【0001】
【産業上の利用分野】
本発明は、複数基の電気炉に対し、その通電開始時期を順次ずらすことによって、各電気炉の高熱負荷期と低熱負荷期とがずれて生じるように操業を行い、各電気炉から発生する高温の可燃性排ガスをそれぞれに付帯して設置した水冷式燃焼塔に導いて燃焼させた後、排ガスを水冷ダクトを経由して排出するようにした電気炉用燃焼塔の冷却水流量制御方法に関するものである。
【0002】
【従来の技術】
電気炉は、アークによりスクラップを加熱溶解して精錬するものであるが、従来製鋼用の大容量のものは電源からの給電が容易であると共に電圧の制御がやり易い交流電気炉が主として用いられていた。しかし近年は交流電気炉に比べて黒鉛電極の原単位や電力原単位の低減およびフリッカの減少が期待できるという長所がある直流電気炉が注目されるようになってきた。
【0003】
ところで、交流電気炉または直流電気炉は複数基設置するのが一般的である。この場合、複数基の電気炉に対し、その通電開始の時期を順次ずらすことによって、各電気炉の高熱負荷期と低熱負荷期とがずれて生じるように操業することが多い。このような操業を行うのは、各電気炉のピークが重なると通電に必要な電気設備の容量が大きくなる等により設備費が嵩むので、これを防止して設備費を節減するためである。
【0004】
その代表的なものとして交流電気炉または直流電気炉を2基有するツイン式のものがあり、このようなツイン式の電気炉では、2炉、2電源にしないで受電設備および炉用電気設備を1系列とする1電源により2基の電気炉に電力を供給するものが知られている。
前述のようなツイン式電気炉では2炉に対して1電源を有するだけであるため2基の電気炉を高熱負荷が重なることがないように交互に切り替えて操業することになる。2炉1電源方式における電気炉から発生する高温のCOを含有する排ガスは、それぞれの両電気炉に付帯した水冷式燃焼塔に導いて燃焼させた後、排ガスを水冷ダクトを経由して排出している。このように電気炉から発生する排ガスは温度が1000℃以上にも達するので燃焼塔内でCOガスが燃焼する際に燃焼塔本体および排ガスを導くダクトが高温になるのを防止するため水冷ジャケット構造や多数の水冷チューブ相互間に短いフィンを介在させて多数のチューブを連結したメンブレーン構造の採用により水冷却するようになっている。このような水冷式燃焼塔および冷却ダクトには熱負荷がピークになる時期に必要な冷却水量を考慮したうえで常に一定水量を流して冷却していた。
【0005】
複数基の電気炉からそれぞれ発生する排ガスの流量制御方法については、たとえば特開平5−77958 号公報に、各電気炉から排出する排ガス量、圧力、温度およびバルブ開度等のデータをマイクロコンピュータに読み込ませ、各系統の必要流量を算出して排ガスの流量を制御するものが開示されている。
【0006】
【発明が解決しようとする課題】
前記公報に開示された従来技術では、各電気炉から発生する各系統の排ガス流量を異常事態が発生した場合に対応して制御することについて詳細に説明してあるが、排ガス系統に供給する冷却水については何ら言及されておらず、どの系統にも一定量の冷却水が流れているものと推定される。
【0007】
水冷式燃焼塔および水冷ダクトに供給する冷却水が熱負荷がピークになる期間を考慮した上で一定水量であれば、独立した複数基の電気炉、あるいは2炉1電源方式の電気炉の場合にあっても、水冷式燃焼塔および水冷ダクトの基数分だけの多量の冷却水量が必要となる。このため冷却水のランニングコストが増加するだけでなく、冷却水を供給するための環水設備を増設するための投資コストが嵩むという問題点がある。
【0008】
本発明は前記従来技術の問題点を解消することができる電気炉用燃焼塔の冷却水流量制御方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
電気炉の1基についての一般的な操作は、電気炉へのスクラップ装入→電極からの通電によるスクラップの溶解・精錬→出鋼→出鋼後の炉修理という大まかな手順による1チャージごとの通電パターンを通電時の電圧を用いて図6に示す。図6に示すようにスクラップ装入、出鋼および炉修理の各期間においては通電がないため、1チャージ目も2チャージ目も電圧(V)は零であり、溶解・精錬期にのみ通電電圧(V)が必要な値に保持されてスクラップの溶解・精錬がなされる。
【0010】
図5は2炉1電源の直流電気炉の給電回路および排ガス設備を示す概略説明図を示す。図5に示すように交流電源6に開閉器7aを介して受電トランス8が接続されており、並列に設けられた炉用トランス9の二次側には交流を直流に整流する位相制御可能なサイリスタ整流装置10の交流入力端がそれぞれ接続されている。またサイリスタ整流装置10の直流側出力端の陰極側−は電極棒5に接続され、さらに陽極側+は炉底電極11に接続されている。
【0011】
ここで電気炉1と電気炉2とを交互に切り替えて操業するに際し、まず電気炉1に通電して操業する場合には、開閉器7aを閉として電源6から受電トランス8に受電して変圧し、さらに炉用トランス9で所定の炉用電圧に降圧し、サイリスタ整流装置10で交流を直流に整流する。開閉器7b、7dを閉とすれば直流電流の給電回路により電気炉1に通電され電極棒5からの直流アークによりスクラップが溶解して精錬される。続いて電気炉2を操業する場合には、開閉器7aの他に開閉器7c、7eを閉とすれば同様にして電気炉2の電極棒5からの直流アークによりスクラップを溶解して精錬することができる。
【0012】
このようにして電気炉1と電気炉2とを交互に切り替えて操業する際に、まず電気炉1から発生するCO含有の高温排ガスは、胴部に配設した水冷ジャケットに冷却水を供給して冷却されている水冷式燃焼塔12aに導入される。水冷式燃焼塔12aでは排ガス中の含有COを完全に燃焼させて低発熱量の排ガスとすることができ爆発等の危険性を解消すると共にプレダスターとしての機能を備えている。
【0013】
水冷式燃焼塔12aにて燃焼させた排ガスは水冷ジャケット構造の水冷ダクト13aを経由する間に冷却されたのち、さらに空冷ダクト14aを通過する間に冷却され、空冷ダクト14aに配設した昇圧ブロア15aにより昇圧され、メインブロア16を介して集塵機17に至り、集塵されるようになっている。
このようにして電気炉1によるスクラップの溶解・精錬が終了したら、出鋼作業に入るので予めスクラップの装入を行ってある電気炉2への通電によるスクラップの溶解・精錬を行う。この時、電気炉2から発生するCO含有の高温の排ガスは冷却水によって冷却されている水冷式燃焼塔12bに導かれて燃焼させたのち、同様にして水冷ダクト13b、空冷ダクト14b等を経由して集塵機17に導き集塵される。なお電気炉1および電気炉2から炉外に漏れた排ガスは集塵フード18から集塵ダクト19を介して集塵機に導き、集塵するようになっている。
【0014】
このような電気炉1と電気炉2とを切り替えて操業する際における電気炉1に付帯した水冷式燃焼塔12aを通過した排ガスの温度および水冷式燃焼塔12を冷却した後の排水の温度を水冷式燃焼塔12aの出側A点でそれぞれ測定すると共に、水冷ダクト13aの出側B点における排ガスの温度および排水の温度をそれぞれ測定した。その結果を図7に示す。
【0015】
図7の(a)は燃焼塔1の出側A点における溶解期(ガス温度 650℃×時間15分)、精錬期(排ガス温度 250℃×時間10分)および出鋼、炉修・スクラップ装入期(排ガス温度80〜100 ℃×時間30分)の排ガス温度の時間推移を示しており、また図7の(b)は燃焼塔1の出側A点における溶解期(排水温度46℃×時間15分)、精錬期(排水温度33℃×時間10分)および出鋼他期(排水温度30℃×時間30分)の冷却水温度の時間推移を示している。なお、冷却水の給水温度は29℃である。
【0016】
さらに図7の(c)は水冷ダクト13aの出側B点における溶解期(排ガス温度 300℃×時間15分)、精錬期(排ガス温度 150℃×時間10分)および出鋼、炉修・スクラップ装入期(排ガス温度50〜60℃×時間30分)の排ガス温度の時間推移を示しており、図7の(d)は水冷ダクト13aの出側B点における溶解期(排水温度45℃×時間15分)、精錬期(排水温度37℃×時間10分)および出鋼他期(排水温度30℃×時間30分)の冷却水温度の時間推移を示している。
【0017】
このような排ガス温度および排水温度の時間推移を電気炉2に付帯して設置した水冷式燃焼塔12bの出側A点および水冷ダクト13bの出側B点についても測定を行った結果によれば、大まかに溶解期と精錬期とからなる高熱負荷の高温期と出鋼、炉修、スクラップ装入期からなる低熱負荷の低温期の2つの時期に分けることができる。そして高熱負荷となる高温期は25〜30分であり、低熱負荷となる低温期は30〜35分程度であった。
【0018】
このようにして調査した水冷式燃焼塔および水冷ダクトの高温期・低温期における排ガス温度と排水温度ならびに熱負荷〔kcal/h〕の例を表1に示す。
【0019】
【表1】
【0020】
表1に示すように低熱負荷と高熱負荷を比較すると水冷式燃焼塔では低熱負荷/高熱負荷=1/17〜1/4であり水冷ダクトでは低熱負荷/高熱負荷=1/16〜1/8であることがわかる。したがって従来のように水冷式水冷式燃焼塔および水冷ダクトを冷却水の供給量をどの系統にも一定値で流すのは無駄であり、低熱負荷時には冷却水の供給量を大幅に削減することが可能になると考えられる。
【0021】
本発明は電気炉に付帯する水冷式燃焼塔および/または水冷ダクトに供給する冷却水を低熱負荷期に簡単な冷却水制御手段を用いて削減すると共に、高熱負荷期には十分な冷却水を供給することができる手段について種々検討を重ねた結果により達成したものであり、その要旨とするところは下記の通りである。
前記目的を達成するための請求項1記載の本発明は、複数基の電気炉に対し、その通電開始時期を順次ずらすことによって、各電気炉の高熱負荷期と低熱負荷期とがずれて生じるように操業を行い、各電気炉から発生する高温の可燃性排ガスをそれぞれに付帯して設置した水冷式燃焼塔に導いて燃焼させた後、排ガスを水冷ダクトを経由して排出するようにした電気炉用燃焼塔の冷却水流量制御方法において、前記複数基の電気炉にそれぞれ付帯して設置した水冷式燃焼塔および/または水冷ダクトに冷却水を供給する給水管の途中に2本並列の給水管を設けると共に下流側で合流させた給水管系を設け、前記2本並列とした給水管の一方側に手動弁を配置して所定開度に設定しておくと共に、他方側に電動弁を配設してオン・オフにより開閉自在とすることにより、前記複数基の電気炉のうち高熱負荷期にある電気炉に付帯する水冷式燃焼塔および/または水冷ダクトには、前記所定開度に設定した手動弁およびオン操作により開いた電動弁を経由して合流する給水管系を介して多量の冷却水を供給し、低熱負荷期にある電気炉にそれぞれ付帯する水冷式燃焼塔および/または水冷ダクトには、電動弁をオフ操作して閉止し、所定開度に設定した手動弁のみを経由する給水管系を介して少量の冷却水を供給することを特徴とする電気炉用水冷式燃焼塔の冷却水流量制御方法である。
【0022】
請求項2記載の本発明は、2炉1電源方式の電気炉に対し、その通電開始時期をずらすことによって、両電気炉の高熱負荷期と低熱負荷期とが交互に生じるように操業を行い、両電気炉から発生する高温の可燃性排ガスをそれぞれに付帯して設置した水冷式燃焼塔に導いて燃焼させた後、排ガスを水冷ダクトを経由して排出するようにした電気炉用水冷式燃焼塔の冷却水流量制御方法において、前記2炉1電源方式の電気炉にそれぞれ付帯して設置した水冷式燃焼塔および/または水冷ダクトに冷却水を供給する給水管の途中に2本並列の給水管を設けると共に、下流側で合流させた給水管系を設け、前記2本並列とした給水管の一方側に手動弁を配設し所定開度に設定しておくと共に、他方側に電動弁を配設してオン・オフにより開閉自在とすることにより、前記2炉1電極方式の電気炉のうち高熱負荷期にある電気炉に付帯する水冷式燃焼塔および/または水冷ダクトには、前記所定開度に設定した手動弁およびオン操作により開いた電動弁を経由して合流する給水管系を介して多量の冷却水を供給し、低熱負荷期にある電気炉に付帯する水冷式燃焼塔および/または水冷ダクトには電動弁をオフ操作して閉止し、所定開度に設定した手動弁のみを経由する給水管系を介して少量の冷却水を供給することを特徴とする電気炉用水冷式燃焼塔の冷却水流量制御方法である。
【0023】
【作用】
本発明では複数基の電気炉のうち高熱負荷にある電気炉に付帯する水冷式燃焼塔および/または水冷ダクトには並列に配設した所定開度の設定してある手動弁およびオンにより開となった電動弁の両方を介して供給される冷却水を合流させて多量の冷却水を供給することにより十分冷却して水冷式燃焼塔、水冷ダクトを保護する。
【0024】
また低熱負荷にある電気炉に付帯する水冷式燃焼塔および/または水冷ダクトには電動弁をオフとして閉止し、所定開度に設定してある手動弁のみを介して少量の冷却水を供給するので冷却水の使用量を削減することができる。
【0025】
【実施例】
以下、本発明を2炉1電源方式の直流電気炉に適用した場合の好適な実施例を図1〜図5に基づいて説明する。
図5に示すように2基1電源方式の電気炉1および電気炉2を交互に切り替えて操業を行う場合に電極棒5からの通電により炉内に装入したスクラップを溶解・精錬した後、出鋼・炉修を経てスクラップ装入終了までの Tap〜 Tap時間が1チャージに必要な所要時間となる。
【0026】
図2は本発明にしたがって2炉1電源方式の電気炉1および電気炉2を交互に切り替えて操業を行う場合の通電電圧(V)の経時変化を模式的にパターンで示した線図である。図2に示すように電気炉1および電気炉2の溶解・精錬期と出鋼・炉修・スクラップ装入期とからなる Tap〜 Tap時間つまり1チャージに必要な所要時間はそれぞれ55〜60分である。
【0027】
電気炉1の電圧V1 が高い溶解・精錬期は電気炉2の電圧V2 が低くゼロとなる出鋼・炉修・スクラップ装入期になり、また電気炉1の電圧V1 が低くゼロとなる出鋼・炉修・スクラップ装入期は電気炉2の電圧V2 が高い溶解・精錬期になっているので、2基の電気炉1および電気炉2は交互に引き続いて溶解・精錬が行われるので稼働率が極めて良好となる。
【0028】
図3に示すように交互に切り替えて操業を繰り返す2基の電気炉1および電気炉2の熱負荷〔kcal/h〕のパターンは、熱負荷の高い溶解・精錬期と低熱負荷の低い出鋼・炉修・スクラップ装入期が重ならずに交互に発生することになる。そのため電気炉1に付帯する水冷式燃焼塔12a、水冷ダクト13aおよび電気炉2に付帯する水冷式燃焼塔12b、水冷ダクト13bにそれぞれ冷却水を供給するに当たっては図4に示すように高熱負荷側に多量の冷却水量を、また低熱負荷側に少量の冷却水量を流すことにすれば、両者を合計した冷却水量は従来の常時一定値による冷却水量より削減することができる。
【0029】
この場合、水冷式燃焼塔12a、12bおよび水冷ダクト13a、13bに供給する多量の冷却水と少量の冷却水の各水量は各期の熱負荷ピークを考慮して適当に定めておけばよく、余りきめこまかく制御するほどのことはない。
本発明を2炉1電源方式の電気炉1に付帯する水冷式燃焼塔12a、水冷ダクト13aおよび電気炉2に付帯する水冷式燃焼塔12b、水冷ダクト13bに適用した場合における冷却水フローシートを図1に示す。
【0030】
図1に示す冷却水フローシートのように給水母管20より電気炉1側の水冷式燃焼塔12aおよび水冷ダクト13a、また電気炉2側の水冷式燃焼塔12bおよび水冷ダクト13bに冷却水を分配して供給するに際し、給水母管20からの冷却水を電気炉1側および電気炉2側に分配する給水支管21の途中から電気炉1側を2系統に分岐させる2本並列の給水支管21a(A系)および給水支管21b(B系)を設けると共に、給水支管21aと給水支管21bとは下流側で給水支管21として合流させる。また電気炉2側を2系統に分岐させる2本並列の給水支管21c(C系)および給水支管21d(D系)を設けると共に、給水支管21cと給水支管21dとを下流側で給水支管21として合流させる。
【0031】
このようにして下流側で合流した給水支管21の各々は、再び2系統(または必要に応じそれ以上の系統)に分岐され、たとえば両系統上にそれぞれ配設された電気炉1側の給水ヘッダ24a、24bおよび電気炉2側の給水ヘッダ24c、24dからそれぞれ複数本(図面では3本ずつ)の給水管が分岐している。給水ヘッダ24aから分岐した3本の給水管には手動弁25a、25b、25cが配設されており、これらは電気炉1側の水冷式燃焼塔12に通じる冷却水の分配を司るものであり、各部に必要な冷却水が供給される。また給水ヘッダ24bから分岐した3本の給水管には手動弁26a、26b、26cが配設されており、これらは電気炉1側の水冷ダクト13に通じる冷却水の分配を司ることになる。
【0032】
同様に、給水ヘッダ24cから分岐した3本の給水支管に配設された手動弁27a、27b、27cは電気炉2側の水冷式燃焼塔12bに通じる冷却水の分配を司るものであり、また給水ヘッダ24dから分岐した3本の給水支管に配設された手動弁28a、28b、28cは電気炉2側の水冷ダクト13bに通じる冷却水の分配を司るものである。
【0033】
ところで、前述のように電気炉1側の2系統のうち給水支管21aには手動弁22aを、また給水支管21bには電動弁23aを配設する一方、電気炉2側の2系統のうち給水支管21cには手動弁22bを、また給水支管21dには電動弁23bを配設する。
そして、電気炉1側の手動弁22aおよび電気炉2側の手動弁22bは、あらかじめ所定開度に設定して固定しておくものであり、たとえば手動弁22aは電気炉1側が必要とする冷却水量の50%が流れるような開度設定とし、同様に手動弁22bは電気炉2側が必要とする冷却水量の50%が流れるような開度設定とする。一方、電気炉1側の電動弁23aおよび電気炉2側の電動弁23bはそれぞれ交互にオン・オフにより開閉制御するものであり、オフによる閉のときの冷却水量は流量0%(流量なし)でオンによる開のときにはそれぞれが必要とする冷却水量の50%が流れるように予め調整しておくものである。
【0034】
すなわち、電気炉1側に常時冷却水を流す給水支管21aをラインA系、冷却水の流量制御を行う給水支管21bをラインB系とし、ラインA系とラインB系とにそれぞれ手動弁22aおよび電動弁23aを配設し、これらを制御することによりその下流側でラインA系とラインB系とを合流させ、前述のようにして電気炉1側の水冷式燃焼塔12aおよび水冷ダクト13aの各部に必要量の冷却水を供給する。
【0035】
同様にして、電気炉2側に常時冷却水を流す給水支管21cをラインC系、冷却水の流量制御を行う給水支管21dをラインD系とし、ラインC系とラインD系とにそれぞれ手動弁22bおよび電動弁23bを配設し、これらを制御することによりその下流側でラインA系とラインB系とを合流させ、前述のように電気炉2側の水冷式燃焼塔12bおよび水冷ダクト13bの各部に必要量の冷却水を供給する。
【0036】
次に電気炉1側の水冷式燃焼塔12a、水冷ダクト13a並びに電気炉2側の水冷式燃焼塔12b、水冷ダクト13bに冷却水を供給する際の手順について説明する。
ここではまず、電気炉1側が溶解・精錬の高温期で高温負荷側にあり、電気炉2側が出鋼、炉修、スクラップ装入の低温基で低熱負荷側にある場合について説明する。この場合、次のような冷却水量の制御を行う。
【0037】
(1)高熱負荷側→電気炉1側「手動弁22a開、電動弁23a開」として高熱負荷側の水冷式燃焼塔12aおよび水冷ダクト13aに多量( 100%)の冷却水を流す。
(2)低熱負荷側→電気炉2側「手動弁22b開、電動弁23b閉」として低熱負荷側の水冷式燃焼塔12bおよび水冷ダクト13bに少量(50%)の冷却水を流す。
【0038】
次に、電気炉1側が出鋼、炉修、スクラップ装入の低温期で低熱負荷側にあり、電気炉2側が溶解・精錬の高温期で低熱負荷側に切り替わった場合について説明する。
(3)高熱負荷側→電気炉2側「手動弁22b開、電動弁23b開」として高熱負荷側の水冷式燃焼塔12bおよび水冷ダクト13bに多量( 100%)の冷却水を流す。
【0039】
(4)低熱負荷側→電気炉1側「手動弁22a開、電動弁23a閉」として低熱負荷側の水冷式燃焼塔12aおよび水冷ダクト13aに少量(50%)の冷却水を流す。
なお、前記の高熱負荷時の冷却水量であるが、熱負荷のピーク値に対し、冷却水の出側と入側との温度差ΔT=20〜25℃となるような冷却水量あるいは平均熱負荷に対し冷却水の出側と入側の温度差ΔT=8〜10℃となるような冷却水量など、電気炉の操業条件や既設設備能力などを考慮して各電気炉ごとに設定すればよい。
【0040】
また低熱負荷時の冷却水量については、高熱負荷時との熱負荷割合に比例して冷却水量を設定してもよいが、電動弁の故障や停電などのトラブルに対応してうまく冷却水の切り替えができなかった場合を想定し、多少は余裕をもたせた冷却水量とするのが好ましい。
たとえば表1に示すような条件下のケースでは水冷式燃焼塔の低熱負荷と高熱負荷の負荷比は1/17〜1/4であるが、前記の点を考慮して低熱負荷時の冷却水量を前述のように高熱負荷時の冷却水量の50%に設定するのでもよく、これにより冷却水量の不足によるトラブルが未然に防止できる。
【0041】
この場合、前述の例で説明したように高熱負荷側の水冷式燃焼塔、水冷ダクトに100 %の冷却水量、低熱負荷側の水冷式燃焼塔、水冷ダクトに50%の冷却水量を流すことになり、2基分を合計して 150%の冷却水量が流れることになる。これは従来の2基1電源方式の電気炉では2倍の水量すなわち 200%の冷却水量が必要であったが、本発明による冷却水量制御では 200%中の50%分だけ冷却水量を削減することが可能になる。
【0042】
ところで、本発明では、水冷式燃焼塔と水冷ダクトとの両方に冷却水を流す場合についての流量制御方法を説明したが、いずれか一方のみを冷却水により流量制御する場合についても支障なく適用することが可能であり、状況に応じて流量制御の範囲を設定すればよい。また本実施例では2炉1電源方式の直流電気炉で説明したが、2炉1電源方式の交流電気炉にも利用可能であり、さらには3炉以上の複数の直流または交流電気炉において、通電開始時間を順次ずらし、水冷式燃焼塔や水冷ダクトでの熱負荷ピークが重ならないような操業を行う場合には、同様にして本発明の冷却水流量制御方法を適用することにより、冷却水量の削減を図ることができる。
【0043】
ヒートサイズ 100tクラスの2炉1電源方式直流電気炉( Tap〜 Tap時間60分、電気炉2基の通電開始時間のずれ30分)における水冷式燃焼塔および水冷ダクトに供給する冷却水の流量制御を行う本発明による場合と、流量制御を行わず流量一定とする従来の場合における冷却水量(t/h)等の成績結果を表2に比較して示す。
【0044】
【表2】
【0045】
表2に示すように本発明によれば、従来法に比較して低熱負荷時に(2000−1000)t/hの冷却水量が削減され、高熱負荷時を併せたトータル冷却水量は従来の4000t/hから3000t/hに軽減できる。また従来ベースを1とした場合に冷却水のランニングコストは0.75に、環水設備投資コストは 0.8に低減することができる。
【0046】
【発明の効果】
以上説明したように本発明によれば、複数基の電気炉に付帯する各々の水冷式燃焼塔および/または水冷ダクトに冷却水を供給する給水管の途中を2系統にして一方に手動弁を、他方に電動弁を設けて、手動弁を設定開度に固定しておき、電動弁を高熱負荷時は開と、低熱負荷時は閉とするという極めて簡単な装置を用いた冷却水の流量制御により冷却水の使用量を従来より削減することができる。その結果、水冷式燃焼塔および/または水冷ダクトに使用する冷却水のランニングコストおよび水冷設備投資コストの低減が達成される。
【図面の簡単な説明】
【図1】本発明に係る電気炉用水冷式燃焼塔の冷却水流量制御手順を示すフローシート図である。
【図2】本発明に係る2炉1電源方式の直流電気炉における通電パターンの時間推移を示す線図である。
【図3】本発明に係る2炉1電源の直流電気炉における熱負荷パターンの時間推移を示す線図である。
【図4】本発明に係る2炉1電源方式の直流電気炉における冷却水量パターンの時間推移を示す線図である。
【図5】2炉1電源の直流電気炉の給電回路および排ガス設備を示す概略説明図である。
【図6】電気炉操業におけるチャージ毎の通電パターンを示す説明図である。
【図7】水冷式燃焼塔および水冷ダクトの排ガス温度および排水温度の時間推移を示す線図である。
【符号の説明】
1 電気炉
2 電気炉
3 電極棒昇降・旋回装置
4 支持アーム
5 電極棒
6 交流電源
7 開閉器
8 受電トランス
9 炉用トランス
10 サイリスタ整流装置
11 炉底電極
12 水冷式燃焼塔
13 水冷ダクト
14 空冷ダクト
15 昇圧ブロア
16 メインブロア
17 集塵機
18 集塵フード
19 集塵ダクト
20 給水母管
21 給水支管
22 手動弁
23 電動弁
24 給水ヘッダ
25 手動弁
26 手動弁
27 手動弁
28 手動弁[0001]
[Industrial application fields]
In the present invention, by sequentially shifting the energization start time for a plurality of electric furnaces, the operation is performed so that the high heat load period and the low heat load period of each electric furnace are shifted, and the electric furnace is generated from each electric furnace. The present invention relates to a method for controlling the cooling water flow rate of a combustion tower for an electric furnace in which high-temperature combustible exhaust gas is guided to a water-cooled combustion tower attached to each and burned, and then exhaust gas is discharged via a water-cooled duct. Is.
[0002]
[Prior art]
The electric furnace is one that heats and melts scraps with an arc and refines them. Conventionally, an AC electric furnace that has a large capacity for steel making is easy to feed from a power source and easily control the voltage. It was. However, in recent years, a DC electric furnace has been attracting attention because it has the advantage that it can be expected to reduce the basic unit of graphite electrode, the basic unit of electric power and the reduction of flicker compared to the AC electric furnace.
[0003]
Incidentally, a plurality of AC electric furnaces or DC electric furnaces are generally installed. In this case, it is often the case that a plurality of electric furnaces are operated so that the high heat load period and the low heat load period of each electric furnace are shifted by sequentially shifting the start of energization. The reason why such operation is performed is to prevent the facility cost from being increased by increasing the capacity of the electrical equipment necessary for energization when the peaks of the electric furnaces overlap, thereby preventing the equipment cost.
[0004]
A typical one is an AC electric furnace or a twin type having two DC electric furnaces. In such a twin type electric furnace, power receiving equipment and electric equipment for the furnace are used without using two furnaces and two power sources. One that supplies power to two electric furnaces with one power source as one system is known.
Since the twin electric furnace as described above has only one power source for two furnaces, the two electric furnaces are operated by alternately switching so that the high heat load does not overlap. Exhaust gas containing high-temperature CO generated from an electric furnace in a two-furnace, one-power-source system is directed to a water-cooled combustion tower attached to each electric furnace and burned, and then the exhaust gas is discharged via a water-cooled duct. ing. In this way, the temperature of the exhaust gas generated from the electric furnace reaches 1000 ° C or more, so when the CO gas burns in the combustion tower, the water cooling jacket structure prevents the combustion tower body and the duct that leads the exhaust gas from becoming hot. In addition, water cooling is achieved by adopting a membrane structure in which a large number of tubes are connected by interposing short fins between a large number of water cooling tubes. The water-cooled combustion tower and the cooling duct were always cooled by flowing a constant amount of water in consideration of the amount of cooling water required at the time when the heat load reached a peak.
[0005]
Regarding a method for controlling the flow rate of exhaust gas generated from a plurality of electric furnaces, for example, in Japanese Patent Application Laid-Open No. 5-77958, data such as the amount of exhaust gas discharged from each electric furnace, pressure, temperature, and valve opening are stored in a microcomputer. An apparatus is disclosed that controls the flow rate of exhaust gas by reading and calculating the required flow rate of each system.
[0006]
[Problems to be solved by the invention]
In the prior art disclosed in the above-mentioned publication, the exhaust gas flow rate of each system generated from each electric furnace is described in detail in response to the occurrence of an abnormal situation. No mention is made of water, and it is estimated that a certain amount of cooling water flows through any system.
[0007]
If the cooling water supplied to the water-cooled combustion tower and the water-cooled duct is a constant amount of water after considering the period when the heat load peaks, in the case of multiple independent electric furnaces or electric furnaces with two furnaces and one power supply system Even in this case, a large amount of cooling water corresponding to the number of water-cooled combustion towers and water-cooled ducts is required. For this reason, there is a problem that not only the running cost of the cooling water is increased, but also the investment cost for adding a circulating water facility for supplying the cooling water is increased.
[0008]
An object of the present invention is to provide a cooling water flow rate control method for a combustion tower for an electric furnace that can solve the problems of the prior art.
[0009]
[Means for Solving the Problems]
The general operation of one electric furnace is as follows: scrap charging into the electric furnace → melting and refining scrap by energization from the electrode → steel output → furnace repair after steel output for each charge. An energization pattern is shown in FIG. 6 using the voltage at the time of energization. As shown in Fig. 6, since there is no energization during each period of scrap charging, steel removal and furnace repair, the voltage (V) is zero at both the first and second charges, and the energized voltage only during the melting and refining period (V) is held at a required value, and scrap is melted and refined.
[0010]
FIG. 5 is a schematic explanatory view showing a feeding circuit and exhaust gas equipment of a DC electric furnace with two furnaces and one power source. As shown in FIG. 5, a power receiving transformer 8 is connected to an AC power source 6 via a switch 7a, and phase control for rectifying AC to DC can be performed on the secondary side of a furnace transformer 9 provided in parallel. The AC input terminals of the thyristor rectifier 10 are connected to each other. Further, the cathode side − of the DC side output end of the thyristor rectifier 10 is connected to the electrode rod 5, and the anode side + is connected to the furnace bottom electrode 11.
[0011]
Here, when the electric furnace 1 and the electric furnace 2 are alternately switched and operated, when the electric furnace 1 is first energized and operated, the switch 7a is closed and the power is received by the power receiving transformer 8 from the power source 6 to perform the transformation. Further, the voltage is stepped down to a predetermined furnace voltage by the furnace transformer 9 and the alternating current is rectified to direct current by the thyristor rectifier 10. When the switches 7b and 7d are closed, the electric furnace 1 is energized by the DC current feeding circuit, and the scrap is melted and refined by the DC arc from the electrode bar 5. Subsequently, when the electric furnace 2 is operated, if the switches 7c and 7e are closed in addition to the switch 7a, the scrap is melted and refined by a DC arc from the electrode rod 5 of the electric furnace 2 in the same manner. be able to.
[0012]
When the electric furnace 1 and the electric furnace 2 are operated alternately in this manner, the CO-containing high-temperature exhaust gas generated from the electric furnace 1 is first supplied with cooling water to a water-cooling jacket disposed in the body. The water-cooled combustion tower 12a is cooled. In the water-cooled combustion tower 12a, the CO contained in the exhaust gas is completely combusted to produce a low calorific value exhaust gas, which eliminates the danger of explosion and has a function as a pre-duster.
[0013]
The exhaust gas burned in the water-cooled combustion tower 12a is cooled while passing through the water-cooled duct 13a having a water-cooled jacket structure, and further cooled while passing through the air-cooled duct 14a, and is provided in the air-cooled duct 14a. The pressure is increased by 15 a, reaches the dust collector 17 through the main blower 16, and is collected.
When the melting and refining of the scrap by the electric furnace 1 is completed in this manner, the steelmaking operation is started, so that the scrap is melted and refined by energizing the electric furnace 2 in which the scrap is charged in advance. At this time, the CO-containing high-temperature exhaust gas generated from the electric furnace 2 is guided to the water-cooled combustion tower 12b cooled by the cooling water and burned, and then passes through the water-cooled duct 13b and the air-cooled duct 14b in the same manner. Then, it is guided to the dust collector 17 and collected. The exhaust gas leaked from the electric furnace 1 and the electric furnace 2 to the outside of the furnace is guided from the dust collecting hood 18 to the dust collector through the dust collecting duct 19 to collect the dust.
[0014]
The temperature of the exhaust gas that has passed through the water-cooled combustion tower 12a attached to the electric furnace 1 and the temperature of the waste water after the water-cooled combustion tower 12 is cooled when switching between the electric furnace 1 and the electric furnace 2 are operated. While measuring at the exit A point of the water-cooled combustion tower 12a, the exhaust gas temperature and the drainage temperature at the exit B point of the water cooling duct 13a were measured. The result is shown in FIG.
[0015]
(A) in Fig. 7 shows the melting period (gas temperature 650 ° C x time 15 minutes), refining period (exhaust gas temperature 250 ° C x time 10 minutes), and output steel, furnace repair / scraping at point A on the exit side of the combustion tower 1 7 shows the time transition of the exhaust gas temperature during the entrance period (exhaust gas temperature 80-100 ° C. × 30 minutes), and FIG. 7B shows the dissolution period (drain water temperature 46 ° C. × (Time 15 minutes), The time transition of the cooling water temperature in the refining period (drainage temperature 33 ° C × time 10 minutes) and the other stages of steelmaking (drainage temperature 30 ° C × time 30 minutes). The cooling water supply temperature is 29 ° C.
[0016]
Fig. 7 (c) shows the melting period (exhaust gas temperature 300 ° C x 15 minutes), refining period (exhaust gas temperature 150 ° C x 10 minutes) at the outlet B point of the water-cooled duct 13a, and steel output, furnace repair / scrap 7 shows the time transition of the exhaust gas temperature during the charging period (exhaust gas temperature 50 to 60 ° C. × 30 minutes), and FIG. 7 (d) shows the dissolution phase (drainage temperature 45 ° C. × at the outlet B point of the water cooling duct 13a). This shows the time course of the cooling water temperature during the refining period (drainage temperature 37 ° C × time 10 minutes) and the other steelmaking phases (drainage temperature 30 ° C × time 30 minutes).
[0017]
According to the result of measuring the time transition of the exhaust gas temperature and the waste water temperature at the outlet side A of the water-cooled combustion tower 12b installed in the electric furnace 2 and the outlet side B of the water-cooled duct 13b. It can be roughly divided into two periods, a high temperature period of high heat load consisting of a melting period and a refining period, and a low temperature period of low heat load consisting of steelmaking, furnace repair, and scrap charging period. And the high temperature period used as a high heat load was 25 to 30 minutes, and the low temperature period used as a low heat load was about 30 to 35 minutes.
[0018]
Table 1 shows examples of the exhaust gas temperature, drainage temperature, and heat load [kcal / h] of the water-cooled combustion tower and the water-cooled duct investigated in this way during the high temperature and low temperature periods.
[0019]
[Table 1]
[0020]
As shown in Table 1, when comparing the low heat load and the high heat load, the low heat load / high heat load = 1/17 to 1/4 in the water-cooled combustion tower and the low heat load / high heat load = 1/16 to 1/8 in the water-cooled duct. It can be seen that it is. Therefore, it is useless to let the cooling water supply flow through the water cooling type water-cooled combustion tower and the water cooling duct to a constant value in any system as before, and the supply amount of cooling water can be greatly reduced at low heat loads. It will be possible.
[0021]
The present invention reduces the amount of cooling water supplied to the water-cooled combustion tower and / or water-cooling duct attached to the electric furnace by using a simple cooling water control means in the low heat load period and sufficient cooling water in the high heat load period. As a result of various studies on the means that can be supplied, the gist of the invention is as follows.
In order to achieve the above object, the present invention according to claim 1, wherein the high heat load period and the low heat load period of each electric furnace are shifted by sequentially shifting the energization start timing for a plurality of electric furnaces. The high-temperature flammable exhaust gas generated from each electric furnace was guided to the water-cooled combustion tower that was installed and attached, and then the exhaust gas was discharged through the water-cooled duct. In the method of controlling the cooling water flow rate of the electric furnace combustion tower, two water-cooling combustion towers attached to the plurality of electric furnaces and / or two water supply pipes for supplying cooling water to the water-cooling duct are arranged in parallel. Provided with a water supply pipe and a water supply pipe system joined at the downstream side, a manual valve is arranged on one side of the two water supply pipes arranged in parallel and set at a predetermined opening, and a motorized valve on the other side Open by turning on and off By making it flexible, the water-cooled combustion tower and / or the water-cooled duct attached to the electric furnace in the high heat load period among the plurality of electric furnaces are opened by the manual valve set to the predetermined opening and the ON operation. A large amount of cooling water is supplied through a water supply pipe system that merges via a motor-operated valve, and motor-operated valves are turned off for water-cooled combustion towers and / or water-cooled ducts that are attached to electric furnaces in low heat load periods. A cooling water flow rate control method for a water-cooled combustion tower for an electric furnace, characterized in that a small amount of cooling water is supplied through a feed water pipe system that is operated and closed and only through a manual valve set to a predetermined opening degree. is there.
[0022]
The present invention according to claim 2 is operated so that the high heat load period and the low heat load period of both electric furnaces are alternately generated by shifting the energization start time of the electric furnace of the two-furnace one power source system. The water-cooled electric furnace for electric furnaces, in which high-temperature flammable exhaust gas generated from both electric furnaces is introduced to the water-cooled combustion tower attached to each and burned, and then the exhaust gas is discharged via a water-cooled duct In the method of controlling the cooling water flow rate of the combustion tower, two water-cooling combustion towers attached to the electric furnace of the two-furnace / one-power-supply system and / or two water supply pipes for supplying cooling water to the water-cooling duct are arranged in parallel. A water supply pipe is provided, a water supply pipe system joined at the downstream side is provided, a manual valve is provided on one side of the two water supply pipes arranged in parallel and set at a predetermined opening degree, and the other side is electrically operated. Valve can be opened and closed by turning it on and off Thus, the water-cooled combustion tower and / or the water-cooled duct attached to the electric furnace in the high heat load period of the two-furnace one-electrode type electric furnace is provided with a manual valve set to the predetermined opening and an ON operation. A large amount of cooling water is supplied via a water supply pipe system that merges via an open motor-operated valve, and the motor-operated valve is turned off for the water-cooled combustion tower and / or water-cooled duct attached to the electric furnace in the low heat load period. A cooling water flow rate control method for a water-cooled combustion tower for an electric furnace, characterized in that a small amount of cooling water is supplied through a water supply pipe system that passes through only a manual valve that is closed and set to a predetermined opening degree. .
[0023]
[Action]
In the present invention, a water-cooled combustion tower and / or a water-cooled duct attached to an electric furnace having a high heat load among a plurality of electric furnaces are opened by turning on a manual valve set in parallel and having a predetermined opening degree. The cooling water supplied through both of the motorized valves is merged and a large amount of cooling water is supplied to sufficiently cool the water-cooled combustion tower and the water-cooled duct.
[0024]
In addition, the water-cooled combustion tower and / or water-cooled duct attached to the electric furnace with low heat load are closed with an electric valve turned off, and a small amount of cooling water is supplied only through a manual valve set to a predetermined opening degree. Therefore, the amount of cooling water used can be reduced.
[0025]
【Example】
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment when the present invention is applied to a two-furnace, one-power-source DC electric furnace will be described below with reference to FIGS.
As shown in FIG. 5, when the electric furnace 1 and the electric furnace 2 of the two-unit / one-power supply system are alternately switched and operated, the scrap charged in the furnace by energization from the electrode rod 5 is melted and refined, Tap to Tap time from scraping and furnace repair to the end of scrap charging is the time required for one charge.
[0026]
FIG. 2 is a diagram schematically showing a change over time of the energization voltage (V) in the case where the operation is performed by alternately switching the electric furnace 1 and the electric furnace 2 of the two-furnace one-power-supply system according to the present invention. . As shown in Fig. 2, the Tap-Tap time, which is the melting / refining period of the electric furnace 1 and the electric furnace 2, and the steelmaking / furnace repair / scrap charging period, that is, the time required for one charge is 55-60 minutes. It is.
[0027]
Voltage V 1 is higher melting and refining period of the electric furnace 1 becomes a tapping-RoOsamu scrap instrumentation Iriki the voltage V 2 of the electric furnace 2 becomes zero low, zero low voltage V 1 of the electric furnace 1 During the steelmaking, furnace repair, and scrap charging periods, the electric furnace 2 has a high voltage V 2 melting and refining period, so the two electric furnaces 1 and 2 are alternately melted and refined. As a result, the operating rate is extremely good.
[0028]
As shown in Fig. 3, the heat load [kcal / h] pattern of the two electric furnaces 1 and 2 that are repeatedly switched and operated is the melting and refining period with a high heat load and the steel output with a low heat load. -Furnace repair and scrap charging periods will occur alternately without overlapping. Therefore, when supplying cooling water to the water-cooled combustion tower 12a, the water-cooled duct 13a, the water-cooled combustion tower 12b, and the water-cooled duct 13b incidental to the electric furnace 1, as shown in FIG. If a large amount of cooling water is flowed to the low heat load side and the small amount of cooling water is allowed to flow to the low heat load side, the total amount of cooling water can be reduced from the conventional constant amount of cooling water.
[0029]
In this case, the amount of each of the large amount of cooling water and the small amount of cooling water supplied to the water-cooled combustion towers 12a and 12b and the water-cooling ducts 13a and 13b may be appropriately determined in consideration of the heat load peak in each period. There is not much control.
A cooling water flow sheet when the present invention is applied to a water-cooled combustion tower 12a, a water-cooled duct 13a, a water-cooled combustion tower 12b, and a water-cooled duct 13b incidental to the electric furnace 1 of the two-furnace / one-power system As shown in FIG.
[0030]
As in the cooling water flow sheet shown in FIG. 1, cooling water is supplied to the water-cooled combustion tower 12a and the water-cooled duct 13a on the electric furnace 1 side from the feed water main pipe 20, and to the water-cooled combustion tower 12b and the water-cooled duct 13b on the electric furnace 2 side. When distributing and supplying, two parallel water supply branches that branch the electric furnace 1 side into two systems from the middle of the water supply branch 21 that distributes the cooling water from the water supply main pipe 20 to the electric furnace 1 side and the electric furnace 2 side. 21a (A system) and the water supply branch pipe 21b (B system) are provided, and the water supply branch pipe 21a and the water supply branch pipe 21b are merged as the water supply branch pipe 21 on the downstream side. In addition, two parallel water supply branch pipes 21c (C system) and water supply branch pipe 21d (D system) for branching the electric furnace 2 side into two systems are provided, and the water supply branch pipe 21c and the water supply branch pipe 21d are provided as water supply branch pipes 21 on the downstream side. Merge.
[0031]
In this way, each of the water supply branch pipes 21 joined at the downstream side is again branched into two systems (or more systems if necessary), for example, a water supply header on the electric furnace 1 side respectively disposed on both systems A plurality of (three in the drawing) water supply pipes are branched from the water supply headers 24c and 24d on the electric furnace 2 side. Manual valves 25a, 25b, and 25c are disposed in the three water supply pipes branched from the water supply header 24a, and these control the distribution of the cooling water to the water-cooled combustion tower 12 on the electric furnace 1 side. The necessary cooling water is supplied to each part. In addition, manual valves 26a, 26b, and 26c are disposed on the three water supply pipes branched from the water supply header 24b, and these control the distribution of the cooling water leading to the water cooling duct 13 on the electric furnace 1 side.
[0032]
Similarly, the manual valves 27a, 27b, 27c arranged in the three water supply branches branched from the water supply header 24c are responsible for distribution of the cooling water leading to the water-cooled combustion tower 12b on the electric furnace 2 side, and Manual valves 28a, 28b, 28c arranged in the three water supply branches branched from the water supply header 24d govern the distribution of the cooling water leading to the water cooling duct 13b on the electric furnace 2 side.
[0033]
By the way, as described above, of the two systems on the electric furnace 1 side, the water supply branch pipe 21a is provided with the manual valve 22a, and the water supply branch pipe 21b is provided with the electric valve 23a. A manual valve 22b is disposed on the branch pipe 21c, and an electric valve 23b is disposed on the water supply branch pipe 21d.
The manual valve 22a on the electric furnace 1 side and the manual valve 22b on the electric furnace 2 side are set in advance at a predetermined opening and fixed. For example, the manual valve 22a is cooled by the electric furnace 1 side. The opening is set so that 50% of the water flows, and similarly, the manual valve 22b is set so that 50% of the cooling water required by the electric furnace 2 flows. On the other hand, the electric valve 23a on the electric furnace 1 side and the electric valve 23b on the electric furnace 2 side are controlled to be opened and closed alternately, and the amount of cooling water when closed by turning off is 0% (no flow) In the case of opening by ON, it is adjusted in advance so that 50% of the cooling water amount required for each flows.
[0034]
That is, the water supply branch pipe 21a for constantly flowing cooling water to the electric furnace 1 side is the line A system, the water supply branch pipe 21b for controlling the flow rate of the cooling water is the line B system, and the manual valve 22a and the line A system are connected to the line A system and the line B system, respectively. A motor-operated valve 23a is provided, and by controlling these, the line A system and the line B system are merged on the downstream side, and the water-cooled combustion tower 12a and the water-cooled duct 13a on the electric furnace 1 side are combined as described above. Supply the required amount of cooling water to each part.
[0035]
Similarly, a water supply branch pipe 21c for constantly flowing cooling water to the electric furnace 2 side is a line C system, and a water supply branch pipe 21d for controlling the flow rate of the cooling water is a line D system, and a manual valve is provided for each of the line C system and the line D system. 22b and a motor-operated valve 23b are arranged, and by controlling them, the line A system and the line B system are merged on the downstream side, and as described above, the water-cooled combustion tower 12b and the water-cooled duct 13b on the electric furnace 2 side are combined. Supply the required amount of cooling water to each part.
[0036]
Next, a procedure for supplying cooling water to the water-cooled combustion tower 12a and the water-cooled duct 13a on the electric furnace 1 side and the water-cooled combustion tower 12b and the water-cooled duct 13b on the electric furnace 2 side will be described.
Here, first, the case where the electric furnace 1 side is on the high temperature load side in the high temperature period of melting and refining, and the electric furnace 2 side is on the low heat load side in the low temperature group of steel output, furnace repair, and scrap charging will be described. In this case, the following cooling water amount control is performed.
[0037]
(1) High heat load side → Electric furnace 1 side “manual valve 22a open, electric valve 23a open” causes a large amount (100%) of cooling water to flow through the water-cooled combustion tower 12a and the water-cooled duct 13a on the high heat load side.
(2) Low heat load side → Electric furnace 2 side “manual valve 22b open, motorized valve 23b closed” causes a small amount (50%) of cooling water to flow through the water-cooled combustion tower 12b and the water-cooled duct 13b on the low heat load side.
[0038]
Next, the case where the electric furnace 1 side is on the low heat load side in the low temperature period of steelmaking, furnace repair, and scrap charging, and the electric furnace 2 side is switched to the low heat load side in the high temperature period of melting and refining will be described.
(3) High heat load side → Electric furnace 2 side As “manual valve 22b open, motorized valve 23b open”, a large amount (100%) of cooling water is allowed to flow through the water-cooled combustion tower 12b and the water-cooled duct 13b on the high heat load side.
[0039]
(4) Low heat load side → Electric furnace 1 side “Manual valve 22a open, motorized valve 23a closed” causes a small amount (50%) of cooling water to flow through the water-cooled combustion tower 12a and the water-cooled duct 13a on the low heat load side.
In addition, although it is the amount of cooling water at the time of the above-mentioned high heat load, the amount of cooling water or the average heat load is such that the temperature difference ΔT = 20 to 25 ° C. between the outlet side and the inlet side of the cooling water with respect to the peak value of the heat load In contrast, the temperature difference between the outlet side and the inlet side of the cooling water ΔT = 8 to 10 ° C., the amount of cooling water, etc. .
[0040]
As for the amount of cooling water at low heat load, the cooling water amount may be set in proportion to the ratio of heat load to that at high heat load. It is preferable to set the cooling water amount with some allowance, assuming the case where it was not possible.
For example, in the case of the conditions shown in Table 1, the load ratio between the low heat load and the high heat load of the water-cooled combustion tower is 1/17 to 1/4. As described above, it may be set to 50% of the amount of cooling water at the time of high heat load, which can prevent troubles due to insufficient amount of cooling water.
[0041]
In this case, as explained in the above example, 100% cooling water amount is supplied to the water-cooled combustion tower and water cooling duct on the high heat load side, and 50% cooling water amount is supplied to the water cooling duct and water cooling duct on the low heat load side. Therefore, the total amount of cooling water will flow 150%. This is because the conventional 2-unit, 1-power-type electric furnace required twice the amount of water, that is, 200% of the cooling water amount, but the cooling water amount control according to the present invention reduces the cooling water amount by 50% of the 200%. It becomes possible.
[0042]
By the way, in this invention, although the flow rate control method about the case where a cooling water is poured into both a water-cooled combustion tower and a water-cooled duct was demonstrated, it applies without trouble also when the flow rate is controlled only with one of the cooling water. It is possible to set the flow rate control range according to the situation. In the present embodiment, the explanation has been made with respect to the DC electric furnace with two furnaces and one power source. However, the present invention can be applied to an AC electric furnace with two furnaces and one power source. Further, in a plurality of DC or AC electric furnaces with three or more furnaces, When the energization start time is sequentially shifted and the operation is performed so that the heat load peaks in the water-cooled combustion tower and the water-cooled duct do not overlap, the cooling water flow rate control method of the present invention is applied in the same manner to thereby reduce the amount of cooling water. Can be reduced.
[0043]
Control of the flow rate of cooling water supplied to the water-cooled combustion tower and water-cooling duct in a two-furnace, one-power-source DC electric furnace with a heat size of 100 t class (Tap-Tap time 60 minutes, deviation time of the start of energization of two electric furnaces 30 minutes) Table 2 shows the results of results such as the amount of cooling water (t / h) in the case where the present invention is performed and the conventional case where the flow rate is not controlled and the flow rate is constant.
[0044]
[Table 2]
[0045]
As shown in Table 2, according to the present invention, the amount of cooling water (2000-1000) t / h at the time of low heat load is reduced as compared with the conventional method, and the total amount of cooling water at the time of high heat load is 4000 t / h. It can be reduced from h to 3000 t / h. When the conventional base is set to 1, the running cost of the cooling water can be reduced to 0.75, and the investment cost of the circulating water facility can be reduced to 0.8.
[0046]
【The invention's effect】
As described above, according to the present invention, the water-cooled combustion towers and / or water-cooling ducts attached to the plurality of electric furnaces are provided with two systems in the middle of the water supply pipes for supplying cooling water, and a manual valve is provided on one side. The flow rate of cooling water using a very simple device with a motorized valve on the other hand, a manual valve fixed at a set opening, and the motorized valve open at high heat loads and closed at low heat loads The amount of cooling water used can be reduced by control. As a result, the running cost of the cooling water used for the water-cooled combustion tower and / or the water-cooled duct and the reduction of the investment cost of the water-cooling equipment are achieved.
[Brief description of the drawings]
FIG. 1 is a flow sheet diagram showing a cooling water flow rate control procedure of a water-cooled combustion tower for an electric furnace according to the present invention.
FIG. 2 is a diagram showing a time transition of an energization pattern in a two-furnace one-power-source DC electric furnace according to the present invention.
FIG. 3 is a diagram showing a temporal transition of a thermal load pattern in a DC electric furnace with two furnaces and one power source according to the present invention.
FIG. 4 is a diagram showing a time transition of a cooling water amount pattern in a DC electric furnace of a two-furnace and one power source system according to the present invention.
FIG. 5 is a schematic explanatory view showing a feeding circuit and exhaust gas equipment of a DC electric furnace with two furnaces and one power source.
FIG. 6 is an explanatory diagram showing an energization pattern for each charge in an electric furnace operation.
FIG. 7 is a diagram showing time transitions of exhaust gas temperature and drainage temperature of a water-cooled combustion tower and a water-cooled duct.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric furnace 2 Electric furnace 3 Electrode bar raising / lowering device 4 Support arm 5 Electrode bar 6 AC power supply 7 Switch 8 Power receiving transformer 9 Furnace transformer
10 Thyristor rectifier
11 Furnace bottom electrode
12 Water-cooled combustion tower
13 Water cooling duct
14 Air cooling duct
15 Booster blower
16 Main blower
17 Dust collector
18 Dust collection hood
19 Dust collection duct
20 Water supply pipe
21 Water supply branch
22 Manual valve
23 Motorized valve
24 Water supply header
25 Manual valve
26 Manual valve
27 Manual valve
28 Manual valve