開示されている。
しかしながら、腹膜透析液の安定性や、腹膜透析液の安全性に対する要求は、近年、ますます高次元になっており、人体に悪影響を与えない生理的なpHで、かつ、よりブドウ糖の分解や着色を好適に抑制した、安定な腹膜透析液の出現が望まれている。
【0009】
【発明が解決しようとする課題】
本発明の目的は、前記従来技術の問題点を解決することにあり、加熱滅菌およびその後の保管中のブドウ糖の安定性を最大限に向上し、かつ、pHが生理的な領域に近い腹膜透析液を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために、鋭意検討を重ねた結果、ブドウ糖を含む薬液成分と、pHの高い薬液成分とを分離して保管する腹膜透析液(以下、便宜的に、2液型の腹膜透析液という)において、ブドウ糖を含む溶液に、特定の濃度範囲で微量の乳酸ナトリウムを含有させることにより、腹膜透析液の経時的な284nmの吸光度の増加を抑制できること、すなわち、加熱滅菌およびその後の保管中のブドウ糖の分解を大幅に抑制した、安定性に優れた腹膜透析液が得られることを見出して、本発明を成すに至った。
【0011】
すなわち、本発明は、ブドウ糖および10ppm〜500ppmの乳酸ナトリウムを含有する第1液と、アルカリ性pH調整剤を含有する第2液とからなり、前記第2液のpHが6.7〜7.4であり、混合後のpHが6.0〜7.5である腹膜透析液を提供する。
【0012】
また、前記第2液のアルカリ性pH調整剤が、水酸化ナトリウムおよび炭酸水素ナトリウムの少なくとも一方を含むのが好ましく、さらに、前記第1液のpHが4.5〜6.5であるのが好ましい。
【0013】
【発明の実施の形態】
以下、本発明の腹膜透析液について、詳細に説明する。
【0014】
本発明の腹膜透析液は、ブドウ糖を含有する第1液と、ブドウ糖を含まずアルカリ性pH調整剤を含む第2液とからなり、使用直前に第1液および第2液を混合する2液型(2コンパートメント)の腹膜透析液で、ブドウ糖を含む第1液が10ppm〜500ppmの乳酸ナトリウムを含有し、かつ、混合後のpHが6.0〜7.5の腹膜透析液である。
【0015】
図1に、ブドウ糖および乳酸ナトリウムを含有する溶液の、284nmの吸光度の経時変化と乳酸ナトリウム濃度との関係を示す。
図1に示される例は、250mL(リットル)の注射用水に、12.5gのブドウ糖と、0mg、2.5mg、5.0mg、25.0mg、175mgおよび250mgの50%乳酸ナトリウム液(局外規品)とを溶解した水溶液を作製し、各水溶液を共栓付き試験管に14mLずつ充填し、加熱滅菌(110℃、12分)したものを、60℃の恒温槽に入れて保管し、5、10、15日後の284nmの吸光度を測定したものである。
すなわち、乳酸ナトリウム濃度が、0ppm、5ppm、10ppm、50ppm、350ppmおよび500ppmのブドウ糖溶液の284nmの吸光度の経時変化を示す。
【0016】
図1に示されるように、ブドウ糖溶液に乳酸ナトリウムを微量添加することにより、その溶液の284nmの吸光度の経時的な増加を抑制、すなわちブドウ糖の分解を抑制することができる。また、乳酸ナトリウムの添加量が多くなると、逆に吸光度の増加が大きくなる。
【0017】
本発明者らの検討によれば、2液型の腹膜透析液において、ブドウ糖を含む第1液に10ppm〜500ppm、好ましくは、10ppm〜350ppmの乳酸ナトリウムを含有することにより、加熱滅菌およびその後の保管中のブドウ糖の分解を好適に抑制することができ、安定で保存性に優れる腹膜透析液が実現できる。
【0018】
第1液に含まれるブドウ糖の含有量には特に限定はなく、通常の腹膜透析液と同様でよく、0.5g/dl〜10g/dlが好ましい。
また、第1液のpHにも特に限定はないが、pH4.5〜6.5の範囲が好ましい。なお、本発明の腹膜透析液の第1液においては、大きなpH変化を引き起こす成分が配合されなければ、特にpH調整を行う必要はないが、必要があれば、例えば、塩酸や乳酸等を用いてpH調整を行えばよい。
【0019】
本発明の腹膜透析液の第2液には、アルカリ化剤として配合される乳酸ナトリウムや乳酸に加え、第1液と第2液を混合した後の混合液のpHを6.0〜7.5、好ましくは、pHを6.5〜7.5に調整するために、アルカリ性pH調整剤、好ましい例示として、水酸化ナトリウムや炭酸水素ナトリウム等が含有される。
本発明の腹膜透析液において、混合後のpHが6.0未満では、マクロファージの免疫防御機構の低下や、腹膜中皮細胞への障害性が高く、7.5を超えると、生体に対する悪影響が懸念される。
【0020】
なお、第2液のpHは、第1液が所定範囲の乳酸ナトリウムを含有することを考慮すれば、通常、pH6.7以上となるが、誤使用時の安全性の点からpH9以下に設定するのが望ましい。
【0021】
本発明の腹膜透析液において、乳酸イオンの含有量は特に限定はなく、通常の腹膜透析液と同様でよいが、好ましくは、第1液と第2液とを合計して、30mEq/L 〜45mEq/L である。
【0022】
本発明の腹膜透析液には、これらの成分以外にも、通常の腹膜透析液に含有される各種の成分、すなわちナトリウムイオン、カルシウムイオン、マグネシウムイオン、クロルイオン等が含有される。
これらの含有量は、通常の腹膜透析液と同様で良く、第1液と第2液との合計で、ナトリウムイオンは100mEq/L 〜200mEq/L が、カルシウムイオンは0mEq/L 〜5mEq/L が、マグネシウムイオンは0mEq/L 〜5mEq/L が、クロルイオンは50mEq/L 〜180mEq/L が、それぞれ好ましい。
【0023】
これらの成分は、第1液および第2液のいずれに含有されてもよいが、ブドウ糖の分解抑制等の腹膜透析液の安定性の点で、ブドウ糖を含有しない第2液に配合するのが好ましい。
また、これらの成分は、通常の腹膜透析液と同様に、乳酸、乳酸ナトリウム、塩化カルシウム、塩化マグネシウム、塩化ナトリウム等として、本発明の腹膜透析液に配合すればよい。
ただし、第1液には、前記本発明の範囲を超える乳酸ナトリウムを配合してはいけないのは当然であり、また、第1液に配合する乳酸は、pH調整のためのみとするのが好ましい。
【0024】
このような本発明の腹膜透析液は、第1液と第2液とが、別々に、ポリプロピレン製やポリ塩化ビニル製等の容器に充填・包装されて保管され、使用直前に、第1液と第2液とが無菌的に混合される。また、包装前または後に、滅菌が行われる。
なお、滅菌の方法には特に限定はないが、蒸気、電子線による加熱や放射線による方法、無菌濾過後に容器に充填する方法等が例示される。
【0025】
以上、本発明の腹膜透析液について詳細に説明したが、本発明は、これに限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよい。
【0026】
【実施例】
以下、本発明の具体的実施例を挙げ、本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されないのは言うまでもない。
【0027】
[実施例1]
ブドウ糖を2000g、50%乳酸ナトリウム液を4.0g、40Lの注射用水に溶解し、第1液を調製した(乳酸ナトリウム濃度50ppm)。
また、50%乳酸ナトリウム液を887g、塩化ナトリウムを555g、塩化カルシウム・二水塩を18.3g、塩化マグネシウム・六水塩を5.08g、それぞれ20Lの注射用水に溶解し、水酸化ナトリウムでpHを調整し、第2液を調製した。
第1液800mL、第2液200mLを、それぞれポリプロピレン製複室容器に充填し、ポリプロピレン/ナイロン/ポリプロピレン製の三方袋に入れて脱気包装した後に、オートクレーブを用いて加熱滅菌(115℃、11分)した後、第1液、第2液、および両液の混合液のpHを測定した。第1液のpHは5.6、第2液のpHは7.2、混合液のpHは6.8であった。
【0028】
得られた製品(腹膜透析液)の、284nmの吸光度の経時的な変化を測定した。結果を、下記表1に示す。
なお、製品の保管は60℃の恒温槽中で行い、第1液と第2液の混合は、吸光度の測定直前に行った。
【0029】
[実施例2]
ブドウ糖を2000g、50%乳酸ナトリウム液を8.0g、40Lの注射用水に溶解し、第1液を調製した(乳酸ナトリウム濃度100ppm)。
また、50%乳酸ナトリウム液を887g、塩化ナトリウムを555g、塩化カルシウム・二水塩を18.3g、塩化マグネシウム・六水塩を5.08g、20Lの注射用水に溶解し、水酸化ナトリウムでpHを調整し、第2液を調製した。
第1液1600mL、第2液400mLを、それぞれ、実施例1と同様に包装し、その後、オートクレーブを用いて加熱滅菌(115℃、12分)した後、第1液、第2液、および両液の混合液のpHを測定した。第1液のpHは5.6、第2液のpHは7.4、混合液のpHは6.9であった。
得られた製品について、実施例1と同様にして284nmの吸光度の経時的な変化を測定した。結果を表1に併記する。
【0030】
[実施例3]
ブドウ糖を2000g、50%乳酸ナトリウム液を16.0g、40Lの注射用水に溶解し、第1液を調製した(乳酸ナトリウム濃度200ppm)。
また、50%乳酸ナトリウム液を887g、塩化ナトリウムを555g、塩化カルシウム・二水塩を18.3g、塩化マグネシウム・六水塩を5.08g、注射用水に20Lに溶解し、水酸化ナトリウムでpHを調整し、第2液を調製した。
第1液800mL、第2液200mLを、それぞれ、実施例1と同様に包装し、その後、オートクレーブを用いて加熱滅菌(115℃、11分)した後、第1液、第2液、および両液の混合液のpHを測定した。第1液のpHは5.7、第2液のpHは7.4、混合液のpHは6.8であった。
得られた製品について、実施例1と同様にして284nmの吸光度の経時的な変化を測定した。結果を表1に併記する。
【0031】
[比較例1]
ブドウ糖を2000g、40Lの注射用水に溶解し、第1液を調製した。
また、50%乳酸ナトリウム液を887g、塩化ナトリウムを555g、塩化カルシウム・二水塩を18.3g、塩化マグネシウム・六水塩を5.08g、20Lの注射用水に溶解し、水酸化ナトリウムでpHを調整し、第2液を調製した。
第1液1600mL、第2液400mLを、それぞれ、実施例1と同様に包装し、その後、オートクレーブを用いて加熱滅菌(115℃、12分)した後、第1液、第2液、および両液の混合液のpHを測定した。第1液のpHは5.5、第2液のpHは7.2、混合液のpHは6.7であった。
得られた製品について、実施例1と同様にして284nmの吸光度の経時的な変化を測定した。結果を表1に併記する。
【0032】
[比較例2]
ブドウ糖を2000gを40Lの注射用水に溶解し、希塩酸を用いてpHを4.5に調整して、第1液を調製した。
また、50%乳酸ナトリウム液を887g、塩化ナトリウムを555g、塩化カルシウム・二水塩を18.3g、塩化マグネシウム・六水塩を5.08g、20Lの注射用水に溶解し、第2液を調製した。
第1液1600mL、第2液400mLを、それぞれ、実施例1と同様に包装し、その後、オートクレーブを用いて加熱滅菌(115℃、11分)した後、第1液、第2液、および両液の混合後のpHを測定した。第1液のpHは4.3、第2液のpHは7.2、混合液のpHは6.2であった。
得られた製品について、実施例1と同様にして284nmの吸光度の経時的な変化を測定した。結果を表1に併記する。
【0033】
【0034】
上記表1に示されるように、本発明に従って薬液処方を設定し、適切な加熱滅菌を行うことによって、加熱滅菌後、あるいは60℃で10日経過後も284nmの吸光度において0.1以下の腹膜透析液を実現することができる。この事は従来技術からは予測なし得なかった事である。
以上の結果より、本発明の効果は明らかである。
【0035】
【発明の効果】
以上、詳細に説明したように、本発明によれば、pHを生理的な領域にできると共に、加熱滅菌およびその後の保管中のブドウ糖の分解を最大限に抑制し、非常に安定性に優れた腹膜透析液を得ることができる。
【図面の簡単な説明】
【図1】 ブドウ糖溶液の乳酸ナトリウム含有量に対する284nmの吸光度の経時的な変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of peritoneal dialysis fluid, and particularly relates to a peritoneal dialysis fluid with improved stability of glucose contained in the peritoneal dialysis fluid.
[0002]
[Prior art]
Peritoneal dialysis, which is one of the symptomatic treatments for renal failure, is notable as a device for home care because it requires less equipment and instruments and less time constraints than dialysis performed with an artificial kidney. Has been.
[0003]
However, peritoneal dialysis always carries the risk of peritonitis. Although this has been considered to be the biggest cause of continuation of peritoneal dialysis therapy, the incidence of peritonitis has decreased year by year due to improvements in catheters and sterile connection methods, etc. I am doing.
However, despite the absence of a history of peritonitis, the function of the peritoneum as a dialysis membrane gradually declines, reducing the amount of water removed and the effect of removing waste products, making it difficult to continue peritoneal dialysis. An example came out.
[0004]
The cause of this has not yet been determined, but in general, the direct contact between the tube and the peritoneum, the physical stress on the peritoneum due to the injection and discharge of chemicals, and the pH and osmotic pressure of the chemicals are physiological. When stimulation derived from deviating from the range causes a series of tissue reactions such as peritoneal mesothelial cell damage and detachment, peritoneal fibrosis (thickening), and this causes a decrease in peritoneal function It is considered.
[0005]
For example, conventionally used peritoneal dialysis fluid has been formulated so that the pH of the drug solution is in the range of 5.0 to 5.5 in order to prevent the decomposition and coloring of glucose (glucose). According to this study, it has been reported that peritoneal dialysis fluid having such a pH substantially reduces the immune defense mechanism of peritoneal macrophages and increases the risk of peritonitis against bacterial invasion.
Furthermore, the peritoneal dialysis solution having a pH of 5.0 to 5.5 has extremely high damage to the cultured peritoneal mesothelial cells. To reduce the damage, the pH of the peritoneal dialysis solution is set to 6.5 or more. It has been reported to be effective.
[0006]
However, the pH of the peritoneal dialysis solution has a great influence on the stability of glucose blended in the peritoneal dialysis solution currently used. If the pH is increased as it is, glucose will be degraded during production and storage. A chemical | medical solution will color and a product value will fall remarkably.
Therefore, as a method of increasing the pH of the peritoneal dialysis solution while suppressing the decomposition and coloring of glucose, the drug solution component containing glucose and the drug solution component having a high pH are separately stored until use, and aseptic before use. Formulations have been developed that mix with
[0007]
In this way, as a peritoneal dialysis solution having a high pH and suppressing the decomposition and coloring of glucose by separating the chemical solution components, for example, Japanese Patent Publication No. 7-500992 discloses a high permeation rate of 10 to 50% or more. A peritoneal dialysis solution obtained by separating a glucose solution at a concentration from other electrolytes and alkaline agents is disclosed.
According to this peritoneal dialysis solution, although the absorbance at 228 nm due to the degradation product of glucose decreases, the absorbance at 284 nm, which is an indicator of 5-hydroxymethylfurfural (5-HMF), which is the main degradation product of glucose, is However, it increases over time, that is, the degradation of glucose cannot be sufficiently suppressed.
[0008]
Further, JP-A-8-131542 includes a first liquid having a pH of 4 to 5 that contains glucose and does not contain lactate ions, and a second liquid that contains sodium lactate and does not contain glucose. Thus, a peritoneal dialysis solution is disclosed in which the degradation of glucose is suppressed, that is, the absorbance at 284 nm, which is an indicator of 5-HMF, is reduced.
However, the demand for the stability of peritoneal dialysis fluid and the safety of peritoneal dialysis fluid has become increasingly higher in recent years, at a physiological pH that does not adversely affect the human body, and more glucose degradation and Appearance of a stable peritoneal dialysis solution in which coloring is suitably suppressed is desired.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art, to maximize the stability of glucose during heat sterilization and subsequent storage, and peritoneal dialysis whose pH is close to a physiological range. To provide liquid.
[0010]
[Means for Solving the Problems]
As a result of intensive studies in order to achieve the above object, the present inventors have obtained a peritoneal dialysis solution (hereinafter, for convenience, which separates and stores a drug solution component containing glucose and a drug solution component having a high pH). In a two-part peritoneal dialysis solution), by adding a trace amount of sodium lactate in a specific concentration range to a solution containing glucose, an increase in absorbance at 284 nm over time of the peritoneal dialysis solution can be suppressed, that is, The present inventors have found that a peritoneal dialysis solution excellent in stability can be obtained in which the degradation of glucose during heat sterilization and subsequent storage is greatly suppressed.
[0011]
That is, the present invention comprises a first liquid containing glucose and 10 ppm to 500 ppm sodium lactate, and a second liquid containing an alkaline pH adjuster, and the pH of the second liquid is 6.7-7. a .4, pH after mixing provide peritoneal dialysate is 6.0 to 7.5.
[0012]
Moreover, it is preferable that the alkaline pH adjuster of the second liquid contains at least one of sodium hydroxide and sodium hydrogen carbonate, and it is preferable that the pH of the first liquid is 4.5 to 6.5. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the peritoneal dialysis solution of the present invention will be described in detail.
[0014]
The peritoneal dialysis solution of the present invention comprises a first solution containing glucose and a second solution that does not contain glucose and contains an alkaline pH adjuster, and the first solution and the second solution are mixed immediately before use. In the peritoneal dialysis fluid of (2 compartments), the first fluid containing glucose contains 10 ppm to 500 ppm of sodium lactate, and the pH after mixing is 6.0 to 7.5.
[0015]
FIG. 1 shows the relationship between changes over time in absorbance at 284 nm and sodium lactate concentration of a solution containing glucose and sodium lactate.
In the example shown in FIG. 1, 250 mL (liter) of water for injection, 12.5 g of glucose, 0 mg, 2.5 mg, 5.0 mg, 25.0 mg, 175 mg and 250 mg of 50% sodium lactate solution (external) Preparations), and 14 mL each of each aqueous solution is filled into a test tube with a stopper and sterilized by heating (110 ° C., 12 minutes) in a constant temperature bath at 60 ° C. and stored. The absorbance at 284 nm was measured after 5, 10, and 15 days.
That is, the 284 nm absorbance change with time of a glucose solution having sodium lactate concentrations of 0 ppm, 5 ppm, 10 ppm, 50 ppm, 350 ppm, and 500 ppm is shown.
[0016]
As shown in FIG. 1, by adding a small amount of sodium lactate to a glucose solution, it is possible to suppress an increase in absorbance of the solution at 284 nm over time, that is, to suppress glucose degradation. On the other hand, as the amount of sodium lactate added increases, the increase in absorbance increases.
[0017]
According to the study by the present inventors, in the two-part peritoneal dialysis solution, the first solution containing glucose contains 10 ppm to 500 ppm, preferably 10 ppm to 350 ppm of sodium lactate. Glucose degradation during sterilization and subsequent storage can be suitably suppressed, and a peritoneal dialysis solution that is stable and excellent in storage stability can be realized.
[0018]
The content of glucose contained in the first solution is not particularly limited, and may be the same as that of a normal peritoneal dialysis solution, and is preferably 0.5 g / dl to 10 g / dl.
Moreover, although there is no limitation in particular also in the pH of a 1st liquid, the range of pH4.5-6.5 is preferable. In the first solution of the peritoneal dialysis solution of the present invention, it is not necessary to adjust pH unless a component that causes a large pH change is blended, but if necessary, for example, hydrochloric acid or lactic acid is used. PH adjustment may be performed.
[0019]
In the second liquid of the peritoneal dialysis liquid of the present invention, the pH of the mixed liquid after mixing the first liquid and the second liquid in addition to sodium lactate or lactic acid blended as an alkalizing agent is 6.0 to 7. 5, Preferably, in order to adjust pH to 6.5-7.5, an alkaline pH adjuster, preferable examples include sodium hydroxide and sodium bicarbonate.
In the peritoneal dialysis solution of the present invention, if the pH after mixing is less than 6.0, the immune defense mechanism of macrophages is reduced and the peritoneal mesothelial cells are highly impaired. Concerned.
[0020]
In consideration of the fact that the first liquid contains sodium lactate in a predetermined range, the pH of the second liquid is usually pH 6.7 or higher, but is set to pH 9 or lower from the viewpoint of safety during misuse. It is desirable to do.
[0021]
In the peritoneal dialysis fluid of the present invention, the content of lactate ions is not particularly limited, and may be the same as that of a normal peritoneal dialysis fluid. Preferably, the total of the first fluid and the second fluid is 30 mEq / L to 45 mEq / L.
[0022]
In addition to these components, the peritoneal dialysate of the present invention contains various components contained in normal peritoneal dialysate, that is, sodium ions, calcium ions, magnesium ions, chloro ions, and the like.
These contents may be the same as the normal peritoneal dialysis solution. The total of the first and second fluids is 100mEq / L to 200mEq / L for sodium ions and 0mEq / L to 5mEq / L for calcium ions. However, the magnesium ion is preferably 0 mEq / L to 5 mEq / L, and the chloro ion is preferably 50 mEq / L to 180 mEq / L.
[0023]
These components may be contained in either the first liquid or the second liquid, but in terms of the stability of the peritoneal dialysis liquid such as suppression of glucose degradation, it may be added to the second liquid that does not contain glucose. preferable.
In addition, these components may be added to the peritoneal dialysis solution of the present invention as lactic acid, sodium lactate, calcium chloride, magnesium chloride, sodium chloride, etc. in the same manner as a normal peritoneal dialysis solution.
However, it is natural that the first liquid should not contain sodium lactate that exceeds the scope of the present invention, and the lactic acid added to the first liquid is preferably only for pH adjustment. .
[0024]
In such a peritoneal dialysis solution of the present invention, the first solution and the second solution are separately filled and packaged in a container made of polypropylene or polyvinyl chloride, and stored immediately before use. And the second liquid are mixed aseptically. In addition, sterilization is performed before or after packaging.
The method of sterilization is not particularly limited, and examples thereof include a method using heating or radiation using steam, electron beam, and a method of filling a container after aseptic filtration.
[0025]
The peritoneal dialysis solution of the present invention has been described in detail above, but the present invention is not limited to this, and various improvements and modifications may be made without departing from the gist of the present invention.
[0026]
【Example】
Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention. Needless to say, the present invention is not limited to the following examples.
[0027]
[Example 1]
Glucose were dissolved 2000 g, 50% sodium lactate solution 4.0 g, water for injection 40L, and the first solution was prepared (
Further, 887 g of 50% sodium lactate solution, 555 g of sodium chloride, 18.3 g of calcium chloride / dihydrate, 5.08 g of magnesium chloride / hexahydrate, each dissolved in 20 L of water for injection, The pH was adjusted and a second liquid was prepared.
800 mL of the first solution and 200 mL of the second solution are filled in a polypropylene multi-chamber container, put in a three-sided polypropylene / nylon / polypropylene bag, degassed, and then heat sterilized using an autoclave (115 ° C., 11 After that, the pH of the first liquid, the second liquid, and the mixture of both liquids was measured. The pH of the first liquid was 5.6, the pH of the second liquid was 7.2, and the pH of the mixed liquid was 6.8.
[0028]
The change over time of the absorbance at 284 nm of the obtained product (peritoneal dialysate) was measured. The results are shown in Table 1 below.
The product was stored in a constant temperature bath at 60 ° C., and the first liquid and the second liquid were mixed immediately before measuring the absorbance.
[0029]
[Example 2]
Glucose was dissolved in 2000 g, 50% sodium lactate solution in 8.0 g and 40 L of water for injection to prepare a first solution (sodium lactate concentration of 100 ppm).
Further, 887 g of 50% sodium lactate solution, 555 g of sodium chloride, 18.3 g of calcium chloride / dihydrate, 5.08 g of magnesium chloride / hexahydrate, dissolved in 20 L of water for injection, and pH with sodium hydroxide The second liquid was prepared.
After packaging 1600 mL of the first solution and 400 mL of the second solution in the same manner as in Example 1, and then sterilizing by heating (115 ° C., 12 minutes) using an autoclave, the first, second, and both The pH of the liquid mixture was measured. The pH of the first liquid was 5.6, the pH of the second liquid was 7.4, and the pH of the mixed liquid was 6.9.
For the obtained product, the change with time in the absorbance at 284 nm was measured in the same manner as in Example 1. The results are also shown in Table 1.
[0030]
[Example 3]
Glucose was dissolved in 2000 g, 50% sodium lactate solution in 16.0 g, and 40 L of water for injection to prepare a first solution (sodium lactate concentration of 200 ppm).
Further, 887 g of 50% sodium lactate solution, 555 g of sodium chloride, 18.3 g of calcium chloride / dihydrate, 5.08 g of magnesium chloride / hexahydrate, dissolved in 20 L of water for injection, and pH with sodium hydroxide The second liquid was prepared.
After packaging 800 mL of the first liquid and 200 mL of the second liquid in the same manner as in Example 1, and then sterilizing by heating (115 ° C., 11 minutes) using an autoclave, the first liquid, the second liquid, and both The pH of the liquid mixture was measured. The pH of the first liquid was 5.7, the pH of the second liquid was 7.4, and the pH of the mixed liquid was 6.8.
For the obtained product, the change with time in the absorbance at 284 nm was measured in the same manner as in Example 1. The results are also shown in Table 1.
[0031]
[Comparative Example 1]
Glucose was dissolved in 2000 g of 40 L of water for injection to prepare a first solution.
Further, 887 g of 50% sodium lactate solution, 555 g of sodium chloride, 18.3 g of calcium chloride / dihydrate, 5.08 g of magnesium chloride / hexahydrate, dissolved in 20 L of water for injection, and pH with sodium hydroxide The second liquid was prepared.
After packaging 1600 mL of the first liquid and 400 mL of the second liquid in the same manner as in Example 1, and then sterilizing by heating (115 ° C., 12 minutes) using an autoclave, the first liquid, the second liquid, and both The pH of the liquid mixture was measured. The pH of the first liquid was 5.5, the pH of the second liquid was 7.2, and the pH of the mixed liquid was 6.7.
For the obtained product, the change with time in the absorbance at 284 nm was measured in the same manner as in Example 1. The results are also shown in Table 1.
[0032]
[Comparative Example 2]
A first solution was prepared by dissolving 2000 g of glucose in 40 L of water for injection and adjusting the pH to 4.5 with dilute hydrochloric acid.
In addition, 887 g of 50% sodium lactate solution, 555 g of sodium chloride, 18.3 g of calcium chloride / dihydrate, 5.08 g of magnesium chloride / hexahydrate, dissolved in 20 L of water for injection to prepare a second solution did.
After packaging 1600 mL of the first liquid and 400 mL of the second liquid in the same manner as in Example 1, and then sterilizing by heating (115 ° C., 11 minutes) using an autoclave, the first liquid, the second liquid, and both The pH after mixing of the liquid was measured. The pH of the first solution was 4.3, the pH of the second solution was 7.2, and the pH of the mixed solution was 6.2.
For the obtained product, the change with time in the absorbance at 284 nm was measured in the same manner as in Example 1. The results are also shown in Table 1.
[0033]
[0034]
As shown in Table 1 above, by setting a chemical formulation according to the present invention and performing appropriate heat sterilization, peritoneal dialysis of 0.1 or less at an absorbance of 284 nm even after 10 days at 60 ° C. after heat sterilization. Liquid can be realized. This is something that could not have been predicted from the prior art.
From the above results, the effects of the present invention are clear.
[0035]
【The invention's effect】
As described above in detail, according to the present invention, the pH can be set in a physiological region, and the decomposition of glucose during heat sterilization and subsequent storage is suppressed to the maximum, and the stability is excellent. Peritoneal dialysate can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the change with time of absorbance at 284 nm with respect to the sodium lactate content of a glucose solution.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22643698A JP3871442B2 (en) | 1998-08-11 | 1998-08-11 | Peritoneal dialysate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22643698A JP3871442B2 (en) | 1998-08-11 | 1998-08-11 | Peritoneal dialysate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000051348A JP2000051348A (en) | 2000-02-22 |
JP3871442B2 true JP3871442B2 (en) | 2007-01-24 |
Family
ID=16845093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22643698A Expired - Lifetime JP3871442B2 (en) | 1998-08-11 | 1998-08-11 | Peritoneal dialysate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3871442B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104619348A (en) * | 2012-11-27 | 2015-05-13 | 泰尔茂株式会社 | Peritoneal dialysis fluid |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60039978D1 (en) | 1999-04-26 | 2008-10-02 | Edwards Lifesciences Ag | SUBSTITUTION INFUSION FLUID AND CITRATANTICOAGULATION |
US7186420B2 (en) | 1999-04-26 | 2007-03-06 | Edwards Lifesciences Corporation | Multi-part substitution infusion fluids and matching anticoagulants |
US8105258B2 (en) | 1999-04-26 | 2012-01-31 | Baxter International Inc. | Citrate anticoagulation system for extracorporeal blood treatments |
JP2002145782A (en) * | 2000-11-02 | 2002-05-22 | Shimizu Pharmaceutical Co Ltd | Glucose-containing pharmaceutical preparation and method for producing the same |
US7445801B2 (en) | 2002-06-07 | 2008-11-04 | Baxter International Inc. | Stable bicarbonate-based solution in a single container |
US20100187476A1 (en) | 2007-08-15 | 2010-07-29 | Yasumi Yugari | Peritoneal dialysate |
CN104619347B (en) | 2012-11-27 | 2018-08-03 | 泰尔茂株式会社 | peritoneal dialysis solution |
US11020420B2 (en) | 2016-06-09 | 2021-06-01 | Terumo Kabushiki Kaisha | Biocompatible peritoneal dialysate |
CN111246889A (en) * | 2017-11-03 | 2020-06-05 | 甘布罗伦迪亚股份公司 | Methods and systems for providing peritoneal dialysis solutions with variable potassium concentrations |
-
1998
- 1998-08-11 JP JP22643698A patent/JP3871442B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104619348A (en) * | 2012-11-27 | 2015-05-13 | 泰尔茂株式会社 | Peritoneal dialysis fluid |
CN104619348B (en) * | 2012-11-27 | 2018-05-01 | 泰尔茂株式会社 | peritoneal dialysis solution |
Also Published As
Publication number | Publication date |
---|---|
JP2000051348A (en) | 2000-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1131077B1 (en) | Bicarbonate-based solution in two parts for peritoneal dialysis or as a substitution solution in continuous renal replacement therapy | |
KR0163425B1 (en) | Precipitate-free dialysis solutions | |
EP1465688B2 (en) | Bicarbonate-based solutions for dialysis therapies | |
EP1585531B1 (en) | Biocompatible dialysis fluids containing icodextrins | |
AU638527B2 (en) | Histidine buffered peritoneal dialysis solution | |
JP3684435B2 (en) | Glucose-containing preparation | |
US7053059B2 (en) | Dialysis solutions with reduced levels of glucose degradation products | |
EP2211874B1 (en) | Sterilised dialysis solutions containing pyrophosphate | |
MXPA06014254A (en) | Bicarbonate-based peritoneal dialysis solutions. | |
JP3871442B2 (en) | Peritoneal dialysate | |
JPWO2014083612A1 (en) | Peritoneal dialysate | |
JPH08131542A (en) | Peritoneum dialysing liquid conditioning solution set | |
WO2014083613A1 (en) | Peritoneal dialysis fluid | |
JPH02304026A (en) | Liquid for peritoneal lavage | |
AU2003283940B2 (en) | A method for preparing a medical solution for the manufacture of a medicament for peritoneal dialysis | |
JPH1171273A (en) | Peritoneum dialysing fluid | |
JP6216777B2 (en) | Peritoneal dialysate | |
JP4419904B2 (en) | Peritoneal dialysate | |
AU2012216797B2 (en) | Sterilised dialysis solutions containing pyrophosphates | |
WO2019086317A1 (en) | Method and system for providing peritoneal dialysis fluids with variable potassium concentrations | |
JP2004283619A (en) | Solution set for preparation of peritoneal dialysis fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061017 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131027 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |