[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3870951B2 - Refrigeration cycle apparatus and control method thereof - Google Patents

Refrigeration cycle apparatus and control method thereof Download PDF

Info

Publication number
JP3870951B2
JP3870951B2 JP2004117609A JP2004117609A JP3870951B2 JP 3870951 B2 JP3870951 B2 JP 3870951B2 JP 2004117609 A JP2004117609 A JP 2004117609A JP 2004117609 A JP2004117609 A JP 2004117609A JP 3870951 B2 JP3870951 B2 JP 3870951B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compression mechanism
gas
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004117609A
Other languages
Japanese (ja)
Other versions
JP2005300031A (en
Inventor
典穂 岡座
雅人 目片
和生 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004117609A priority Critical patent/JP3870951B2/en
Publication of JP2005300031A publication Critical patent/JP2005300031A/en
Application granted granted Critical
Publication of JP3870951B2 publication Critical patent/JP3870951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、膨張機を備えた冷凍サイクル装置および制御方法に関する。   The present invention relates to a refrigeration cycle apparatus including an expander and a control method.

オゾン破壊係数がゼロでありかつ地球温暖化係数もフロン類に比べれば格段に小さい、
二酸化炭素(以下、CO2という)を冷媒として用いる冷凍サイクル装置が近年着目され
ているが、CO2冷媒は、臨界温度が31.06℃と低く、この温度よりも高い温度を利用する場合には、冷凍サイクル装置の高圧側(圧縮機出口〜放熱器〜減圧器入口)ではCO2冷媒の凝縮が生じない超臨界状態となり、従来の冷媒に比べて、冷凍サイクル装置の運
転効率(COP)が低下するといった特徴を有する。したがって、CO2冷媒を用いた冷
凍サイクル装置にあっては、最適なCOPを維持することが重要であり、冷媒温度の変化などに応じて、COPが最良となる高圧側圧力に調整する必要がある。
The ozone depletion coefficient is zero and the global warming coefficient is much smaller than chlorofluorocarbons.
In recent years, a refrigeration cycle apparatus using carbon dioxide (hereinafter referred to as CO 2 ) as a refrigerant has attracted attention, but CO 2 refrigerant has a critical temperature as low as 31.06 ° C., and uses a temperature higher than this temperature. Is in a supercritical state where the condensation of CO 2 refrigerant does not occur on the high pressure side (compressor outlet-radiator-decompressor inlet) of the refrigeration cycle apparatus, and the operating efficiency (COP) of the refrigeration cycle apparatus compared to conventional refrigerants Has a characteristic of lowering. Therefore, in the refrigeration cycle apparatus using the CO 2 refrigerant, it is important to maintain the optimum COP, and it is necessary to adjust the COP to the highest pressure at which the COP is optimal according to changes in the refrigerant temperature. is there.

一方、冷凍サイクル装置のCOPを向上するために、減圧器の代わりに膨張機を設けて、膨張時の圧力エネルギーを動力として回収する冷凍サイクルが提案されている。従来の膨張機を備えた冷凍サイクル装置において、循環する冷媒の質量循環量は、冷凍サイクルのどのポイントにおいても等しく、圧縮機を流れる冷媒の吸入密度をDC、膨張機を流れる冷媒の吸入密度をDEとすると、DE/DC(密度比)は常に一定で運転される。(以下、このことを、「密度比一定の制約」と呼ぶ)このため、冷凍サイクル装置に膨張機を設け、この膨張機で回収した動力を圧縮機の駆動力の一部に利用する場合には、運転条件が変化した際に、最適なCOPを維持することは困難である。あるいは、膨張機は容積式であることが多く、圧縮比はほぼ固定されているので、最適なCOPとなる高圧側圧力に調整することが困難である。   On the other hand, in order to improve the COP of the refrigeration cycle apparatus, a refrigeration cycle has been proposed in which an expander is provided instead of a decompressor and pressure energy during expansion is recovered as power. In a refrigeration cycle apparatus equipped with a conventional expander, the mass circulation amount of the circulating refrigerant is the same at any point in the refrigeration cycle, the suction density of the refrigerant flowing through the compressor is DC, and the suction density of the refrigerant flowing through the expander is When DE is used, operation is always performed with a constant DE / DC (density ratio). (Hereinafter, this is referred to as “constant density ratio constant”) For this reason, when an expander is provided in the refrigeration cycle apparatus and the power recovered by the expander is used as part of the driving force of the compressor It is difficult to maintain an optimal COP when the operating conditions change. Alternatively, the expander is often a positive displacement type, and since the compression ratio is substantially fixed, it is difficult to adjust the pressure to a high pressure side pressure that provides an optimum COP.

そこで、膨張機をバイパスするバイパス管を設けて、膨張機構に流入する冷媒量を制御することで、最適なCOPを維持する構成が提案されている(例えば、特許文献1及び特許文献2参照)。
特開2000−234814号公報 特開2001−116371号公報
Thus, a configuration has been proposed in which an optimum COP is maintained by providing a bypass pipe that bypasses the expander and controlling the amount of refrigerant flowing into the expansion mechanism (see, for example, Patent Document 1 and Patent Document 2). .
JP 2000-234814 A JP 2001-116371 A

ところが、膨張機に流入する質量循環量が設計上の最適な質量循環量との差が大きくなるにしたがって、バイパスを通過させる質量循環量が大きくなり、その結果回収できるはずの動力が十分に回収できなくなるという問題を有している。   However, as the amount of mass circulation flowing into the expander increases with the design optimum mass circulation amount, the mass circulation amount passing through the bypass increases, and as a result, sufficient power can be recovered. It has a problem that it cannot be done.

したがって本発明は、膨張機を流れる質量循環量を低下させることなく、幅広い運転範囲の中で高い動力回収効果を得て、信頼性を損なうことなく効率のよい運転が可能な冷凍サイクル装置および制御方法を提供することを目的としている。   Therefore, the present invention provides a refrigeration cycle apparatus and control capable of obtaining a high power recovery effect in a wide operating range without reducing the mass circulation amount flowing through the expander, and enabling efficient operation without impairing reliability. It aims to provide a method.

上記従来の課題を解決するために本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構、前記補助圧縮機構に連通する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器とを備え、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を前記気液分離器にてガス冷媒と液冷媒とに分離するとともに、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせる構成とした冷凍サイクル装置で、密度比一定の制約により最適なCOPを維持することが困難である膨張機を用いた冷凍サイクル装置であっても、気液分離器により冷媒を2つの流れに分け、膨張機構と補助圧縮機構とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができるため、冷凍サイクル装置の効率のよい運転が可能となる。   In order to solve the above-described conventional problems, the present invention provides at least a compression mechanism for compressing a refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, and a power by depressurizing the refrigerant flowing out of the radiator. The expansion mechanism to be recovered, the auxiliary compression mechanism driven by the recovery power of the expansion mechanism, the expansion mechanism, the gas-liquid separator communicating with the auxiliary compression mechanism, and the liquid refrigerant flowing out from the gas-liquid separator is decompressed A first pressure reducer, and an evaporator for evaporating the refrigerant depressurized by the first depressurizer, and a medium-pressure refrigerant that is a refrigerant depressurized by the expansion mechanism and a pressure boosted by the auxiliary compression mechanism Is separated into gas refrigerant and liquid refrigerant by the gas-liquid separator, and the intermediate-pressure refrigerant is bypassed to the low-pressure side circuit until it is decompressed by the first decompressor and sucked into the auxiliary compression mechanism When Even in a refrigeration cycle apparatus that uses an expander that is difficult to maintain an optimal COP due to a constant density ratio restriction, the refrigerant is divided into two flows by a gas-liquid separator and expanded. By changing the ratio of the mass circulation amount that flows through each of the mechanism and the auxiliary compression mechanism, the restriction of a constant density ratio can be relaxed, and a high power recovery effect can be obtained within a wide operating range. Efficient operation is possible.

また、本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備え、前記圧縮機構の出口と前記膨張機構の入口との間のいずれかの位置での圧力が、前記放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度に応じて予め定められた目標高圧側圧力となるように、前記第1減圧器の開度を調整することを特徴とする冷凍サイクル装置の制御方法で、最適なCOPとなる高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、高圧側圧力を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The present invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. A bypass circuit that bypasses the low pressure side circuit until the pressure is reduced by the pressure reducer and sucked into the auxiliary compression mechanism, and the pressure at any position between the outlet of the compression mechanism and the inlet of the expansion mechanism The heat dissipation The opening of the first pressure reducer is adjusted so that the target high pressure side pressure is predetermined according to the temperature at any position between the outlet of the expansion mechanism and the inlet of the expansion mechanism. Even with a refrigeration cycle apparatus that uses an expander that is difficult to adjust to the high-pressure side pressure, which is the optimal COP, in the control method of the refrigeration cycle apparatus, the density ratio is constant by changing the intermediate pressure. The refrigeration cycle apparatus can be operated efficiently by adjusting the high-pressure side pressure while relaxing the above.

また、本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の吐出温度が、予め定められた目標吐出温度となるように、前記第1減圧器の開度を調整することを特徴とする冷凍サイクル装置の制御方法で、最適な吐出温度に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、吐出温度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。
The present invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus including a bypass circuit that is bypassed to a low-pressure side circuit until the pressure is reduced by the pressure reducer and sucked into the auxiliary compression mechanism, the discharge temperature of the compression mechanism is set to a predetermined target discharge temperature. As described above, the refrigeration cycle apparatus control method is characterized by adjusting the opening of the first pressure reducer, and is a refrigeration cycle apparatus using an expander that is difficult to adjust to an optimum discharge temperature. However, it is possible to efficiently operate the refrigeration cycle apparatus by adjusting the discharge temperature while relaxing the restriction of the constant density ratio by changing the intermediate pressure.
.

また、本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記補助圧縮機構の吸入過熱度が予め定められた目標過熱度となるように、前記第1減圧器の開度を調整することを特徴とする冷凍サイクル装置の制御方法で、膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、補助圧縮機の過熱度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The present invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus comprising a bypass circuit that is bypassed to a low-pressure side circuit from which the pressure is reduced by the pressure reducer until it is sucked into the auxiliary compression mechanism, the suction superheat degree of the auxiliary compression mechanism is a predetermined target superheat degree The refrigeration cycle apparatus control method is characterized in that the opening degree of the first pressure reducer is adjusted. Even in the refrigeration cycle apparatus using an expander, the density ratio is changed by changing the intermediate pressure. An efficient operation of the refrigeration cycle apparatus is possible by adjusting the degree of superheat of the auxiliary compressor while alleviating certain restrictions.

また、本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前
記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の出口と前記膨張機構の入口との間のいずれかの位置での圧力が、前記放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度に応じて予め定められた目標高圧側圧力となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とする冷凍サイクル装置の制御方法で、最適なCOPとなる高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、高圧側圧力を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。
The present invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus comprising a bypass circuit for bypassing to a low-pressure side circuit until the pressure is reduced by a pressure reducer and sucked into the auxiliary compression mechanism, one of the outlet between the compression mechanism and the expansion mechanism Circulation that flows through the expansion mechanism so that the pressure at the position becomes a target high-pressure side pressure that is predetermined according to the temperature at any position between the outlet of the radiator and the inlet of the expansion mechanism This is a control method for a refrigeration cycle apparatus, characterized in that the ratio between the amount and the amount of circulation flowing through the auxiliary compression mechanism is adjusted, and an expander that is difficult to adjust to the high-pressure side pressure that is the optimum COP is used. Even in the conventional refrigeration cycle apparatus, it is possible to efficiently operate the refrigeration cycle apparatus by adjusting the high-pressure side pressure while relaxing the restriction of the constant density ratio by changing the intermediate pressure.
.

また、本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の吐出温度が予め定められた目標吐出温度となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とする冷凍サイクル装置の制御方法で、最適な吐出温度に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、吐出温度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The present invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus including a bypass circuit that is bypassed to a low-pressure circuit until the pressure is reduced by the pressure reducer and sucked into the auxiliary compression mechanism, the discharge temperature of the compression mechanism becomes a predetermined target discharge temperature. As described above, it is difficult to adjust to the optimum discharge temperature with the control method of the refrigeration cycle apparatus characterized by adjusting the ratio of the circulation amount flowing through the expansion mechanism and the circulation amount flowing through the auxiliary compression mechanism. Even a refrigeration cycle apparatus using a certain expander can efficiently operate the refrigeration cycle apparatus by adjusting the discharge temperature while relaxing the restriction of the constant density ratio by changing the intermediate pressure. is there.

また、本発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記補助圧縮機構の吸入過熱度が予め定められた目標過熱度となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とする冷凍サイクル装置の制御方法で、膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、補助圧縮機の過熱度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The present invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus comprising a bypass circuit that is bypassed to a low-pressure side circuit from which the pressure is reduced by the pressure reducer until it is sucked into the auxiliary compression mechanism, the suction superheat degree of the auxiliary compression mechanism is a predetermined target superheat degree The refrigeration cycle apparatus using the expander is a control method for a refrigeration cycle apparatus, characterized in that the ratio of the circulation amount flowing through the expansion mechanism and the circulation amount flowing through the auxiliary compression mechanism is adjusted. However, it is possible to efficiently operate the refrigeration cycle apparatus by adjusting the superheat degree of the auxiliary compressor while relaxing the restriction of the constant density ratio by changing the intermediate pressure.

本発明によれば、膨張機を流れる質量循環量を低下させることなく、幅広い運転範囲の中で高い動力回収効果を得て、信頼性を損なうことなく効率のよい運転が可能な冷凍サイクル装置および制御方法を提供できる。   According to the present invention, a refrigeration cycle apparatus capable of obtaining a high power recovery effect in a wide operation range without reducing the mass circulation amount flowing through the expander, and enabling efficient operation without impairing reliability, and A control method can be provided.

第1の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構、前記補助圧縮機構に連通する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器とを備え、前記膨張機構
で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を前記気液分離器にてガス冷媒と液冷媒とに分離するとともに、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせる構成としたもので、密度比一定の制約により最適なCOPを維持することが困難である膨張機を用いた冷凍サイクル装置であっても、気液分離器により冷媒を2つの流れに分け、膨張機構と補助圧縮機構とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができるため、冷凍サイクル装置の効率のよい運転が可能である。
The first invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism driven by the recovery power of the expansion mechanism, the expansion mechanism, a gas-liquid separator communicating with the auxiliary compression mechanism, a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator, An evaporator for evaporating the refrigerant depressurized by the first depressurizer, and an intermediate pressure refrigerant, which is a refrigerant depressurized by the expansion mechanism or a pressure increased by the auxiliary compression mechanism, in the gas-liquid separator. The refrigerant is separated into a gas refrigerant and a liquid refrigerant, and the intermediate pressure refrigerant is bypassed to a low-pressure side circuit until it is decompressed by the first decompressor and sucked into the auxiliary compression mechanism. Certain system Even in a refrigeration cycle apparatus using an expander where it is difficult to maintain an optimum COP, the refrigerant is divided into two flows by the gas-liquid separator, and the mass flowing through each of the expansion mechanism and the auxiliary compression mechanism By changing the ratio of the circulation rate, it is possible to relax the restriction of a constant density ratio and to obtain a high power recovery effect within a wide operation range, so that the refrigeration cycle apparatus can be operated efficiently.

第2の発明は、圧縮機構の出口と膨張機構の入口との間のいずれかの位置での圧力を検知する高圧側圧力検知手段と、放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度を検知する放熱器出口温度検知手段とを備え、前記高圧側圧力検知手段が検出した圧力が、前記放熱器出口温度検知手段の検出温度に応じて予め定められた目標高圧側圧力となるように、前記第1減圧器の開度を調整する第1減圧器演算操作手段を設けたもので、最適なCOPとなる高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、高圧側圧力を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   According to a second aspect of the present invention, there is provided a high pressure side pressure detecting means for detecting pressure at any position between the outlet of the compression mechanism and the inlet of the expansion mechanism, and between the outlet of the radiator and the inlet of the expansion mechanism. A radiator outlet temperature detecting means for detecting the temperature at any position, and the pressure detected by the high pressure side pressure detecting means is a target predetermined according to the detected temperature of the radiator outlet temperature detecting means An expander that is provided with first decompressor calculation operation means for adjusting the opening of the first decompressor so as to obtain a high pressure side pressure, and is difficult to adjust to a high pressure side pressure that provides an optimum COP. Even in the refrigeration cycle apparatus using the refrigeration cycle apparatus, it is possible to efficiently operate the refrigeration cycle apparatus by adjusting the high-pressure side pressure while relaxing the restriction of the constant density ratio by changing the intermediate pressure.

第3の発明は、圧縮機構の出口の温度を検知する吐出温度検知手段を備え、前記吐出温度検出手段の検出温度が予め定められた目標吐出温度となるように、第1減圧器の開度を調整する第2減圧器演算操作手段を設けたもので、最適な吐出温度に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、吐出温度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   According to a third aspect of the invention, there is provided discharge temperature detection means for detecting the temperature of the outlet of the compression mechanism, and the opening of the first pressure reducer so that the detection temperature of the discharge temperature detection means becomes a predetermined target discharge temperature. Even if it is a refrigeration cycle apparatus using an expander that is difficult to adjust to the optimum discharge temperature, the density ratio can be changed by changing the intermediate pressure. Efficient operation of the refrigeration cycle apparatus is possible by adjusting the discharge temperature while relaxing certain restrictions.

第4の発明は、蒸発器の入口から出口の間のいずれかの位置での温度を検知する蒸発温度検知手段と、補助圧縮機構の入口の温度を検知する補助圧縮機吸入温度検知手段とを備え、前記補助圧縮機吸入温度検知手段の検出温度と前記蒸発温度検知手段の検出温度の差が、予め定められた目標過熱度となるように、前記第1減圧器の開度を調整する第3減圧器演算操作手段を設けたもので、膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、補助圧縮機の過熱度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   According to a fourth aspect of the present invention, there is provided an evaporation temperature detecting means for detecting a temperature at any position between an inlet and an outlet of the evaporator, and an auxiliary compressor suction temperature detecting means for detecting the temperature of the inlet of the auxiliary compression mechanism. And adjusting the opening of the first decompressor so that the difference between the detected temperature of the auxiliary compressor suction temperature detecting means and the detected temperature of the evaporating temperature detecting means becomes a predetermined target superheat degree. 3Equipped with decompressor calculation operation means, even in a refrigeration cycle device using an expander, the degree of superheat of the auxiliary compressor is adjusted while relaxing the restriction of the constant density ratio by changing the intermediate pressure By doing so, efficient operation of the refrigeration cycle apparatus is possible.

第5の発明は、気液分離器のガス側出口と圧縮機構の入口との間の冷媒を、第1減圧器の入口と補助圧縮機構の入口との間のいずれかの位置にバイパスさせる第1バイパス回路を設けたもので、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構と膨張機構を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   According to a fifth aspect of the present invention, the refrigerant between the gas side outlet of the gas-liquid separator and the inlet of the compression mechanism is bypassed to any position between the inlet of the first decompressor and the inlet of the auxiliary compression mechanism. Even if it is a refrigeration cycle apparatus using an expander with a bypass circuit, the restriction of the constant density ratio is relaxed by changing the mass circulation rate ratio flowing through the auxiliary compression mechanism and the expansion mechanism, and the refrigeration cycle Efficient operation of the device is possible.

第6の発明は、膨張機構あるいは補助圧縮機構の出口と、気液分離器の入口との間の冷媒を、気液分離器の液側出口と前記補助圧縮機の入口との間のいずれかの位置にバイパスさせる第3バイパス回路を設けたもので、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構と膨張機構を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   In a sixth aspect of the present invention, the refrigerant between the outlet of the expansion mechanism or auxiliary compression mechanism and the inlet of the gas-liquid separator is either between the liquid-side outlet of the gas-liquid separator and the inlet of the auxiliary compressor. A third bypass circuit is provided to bypass the position of the refrigeration cycle, and even in a refrigeration cycle apparatus using an expander, a constant density ratio is constrained by changing the mass circulation rate ratio flowing through the auxiliary compression mechanism and the expansion mechanism. And the refrigeration cycle apparatus can be operated efficiently.

第7の発明は、圧縮機構に吸入される冷媒を加熱する加熱手段を設けたもので、膨張機を用いた冷凍サイクル装置であっても、気液分離器により冷媒を2つの流れに分け、膨張機構と補助圧縮機構とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができ、か
つ、信頼性を損なうことなく冷凍サイクル装置の効率のよい運転が可能である。
The seventh invention is provided with a heating means for heating the refrigerant sucked into the compression mechanism. Even in the refrigeration cycle apparatus using the expander, the refrigerant is divided into two flows by the gas-liquid separator, By changing the ratio of the mass circulation rate that flows through each of the expansion mechanism and auxiliary compression mechanism, it is possible to relieve the restriction of a constant density ratio, to obtain a high power recovery effect within a wide operating range, and to be reliable The refrigeration cycle apparatus can be efficiently operated without impairing the performance.

第8の発明は、加熱手段は、気液分離器のガス側出口から圧縮機構の入口までの間の冷媒と放熱器の出口から膨張機構の入口までの間の冷媒とを熱交換する構成としたもので、膨張機を用いた冷凍サイクル装置であっても、気液分離器により冷媒を2つの流れに分け、膨張機構と補助圧縮機構とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができ、かつ、信頼性を損なうことなく冷凍サイクル装置の効率のよい運転が可能である。   According to an eighth aspect of the invention, the heating means exchanges heat between the refrigerant between the gas side outlet of the gas-liquid separator and the inlet of the compression mechanism and the refrigerant between the outlet of the radiator and the inlet of the expansion mechanism. Therefore, even in a refrigeration cycle apparatus using an expander, the refrigerant is divided into two flows by the gas-liquid separator, and the ratio of the mass circulation amount flowing through each of the expansion mechanism and the auxiliary compression mechanism is changed. As a result, it is possible to alleviate the restriction of a constant density ratio, to obtain a high power recovery effect within a wide range of operation, and to perform efficient operation of the refrigeration cycle apparatus without impairing reliability.

第9の発明は、加熱手段は、気液分離器のガス側出口から圧縮機構の入口までの間の冷媒を加熱する構成としたもので、膨張機を用いた冷凍サイクル装置であっても、気液分離器により冷媒を2つの流れに分け、膨張機構と補助圧縮機構とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができ、かつ、信頼性を損なうことなく冷凍サイクル装置の効率のよい運転が可能である。   According to a ninth aspect of the invention, the heating means is configured to heat the refrigerant between the gas side outlet of the gas-liquid separator and the inlet of the compression mechanism, and even in a refrigeration cycle apparatus using an expander, By dividing the refrigerant into two flows by the gas-liquid separator and changing the ratio of the mass circulation amount that flows through each of the expansion mechanism and the auxiliary compression mechanism, the restriction of the constant density ratio can be relaxed, and within a wide operating range A high power recovery effect can be obtained, and an efficient operation of the refrigeration cycle apparatus can be performed without impairing reliability.

第10の発明は、少なくとも、圧縮機構と膨張機構と補助圧縮機構とが、1つの密閉容器内に収納され配設されてなるもので、膨張機を用いた冷凍サイクル装置であっても、気液分離器により冷媒を2つの流れに分け、膨張機構と補助圧縮機構とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができ、かつ、信頼性を損なうことなく冷凍サイクル装置の効率のよい運転が可能である。   In the tenth invention, at least the compression mechanism, the expansion mechanism, and the auxiliary compression mechanism are housed and disposed in one sealed container. Even in a refrigeration cycle apparatus using an expander, By dividing the refrigerant into two flows by the liquid separator and changing the ratio of the mass circulation amount that flows through each of the expansion mechanism and auxiliary compression mechanism, the restriction of constant density ratio can be relaxed, and it is high in a wide operating range A power recovery effect can be obtained, and an efficient operation of the refrigeration cycle apparatus can be performed without impairing reliability.

第11の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備え、前記圧縮機構の出口と前記膨張機構の入口との間のいずれかの位置での圧力が、前記放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度に応じて予め定められた目標高圧側圧力となるように、前記第1減圧器の開度を調整することを特徴とするもので、最適なCOPとなる高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、高圧側圧力を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The eleventh invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. A bypass circuit that bypasses the low pressure side circuit until the pressure is reduced by the pressure reducer and sucked into the auxiliary compression mechanism, and the pressure at any position between the outlet of the compression mechanism and the inlet of the expansion mechanism The heat dissipation The opening of the first pressure reducer is adjusted so that the target high pressure side pressure is predetermined according to the temperature at any position between the outlet of the expansion mechanism and the inlet of the expansion mechanism. Therefore, even in a refrigeration cycle apparatus using an expander that is difficult to adjust to a high pressure side pressure that is an optimal COP, while relaxing the restriction of a constant density ratio by changing the intermediate pressure, By adjusting the high-pressure side pressure, the refrigeration cycle apparatus can be operated efficiently.

第12の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の吐出温度が、予め定められた目標吐出温度となるように、前記第1減圧器の開度を調整することを特徴とするもので、最適な吐出温度に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、吐出温度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The twelfth invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus including a bypass circuit that is bypassed to a low-pressure side circuit until the pressure is reduced by the pressure reducer and sucked into the auxiliary compression mechanism, the discharge temperature of the compression mechanism is set to a predetermined target discharge temperature. As described above, the opening degree of the first pressure reducer is adjusted, and even if it is a refrigeration cycle apparatus using an expander that is difficult to adjust to an optimum discharge temperature, the intermediate pressure It is possible to operate the refrigeration cycle apparatus efficiently by adjusting the discharge temperature while relaxing the restriction of the constant density ratio by changing.

第13の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記補助圧縮機構の吸入過熱度が予め定められた目標過熱度となるように、前記第1減圧器の開度を調整することを特徴とするもので、膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、補助圧縮機の過熱度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The thirteenth invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus comprising a bypass circuit that is bypassed to a low-pressure side circuit from which the pressure is reduced by the pressure reducer until it is sucked into the auxiliary compression mechanism, the suction superheat degree of the auxiliary compression mechanism is a predetermined target superheat degree As described above, the opening degree of the first pressure reducer is adjusted. Even in a refrigeration cycle apparatus using an expander, the restriction of the density ratio is relaxed by changing the intermediate pressure. However, an efficient operation of the refrigeration cycle apparatus is possible by adjusting the degree of superheat of the auxiliary compressor.

第14の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の出口と前記膨張機構の入口との間のいずれかの位置での圧力が、前記放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度に応じて予め定められた目標高圧側圧力となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とするもので、最適なCOPとなる高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、高圧側圧力を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The fourteenth invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus comprising a bypass circuit for bypassing to a low-pressure side circuit until the pressure is reduced by a pressure reducer and sucked into the auxiliary compression mechanism, one of the outlet between the compression mechanism and the expansion mechanism Circulation that flows through the expansion mechanism so that the pressure at the position becomes a target high-pressure side pressure that is predetermined according to the temperature at any position between the outlet of the radiator and the inlet of the expansion mechanism The ratio of the amount and the amount of circulation flowing through the auxiliary compression mechanism is adjusted, and it is a refrigeration cycle apparatus using an expander that is difficult to adjust to a high-pressure side pressure that is an optimal COP. Even in such a case, it is possible to efficiently operate the refrigeration cycle apparatus by adjusting the high-pressure side pressure while relaxing the restriction of the constant density ratio by changing the intermediate pressure.

第15の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の吐出温度が予め定められた目標吐出温度となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とするもので、最適な吐出温度に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、吐出温度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。   The fifteenth aspect of the invention includes at least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus including a bypass circuit that is bypassed to a low-pressure circuit until the pressure is reduced by the pressure reducer and sucked into the auxiliary compression mechanism, the discharge temperature of the compression mechanism becomes a predetermined target discharge temperature. Thus, the ratio of the circulation amount flowing through the expansion mechanism and the circulation amount flowing through the auxiliary compression mechanism is adjusted, and an expander that is difficult to adjust to an optimum discharge temperature is used. Even in the conventional refrigeration cycle apparatus, it is possible to efficiently operate the refrigeration cycle apparatus by adjusting the discharge temperature while relaxing the restriction of the constant density ratio by changing the intermediate pressure.

第16の発明は、少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前
記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記補助圧縮機構の吸入過熱度が予め定められた目標過熱度となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とするもので、膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、補助圧縮機の過熱度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。
The sixteenth invention includes at least a compression mechanism for compressing the refrigerant, a radiator for cooling the refrigerant discharged from the compression mechanism, an expansion mechanism for recovering power by reducing the pressure of the refrigerant flowing out of the radiator, An auxiliary compression mechanism that is driven by the recovery power of the expansion mechanism, and a gas that separates the refrigerant that has been decompressed by the expansion mechanism and the intermediate-pressure refrigerant that has been pressurized by the auxiliary compression mechanism into gas refrigerant and liquid refrigerant. A liquid separator; a first pressure reducer that depressurizes the liquid refrigerant flowing out of the gas-liquid separator; an evaporator that evaporates the refrigerant depressurized by the first pressure reducer; and the intermediate pressure refrigerant as the first pressure reducer. In a refrigeration cycle apparatus comprising a bypass circuit that is bypassed to a low-pressure side circuit from which the pressure is reduced by the pressure reducer until it is sucked into the auxiliary compression mechanism, the suction superheat degree of the auxiliary compression mechanism is a predetermined target superheat degree The ratio of the circulation amount flowing through the expansion mechanism and the circulation amount flowing through the auxiliary compression mechanism is adjusted so that the intermediate pressure can be maintained even in a refrigeration cycle apparatus using an expander. It is possible to efficiently operate the refrigeration cycle apparatus by adjusting the superheat degree of the auxiliary compressor while relaxing the restriction of the constant density ratio by changing the value of.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

参考例1
以下、本発明の参考例1について、図面を参照しながら説明する。
( Reference Example 1 )
Hereinafter, Reference Example 1 of the present invention will be described with reference to the drawings.

図1は、本発明の制御に関する前提となる冷凍サイクル装置を示す構成図である。なお、本参考例の冷凍サイクル装置に関しては、空気調和機を例にとり説明する。 FIG. 1 is a configuration diagram showing a refrigeration cycle apparatus which is a premise for the control of the present invention. Note that the refrigeration cycle apparatus of this reference example will be described by taking an air conditioner as an example .

図1の冷凍サイクル装置は、モータ等の駆動源(図示せず)により駆動される圧縮機構11、圧縮機構11から吐出された冷媒を冷却する放熱器12、放熱器12から流出した冷媒を減圧するとともに、圧力エネルギーを動力に変換する膨張機構13(膨張機構)、膨張機構13と軸14により連結され、膨張機構13の回収動力により駆動される補助圧縮機構15、膨張機構13で減圧された冷媒と補助圧縮機構15で昇圧された冷媒とを混合した後、ガス冷媒と液冷媒とに分離する気液分離器16、気液分離器16から蒸発器18に流れる液冷媒を減圧する第1減圧器17、第1減圧器17で減圧された冷媒を蒸発させて吸熱する蒸発器18などから構成されている。冷媒として二酸化炭素(CO2)が封入されている。 The refrigeration cycle apparatus of FIG. 1 has a compression mechanism 11 driven by a drive source (not shown) such as a motor, a radiator 12 that cools the refrigerant discharged from the compression mechanism 11, and decompresses the refrigerant that flows out of the radiator 12. In addition, the expansion mechanism 13 (expansion mechanism) that converts pressure energy into power, the expansion mechanism 13 and the shaft 14 are connected to each other, and the auxiliary compression mechanism 15 that is driven by the recovery power of the expansion mechanism 13 and the expansion mechanism 13 reduce the pressure. After the refrigerant and the refrigerant pressurized by the auxiliary compression mechanism 15 are mixed, the gas-liquid separator 16 that separates into the gas refrigerant and the liquid refrigerant, and the first that depressurizes the liquid refrigerant that flows from the gas-liquid separator 16 to the evaporator 18. A decompressor 17 and an evaporator 18 that absorbs heat by evaporating the refrigerant decompressed by the first decompressor 17 and the like. Carbon dioxide (CO 2 ) is enclosed as a refrigerant.

また、冷凍サイクル装置の高圧側(圧縮機構11出口〜放熱器12〜膨張機構13入口)の圧力を検知する高圧側圧力検知手段21、放熱器12出口と膨張機構13入口との間の温度を検知する放熱器出口温度検知手段22、高圧側圧力検知手段21、放熱器出口温度検知手段22とが検知した値を演算して第1減圧器17の開度を演算、操作する第1減圧器操作器23とを備えている。   Moreover, the high pressure side pressure detection means 21 for detecting the pressure on the high pressure side (compression mechanism 11 outlet to radiator 12 to expansion mechanism 13 inlet) of the refrigeration cycle apparatus, the temperature between the radiator 12 outlet and the expansion mechanism 13 inlet. A first pressure reducer for calculating and operating the opening of the first pressure reducer 17 by calculating the values detected by the radiator outlet temperature detecting means 22, the high pressure side pressure detecting means 21, and the radiator outlet temperature detecting means 22 to be detected. And an operation device 23.

なお、図1中に実線矢印は冷媒の流れを示しており、以下、説明を容易にするため、補助圧縮機構15を流れる冷媒の質量循環量をG1と呼び、膨張機構13を流れる冷媒の質量循環量をG2と呼ぶ。   In FIG. 1, the solid line arrows indicate the flow of the refrigerant. For the sake of simplicity, the mass circulation amount of the refrigerant flowing through the auxiliary compression mechanism 15 is referred to as G1, and the mass of the refrigerant flowing through the expansion mechanism 13 is described below. The amount of circulation is called G2.

次に、上述のように構成された冷凍サイクル装置の通常運転時の動作について説明する。   Next, the operation during normal operation of the refrigeration cycle apparatus configured as described above will be described.

圧縮機構11は冷媒を、臨界圧力を越える圧力(高圧側圧力)まで圧縮する。その圧縮された冷媒は、高温高圧状態となり、放熱器12を流れる際に、空気や水に放熱して冷却される。(この際、加熱された空気や水を利用して、暖房や給湯が行える。)その後、冷媒は膨張機構13で中間圧力まで減圧され、気液二相状態となる。膨張機構13では冷媒の圧力エネルギーを動力に変換し、その動力は軸14に伝達される。膨張機構13により中間圧力まで減圧された冷媒と補助圧縮機構15で中間圧力まで昇圧された冷媒とが混合された後、それらの冷媒は気液分離器16に流入口161より流入して、気液分離器16内でガス冷媒と液冷媒とに分離される。   The compression mechanism 11 compresses the refrigerant to a pressure exceeding the critical pressure (high pressure side pressure). The compressed refrigerant enters a high-temperature and high-pressure state, and is cooled by releasing heat to air or water when flowing through the radiator 12. (At this time, heating or hot water supply can be performed using heated air or water.) Thereafter, the refrigerant is decompressed to an intermediate pressure by the expansion mechanism 13 to be in a gas-liquid two-phase state. The expansion mechanism 13 converts the pressure energy of the refrigerant into power, and the power is transmitted to the shaft 14. After the refrigerant whose pressure has been reduced to the intermediate pressure by the expansion mechanism 13 and the refrigerant whose pressure has been increased to the intermediate pressure by the auxiliary compression mechanism 15 are mixed, the refrigerant flows into the gas-liquid separator 16 through the inlet 161 and is In the liquid separator 16, it is separated into a gas refrigerant and a liquid refrigerant.

気液分離器16で分離された液冷媒は、液側出口162より流出し第1減圧器17によ
り低温低圧(低圧側圧力)まで減圧され、再び気液二相状態となり蒸発器18に供給される。蒸発器18では、冷媒は空気などにより加熱される。(この際、冷却された空気を利用して冷房が行える。)その後、冷媒は気液二相またはガス状態となり、軸14により駆動される補助圧縮機構15に吸入される。一方、気液分離器16で分離されたガス冷媒は、ガス側出口163より流出し、再び、圧縮機構11に吸入される。
The liquid refrigerant separated by the gas-liquid separator 16 flows out from the liquid-side outlet 162, is depressurized to a low temperature and a low pressure (low-pressure side pressure) by the first pressure reducer 17, and again becomes a gas-liquid two-phase state and is supplied to the evaporator 18. The In the evaporator 18, the refrigerant is heated by air or the like. (At this time, cooling can be performed using the cooled air.) Thereafter, the refrigerant enters a gas-liquid two-phase or gas state and is sucked into the auxiliary compression mechanism 15 driven by the shaft 14. On the other hand, the gas refrigerant separated by the gas-liquid separator 16 flows out from the gas side outlet 163 and is sucked into the compression mechanism 11 again.

このような構成の冷凍サイクル装置では、補助圧縮機構15と膨張機構13とを流れる質量循環量は同一ではなく、それぞれ、G1、G2となる。ここで、補助圧縮機構15を流れる冷媒の体積循環量をVC、吸入密度をDC、膨張機構13を流れる冷媒の体積循環量をVE、吸入密度をDEとすると、G1=VC×DC、G2=VE×DEとなる。これらの式を変形すると、G1/G2=(VC/VE)×(DC/DE)=一定となる。(VC/VE)の値は、膨張機構13や補助圧縮機構15のシリンダ容積から定まる定数であるので、G1/G2=DC/DE=一定と変形できる。したがって、質量流量比(G1/G2)を変化できれば、密度比一定の制約に拘束されることなく運転できる。   In the refrigeration cycle apparatus having such a configuration, the mass circulation amounts flowing through the auxiliary compression mechanism 15 and the expansion mechanism 13 are not the same, and are G1 and G2, respectively. Here, assuming that the volume circulation amount of the refrigerant flowing through the auxiliary compression mechanism 15 is VC, the suction density is DC, the volume circulation amount of the refrigerant flowing through the expansion mechanism 13 is VE, and the suction density is DE, G1 = VC × DC, G2 = VE x DE. When these equations are modified, G1 / G2 = (VC / VE) × (DC / DE) = constant. Since the value of (VC / VE) is a constant determined from the cylinder volume of the expansion mechanism 13 and the auxiliary compression mechanism 15, it can be modified as G1 / G2 = DC / DE = constant. Therefore, if the mass flow rate ratio (G1 / G2) can be changed, the operation can be performed without being constrained by the constant density ratio constraint.

一方、本参考例の冷凍サイクル装置において、気液分離器16で液とガスが完全に分離できるとすると、気液分離器16に流入する冷媒の乾き度と、気液分離器16前後の冷媒のエンタルピ・バランスにより、質量流量比(G1/G2)は決まるために、質量流量比を任意には調整できない。しかし、実際の気液分離器16では液とガスとを完全に分離することはできず、乾き度や液とガスの密度比などの影響を受け、ガス側出口163から流出するガス冷媒に液滴が混入したり、液側出口162から流出する液冷媒にガスが混入したりする。このため、実際には質量流量比(G1/G2)を変化させることができ、密度比一定の制約を緩和することができる。 On the other hand, in the refrigeration cycle apparatus of this reference example , assuming that the gas and liquid separator 16 can completely separate the liquid and gas, the dryness of the refrigerant flowing into the gas and liquid separator 16 and the refrigerant before and after the gas and liquid separator 16 Since the mass flow ratio (G1 / G2) is determined by the enthalpy balance, the mass flow ratio cannot be arbitrarily adjusted. However, the actual gas-liquid separator 16 cannot completely separate the liquid and the gas, and is affected by the dryness, the density ratio of the liquid and the gas, etc., and the liquid refrigerant is discharged from the gas side outlet 163. Drops are mixed, or gas is mixed into the liquid refrigerant flowing out from the liquid side outlet 162. Therefore, in practice, the mass flow rate ratio (G1 / G2) can be changed, and the restriction of the constant density ratio can be relaxed.

以上説明したように、本参考例の冷凍サイクル装置では、密度比一定の制約により最適なCOPを維持することが困難である膨張機を用いた冷凍サイクル装置であっても、気液分離器16により冷媒を2つの流れに分け、膨張機構13と補助圧縮機構15とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができるため、冷凍サイクル装置の効率のよい運転が可能である。 As described above, in the refrigeration cycle apparatus of the present reference example, even if the refrigeration cycle apparatus using an expander that is difficult to maintain an optimal COP due to a constant density ratio constraint, the gas-liquid separator 16 By dividing the refrigerant into two flows and changing the ratio of the mass circulation amount flowing through each of the expansion mechanism 13 and the auxiliary compression mechanism 15, the restriction of the constant density ratio can be relaxed, and high power can be achieved in a wide operating range. Since a recovery effect can be obtained, an efficient operation of the refrigeration cycle apparatus is possible.

次に、質量流量比(G1/G2)を変化させる具体的な方法として、第1減圧器17の制御について、図2に示すフローチャートに基づいて説明する。   Next, as a specific method of changing the mass flow rate ratio (G1 / G2), the control of the first pressure reducer 17 will be described based on the flowchart shown in FIG.

冷凍サイクル装置の運転時には、放熱器出口温度検知手段22からの検出値(放熱器出口温度)(100)が取り込まれ、その取り込んだ放熱器出口温度に対応する最適な高圧側圧力が、予めROM等に記憶されている温度と圧力との関係から選定され、その選定された圧力(以下、目標高圧側圧力と呼ぶ。)はRAM等のメモリで記憶される(110)。高圧側圧力検知手段21からの検出値(高圧側圧力)が取り込まれ(120)、目標高圧側圧力と(120)で取り込んだ高圧側圧力とが比較される(130)。そして、目標高圧側圧力が高圧側圧力を上回った場合には、第1減圧器17の開度を小さくし(140)、目標高圧側圧力が高圧側圧力以下の場合には、第1減圧器17の開度を大きくする(150)。そして、ステップ100に戻り、以後ステップ100から150まで繰り返す。   During operation of the refrigeration cycle apparatus, the detected value (heat radiator outlet temperature) (100) from the radiator outlet temperature detecting means 22 is fetched, and the optimum high pressure side pressure corresponding to the fetched radiator outlet temperature is previously stored in the ROM. The selected pressure (hereinafter referred to as a target high-pressure side pressure) is stored in a memory such as a RAM (110). The detection value (high pressure side pressure) from the high pressure side pressure detecting means 21 is taken in (120), and the target high pressure side pressure is compared with the high pressure side pressure taken in (120) (130). When the target high pressure side pressure exceeds the high pressure side pressure, the opening degree of the first pressure reducer 17 is reduced (140). When the target high pressure side pressure is equal to or lower than the high pressure side pressure, the first pressure reducer The opening degree of 17 is increased (150). Then, the process returns to step 100, and thereafter steps 100 to 150 are repeated.

このような制御の効果について、蒸発器18に供給される空気温度が低下した場合(例えば、冷房時の室内負荷の低下や、暖房時の外気温の低下を想定)を例にとり、図3の圧力・エンタルピ線図を用いて説明する。蒸発器18に供給される空気温度が低下すると、蒸発器18の冷媒温度(蒸発温度)が低下するため、補助圧縮機構15入口の冷媒密度は小さくなり、密度比(DC/DE)は大きくなる。   With respect to the effect of such control, the case where the temperature of the air supplied to the evaporator 18 is reduced (for example, assuming a decrease in indoor load during cooling or a decrease in outside air temperature during heating) is taken as an example in FIG. This will be described with reference to a pressure / enthalpy diagram. When the temperature of the air supplied to the evaporator 18 decreases, the refrigerant temperature (evaporation temperature) of the evaporator 18 decreases, so the refrigerant density at the inlet of the auxiliary compression mechanism 15 decreases and the density ratio (DC / DE) increases. .

そこで、密度比一定の制約から、密度比が変化しないなら、高圧側圧力を低下させることで、膨張機構13入口の冷媒密度を小さくしたサイクルでバランスしようとする。(図3の実線のサイクルから一点鎖線のサイクルへの変化)ところが、最適なCOPを達成するサイクルの高圧側圧力は、蒸発圧力が低下する前の高圧側圧力と同程度かさらに高い圧力である。(図3の二点鎖線のサイクル)すなわち、高圧側圧力が最適な高圧側圧力より低下した状態でサイクルはバランスしようとする。   Therefore, if the density ratio does not change due to the restriction of the constant density ratio, the high pressure side pressure is reduced to try to balance with a cycle in which the refrigerant density at the inlet of the expansion mechanism 13 is reduced. (Change from the solid line cycle in FIG. 3 to the one-dot chain line cycle) However, the high pressure side pressure of the cycle that achieves the optimum COP is the same as or higher than the high pressure side pressure before the evaporation pressure decreases. . (Cycle of the two-dot chain line in FIG. 3) That is, the cycle tries to balance in a state where the high-pressure side pressure is lower than the optimum high-pressure side pressure.

しかし、本参考例では目標高圧側圧力より実際の高圧側圧力が低い場合には、第1減圧器17が閉方向に操作されるので、低圧側圧力と中間圧力の比である低段側圧縮比が増加し、中間圧力は上昇する。中間圧力が変化すると、下記表1のように However, in this reference example , when the actual high-pressure side pressure is lower than the target high-pressure side pressure, the first pressure reducer 17 is operated in the closing direction, so the low-stage side compression that is the ratio of the low-pressure side pressure to the intermediate pressure The ratio increases and the intermediate pressure increases. When the intermediate pressure changes, as shown in Table 1 below

Figure 0003870951
気液分離器16での冷媒の液とガスの密度比が小さくなり、気液分離器16で完全な液とガスとの分離が難しくなる。すなわち、ガス側出口163から流出するガス冷媒に液滴が混入すること、あるいは、第一減圧器17が閉方向に操作されることにより、液側出口162から液冷媒が流出しにくくなることにより、質量循環量G2が増加する。質量循環量G2が増加すると質量循環量比(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなる。つまり、密度比一定の制約からバランスする高圧側圧力と目標高圧側圧力とのずれが小さくなる。すなわち、密度比一定の制約が緩和される。
Figure 0003870951
The density ratio of the refrigerant liquid and gas in the gas-liquid separator 16 becomes small, and it becomes difficult to completely separate the liquid and gas in the gas-liquid separator 16. That is, when liquid droplets are mixed into the gas refrigerant flowing out from the gas side outlet 163 or the first decompressor 17 is operated in the closing direction, it becomes difficult for the liquid refrigerant to flow out from the liquid side outlet 162. The mass circulation amount G2 increases. When the mass circulation amount G2 increases, the mass circulation amount ratio (G1 / G2) decreases, and the density ratio (DC / DE) also decreases from G1 / G2 = DC / DE = constant. That is, the deviation between the high-pressure side pressure and the target high-pressure side pressure that are balanced due to the constraint of a constant density ratio is reduced. That is, the restriction of a constant density ratio is relaxed.

さらに、第1減圧器17が閉方向に操作されて、中間圧力が上昇するので、膨張機構13により圧縮比がほぼ固定されていても、中間圧力が上昇することにより高圧側圧力も上昇し、最終的には、目標の高圧側圧力に調整できる。   Further, since the first pressure reducer 17 is operated in the closing direction and the intermediate pressure increases, even if the compression ratio is substantially fixed by the expansion mechanism 13, the intermediate pressure increases to increase the high-pressure side pressure, Ultimately, it can be adjusted to the target high pressure side pressure.

逆に、目標高圧側圧力より実際の高圧側圧力が高い場合には、第1減圧器17が開方向に操作される結果、以上の説明と逆の現象が生じ、同様な効果が得られる。   Conversely, when the actual high-pressure side pressure is higher than the target high-pressure side pressure, the first decompressor 17 is operated in the opening direction, resulting in a phenomenon reverse to the above description, and the same effect is obtained.

以上説明したように、本参考例の冷凍サイクル装置では、最適なCOPとなる高圧側圧力に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、高圧側圧力を調整することによ
り、冷凍サイクル装置の効率のよい運転が可能である。
As described above, in the refrigeration cycle apparatus of this reference example , the intermediate pressure can be changed even in a refrigeration cycle apparatus using an expander that is difficult to adjust to the high pressure side pressure that is the optimum COP. Thus, the refrigeration cycle apparatus can be operated efficiently by adjusting the high-pressure side pressure while relaxing the restriction on the constant density ratio.

なお、本参考例の冷媒は二酸化炭素であるとして説明したが、運転中の高圧側が冷媒の臨界圧力を越える冷媒、例えば、エタン等でも同様の効果が得られる。 Although the refrigerant of this reference example has been described as being carbon dioxide, the same effect can be obtained even when the high pressure side during operation exceeds the critical pressure of the refrigerant, such as ethane.

参考例2
本発明の制御に関する前提となる冷凍サイクル装置について説明する。
( Reference Example 2 )
A refrigeration cycle apparatus which is a premise relating to the control of the present invention will be described.

図4は参考例2における冷凍サイクル装置を示す構成図である。なお、図4の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。また、図5は、参考例2における冷凍サイクル装置の制御方法を示すフローチャートである。 FIG. 4 is a configuration diagram showing a refrigeration cycle apparatus in Reference Example 2 . In the configuration diagram of FIG. 4, the same components as those in the reference example 1 of FIG. FIG. 5 is a flowchart showing a control method of the refrigeration cycle apparatus in Reference Example 2 .

参考例の冷凍サイクル装置は、圧縮機構11出口の温度(吐出温度)を検知する吐出温度検知手段24、吐出温度検知手段24が検知した値に基づき第1減圧器17の開度を演算、操作する第2減圧器操作器25とを備えている。 The refrigeration cycle apparatus of this reference example calculates the opening of the first pressure reducer 17 based on the value detected by the discharge temperature detecting means 24 and the discharge temperature detecting means 24 for detecting the temperature (discharge temperature) at the outlet of the compression mechanism 11; And a second decompressor operating device 25 to be operated.

第1減圧器17の制御について、図4に示すフローチャートに基づいて説明する。冷凍サイクル装置の運転時には、吐出温度検知手段24からの検出値(吐出温度)(200)が取り込まれる。予めROM等に記憶されている目標吐出温度と(200)で取り込んだ吐出温度とを比較し(210)、目標吐出温度が吐出温度を上回った場合には、第1減圧器17の開度を小さくし(220)、目標吐出温度が吐出温度以下の場合には、第1減圧器17の開度を大きくする(230)。そして、ステップ200に戻り、以後ステップ200から230まで繰り返す。   The control of the first pressure reducer 17 will be described based on the flowchart shown in FIG. During the operation of the refrigeration cycle apparatus, the detected value (discharge temperature) (200) from the discharge temperature detecting means 24 is taken in. The target discharge temperature stored in advance in the ROM or the like is compared with the discharge temperature taken in (200) (210). If the target discharge temperature exceeds the discharge temperature, the opening of the first pressure reducer 17 is set. When the target discharge temperature is equal to or lower than the discharge temperature, the opening degree of the first pressure reducer 17 is increased (230). Then, the process returns to Step 200, and thereafter repeats Steps 200 to 230.

このような制御の効果について、蒸発器18に供給される空気温度が低下した場合(例えば、冷房時の室内負荷の低下や、暖房時の外気温の低下を想定)を例にとり説明する。蒸発器18に供給される空気温度が低下すると、蒸発器18の冷媒温度(蒸発温度)が低下するため、補助圧縮機構15入口の冷媒密度は小さくなり、密度比(DC/DE)は大きくなる。そこで、密度比一定の制約から、密度比が変化しないなら、高圧側圧力を低下させることで、膨張機構13入口の冷媒密度を小さくしたサイクルでバランスしようとし、吐出温度が低下する。   The effect of such control will be described by taking, as an example, the case where the temperature of the air supplied to the evaporator 18 has decreased (for example, assuming a decrease in indoor load during cooling or a decrease in outside air temperature during heating). When the temperature of the air supplied to the evaporator 18 decreases, the refrigerant temperature (evaporation temperature) of the evaporator 18 decreases, so the refrigerant density at the inlet of the auxiliary compression mechanism 15 decreases and the density ratio (DC / DE) increases. . Therefore, if the density ratio does not change due to the restriction of the constant density ratio, the high pressure side pressure is reduced to try to balance the cycle with the refrigerant density at the inlet of the expansion mechanism 13 being reduced, and the discharge temperature is lowered.

ところが、最適なCOPを達成するサイクルの高圧側圧力は、蒸発圧力が低下する前の高圧側圧力と同程度かさらに高い圧力であり、吐出温度もそれに応じて高い温度となるべきである。すなわち、吐出温度が最適な吐出温度より低下した状態でサイクルはバランスしようとする。しかし、本参考例では目標吐出温度より実際の吐出温度が低い場合には、第1減圧器17が閉方向に操作されるので、低圧側圧力と中間圧力の比である低段側圧縮比が増加し、中間圧力は上昇する。中間圧力が変化すると、ガス側出口163から流出するガス冷媒に液滴が混入すること、あるいは、第一減圧器17が閉方向に操作されることにより、液側出口162から液冷媒が流出しにくくなることにより、質量循環量G2が増加する。質量循環量G2が増加すると質量循環量比(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなるため、密度比一定の制約が緩和される。 However, the high-pressure side pressure in the cycle for achieving the optimum COP is the same as or higher than the high-pressure side pressure before the evaporation pressure is lowered, and the discharge temperature should be increased accordingly. That is, the cycle tries to balance in a state where the discharge temperature is lower than the optimum discharge temperature. However, in this reference example , when the actual discharge temperature is lower than the target discharge temperature, the first pressure reducer 17 is operated in the closing direction, so the low-stage compression ratio that is the ratio of the low-pressure side pressure to the intermediate pressure is The intermediate pressure increases. When the intermediate pressure changes, the liquid refrigerant flows out of the liquid side outlet 162 by mixing the droplets with the gas refrigerant flowing out of the gas side outlet 163 or by operating the first decompressor 17 in the closing direction. By becoming difficult, the mass circulation amount G2 increases. As the mass circulation rate G2 increases, the mass circulation rate ratio (G1 / G2) decreases, and since the density ratio (DC / DE) decreases from G1 / G2 = DC / DE = constant, the constraint on the constant density ratio is relaxed. The

さらに、第1減圧器17が閉方向に操作されて、中間圧力が上昇するので、膨張機構13により圧縮比がほぼ固定されていても、中間圧力が上昇することにより高圧側圧力も上昇し、それに応じて、吐出温度も上昇するので、最終的には、目標の吐出温度に調整できる。   Further, since the first pressure reducer 17 is operated in the closing direction and the intermediate pressure increases, even if the compression ratio is substantially fixed by the expansion mechanism 13, the intermediate pressure increases to increase the high-pressure side pressure, Accordingly, the discharge temperature also rises, so that it can be finally adjusted to the target discharge temperature.

逆に、目標吐出温度より実際の吐出温度が高い場合には、第1減圧器17が開方向に操
作される結果、以上の説明と逆の現象が生じ、同様な効果が得られる。
On the contrary, when the actual discharge temperature is higher than the target discharge temperature, the first decompressor 17 is operated in the opening direction. As a result, a phenomenon reverse to the above description occurs, and the same effect is obtained.

以上説明したように、本参考例の冷凍サイクル装置では、最適な吐出温度に調整することが困難である膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、吐出温度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。 As described above, in the refrigeration cycle apparatus of this reference example , the density ratio is constant by changing the intermediate pressure even in the refrigeration cycle apparatus using an expander that is difficult to adjust to the optimum discharge temperature. Efficient operation of the refrigeration cycle apparatus is possible by adjusting the discharge temperature while relaxing the restrictions.

なお、本参考例の冷媒は二酸化炭素であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。 Although the refrigerant of this reference example has been described as being carbon dioxide, other refrigerants such as R410A can provide the same effect.

参考例3
本発明の制御に関する前提となる冷凍サイクル装置について説明する。
( Reference Example 3 )
A refrigeration cycle apparatus which is a premise relating to the control of the present invention will be described.

図6は参考例3における冷凍サイクル装置を示す構成図である。なお、図6の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。また、図7は、参考例3における冷凍サイクル装置の制御方法を示すフローチャートである。 FIG. 6 is a configuration diagram showing a refrigeration cycle apparatus in Reference Example 3 . In the configuration diagram of FIG. 6, the same components as those of the reference example 1 of FIG. FIG. 7 is a flowchart showing a control method of the refrigeration cycle apparatus in Reference Example 3 .

参考例の冷凍サイクル装置は、蒸発器18の入口から出口の間の温度(蒸発温度)を検知する蒸発温度検知手段26、補助圧縮機構15の入口温度(補助圧縮機吸入温度)を検知する補助圧縮機吸入温度検知手段27、蒸発温度検知手段26、補助圧縮機吸入温度検知手段27が検知した値から過熱度(補助圧縮機吸入温度−蒸発温度)を演算し、その値に基づき第1減圧器17の開度を演算、操作する第3減圧器操作器28とを備えている。 The refrigeration cycle apparatus of the present reference example detects the temperature between the inlet and outlet of the evaporator 18 (evaporation temperature), and detects the inlet temperature (auxiliary compressor intake temperature) of the auxiliary compression mechanism 15. The superheat degree (auxiliary compressor intake temperature−evaporation temperature) is calculated from the values detected by the auxiliary compressor intake temperature detecting means 27, the evaporation temperature detecting means 26, and the auxiliary compressor intake temperature detecting means 27, and the first is based on the values. And a third decompressor operating device 28 for calculating and operating the opening degree of the decompressor 17.

第1減圧器17の制御について、図7に示すフローチャートに基づいて説明する。蒸発温度検知手段26からの検出値(蒸発温度)(300)が取り込まれ、また、補助圧縮機吸入温度検知手段27からの検出値(補助圧縮機吸入温度)(310)が取り込まれる。それら取り込んだ検出値から補助圧縮機吸入温度と蒸発温度の差である過熱度を演算(320)し、予めROM等に記憶されている目標過熱度と(320)で演算した過熱度とを比較する。(330)、そして、目標過熱度が過熱度を上回った場合には、第1減圧器17の開度を小さくし(340)、目標過熱度が過熱度以下の場合には、第1減圧器17の開度を大きくする(350)。そして、ステップ300に戻り、以後ステップ300から350まで繰り返す。   The control of the first pressure reducer 17 will be described based on the flowchart shown in FIG. The detection value (evaporation temperature) (300) from the evaporation temperature detection means 26 is taken in, and the detection value (auxiliary compressor suction temperature) (310) from the auxiliary compressor suction temperature detection means 27 is taken in. Calculate the degree of superheat, which is the difference between the intake temperature of the auxiliary compressor and the evaporation temperature, from the captured detection values (320), and compare the target degree of superheat stored in advance in the ROM with the degree of superheat calculated in (320) To do. (330) When the target superheat degree exceeds the superheat degree, the opening degree of the first pressure reducer 17 is reduced (340). When the target superheat degree is equal to or lower than the superheat degree, the first pressure reducer The opening degree of 17 is increased (350). Then, the process returns to step 300, and the subsequent steps 300 to 350 are repeated.

このような制御の効果について、蒸発器18に供給される空気温度が低下した場合(例えば、冷房時の室内負荷の低下や、暖房時の外気温の低下を想定)を例にとり説明する。蒸発器18に供給される空気温度が低下すると、蒸発器18の冷媒温度(蒸発温度)が低下するため、補助圧縮機構15入口の冷媒密度は小さくなり、密度比(DC/DE)は大きくなる。そこで、密度比一定の制約から、密度比が変化しないなら、高圧側圧力が最適な高圧側圧力より低下した状態でサイクルはバランスしようとする。   The effect of such control will be described by taking, as an example, the case where the temperature of the air supplied to the evaporator 18 has decreased (for example, assuming a decrease in indoor load during cooling or a decrease in outside air temperature during heating). When the temperature of the air supplied to the evaporator 18 decreases, the refrigerant temperature (evaporation temperature) of the evaporator 18 decreases, so the refrigerant density at the inlet of the auxiliary compression mechanism 15 decreases and the density ratio (DC / DE) increases. . Therefore, if the density ratio does not change due to the restriction of the constant density ratio, the cycle tries to balance in a state where the high-pressure side pressure is lower than the optimum high-pressure side pressure.

これにより、高圧側回路(圧縮機構11出口〜放熱器12〜膨張機構13入口)にホールドされていた冷媒量が減少するため、低圧側回路(第1減圧器17出口〜蒸発器18〜補助圧縮機構15入口)にホールドされるべき冷媒量が増加し、補助圧縮機構15の(吸入)過熱度が減少する。しかし、本実施の形態では目標過熱度より実際の過熱度が低い場合には、第1減圧器17が閉方向に操作されるので、低圧側圧力と中間圧力の比である低段側圧縮比が増加し、中間圧力は上昇する。   As a result, the amount of refrigerant held in the high-pressure side circuit (compression mechanism 11 outlet to radiator 12 to expansion mechanism 13 inlet) decreases, so the low-pressure side circuit (first decompressor 17 outlet to evaporator 18 to auxiliary compression). The amount of refrigerant to be held at the mechanism 15 inlet) increases, and the (intake) superheat degree of the auxiliary compression mechanism 15 decreases. However, in the present embodiment, when the actual superheat degree is lower than the target superheat degree, the first pressure reducer 17 is operated in the closing direction, so that the low stage side compression ratio, which is the ratio between the low pressure side pressure and the intermediate pressure. Increases and the intermediate pressure increases.

中間圧力が変化すると、ガス側出口163から流出するガス冷媒に液滴が混入すること、あるいは、第一減圧器17が閉方向に操作されることにより液側出口162から液冷媒
が流出しにくくなることにより、質量循環量G2が増加する。質量循環量G2が増加すると質量循環量比(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなるため、密度比一定の制約が緩和される。さらに、第1減圧器17が閉方向に操作されて、中間圧力が上昇するので、膨張機構13により圧縮比がほぼ固定されていても、中間圧力が上昇することにより高圧側圧力も上昇し、高圧側回路にホールドされる冷媒量が増加するため、低圧側回路にホールドされる冷媒量が減少し、補助圧縮機構15の(吸入)過熱度が増加するため、最終的には、目標の過熱度に調整できる。
When the intermediate pressure changes, liquid droplets are unlikely to flow out from the liquid side outlet 162 due to mixing of liquid droplets with the gas refrigerant flowing out from the gas side outlet 163 or operating the first decompressor 17 in the closing direction. As a result, the mass circulation amount G2 increases. As the mass circulation rate G2 increases, the mass circulation rate ratio (G1 / G2) decreases, and since the density ratio (DC / DE) decreases from G1 / G2 = DC / DE = constant, the constraint on the constant density ratio is relaxed. The Further, since the first pressure reducer 17 is operated in the closing direction and the intermediate pressure increases, even if the compression ratio is substantially fixed by the expansion mechanism 13, the intermediate pressure increases to increase the high-pressure side pressure, Since the amount of refrigerant held in the high-pressure side circuit increases, the amount of refrigerant held in the low-pressure side circuit decreases and the (intake) superheat degree of the auxiliary compression mechanism 15 increases. Can be adjusted at any time.

逆に、目標過熱度より実際の過熱度が高い場合には、第1減圧器17が開方向に操作される結果、以上の説明と逆の現象が生じ、同様な効果が得られる。   Conversely, when the actual degree of superheat is higher than the target degree of superheat, the first decompressor 17 is operated in the opening direction, resulting in a phenomenon opposite to that described above, and a similar effect is obtained.

以上説明したように、本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、中間圧力を変化させることによって密度比一定の制約を緩和しつつ、補助圧縮機の過熱度を調整することにより、冷凍サイクル装置の効率のよい運転が可能である。 As described above, in the refrigeration cycle apparatus of this reference example, even if the refrigeration cycle apparatus using an expander is used, the auxiliary compressor is overheated while relaxing the constant density ratio constraint by changing the intermediate pressure. By adjusting the degree, the refrigeration cycle apparatus can be operated efficiently.

なお、本参考例の冷媒は二酸化炭素であるとして説明したが、他の冷媒、例えば、R410A等でも同様の効果が得られる。 Although the refrigerant of this reference example has been described as being carbon dioxide, other refrigerants such as R410A can provide the same effect.

実施の形態1
本発明の第1の実施の形態における冷凍サイクル装置について説明する。本実施の形態の空気調和機に本発明が限定されるものではなく、給湯装置などであってもよい。
( Embodiment 1 )
A refrigeration cycle apparatus according to a first embodiment of the present invention will be described. The present invention is not limited to the air conditioner of the present embodiment, and may be a hot water supply device or the like.

図8は本発明の第1の実施の形態における冷凍サイクル装置を示す構成図である。なお、図8の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 8 is a configuration diagram showing the refrigeration cycle apparatus according to the first embodiment of the present invention. In the configuration diagram of FIG. 8, the same components as those in the reference example 1 of FIG.

本実施の形態の冷凍サイクル装置は、気液分離器16のガス側出口163と圧縮機構11入口との間の冷媒を、補助圧縮機構15入口へとバイパスする第1バイパス回路31、第1バイパス回路31に冷媒を流すか否かを制御する第1電磁弁32とを備えている。   The refrigeration cycle apparatus of the present embodiment includes a first bypass circuit 31 and a first bypass that bypass the refrigerant between the gas side outlet 163 of the gas-liquid separator 16 and the inlet of the compression mechanism 11 to the inlet of the auxiliary compression mechanism 15. And a first electromagnetic valve 32 that controls whether or not the refrigerant flows through the circuit 31.

冷凍サイクル装置の通常運転時の動作、第1減圧器17の制御方法については、第1から第3の実施の形態と同様であるので、説明を省略し、追加された構成要素である第1電磁弁32の動作について説明する。   About the operation | movement at the time of normal driving | operation of a refrigerating-cycle apparatus, and the control method of the 1st pressure reduction device 17, since it is the same as that of 1st to 3rd Embodiment, description is abbreviate | omitted and it is the added component 1st. The operation of the electromagnetic valve 32 will be described.

高圧側圧力や吐出温度、補助圧縮機構15の(吸入)過熱度が高く、第1減圧器17の制御で目標とする高圧側圧力や吐出温度、過熱度に調整しきれない場合、第1電磁弁32を開となるように制御し、気液分離器16で分離されたガスを低圧側回路にバイパスさせる。これにより、質量循環量G1が増加し、質量循環量G2が減少するため、質量循環量比(G1/G2)は大きくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も大きくなる。つまり、密度比一定の制約からバランスする高圧側圧力や、それに応じた吐出温度を低下させることができる。(高圧側圧力を低下させることで、膨張機構13入口の冷媒密度を小さくしようとする。)したがって、本実施の形態の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   When the high pressure side pressure and discharge temperature and the (compression) superheat degree of the auxiliary compression mechanism 15 are high and cannot be adjusted to the target high pressure side pressure, discharge temperature and superheat degree by the control of the first pressure reducer 17, the first electromagnetic The valve 32 is controlled to be opened, and the gas separated by the gas-liquid separator 16 is bypassed to the low pressure side circuit. As a result, the mass circulation rate G1 increases and the mass circulation rate G2 decreases, so that the mass circulation rate ratio (G1 / G2) increases and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Also grows. That is, it is possible to reduce the high-pressure side pressure balanced from the restriction of the constant density ratio and the discharge temperature corresponding thereto. (By reducing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is reduced.) Therefore, in the refrigeration cycle apparatus of the present embodiment, even if the refrigeration cycle apparatus using an expander is used, the auxiliary By changing the mass circulation rate ratio flowing through the compression mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio is relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、本実施の形態の説明では、第1減圧器17で調整しきれない場合に、第1電磁弁32を操作すると説明したが、サイクルの状態が大きく変わる要因、例えば、冷暖房の切
り替え、負荷、外気温の変化等に応じて、第1電磁弁32を操作してもよい。
In the description of the present embodiment, it has been described that the first electromagnetic valve 32 is operated when the first pressure reducer 17 cannot adjust, but a factor that greatly changes the cycle state, for example, switching between heating and cooling, load The first solenoid valve 32 may be operated according to changes in the outside air temperature.

また、第1バイパス回路31は、蒸発器の効率的な使用という観点から補助圧縮機構15入口へバイバスさせるものとして説明したが、第1減圧器17入口から補助圧縮機構15入口までの間のいずれかへバイパスさせても同様の効果が得られる。また、第1電磁弁32は、流量調整できる膨張弁であってもよく、第1減圧器17は固定絞り手段であるキャピラリーチューブなどでもよい。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。   In addition, the first bypass circuit 31 is described as bypassing the inlet of the auxiliary compression mechanism 15 from the viewpoint of efficient use of the evaporator, but any one between the inlet of the first pressure reducer 17 and the inlet of the auxiliary compression mechanism 15 may be used. The same effect can be obtained even if it is bypassed. The first solenoid valve 32 may be an expansion valve capable of adjusting the flow rate, and the first pressure reducer 17 may be a capillary tube as a fixed throttle means. The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例4
本発明の参考例4における冷凍サイクル装置について説明する。
( Reference Example 4 )
A refrigeration cycle apparatus in Reference Example 4 of the present invention will be described.

図9は本発明の参考例4における冷凍サイクル装置を示す構成図である。なお、図9の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 9 is a block diagram showing a refrigeration cycle apparatus in Reference Example 4 of the present invention. In the configuration diagram of FIG. 9, the same components as those in the reference example 1 of FIG.

参考例の冷凍サイクル装置は、気液分離器16の液側出口162と第1減圧器17入口との間の冷媒を、気液分離器16のガス側出口163と圧縮機構11入口との間へとバイパスする第2バイパス回路33、第2バイパス回路33に冷媒を流すか否かを制御する第2電磁弁34と、気液分離器16のガス側出口163側から液側出口162側へと冷媒が第2バイパス回路33内を逆流するのを防止する逆止弁35を備えている。 In the refrigeration cycle apparatus of this reference example, the refrigerant between the liquid side outlet 162 of the gas-liquid separator 16 and the inlet of the first decompressor 17 is exchanged between the gas side outlet 163 of the gas-liquid separator 16 and the inlet of the compression mechanism 11. A second bypass circuit 33 that bypasses the second bypass circuit 33, a second electromagnetic valve 34 that controls whether or not the refrigerant flows through the second bypass circuit 33, and a gas-side outlet 163 side to a liquid-side outlet 162 side of the gas-liquid separator 16 A check valve 35 for preventing the refrigerant from flowing back through the second bypass circuit 33 is provided.

冷凍サイクル装置の通常運転時の動作、第1減圧器17の制御方法については、第1から第3の実施の形態と同様であるので、説明を省略し、追加された構成要素である第2電磁弁33の動作について説明する。   Since the operation of the refrigeration cycle apparatus during normal operation and the control method of the first pressure reducer 17 are the same as those in the first to third embodiments, the description is omitted and a second component which is an added component is omitted. The operation of the electromagnetic valve 33 will be described.

高圧側圧力や吐出温度、補助圧縮機構15の(吸入)過熱度が低く、第1減圧器17の制御で目標とする高圧側圧力や吐出温度、過熱度に調整しきれない場合、第2電磁弁33を開となるように制御し、気液分離器16で分離された液を高圧側回路にバイパスさせる。これにより、質量循環量G2が増加し、質量循環量G1が減少するため、質量循環量比(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなる。つまり、密度比一定の制約からバランスする高圧側圧力や、それに応じた吐出温度を上昇させることができる。(高圧側圧力を上昇させることで、膨張機構13入口の冷媒密度を大きくしようとする。)したがって、本参考例の形態の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   When the high pressure side pressure and discharge temperature and the (intake) superheat degree of the auxiliary compression mechanism 15 are low and cannot be adjusted to the target high pressure side pressure, discharge temperature and superheat degree by the control of the first pressure reducer 17, the second electromagnetic The valve 33 is controlled to be opened, and the liquid separated by the gas-liquid separator 16 is bypassed to the high-pressure side circuit. As a result, the mass circulation amount G2 increases and the mass circulation amount G1 decreases, so the mass circulation amount ratio (G1 / G2) decreases, and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Becomes smaller. That is, it is possible to increase the high-pressure side pressure balanced from the restriction of a constant density ratio and the discharge temperature corresponding thereto. (By increasing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is increased.) Therefore, in the refrigeration cycle apparatus of the embodiment of the present reference example, even if the refrigeration cycle apparatus using an expander, By changing the mass circulation rate ratio flowing through the auxiliary compression mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio can be relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、本参考例の説明では、第1減圧器17で調整しきれない場合に、第2電磁弁34を操作すると説明したが、サイクルの状態が大きく変わる要因、例えば、冷暖房の切り替え、負荷、外気温の変化等に応じて、第2電磁弁34を操作してもよい。また、第2電磁弁34は、流量調整できる膨張弁であってもよく、第1減圧器17は固定絞り手段であるキャピラリーチューブなどでもよい。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。   In the description of the present reference example, it has been described that the second electromagnetic valve 34 is operated when the first pressure reducer 17 cannot be adjusted. However, factors that greatly change the state of the cycle, such as switching between heating and cooling, load, The second solenoid valve 34 may be operated according to changes in the outside air temperature. The second electromagnetic valve 34 may be an expansion valve capable of adjusting the flow rate, and the first pressure reducer 17 may be a capillary tube as a fixed throttle means. The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

実施の形態2
本発明の第2の実施の形態における冷凍サイクル装置について説明する。本実施の形態の空気調和機に本発明が限定されるものではなく、給湯装置などであってもよい。
( Embodiment 2 )
A refrigeration cycle apparatus according to the second embodiment of the present invention will be described. The present invention is not limited to the air conditioner of the present embodiment, and may be a hot water supply device or the like.

図10は本発明の第2の実施の形態における冷凍サイクル装置を示す構成図である。な
お、図10の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。
FIG. 10 is a block diagram showing a refrigeration cycle apparatus according to the second embodiment of the present invention. In the configuration diagram of FIG. 10, the same components as those in the reference example 1 of FIG.

本実施の形態の冷凍サイクル装置は、膨張機構13または補助圧縮機構15の出口と気液分離器16の流入口161との間の冷媒を、蒸発器18入口へとバイパスする第3バイパス回路41、第3バイパス回路41に流れる質量循環量を調整する第2減圧器42とを備えている。また、図1の参考例1での第1減圧器17はキャピラリーチューブ40に変更されている。 The refrigeration cycle apparatus of the present embodiment has a third bypass circuit 41 that bypasses the refrigerant between the outlet of the expansion mechanism 13 or auxiliary compression mechanism 15 and the inlet 161 of the gas-liquid separator 16 to the inlet of the evaporator 18. And a second decompressor 42 that adjusts the mass circulation amount flowing in the third bypass circuit 41. Further, the first pressure reducer 17 in Reference Example 1 of FIG. 1 is changed to a capillary tube 40.

冷凍サイクル装置の通常運転時の動作は参考例1から参考例3と同様であり、また、第2減圧器42の制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を簡略化するが、例えば、高圧側圧力が最適な高圧側圧力より高い状態となった場合、本実施の形態では第2減圧器42を開方向に制御し、気液分離器16に流入する冷媒を低圧側回路にバイパスさせる。 The operation of the refrigeration cycle apparatus during normal operation is the same as in Reference Examples 1 to 3, and the control method of the second pressure reducer 42 is the control of the first pressure reducer 17 in Reference Examples 1 to 3 . Since it is the same as the method, the description will be simplified. For example, when the high pressure side pressure is higher than the optimum high pressure side pressure, the second decompressor 42 is controlled in the opening direction in the present embodiment, The refrigerant flowing into the gas-liquid separator 16 is bypassed to the low pressure side circuit.

これにより、質量循環量G1が増加し、質量循環量G2が減少するため、質量循環量比(G1/G2)は大きくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も大きくなる。つまり、密度比一定の制約からバランスする高圧側圧力を低下させることができる。(高圧側圧力を低下させることで、膨張機構13入口の冷媒密度を小さくしようとする。)したがって、本実施の形態の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   As a result, the mass circulation rate G1 increases and the mass circulation rate G2 decreases, so that the mass circulation rate ratio (G1 / G2) increases and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Also grows. That is, it is possible to reduce the high-pressure side pressure that is balanced from the constraint of a constant density ratio. (By reducing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is reduced.) Therefore, in the refrigeration cycle apparatus of the present embodiment, even if the refrigeration cycle apparatus using an expander is used, the auxiliary By changing the mass circulation rate ratio flowing through the compression mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio is relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、キャピラリーチューブ40の代わりに第1の実施の形態のように第1減圧器17を用いても良い。また、第3バイパス回路41は、蒸発器18入口へバイバスさせるものとして説明したが、キャピラリーチューブ40入口から補助圧縮機構15入口までの間のいずれかへバイパスさせても同様の効果が得られる。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。   Instead of the capillary tube 40, the first pressure reducer 17 may be used as in the first embodiment. The third bypass circuit 41 has been described as bypassing to the evaporator 18 inlet, but the same effect can be obtained by bypassing to any one between the capillary tube 40 inlet and the auxiliary compression mechanism 15 inlet. The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例5
本発明の参考例5における冷凍サイクル装置について説明する。
( Reference Example 5 )
A refrigeration cycle apparatus in Reference Example 5 of the present invention will be described.

図11は本発明の参考例5における冷凍サイクル装置を示す構成図である。なお、図11の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 11 is a block diagram showing a refrigeration cycle apparatus in Reference Example 5 of the present invention. In the configuration diagram of FIG. 11, the same components as those in the reference example 1 of FIG.

本参考例の冷凍サイクル装置は、膨張機構13または補助圧縮機構15の出口と気液分離器16の流入口161との間の冷媒を、気液分離器16のガス側出口163と圧縮機構11入口との間へとバイパスする第4バイパス回路43、第4バイパス回路43に流れる質量循環量を調整する第3減圧器44とを備えている。また、図1の参考例1での第1減圧器17はキャピラリーチューブ40に変更されている。 In the refrigeration cycle apparatus of the present reference example, the refrigerant between the outlet of the expansion mechanism 13 or the auxiliary compression mechanism 15 and the inlet 161 of the gas-liquid separator 16 is exchanged with the gas-side outlet 163 of the gas-liquid separator 16 and the compression mechanism 11. A fourth bypass circuit 43 that bypasses to the inlet and a third decompressor 44 that adjusts the amount of mass circulation flowing through the fourth bypass circuit 43 are provided. Further, the first pressure reducer 17 in Reference Example 1 of FIG. 1 is changed to a capillary tube 40.

冷凍サイクル装置の通常運転時の動作は参考例1から参考例3と同様であり、また、第3減圧器44の制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を簡略化するが、例えば、高圧側圧力が最適な高圧側圧力より低い状態となった場合、本参考例では第3減圧器44を開方向に制御し、気液分離器16に流入する冷媒を高圧側回路にバイパスさせる。 The operation of the refrigeration cycle apparatus during normal operation is the same as in Reference Examples 1 to 3, and the control method of the third pressure reducer 44 is the control of the first pressure reducer 17 in Reference Examples 1 to 3 . Since this is the same as the method, the description will be simplified. For example, when the high-pressure side pressure is lower than the optimum high-pressure side pressure, the third decompressor 44 is controlled in the opening direction in this reference example, The refrigerant flowing into the liquid separator 16 is bypassed to the high pressure side circuit.

これにより、質量循環量G2が増加し、質量循環量G1が減少するため、質量循環量比
(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなる。つまり、密度比一定の制約からバランスする高圧側圧力を上昇させることができる。(高圧側圧力を上昇させることで、膨張機構13入口の冷媒密度を大きくしようとする。)したがって、本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。
As a result, the mass circulation amount G2 increases and the mass circulation amount G1 decreases, so the mass circulation amount ratio (G1 / G2) decreases, and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Becomes smaller. That is, it is possible to increase the high-pressure side pressure that is balanced due to the constraint of a constant density ratio. (By increasing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is increased.) Therefore, in the refrigeration cycle apparatus of this reference example, even if the refrigeration cycle apparatus using an expander is used, auxiliary compression is performed. By changing the mass circulation rate ratio flowing through the mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio is relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、キャピラリーチューブ40の代わりに参考例1のように第1減圧器17を用いても良い。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。 Instead of the capillary tube 40, the first pressure reducer 17 may be used as in Reference Example 1 . The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例6
本発明の参考例6における冷凍サイクル装置について説明する。
(Reference Example 6)
A refrigeration cycle apparatus in Reference Example 6 of the present invention will be described.

図12は本発明の参考例6における冷凍サイクル装置を示す構成図である。なお、図12の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 12 is a block diagram showing a refrigeration cycle apparatus in Reference Example 6 of the present invention. In the configuration diagram of FIG. 12, the same components as those in Reference Example 1 of FIG.

本参考例の冷凍サイクル装置は、放熱器12出口と膨張機構13入口との間の冷媒を、蒸発器18入口へとバイパスする第5バイパス回路51、第5バイパス回路51に流れる質量循環量を調整する第4減圧器52とを備えている。また、図1の参考例1での第1減圧器17はキャピラリーチューブ40に変更されている。 The refrigeration cycle apparatus of the present reference example has a mass circulation amount flowing through the fifth bypass circuit 51 and the fifth bypass circuit 51 that bypasses the refrigerant between the radiator 12 outlet and the expansion mechanism 13 inlet to the evaporator 18 inlet. And a fourth decompressor 52 to be adjusted. Further, the first pressure reducer 17 in Reference Example 1 of FIG. 1 is changed to a capillary tube 40.

冷凍サイクル装置の通常運転時の動作は参考例1から参考例3と同様であり、また、第4減圧器52の制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を簡略化するが、例えば、高圧側圧力が最適な高圧側圧力より高い状態となった場合、本参考例では第4減圧器52を開方向に制御し、膨張機構13に流入する冷媒を低圧側回路にバイパスさせる。 The operation of the refrigeration cycle apparatus during normal operation is the same as in Reference Examples 1 to 3, and the control method of the fourth decompressor 52 is the control of the first decompressor 17 in Reference Examples 1 to 3 . Since this is the same as the method, the description will be simplified. For example, when the high-pressure side pressure is higher than the optimum high-pressure side pressure, the fourth decompressor 52 is controlled in the opening direction in this reference example to expand the pressure. The refrigerant flowing into the mechanism 13 is bypassed to the low pressure side circuit.

これにより、質量循環量G1が増加し、質量循環量G2が減少するため、質量循環量比(G1/G2)は大きくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も大きくなる。つまり、密度比一定の制約からバランスする高圧側圧力を低下させることができる。(高圧側圧力を低下させることで、膨張機構13入口の冷媒密度を小さくしようとする。)したがって、本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   As a result, the mass circulation rate G1 increases and the mass circulation rate G2 decreases, so that the mass circulation rate ratio (G1 / G2) increases and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Also grows. That is, it is possible to reduce the high-pressure side pressure that is balanced from the constraint of a constant density ratio. (By reducing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is reduced.) Therefore, in the refrigeration cycle apparatus of this reference example, even if the refrigeration cycle apparatus using an expander is used, auxiliary compression is performed. By changing the mass circulation rate ratio flowing through the mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio is relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、キャピラリーチューブ40の代わりに参考例1のように第1減圧器17を用いても良い。また、第5バイパス回路51は、蒸発器18入口へバイバスさせるものとして説明したが、キャピラリーチューブ40入口から補助圧縮機構15入口までの間のいずれかへバイパスさせても同様の効果が得られる。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。 Instead of the capillary tube 40, the first pressure reducer 17 may be used as in Reference Example 1 . The fifth bypass circuit 51 has been described as bypassing to the inlet of the evaporator 18, but the same effect can be obtained by bypassing to any one between the inlet of the capillary tube 40 and the inlet of the auxiliary compression mechanism 15. The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例7
本発明の参考例7における冷凍サイクル装置について説明する。
( Reference Example 7 )
A refrigeration cycle apparatus in Reference Example 7 of the present invention will be described.

図13は本発明の参考例7における冷凍サイクル装置を示す構成図である。なお、図13の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省
略する。
FIG. 13 is a block diagram showing a refrigeration cycle apparatus in Reference Example 7 of the present invention. In the configuration diagram of FIG. 13, the same components as those in Reference Example 1 of FIG.

本参考例の冷凍サイクル装置は、放熱器12出口と膨張機構13入口との間の冷媒を、気液分離器16のガス側出口163と圧縮機構11入口との間へとバイパスする第6バイパス回路53、第6バイパス回路53に流れる質量循環量を調整する第5減圧器54とを備えている。また、図1の参考例1での第1減圧器17はキャピラリーチューブ40に変更されている。 The refrigeration cycle apparatus according to the present reference example bypasses the refrigerant between the outlet of the radiator 12 and the inlet of the expansion mechanism 13 between the gas side outlet 163 of the gas-liquid separator 16 and the inlet of the compression mechanism 11. And a fifth decompressor 54 that adjusts the mass circulation amount flowing in the circuit 53 and the sixth bypass circuit 53. Further, the first pressure reducer 17 in Reference Example 1 of FIG. 1 is changed to a capillary tube 40.

冷凍サイクル装置の通常運転時の動作は参考例1から参考例3と同様であり、また、第5減圧器54の制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を簡略化するが、例えば、高圧側圧力が最適な高圧側圧力より低い状態となった場合、本参考例では第5減圧器54を開方向に制御し、膨張機構13に流入する冷媒を高圧側回路にバイパスさせる。 The operation during normal operation of the refrigeration cycle apparatus is the same as in Reference Examples 1 to 3, and the control method of the fifth decompressor 54 is the control of the first decompressor 17 in Reference Examples 1 to 3 . Since this is the same as the method, the description will be simplified. For example, when the high-pressure side pressure is lower than the optimum high-pressure side pressure, the fifth decompressor 54 is controlled in the opening direction in this reference example to expand The refrigerant flowing into the mechanism 13 is bypassed to the high-pressure side circuit.

これにより、質量循環量G2が増加し、質量循環量G1が減少するため、質量循環量比(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなる。つまり、密度比一定の制約からバランスする高圧側圧力を上昇させることができる。(高圧側圧力を上昇させることで、膨張機構13入口の冷媒密度を大きくしようとする。)したがって、本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。   As a result, the mass circulation amount G2 increases and the mass circulation amount G1 decreases, so the mass circulation amount ratio (G1 / G2) decreases, and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Becomes smaller. That is, it is possible to increase the high-pressure side pressure that is balanced due to the constraint of a constant density ratio. (By increasing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is increased.) Therefore, in the refrigeration cycle apparatus of this reference example, even if the refrigeration cycle apparatus using an expander is used, auxiliary compression is performed. By changing the mass circulation rate ratio flowing through the mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio is relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、キャピラリーチューブ40の代わりに参考例1のように第1減圧器17を用いても良い。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。 Instead of the capillary tube 40, the first pressure reducer 17 may be used as in Reference Example 1 . The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例8
本発明の参考例8における冷凍サイクル装置について説明する。
( Reference Example 8 )
A refrigeration cycle apparatus in Reference Example 8 of the present invention will be described.

図14は本発明の参考例8における冷凍サイクル装置を示す構成図である。なお、図14の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 14 is a configuration diagram showing a refrigeration cycle apparatus in Reference Example 8 of the present invention. In the configuration diagram of FIG. 14, the same components as those in the reference example 1 of FIG.

本参考例の冷凍サイクル装置は、放熱器12出口と膨張機構13入口との間の冷媒を、膨張機構13または補助圧縮機構15の出口と気液分離器16の流入口161との間へとバイパスする第7バイパス回路55、第7バイパス回路55に流れる質量循環量を調整する第6減圧器56とを備えている。また、図1の参考例1での第1減圧器17はキャピラリーチューブ40に変更されている。 In the refrigeration cycle apparatus of this reference example, the refrigerant between the outlet of the radiator 12 and the inlet of the expansion mechanism 13 is passed between the outlet of the expansion mechanism 13 or the auxiliary compression mechanism 15 and the inlet 161 of the gas-liquid separator 16. A seventh bypass circuit 55 for bypassing, and a sixth pressure reducer 56 for adjusting a mass circulation amount flowing in the seventh bypass circuit 55. Further, the first pressure reducer 17 in Reference Example 1 of FIG. 1 is changed to a capillary tube 40.

冷凍サイクル装置の通常運転時の動作は参考例1から参考例3と同様であり、また、第6減圧器56の制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を簡略化するが、例えば、高圧側圧力が最適な高圧側圧力より高い状態となった場合、本参考例では第6減圧器56を開方向に制御し、膨張機構13に流入する冷媒を中間圧となる回路にバイパスさせる。 The operation of the refrigeration cycle apparatus during normal operation is the same as in Reference Examples 1 to 3, and the control method of the sixth pressure reducer 56 is the control of the first pressure reducer 17 in Reference Examples 1 to 3 . Since this is the same as the method, the description will be simplified. For example, when the high-pressure side pressure is higher than the optimum high-pressure side pressure, the sixth decompressor 56 is controlled in the opening direction in this reference example to expand The refrigerant flowing into the mechanism 13 is bypassed to a circuit having an intermediate pressure.

これにより、質量循環量G2が減少するため、質量循環量比(G1/G2)は大きくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も大きくなる。つまり、密度比一定の制約からバランスする高圧側圧力を低下させることができる。(高圧側圧力を低下させることで、膨張機構13入口の冷媒密度を小さくしようとする。)したがって、
本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。
As a result, the mass circulation rate G2 decreases, so the mass circulation rate ratio (G1 / G2) increases, and the density ratio (DC / DE) also increases from G1 / G2 = DC / DE = constant. That is, it is possible to reduce the high-pressure side pressure that is balanced from the constraint of a constant density ratio. (By decreasing the high-pressure side pressure, an attempt is made to reduce the refrigerant density at the inlet of the expansion mechanism 13).
In the refrigeration cycle apparatus of this reference example, even in a refrigeration cycle apparatus using an expander, the restriction of the constant density ratio is relaxed by changing the mass circulation rate ratio flowing through the auxiliary compression mechanism 15 and the expansion mechanism 13, Efficient operation of the refrigeration cycle apparatus is possible.

なお、キャピラリーチューブ40の代わりに参考例1のように第1減圧器17を用いても良い。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。 Instead of the capillary tube 40, the first pressure reducer 17 may be used as in Reference Example 1 . The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例9
本発明の参考例9における冷凍サイクル装置について説明する。
( Reference Example 9 )
A refrigeration cycle apparatus in Reference Example 9 of the present invention will be described.

図15は参考例9における冷凍サイクル装置を示す構成図である。なお、図15の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 15 is a configuration diagram showing a refrigeration cycle apparatus in Reference Example 9 . In the configuration diagram of FIG. 15, the same components as those in the reference example 1 of FIG.

図15の参考例9の冷凍サイクル装置で、図1の参考例1と異なる構成要素は、第1減圧器17の代わりのキャピラリーチューブ40、気液分離器16の代わりの流量調整弁付き気液分離器60である。流量調整弁付き気液分離器60は図16に示すように、気液分離容器61の上部から底部までを貫通するように挿入された二相冷媒管62、気液分離容器61の底部を貫通し容器内上部まで達するガス冷媒管63を主要な構成要素としている。 In the refrigeration cycle apparatus of Reference Example 9 in FIG. 15, the components different from Reference Example 1 in FIG. 1 are a capillary tube 40 instead of the first pressure reducer 17 and a gas-liquid with a flow rate adjusting valve instead of the gas-liquid separator 16. Separator 60. As shown in FIG. 16, the gas-liquid separator 60 with a flow rate adjusting valve penetrates through the bottom of the gas-liquid separation container 61 and the two-phase refrigerant pipe 62 inserted so as to penetrate from the top to the bottom of the gas-liquid separation container 61. The gas refrigerant pipe 63 reaching the upper part of the inside of the container is a main component.

また、二相冷媒管62には管内を流れる冷媒の一部を気液分離容器61内に流出させる分岐管64が、流量調整弁65を介して設けられている。さらに、二相冷媒管62には気液分離容器61内底部に滞留した液冷媒を二相冷媒管62内に戻すための液戻し穴66も備えられている。   The two-phase refrigerant pipe 62 is provided with a branch pipe 64 through a flow rate adjusting valve 65 for allowing a part of the refrigerant flowing in the pipe to flow out into the gas-liquid separation container 61. Further, the two-phase refrigerant pipe 62 is also provided with a liquid return hole 66 for returning the liquid refrigerant staying at the bottom of the gas-liquid separation container 61 into the two-phase refrigerant pipe 62.

流量調整弁付き気液分離器60は、流量調整弁65を全閉とした場合には、流量調整弁付き気液分離器60の流入口610から流入した乾き度の大きい二相冷媒は、そのまま二相冷媒管62を通り液側出口602から流出する。流量調整弁65を開方向に操作した場合には、二相冷媒管62を流れる二相冷媒の一部は気液分離容器61内へ流出し、容器内で液冷媒とガス冷媒に分離される。   When the flow rate adjustment valve 65 is fully closed, the gas-liquid separator 60 with a flow rate adjustment valve has a high dryness two-phase refrigerant flowing from the inlet 610 of the gas-liquid separator 60 with a flow rate adjustment valve. It flows out of the liquid side outlet 602 through the two-phase refrigerant pipe 62. When the flow rate adjustment valve 65 is operated in the opening direction, a part of the two-phase refrigerant flowing through the two-phase refrigerant pipe 62 flows into the gas-liquid separation container 61 and is separated into liquid refrigerant and gas refrigerant in the container. .

密度の小さいガス冷媒は容器上部からガス冷媒管63と通ってガス側出口603から流出し、密度の大きい液冷媒は容器底部に滞留した後、液戻し穴66から再び二相冷媒管62内に戻り、容器内に流出しなかった二相冷媒とともに乾き度の小さい二相冷媒として液側出口602から流出する。すなわち、流量調整弁65の開度調整により、液側出口602とガス側出口603とからそれぞれ流出する質量循環量を可変できるものである。   The low-density gas refrigerant flows from the upper part of the container through the gas refrigerant pipe 63 and flows out from the gas-side outlet 603, and the high-density liquid refrigerant stays at the bottom of the container and then enters the two-phase refrigerant pipe 62 from the liquid return hole 66 again. It returns and flows out from the liquid side outlet 602 as a two-phase refrigerant having a low dryness together with the two-phase refrigerant that has not flowed into the container. That is, the amount of mass circulation flowing out from the liquid side outlet 602 and the gas side outlet 603 can be varied by adjusting the opening degree of the flow rate adjusting valve 65.

冷凍サイクル装置の通常運転時の動作は参考例1から参考例3と同様であり、また、流量調整弁64の制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を簡略化するが、例えば、高圧側圧力が最適な高圧側圧力より低い状態となった場合、本参考例では流量調整弁64を開方向に制御し、流入口601から流入する二相冷媒を気液分離容器61内へ流出させ、ガス側出口603から流出する冷媒の質量循環量を増加させる。 The operation during normal operation of the refrigeration cycle apparatus is the same as in Reference Examples 1 to 3, and the control method of the flow rate adjusting valve 64 is the control method of the first pressure reducer 17 in Reference Examples 1 to 3 . However, for example, when the high-pressure side pressure is lower than the optimum high-pressure side pressure, the flow rate adjusting valve 64 is controlled in the opening direction in this reference example, and the inlet 601 is used. The two-phase refrigerant that flows in from the gas flows out into the gas-liquid separation container 61, and the mass circulation amount of the refrigerant that flows out from the gas side outlet 603 is increased.

これにより、質量循環量G2が増加し、質量循環量G1が減少するため、質量循環量比(G1/G2)は小さくなり、G1/G2=DC/DE=一定から密度比(DC/DE)も小さくなる。つまり、密度比一定の制約からバランスする高圧側圧力を上昇させることができる。(高圧側圧力を上昇させることで、膨張機構13入口の冷媒密度を大きくしようとする。)したがって、本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイク
ル装置であっても、補助圧縮機構15と膨張機構13を流れる質量循環量比を変化させることによって密度比一定の制約を緩和し、冷凍サイクル装置の効率のよい運転が可能である。
As a result, the mass circulation amount G2 increases and the mass circulation amount G1 decreases, so the mass circulation amount ratio (G1 / G2) decreases, and G1 / G2 = DC / DE = constant to density ratio (DC / DE). Becomes smaller. That is, it is possible to increase the high-pressure side pressure that is balanced due to the constraint of a constant density ratio. (By increasing the high-pressure side pressure, the refrigerant density at the inlet of the expansion mechanism 13 is increased.) Therefore, in the refrigeration cycle apparatus of this reference example, even if the refrigeration cycle apparatus using an expander is used, auxiliary compression is performed. By changing the mass circulation rate ratio flowing through the mechanism 15 and the expansion mechanism 13, the restriction of the constant density ratio is relaxed, and the refrigeration cycle apparatus can be operated efficiently.

なお、キャピラリーチューブ40の代わりに参考例1のように第1減圧器17を用いても良い。また、流量調整弁付き気液分離器60は流量調整弁65の代わりに三方弁などを用いて液側出口602とガス側出口603とからそれぞれ流出する質量循環量を可変する構造であっても良い。また、二相冷媒管62には、圧縮機構11や補助圧縮機13から吐出された潤滑油のうち気液分離容器61内底部に滞留したものを二相冷媒管62内に戻し、圧縮機構11や補助圧縮機構15に戻すための潤滑油戻し穴を備えていてもよい。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。 Instead of the capillary tube 40, the first pressure reducer 17 may be used as in Reference Example 1 . Further, the gas-liquid separator 60 with the flow rate adjusting valve may be configured to vary the mass circulation amount flowing out from the liquid side outlet 602 and the gas side outlet 603 using a three-way valve or the like instead of the flow rate adjusting valve 65. good. Also, the two-phase refrigerant pipe 62 returns to the two-phase refrigerant pipe 62 the oil staying at the bottom of the gas-liquid separation container 61 among the lubricating oil discharged from the compression mechanism 11 and the auxiliary compressor 13. Alternatively, a lubricating oil return hole for returning to the auxiliary compression mechanism 15 may be provided. The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

参考例10
本発明の参考例10における冷凍サイクル装置について説明する。
( Reference Example 10 )
A refrigeration cycle apparatus in Reference Example 10 of the present invention will be described.

図17は圧縮機構に吸入される冷媒を加熱する構成に関する前提となる冷凍サイクル装置を示す構成図である。なお、図17の構成図において、図1の参考例1と同様の構成要素は同じ番号を付し、その説明を省略する。 FIG. 17 is a configuration diagram showing a refrigeration cycle apparatus which is a premise regarding the configuration for heating the refrigerant sucked into the compression mechanism . In the configuration diagram of FIG. 17, the same components as those in the reference example 1 of FIG.

図17の本実施の形態の冷凍サイクル装置で、図1の参考例1と異なる点は、気液分離器16のガス側出口163から圧縮機構11入口までの間の冷媒と放熱器12出口から膨張機構13入口までの間の冷媒とを熱交換する内部熱交換器70が設けられている点と、圧縮機構11を駆動する駆動源(図せず)と圧縮機構11と膨張機構13と補助圧縮機構15とを1つの密閉容器80内に収納した点である。 In the refrigeration cycle apparatus of the present embodiment in FIG. 17, the difference from the reference example 1 in FIG. 1 is from the refrigerant between the gas side outlet 163 of the gas-liquid separator 16 and the inlet of the compression mechanism 11 and the outlet of the radiator 12. The internal heat exchanger 70 for exchanging heat with the refrigerant up to the inlet of the expansion mechanism 13 is provided, a drive source (not shown) for driving the compression mechanism 11, the compression mechanism 11, the expansion mechanism 13, and the auxiliary The compression mechanism 15 is housed in one sealed container 80.

冷凍サイクル装置の通常運転時の動作や制御方法については、参考例1から参考例3の第1減圧器17の制御方法と同様であるので、説明を省略する。 Since the operation and control method during normal operation of the refrigeration cycle apparatus are the same as the control method of the first pressure reducer 17 in Reference Examples 1 to 3 , description thereof will be omitted.

内部熱交換器70を備えることにより、第1減圧器17の制御により気液分離器16のガス側出口163から流出する冷媒に液滴が混入しても、圧縮機構11に吸入される冷媒は、内部熱交換器により加熱されているので、圧縮機構11で液圧縮となる危険性が回避され、圧縮機構11の信頼性が向上する。   By providing the internal heat exchanger 70, the refrigerant sucked into the compression mechanism 11 can be obtained even if liquid droplets are mixed into the refrigerant flowing out from the gas side outlet 163 of the gas-liquid separator 16 by the control of the first decompressor 17. Since it is heated by the internal heat exchanger, the risk of liquid compression in the compression mechanism 11 is avoided, and the reliability of the compression mechanism 11 is improved.

また、密閉容器80内に圧縮機構11と膨張機構13と補助圧縮機構15とを収納することにより、これらの各機構を潤滑する潤滑油が偏ることなく、各機構を適正に潤滑できるので各機構の信頼性が向上する。   In addition, by storing the compression mechanism 11, the expansion mechanism 13, and the auxiliary compression mechanism 15 in the sealed container 80, each mechanism can be properly lubricated without biasing the lubricating oil that lubricates these mechanisms. Reliability is improved.

したがって、本参考例の冷凍サイクル装置では、膨張機を用いた冷凍サイクル装置であっても、気液分離器16により冷媒を2つの流れに分け、膨張機構13と補助圧縮機構15とのそれぞれを流れる質量循環量の比を変化させることにより、密度比一定の制約を緩和でき、幅広い運転範囲の中で高い動力回収効果を得ることができ、かつ、信頼性を損なうことなく冷凍サイクル装置の効率のよい運転が可能である。 Therefore, in the refrigeration cycle apparatus of this reference example, even in the refrigeration cycle apparatus using an expander, the refrigerant is divided into two flows by the gas-liquid separator 16, and each of the expansion mechanism 13 and the auxiliary compression mechanism 15 is separated. By changing the ratio of the circulating mass flow rate, the constant density ratio constraint can be relaxed, a high power recovery effect can be obtained within a wide operating range, and the efficiency of the refrigeration cycle system without compromising reliability A good driving is possible.

なお、本参考例で説明した内部熱交換器70は圧縮機構11に吸入される冷媒を加熱する加熱手段の一例であり、その他の加熱手段として、気液分離器16のガス側出口163から圧縮機構11入口までの間の冷媒と空気や水と熱交換させたり、ヒータで加熱したりしてもよい。また、冷媒は二酸化炭素以外の冷媒、例えば、R410A等でも同様の効果が得られる。 The internal heat exchanger 70 described in this reference example is an example of a heating unit that heats the refrigerant sucked into the compression mechanism 11, and as another heating unit, compression is performed from the gas side outlet 163 of the gas-liquid separator 16. Heat may be exchanged between the refrigerant up to the mechanism 11 inlet and air or water, or may be heated by a heater. The same effect can be obtained by using a refrigerant other than carbon dioxide, such as R410A.

なお、以上説明した第1の実施の形態から第2の実施の形態のすべてにおいて、四方弁
等を追加し冷媒の流れを逆転させることで、蒸発器と放熱器とを切り替え、冷房(冷却側利用)と暖房(加熱側利用)とを切り替えて使用できるヒートポンプ式冷凍サイクル装置としてもよい。
In all of the first to second embodiments described above, a four-way valve or the like is added to reverse the flow of the refrigerant, thereby switching between the evaporator and the radiator and cooling (cooling side). It is good also as a heat pump refrigerating cycle device which can be used by switching between utilization) and heating (utilization on the heating side).

本発明の冷凍サイクル装置およびその制御方法は、給湯装置(給湯器)、家庭用空調機、車両用空調機(カーエアコン)等に有用である。   The refrigeration cycle apparatus and its control method of the present invention are useful for a hot water supply apparatus (hot water heater), a home air conditioner, a vehicle air conditioner (car air conditioner), and the like.

本発明の参考例1における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 1 of this invention. 同冷凍サイクル装置の制御方法を示すフローチャートA flowchart showing a control method of the refrigeration cycle apparatus 同冷凍サイクル変化を示す圧力・エンタルピ線図Pressure and enthalpy diagram showing changes in the refrigeration cycle 本発明の参考例2における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 2 of this invention. 同冷凍サイクル装置の制御方法を示すフローチャートA flowchart showing a control method of the refrigeration cycle apparatus 本発明の参考例3における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 3 of this invention. 同冷凍サイクル装置の制御方法を示すフローチャートA flowchart showing a control method of the refrigeration cycle apparatus 本発明の第1の実施の形態における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the 1st Embodiment of this invention. 本発明の参考例4における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 4 of this invention. 本発明の第2の実施の形態における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the 2nd Embodiment of this invention. 本発明の参考例5における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 5 of this invention. 本発明の参考例6における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 6 of this invention. 本発明の参考例7における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 7 of this invention. 本発明の参考例8における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 8 of this invention. 本発明の参考例9における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 9 of this invention. 本発明の参考例9における流量調整弁付き気液分離器を示す構成図The block diagram which shows the gas-liquid separator with a flow regulating valve in the reference example 9 of this invention 本発明の参考例10における冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus in the reference example 10 of this invention.

符号の説明Explanation of symbols

11 圧縮機構
12 放熱器
13 膨張機構
15 補助圧縮機構
16 気液分離器
17 第1減圧器
18 蒸発器
21 高圧側圧力検知手段
22 放熱器出口温度検知手段
23 第1減圧器演算操作器
24 吐出温度検知手段
25 第2減圧器演算操作器
26 蒸発温度検知手段
27 補助圧縮機吸入温度検知手段
28 第3減圧器演算操作器
31 第1バイパス回路
33 第2バイパス回路
41 第3バイパス回路
42 第2減圧器
43 第4バイパス回路
44 第3減圧器
51 第5バイパス回路
52 第4減圧器
53 第6バイパス回路
54 第5減圧器
55 第7バイパス回路
56 第6減圧器
60 流量調整弁付き気液分離器
65 流量調整弁
70 内部熱交換器
80 密閉容器
DESCRIPTION OF SYMBOLS 11 Compression mechanism 12 Radiator 13 Expansion mechanism 15 Auxiliary compression mechanism 16 Gas-liquid separator 17 1st pressure reduction device 18 Evaporator 21 High pressure side pressure detection means 22 Radiator outlet temperature detection means 23 1st pressure reduction device arithmetic operation device 24 Discharge temperature Detection means 25 Second decompressor arithmetic operation unit 26 Evaporation temperature detection unit 27 Auxiliary compressor intake temperature detection unit 28 Third decompressor arithmetic operation unit 31 First bypass circuit 33 Second bypass circuit 41 Third bypass circuit 42 Second decompression Unit 43 fourth bypass circuit 44 third decompressor 51 fifth bypass circuit 52 fourth decompressor 53 sixth bypass circuit 54 fifth decompressor 55 seventh bypass circuit 56 sixth decompressor 60 gas-liquid separator with flow regulating valve 65 Flow control valve 70 Internal heat exchanger 80 Airtight container

Claims (16)

少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構、前記補助圧縮機構に連通する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器とを備え、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を前記気液分離器にてガス冷媒と液冷媒とに分離するとともに、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせる構成とした冷凍サイクル装置。 At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism to be driven; an expansion mechanism; a gas-liquid separator communicating with the auxiliary compression mechanism; a first decompressor that decompresses liquid refrigerant flowing out from the gas-liquid separator; and the first decompressor. An evaporator for evaporating the decompressed refrigerant, and the intermediate-pressure refrigerant, which is the refrigerant decompressed by the expansion mechanism and the refrigerant pressurized by the auxiliary compression mechanism, is gas and liquid refrigerant in the gas-liquid separator. And a bypass circuit configured to bypass the intermediate-pressure refrigerant to a low-pressure side circuit until the refrigerant is decompressed by the first decompressor and sucked into the auxiliary compression mechanism. 圧縮機構の出口と膨張機構の入口との間のいずれかの位置での圧力を検知する高圧側圧力検知手段と、放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度を検知する放熱器出口温度検知手段とを備え、前記高圧側圧力検知手段が検出した圧力が、前記放熱器出口温度検知手段の検出温度に応じて予め定められた目標高圧側圧力となるように、前記第1減圧器の開度を調整する第1減圧器演算操作手段を設けた請求項1記載の冷凍サイクル装置。 High pressure side pressure detecting means for detecting pressure at any position between the outlet of the compression mechanism and the inlet of the expansion mechanism; and at any position between the outlet of the radiator and the inlet of the expansion mechanism. A radiator outlet temperature detecting means for detecting the temperature, so that the pressure detected by the high pressure side pressure detecting means becomes a target high pressure side pressure predetermined according to the detected temperature of the radiator outlet temperature detecting means. The refrigeration cycle apparatus according to claim 1, further comprising first decompressor calculation operation means for adjusting an opening degree of the first decompressor. 圧縮機構の出口の温度を検知する吐出温度検知手段を備え、前記吐出温度検出手段の検出温度が予め定められた目標吐出温度となるように、第1減圧器の開度を調整する第2減圧器演算操作手段を設けた請求項1記載の冷凍サイクル装置。 Discharge temperature detection means for detecting the temperature of the outlet of the compression mechanism, and a second pressure reduction that adjusts the opening of the first pressure reducer so that the detected temperature of the discharge temperature detection means becomes a predetermined target discharge temperature. The refrigeration cycle apparatus according to claim 1, further comprising a storage unit operation means. 蒸発器の入口から出口の間のいずれかの位置での温度を検知する蒸発温度検知手段と、補助圧縮機構の入口の温度を検知する補助圧縮機吸入温度検知手段とを備え、前記補助圧縮機吸入温度検知手段の検出温度と前記蒸発温度検知手段の検出温度の差が、予め定められた目標過熱度となるように、前記第1減圧器の開度を調整する第3減圧器演算操作手段を設けた請求項1記載の冷凍サイクル装置。 The auxiliary compressor comprising: an evaporation temperature detecting means for detecting a temperature at any position between the inlet and the outlet of the evaporator; and an auxiliary compressor suction temperature detecting means for detecting the temperature of the inlet of the auxiliary compression mechanism. Third decompressor calculation operation means for adjusting the opening degree of the first decompressor so that the difference between the detected temperature of the suction temperature detecting means and the detected temperature of the evaporation temperature detecting means becomes a predetermined target superheat degree. The refrigeration cycle apparatus according to claim 1, further comprising: 気液分離器のガス側出口と圧縮機構の入口との間の冷媒を、第1減圧器の入口と補助圧縮機構の入口との間のいずれかの位置にバイパスさせる第1バイパス回路を設けた請求項1
記載の冷凍サイクル装置。
A first bypass circuit is provided for bypassing the refrigerant between the gas side outlet of the gas-liquid separator and the inlet of the compression mechanism to any position between the inlet of the first pressure reducer and the inlet of the auxiliary compression mechanism. Claim 1
The refrigeration cycle apparatus described.
膨張機構あるいは補助圧縮機構の出口と、気液分離器の入口との間の冷媒を、気液分離器の液側出口と前記補助圧縮機の入口との間のいずれかの位置にバイパスさせる第3バイパス回路を設けた請求項1記載の冷凍サイクル装置。 The refrigerant between the outlet of the expansion mechanism or auxiliary compression mechanism and the inlet of the gas-liquid separator is bypassed to any position between the liquid-side outlet of the gas-liquid separator and the inlet of the auxiliary compressor. The refrigeration cycle apparatus according to claim 1, further comprising a three bypass circuit. 圧縮機構に吸入される冷媒を加熱する加熱手段を設けた請求項1記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, further comprising heating means for heating the refrigerant sucked into the compression mechanism. 加熱手段は、気液分離器のガス側出口から圧縮機構の入口までの間の冷媒と放熱器の出口から膨張機構の入口までの間の冷媒とを熱交換する構成とした請求項7記載の冷凍サイクル装置。 The heating means is configured to exchange heat between the refrigerant between the gas side outlet of the gas-liquid separator and the inlet of the compression mechanism and the refrigerant between the outlet of the radiator and the inlet of the expansion mechanism. Refrigeration cycle equipment. 加熱手段は、気液分離器のガス側出口から圧縮機構の入口までの間の冷媒を加熱する構成とした請求項7記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 7, wherein the heating means is configured to heat the refrigerant between the gas side outlet of the gas-liquid separator and the inlet of the compression mechanism. 少なくとも、圧縮機構と膨張機構と補助圧縮機構とが、1つの密閉容器内に収納され配設されてなる請求項1〜9のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 9, wherein at least the compression mechanism, the expansion mechanism, and the auxiliary compression mechanism are housed and disposed in one sealed container. 少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒を、ガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の出口と前記膨張機構の入口との間のいずれかの位置での圧力が、前記放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度に応じて予め定められた目標高圧側圧力となるように、前記第1減圧器の開度を調整することを特徴とする冷凍サイクル装置の制御方法。 At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism that is driven, a gas-liquid separator that separates a refrigerant having an intermediate pressure, which is a refrigerant decompressed by the expansion mechanism and a refrigerant that has been pressurized by the auxiliary compression mechanism, into a gas refrigerant and a liquid refrigerant; A first decompressor for decompressing the liquid refrigerant flowing out from the gas-liquid separator; an evaporator for evaporating the refrigerant decompressed by the first decompressor; and the intermediate pressure refrigerant being decompressed by the first decompressor, In the refrigeration cycle apparatus including a bypass circuit that bypasses the low-pressure side circuit until the auxiliary compression mechanism is sucked, the pressure at any position between the outlet of the compression mechanism and the inlet of the expansion mechanism is Adjusting the opening of the first pressure reducer so that a target high-pressure side pressure is predetermined according to the temperature at any position between the outlet of the radiator and the inlet of the expansion mechanism. A control method for a refrigeration cycle apparatus. 少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒をガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の吐出温度が、予め定められた目標吐出温度となるように、前記第1減圧器の開度を調整することを特徴とする冷凍サイクル装置の制御方法。 At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism that is driven, a gas-liquid separator that separates a refrigerant having a reduced pressure by the expansion mechanism and a medium-pressure refrigerant that is a pressure increased by the auxiliary compression mechanism into a gas refrigerant and a liquid refrigerant, and the gas A first decompressor for decompressing the liquid refrigerant flowing out from the liquid separator; an evaporator for evaporating the refrigerant decompressed by the first decompressor; and the intermediate pressure refrigerant being decompressed by the first decompressor and the auxiliary In the refrigeration cycle apparatus including a bypass circuit that bypasses the low-pressure circuit until it is sucked into the compression mechanism, the discharge temperature of the compression mechanism is set to a predetermined target discharge temperature. The method of the refrigeration cycle apparatus characterized by adjusting the opening of the decompressor. 少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒をガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記補助圧縮機構の吸入過熱度が予め定められた目
標過熱度となるように、前記第1減圧器の開度を調整することを特徴とする冷凍サイクル装置の制御方法。
At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism that is driven, a gas-liquid separator that separates a refrigerant having a reduced pressure by the expansion mechanism and a medium-pressure refrigerant that is a pressure increased by the auxiliary compression mechanism into a gas refrigerant and a liquid refrigerant, and the gas A first decompressor for decompressing the liquid refrigerant flowing out from the liquid separator; an evaporator for evaporating the refrigerant decompressed by the first decompressor; and the intermediate pressure refrigerant being decompressed by the first decompressor and the auxiliary In a refrigeration cycle apparatus comprising a bypass circuit for bypassing to a low-pressure side circuit until being sucked into the compression mechanism, the suction superheat degree of the auxiliary compression mechanism is set to a predetermined target superheat degree. The method of the refrigeration cycle apparatus characterized by adjusting the opening of one pressure reducer.
少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒をガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の出口と前記膨張機構の入口との間のいずれかの位置での圧力が、前記放熱器の出口と前記膨張機構の入口との間のいずれかの位置での温度に応じて予め定められた目標高圧側圧力となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とする冷凍サイクル装置の制御方法。 At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism that is driven, a gas-liquid separator that separates a refrigerant having a reduced pressure by the expansion mechanism and a medium-pressure refrigerant that is a pressure increased by the auxiliary compression mechanism into a gas refrigerant and a liquid refrigerant, and the gas A first decompressor for decompressing the liquid refrigerant flowing out from the liquid separator; an evaporator for evaporating the refrigerant decompressed by the first decompressor; and the intermediate pressure refrigerant being decompressed by the first decompressor and the auxiliary In the refrigeration cycle apparatus including a bypass circuit that bypasses the low pressure side circuit until it is sucked into the compression mechanism, the pressure at any position between the outlet of the compression mechanism and the inlet of the expansion mechanism is The amount of circulation flowing through the expansion mechanism and the auxiliary compression mechanism so that a target high-pressure side pressure is predetermined according to the temperature at any position between the outlet of the heat radiator and the inlet of the expansion mechanism A control method for a refrigeration cycle apparatus, characterized by adjusting a ratio with a circulation amount flowing through the refrigeration cycle. 少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒をガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記圧縮機構の吐出温度が予め定められた目標吐出温度となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とする冷凍サイクル装置の制御方法。 At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism that is driven, a gas-liquid separator that separates a refrigerant having a reduced pressure by the expansion mechanism and a medium-pressure refrigerant that is a pressure increased by the auxiliary compression mechanism into a gas refrigerant and a liquid refrigerant, and the gas A first decompressor for decompressing the liquid refrigerant flowing out from the liquid separator; an evaporator for evaporating the refrigerant decompressed by the first decompressor; and the intermediate pressure refrigerant being decompressed by the first decompressor and the auxiliary In the refrigeration cycle apparatus including a bypass circuit that bypasses the low-pressure side circuit until it is sucked into the compression mechanism, the expansion is performed so that the discharge temperature of the compression mechanism becomes a predetermined target discharge temperature. The method of the refrigeration cycle apparatus characterized by the ratio of the circulation amount flowing circulation amount flowing a configuration of the auxiliary compression mechanism, for adjusting. 少なくとも、冷媒を圧縮する圧縮機構と、前記圧縮機構から吐出された冷媒を冷却する放熱器と、前記放熱器から流出した冷媒を減圧させて動力回収する膨張機構と、前記膨張機構の回収動力により駆動される補助圧縮機構と、前記膨張機構で減圧された冷媒や前記補助圧縮機構で昇圧された冷媒である中間圧力の冷媒をガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器から流出する液冷媒を減圧する第1減圧器と、前記第1減圧器で減圧された冷媒を蒸発させる蒸発器と、前記中間圧力の冷媒を前記第1減圧器により減圧され前記補助圧縮機構に吸入されるまでの低圧側回路にバイパスさせるバイパス回路とを備えた冷凍サイクル装置において、前記補助圧縮機構の吸入過熱度が予め定められた目標過熱度となるように、前記膨張機構を流れる循環量と前記補助圧縮機構を流れる循環量との比を、調整することを特徴とする冷凍サイクル装置の制御方法。 At least a compression mechanism that compresses the refrigerant, a radiator that cools the refrigerant discharged from the compression mechanism, an expansion mechanism that recovers power by reducing the pressure of the refrigerant flowing out of the heat radiator, and recovery power of the expansion mechanism An auxiliary compression mechanism that is driven, a gas-liquid separator that separates a refrigerant having a reduced pressure by the expansion mechanism and a medium-pressure refrigerant that is a pressure increased by the auxiliary compression mechanism into a gas refrigerant and a liquid refrigerant, and the gas A first decompressor for decompressing the liquid refrigerant flowing out from the liquid separator; an evaporator for evaporating the refrigerant decompressed by the first decompressor; and the intermediate pressure refrigerant being decompressed by the first decompressor and the auxiliary In a refrigeration cycle apparatus comprising a bypass circuit for bypassing to a low-pressure side circuit until being sucked into the compression mechanism, the suction superheat degree of the auxiliary compression mechanism is set to a predetermined target superheat degree. The method of the refrigeration cycle apparatus characterized by the ratio of the circulation amount flowing through the circulation amount and the auxiliary compression mechanism through the Zhang mechanism, adjusts.
JP2004117609A 2004-04-13 2004-04-13 Refrigeration cycle apparatus and control method thereof Expired - Fee Related JP3870951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117609A JP3870951B2 (en) 2004-04-13 2004-04-13 Refrigeration cycle apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117609A JP3870951B2 (en) 2004-04-13 2004-04-13 Refrigeration cycle apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2005300031A JP2005300031A (en) 2005-10-27
JP3870951B2 true JP3870951B2 (en) 2007-01-24

Family

ID=35331775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117609A Expired - Fee Related JP3870951B2 (en) 2004-04-13 2004-04-13 Refrigeration cycle apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP3870951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483276A (en) * 2010-06-23 2012-05-30 松下电器产业株式会社 Refrigeration cycle apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897284B2 (en) * 2005-12-13 2012-03-14 サンデン株式会社 Refrigeration cycle
JP2007303709A (en) * 2006-05-10 2007-11-22 Sanden Corp Refrigerating cycle
JP4837094B2 (en) * 2007-05-16 2011-12-14 パナソニック株式会社 Refrigeration cycle apparatus and fluid machine used therefor
JP5072523B2 (en) * 2007-10-10 2012-11-14 三菱電機株式会社 Gas-liquid separator and air conditioner
CN101765749A (en) * 2008-06-03 2010-06-30 松下电器产业株式会社 Refrigeration cycle device
JP2010234847A (en) * 2009-03-30 2010-10-21 Japan Climate Systems Corp Air conditioner for vehicle
CN102549355A (en) * 2010-06-23 2012-07-04 松下电器产业株式会社 Refrigeration cycle apparatus
JP2011153825A (en) * 2011-05-20 2011-08-11 Mitsubishi Electric Corp Refrigerating air conditioner
JP2021076260A (en) * 2019-11-05 2021-05-20 富士電機株式会社 Ejector type refrigeration device
JP7526926B2 (en) 2020-11-25 2024-08-02 パナソニックIpマネジメント株式会社 Refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483276A (en) * 2010-06-23 2012-05-30 松下电器产业株式会社 Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2005300031A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
EP2329206B1 (en) Flash tank economizer cycle control
JP5349686B2 (en) Refrigeration cycle equipment
US6854283B2 (en) Determining method of high pressure of refrigeration cycle apparatus
JP3863480B2 (en) Refrigeration cycle equipment
JP3708536B1 (en) Refrigeration cycle apparatus and control method thereof
EP2068093B1 (en) Refrigeration device
JP2006527836A (en) Supercritical pressure regulation of vapor compression system
JP2000234814A (en) Vapor compressed refrigerating device
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP4888256B2 (en) Refrigeration equipment
JP4906963B2 (en) Refrigeration cycle equipment
JP4442237B2 (en) Air conditioner
JP4622193B2 (en) Refrigeration equipment
JP4887929B2 (en) Refrigeration equipment
JP2006145144A (en) Refrigerating cycle device
JP5659909B2 (en) Heat pump equipment
JP3863555B2 (en) Refrigeration cycle equipment
JP2005098635A (en) Refrigeration cycle
CN110312902B (en) Turbo refrigerator and method for operating turbo refrigerator
KR102313304B1 (en) Air conditioner for carbon dioxide
JP4581795B2 (en) Refrigeration equipment
JP2003121012A (en) Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner
JP2014126323A (en) Refrigeration device
JP2006284086A (en) Refrigerating device
JP2020024046A (en) Heat pump device

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051027

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees