[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3865605B2 - Concentrated waste liquid treatment method - Google Patents

Concentrated waste liquid treatment method Download PDF

Info

Publication number
JP3865605B2
JP3865605B2 JP2001275132A JP2001275132A JP3865605B2 JP 3865605 B2 JP3865605 B2 JP 3865605B2 JP 2001275132 A JP2001275132 A JP 2001275132A JP 2001275132 A JP2001275132 A JP 2001275132A JP 3865605 B2 JP3865605 B2 JP 3865605B2
Authority
JP
Japan
Prior art keywords
melting
waste liquid
cement
concentrated waste
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001275132A
Other languages
Japanese (ja)
Other versions
JP2003084092A (en
Inventor
淳史 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001275132A priority Critical patent/JP3865605B2/en
Publication of JP2003084092A publication Critical patent/JP2003084092A/en
Application granted granted Critical
Publication of JP3865605B2 publication Critical patent/JP3865605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所などから発生する核種を含む濃縮廃液から効率よく減容した処分用均質固化体を形成する処理方法に関する。
【0002】
【従来の技術】
従来、前記した濃縮廃液を均質固化体として処分するための処理方法としては、1)廃液を濃縮して高濃度のスラリとし、これをセメント混練して処分用セメント固化体を作成したり、2)同廃液を濃縮、乾燥して得た乾燥粉体を1)に同じく処分用セメント固化体を作成する方法が採用されている。
【0003】
ところが、このような処理方法では、前記濃縮廃液に含まれているC−14、Co−60、Cs−137などの核種がそのまま処分用セメント固化体に移行するので、それら核種濃度が処分受け入れ基準を満たさない場合が生じる可能性があった。その場合には、セメントと混合する濃縮廃液の量を制限して処分用固化体を作成する必要があるなど減容性が劣るという問題があった。
【0004】
さらには、BWR発電所で多く発生する硫酸塩を含んだ濃縮廃液、再処理施設で多く発声する硝酸塩を含んだ濃縮廃液、焼却炉等の排ガス処理系で発生する塩酸塩を含んだ濃縮廃液は、含まれる塩が分解しないため、さらに減容性が低くなると言う不都合があった。また、PWR発電所で多く発生するホウ酸塩を含んだ濃縮廃液の場合は、セメントの固化を阻害する傾向があるため高コストの特殊なセメントや混和剤を使用する必要があった。
【0005】
また、セメント固化体自体には核種の閉じ込め機能はないため、処分場の周辺環境に核種が流出するものとして評価を行う必要があり、実際上の危険性は無いものの、住民にとっては感情的に許容しにくい状況となっていた。
【0006】
さらに、原子力発電所やその他の原子力施設で発生する洗濯廃水の濃縮廃液等、有機物を含む濃縮廃液は、そのままセメント固化すると有機物が核種の地下水中での移行を早めたりして処分に悪影響をを及ぼすため、焼却など別途処理を行う必要があった。また、本発明の類似技術として、核燃料の再処理で発生する高レベル廃液をガラス材と混合して溶融し、ガラス固化体を製造する技術が知られているが、これを濃縮廃液にそのまま適用しても、できた固化体は法令上均質固化体とは認められないという問題点があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、一つの装置で広範囲の濃縮廃液に適用が可能で、住民にとって感情的に許容しやすい、減容性を高めた均質固化体を低コストに作成できる濃縮廃液処理方法を提供する。
【0008】
【課題を解決するための手段】
上記の問題は、原子力発電所などから発生する揮発性の異なる複数の核種および、ホウ酸塩、硫酸塩、塩酸塩または硝酸塩の塩類を含む濃縮廃液を溶融炉において溶融する溶融工程と、溶融炉内の溶融物を水中で急冷して水砕スラグを得る急冷工程と、該水砕スラグをセメントで固化し処分用均質固化体を形成する固化工程とを含む濃縮廃液処理方法であって、前記溶融工程において、炉内にSiO2、Al23、CaO、MgOの1種または2種以上含む溶融助剤を投入し、かつその溶融工程を、運転温度を変えることにより低温での水分蒸発と高温での溶融を分けるとともに、水分蒸発から溶融に移る過程でキャリア空気の流量を小さくするように調整して、溶融時に揮発性大の核種を前記キャリア空気側に移行させ、揮発性小の核種を固定し核種濃度を低減させた水砕スラグを用いて前記処分用均質固化体を形成するようにしたことを特徴とする本発明の濃縮廃液処理方法によって、解決することができる。
【0009】
また、本発明は、前記溶融工程において、水分蒸発を100〜1000℃、溶融を700〜1600℃で行う形態の前記濃縮廃液処理方法に具体化でき、さらに前記セメントがポルトランドセメント、超速硬セメントまたは高炉セメントである形態の前記濃縮廃液処理方法に具体化できる。
【0010】
【発明の実施の形態】
次に、本発明の濃縮廃液処理方法に係る実施形態について、図1を参照しながら説明する。
本発明は、以下に詳述する核種を含む濃縮廃液を処理対象とし、1)濃縮廃液またはその蒸発残留物を溶融する溶融工程、2)水砕スラグを得る急冷工程、3)処分用固化体を形成する固化工程からなるが、さらに、本発明を蒸発工程、溶融工程、急冷工程、搬送工程、セメント固化工程、および二次時廃棄物処理方法などに細分して詳細に説明する。
【0011】
(処理対象物)
PWR発電所で多く発生する、4B23・Na2Oや2B23・Na2Oを含むホウ酸系濃縮廃液、BWR発電所で多く発生するNa2SO4を含む硫酸系濃縮廃液、再処理施設で多く発生するNaNO3を含む硝酸系濃縮廃液、スクラバ廃水などとして発生するNaCl廃液の1種または2種以上が対象とされる。例えば、1事例のホウ酸系廃液の成分を示すと、ホウ素分:21000ppm、ナトリウム分:12000ppm、塩素分: 1000ppm、放射能濃度:C−14:1.2×102Bq/g、Nb−94:5.0×10-1Bq/gであった。
【0012】
(蒸発工程)
先ず、100〜1000℃の範囲、例えば800℃に維持した熔融炉2へ、濃縮廃液タンク1に貯留した濃縮廃液aを、濃縮廃液供給ポンプ11により約3 L/hで供給しながら、連続300時間蒸発処理する。このとき、溶融炉2出口におけるキャリア空気の流量は、蒸発する水分も含めて約10Nm3/h程度に調整する。
【0013】
なお、使用する熔融炉は、電気ヒーター加熱、高周波加熱、プラズマ加熱、抵抗加熱など適宜な加熱形式が利用でき、溶融物を貯留できる耐火容器を備え、適当な時期に出湯操作ができるタイプが適当である。また、熔融炉への濃縮廃液の供給の仕方は、連続式、バッチ式のいずれでもよい。また、予め蒸発乾燥した乾燥粉末の状態で供給するようにしてもよいが、この場合は、熔融炉を用いた蒸発工程は省かれる。
【0014】
(溶融工程)
蒸発工程に引き続き、助剤供給装置3から熔融炉2へ溶融助剤bを供給する。そして、熔融炉2の炉内温度は、700〜1600℃の範囲、例えば1250℃に昇温し約3時間加熱して、前記蒸発残留物を溶融する。このとき、溶融炉2出口におけるキャリア空気の流量を、保温と濃縮廃液成分の揮発抑制のため、約0.5Nm3/h以下に調整する。
【0015】
本発明では、溶融物が安定したガラスを形成できるよう溶融助剤bを使用するのが好ましい。この溶融助剤には、SiO2、Al23、CaO、MgOの1種または2種以上含む酸化物、珪酸塩、アルミノ珪酸塩、粘土、タルク、珪酸カルシウム系保温材くず、焼却灰などの無機廃棄物が利用可能である。
【0016】
この実施形態では、珪砂粉(SiO2粉末)を蒸発残留物に対して100重量%の割合で供給した。なお、ホウ酸系廃液を対象とした場合は、溶融助剤を20重量%以上、好ましくは40重量%以上供給するのがよい。
また、溶融助剤材を供給するタイミングは、廃液中の塩成分の揮発を抑制する目的から、廃液の供給前に予め所要量供給しておくか、廃液の供給に併せて供給するようにするのが好ましい。
【0017】
(急冷工程)
溶融工程が終了したら、出湯コイル21に通電して出湯ノズル22を加熱し、出湯ノズル内のガラス栓を溶融することで、出湯を開始する。出湯した溶融物は、貯水槽4中の水に注入され、急冷され、自然に粒状に破砕された水砕スラグが得られる。貯水槽4中の水は出湯により温度が100℃近くまで上昇するが、次の出湯までには時間があるため、自然に冷却される。なお、溶融物の急冷により消費された水量は、次回の出湯までに補給しておく。
【0018】
本発明で注目すべきは、得られた水砕スラグには、当初、濃縮廃液中に含まれていた核種の多くが消失ないし低減する現象である。すなわち、C−14、H−3、Ru−103、Ru−106などはほぼ100%近く消失し、Cs−134、Cs−137は約1/2に低減することが観察された。この理由は、揮発性の核種が溶融処理時に揮発して排ガス(キャリア空気)に移行したことによる。
【0019】
本発明の水砕スラグでは、このように揮発性の核種濃度が低減できる結果、特に多量に含まれるC−14がほとんど残存しないため、この水砕スラグを用いて処分用固化体を作成すると、処分場の受入れ基準を上回る可能性が少なくなる利点が得られる。すなわち、希釈処理が不要となるので、減容性に優れた処分用固化体が得られるという利点がある。また、硫酸系や硝酸系廃液の場合は、塩成分が分解するので減容性がさらに向上する利点がある。さらに、有機物を含んだ濃縮廃液も本発明の装置で処理でき、別途焼却等の必要がなくなる利点がある。
【0020】
(搬送工程)
貯水槽4中の水砕スラグは、水砕スラグコンベア41によって水中から取り出され、水切り台42で水切りした後、200Lドラムなどの適切な容器43に収納される。なお、収納容器43にドラム缶を用いれば、水砕スラグを収納した状態で工程待ちのため中間貯蔵することも可能である。
【0021】
(セメント固化工程)
容器43に収納した水砕スラグは、水砕スラグホッパ51から混練機5に供給される。また、混練機5にはセメントホッパ52、混和剤タンク53、水タンク54からセメント(プレミクストタイプ)cと混和剤dと水eが所定比率で供給される。セメント等と混練された水砕スラグは、モルタルfとしてモルタルポンプ55により200Lドラム缶へ充填される。モルタル充填後のドラム缶は養生した後、均質固化体の一種であるセメント固化体6として処分場へ埋設されるのである。なお、このセメント固化体6は、核燃料物質等の埋設に関する措置等に係る技術的細目を定める告示(第4条第2項第6号)の「固型化に当たっては、固型化材料若しくは固型化材料及び混和材料と放射性廃棄物を均質に練り混ぜ、又はあらかじめ均質に練り混ぜた固型化材料若しくは固型化材料及び混和材料と放射性廃棄物を均一に混合させること」に規定される均質固化体に相当するものである。
【0022】
この場合、本発明では、水砕スラグは廃液中の塩成分をガラス中に固定した状態で保持しているので、セメンとの固化作用に影響を与えることがないので、低コストのポルトランドセメントや高炉セメントあるいは超速硬セメントを使用できる利点が得られる。また、同様な理由で、特殊な混和剤の使用も不要となる利点がある。さらに、核種もガラス中に固定した状態で保持しているので,処分場周辺への核種流出が抑制され、住民にとって感情的に許容しやすいという利点がある。なお、モルタル中の水砕スラグ含有率は、30〜80重量%の範囲で調整可能である。
【0023】
(二次廃棄物の処置方法:排ガス)
蒸発工程、溶融工程において発生する排ガスgは、排ガスブロワ73で吸引され、フィルタ71、高性能フィルタ72により、放射性物質を含むダストを除去した後、原子炉施設等の換気空調設備を経て大気中へ放出する。
【0024】
(同:冷却水、洗浄水)
貯水槽4中の冷却水は、少しずつ放射性物質で汚染されるため、年1回程度、濃縮廃液タンク1へ回収して、この処理システム内で処理を行うのがよい。
また、混練機5、モルタルポンプ55およびこれらを接続する配管は、運転を停止する場合は付着したモルタルが固結しないよう、洗浄が必要である。この時発生する洗浄水排水は放射性物質を含むため、濃縮廃液タンク1へ回収して、この処理システム内で処理を行い、冷却水の場合と同様のクローズドシステムとするのがよい。
【0025】
次に、本発明に基づく減容効果について説明する。
先ず、処理廃液量を15m3(1.65×107g)、濃縮廃液の放射能濃度をC−14:1.2×102Bq/g、Nb−94:5.0×10-1Bq/gとし、処分場の濃度基準を、C−14:1.69×107Bq/本、Nb−94:1.67×105Bq/本(本数は200Lドラム缶換算)などを前提とする。
【0026】
濃縮廃液を処理して処分場に埋設する場合、濃縮廃液に含まれる放射性物質を複数のドラム缶に分散して、各ドラム缶内の放射性物質濃度を処分場の濃度基準以内にする必要がある。従来技術によれば、必要なドラム缶の本数は、C−14基準で約120本、Nb−94基準で約50本であり、厳しい値をとって約120本とする必要があった。これに対し本発明では、C−14は殆ど無視できNb−94のみ考慮すれば良いので、約50本に減らすことができる。従って、必要なドラム缶本数は従来の約40%で済むことになり、減容性が向上した分、処分費が低減できる効果が大である。
【0027】
また、従来技術で製作したセメント固化体は、セメントの固定機構のみに依存し、核種閉じ込め性が不十分である点に比較して、本発明により作成されたセメント固化体は、核種が水砕スラグのガラス成分中に固定されているので、水砕スラグ自体が核種閉じ込め性を有しているので、より安全な処分を実現できると言える。
【0028】
さらに、本発明の工程を利用して、放射性廃棄物の焼却灰等の溶融可能な無機廃棄物を溶融して水砕スラグを作り、セメント固化体とすることが可能である。従って、濃縮廃液以外の廃棄物も一緒に処理することができるので、処理対象を広げてトータルコストを低減できる利点がある。特に、焼却灰を溶融助剤に応用し、安価なポルトランドセメントまたは高炉セメントとを組み合わせた本発明では最もコストが低減できると言えよう。
【0029】
【発明の効果】
本発明の濃縮廃液処理方法は、以上説明したように構成されているので、濃縮廃液中のH−3、C−14、Ru−103/106、I−129,Cs−134/137など揮発性の核種の処分用固化体中への移行を抑え、減容性を高めた処分用セメント固化体を低コストに作成できることが可能となった。また、水砕スラグによる核種の閉じ込め効果により安全性も向上できるという優れた効果がある。よって本発明は、従来の問題点を解消した濃縮廃液処理方法として、工業的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明の実施形態を説明するための処理装置のフロー図。
【符号の説明】
1 濃縮廃液タンク、11 濃縮廃液供給ポンプ、2 熔融炉、21 出湯コイル、22 出湯ノズル、3 助剤供給装置、4 貯水槽、41 水砕スラグコンベア、42 水切り台、43 収納容器、5 混練機、51 水砕スラグホッパ、52 セメントホッパ、53 混和剤タンク、54 水タンク、55 モルタルポンプ、6 セメント固化体、a 濃縮廃液、b 溶融助剤、c セメント、d 混和剤、e 水、f モルタル。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing method for forming a homogenized solid for disposal efficiently reduced from a concentrated waste liquid containing nuclides generated from a nuclear power plant or the like.
[0002]
[Prior art]
Conventionally, as a processing method for disposing of the above-described concentrated waste liquid as a homogeneous solidified body, 1) concentrating the waste liquid into a high-concentration slurry and kneading it with cement to prepare a cement solidified body for disposal, ) A method for producing a solidified cement for disposal is also adopted in 1) using the dry powder obtained by concentrating and drying the waste liquid.
[0003]
However, in such a treatment method, nuclides such as C-14, Co-60, and Cs-137 contained in the concentrated waste liquid are transferred to the solidified cement for disposal as they are. There was a possibility that the case of not satisfying. In that case, there is a problem that volume reduction is inferior, for example, it is necessary to prepare a solidified material for disposal by limiting the amount of concentrated waste liquid mixed with cement.
[0004]
Furthermore, concentrated waste liquids containing sulfates frequently generated at BWR power plants, concentrated waste liquids containing nitrates frequently produced at reprocessing facilities, and concentrated waste liquids containing hydrochlorides generated in exhaust gas treatment systems such as incinerators Since the contained salt does not decompose, there is a disadvantage that the volume-reducing property is further lowered. Further, in the case of a concentrated waste liquid containing borate which is frequently generated at a PWR power plant, there is a tendency to inhibit the solidification of the cement. Therefore, it is necessary to use a high-cost special cement or admixture.
[0005]
In addition, since the cement solidified body itself does not have the function of confining nuclides, it must be evaluated that the nuclides will flow out into the environment around the disposal site. It was difficult to tolerate.
[0006]
In addition, concentrated waste liquids containing organic matter, such as concentrated waste liquids of washing waste water generated at nuclear power plants and other nuclear facilities, will have a negative impact on disposal if the cement is solidified as it is, causing the organic matter to accelerate the transition of the nuclides in the groundwater. Therefore, it was necessary to carry out separate treatment such as incineration. Moreover, as a similar technique of the present invention, there is known a technique for producing a glass solid by mixing a high-level waste liquid generated by reprocessing nuclear fuel with a glass material and melting it, and this is applied to a concentrated waste liquid as it is. Even so, there was a problem that the solidified body was not recognized as a homogenous solidified body by law.
[0007]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and can be applied to a wide range of concentrated waste liquids with a single device, and is easily solidified with increased volume reduction, which is emotionally acceptable to the residents. Provided is a concentrated waste liquid treatment method capable of producing a body at low cost.
[0008]
[Means for Solving the Problems]
The above-mentioned problems are caused by a melting process in which a concentrated waste liquid containing a plurality of volatile nuclides generated from a nuclear power plant or the like and borate, sulfate, hydrochloride or nitrate salts is melted in a melting furnace, A concentrated waste liquid treatment method comprising: a quenching step in which water melt is quenched in water to obtain granulated slag; and a solidification step in which the granulated slag is solidified with cement to form a homogeneous solidified body for disposal, In the melting process, a melting aid containing one or more of SiO 2 , Al 2 O 3 , CaO and MgO is charged into the furnace, and the melting process is performed at a low temperature by changing the operating temperature. And melting at high temperature, and adjusting the flow rate of carrier air to be small in the process of moving from moisture evaporation to melting, and moving the volatile nuclide to the carrier air side at the time of melting, Nuclide The concentrated liquid waste processing method of the present invention which is characterized in that so as to form the disposition for homogeneous solidified body with a fixed granulated slag with reduced radionuclide concentration, it can be solved.
[0009]
Further, the present invention provides a pre-Symbol melting step, the water evaporation 100 to 1000 ° C., can be embodied in the concentrated liquid waste processing method according performing melt at from 700 to 1,600 ° C., further wherein the cement is Portland cement, ultra rapid cement Or it can be embodied in the concentrated waste liquid treatment method in the form of blast furnace cement.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment according to the concentrated waste liquid treatment method of the present invention will be described with reference to FIG.
The present invention treats a concentrated waste liquid containing nuclides described in detail below, 1) a melting process for melting the concentrated waste liquid or its evaporation residue, 2) a rapid cooling process for obtaining granulated slag, and 3) a solidified material for disposal. The present invention will be described in detail by subdividing it into an evaporation process, a melting process, a rapid cooling process, a conveying process, a cement solidifying process, a secondary waste treatment method, and the like.
[0011]
(Processing object)
Boric acid-based concentrated waste liquid containing 4B 2 O 3 · Na 2 O and 2B 2 O 3 · Na 2 O, frequently generated at PWR power plants, and sulfuric acid-based concentrated waste fluid containing Na 2 SO 4 that is frequently generated at BWR power plants One type or two or more types of NaCl waste solution containing NaNO 3 which is generated frequently in reprocessing facilities, NaCl waste solution generated as scrubber waste water, etc. are targeted. For example, the components of boric acid waste liquid in one case are shown as follows: boron content: 21000 ppm, sodium content: 12000 ppm, chlorine content: 1000 ppm, radioactivity concentration: C-14: 1.2 × 10 2 Bq / g, Nb-94: It was 5.0 × 10 −1 Bq / g.
[0012]
(Evaporation process)
First, while supplying the concentrated waste liquid a stored in the concentrated waste liquid tank 1 to the melting furnace 2 maintained in a range of 100 to 1000 ° C., for example, 800 ° C. at about 3 L / h by the concentrated waste liquid supply pump 11, continuous 300 Evaporate for hours. At this time, the flow rate of the carrier air at the outlet of the melting furnace 2 is adjusted to about 10 Nm 3 / h including evaporated water.
[0013]
In addition, the melting furnace to be used can use an appropriate heating method such as electric heater heating, high-frequency heating, plasma heating, resistance heating, etc., and is equipped with a refractory container that can store the melt, and a type that can perform a tapping operation at an appropriate time It is. Moreover, the method of supplying the concentrated waste liquid to the melting furnace may be either a continuous type or a batch type. Further, it may be supplied in the form of a dry powder which has been previously evaporated and dried, but in this case, the evaporation step using a melting furnace is omitted.
[0014]
(Melting process)
Subsequent to the evaporation step, the melting aid b is supplied from the auxiliary agent supply device 3 to the melting furnace 2. And the furnace temperature of the melting furnace 2 is raised to a range of 700 to 1600 ° C., for example, 1250 ° C., and heated for about 3 hours to melt the evaporation residue. At this time, the flow rate of the carrier air at the outlet of the melting furnace 2 is adjusted to about 0.5 Nm 3 / h or less in order to keep the heat and suppress the volatilization of the concentrated waste liquid component.
[0015]
In the present invention, it is preferable to use the melting aid b so that the melt can form a stable glass. Examples of the melting aid include oxides, silicates, aluminosilicates, clays, talc, calcium silicate-based heat insulating material scraps, incineration ash and the like containing one or more of SiO 2 , Al 2 O 3 , CaO, and MgO. Inorganic waste is available.
[0016]
In this embodiment, silica sand powder (SiO 2 powder) was supplied at a rate of 100% by weight with respect to the evaporation residue. When boric acid waste liquid is used as a target, it is preferable to supply a melting aid of 20% by weight or more, preferably 40% by weight or more.
In addition, for the purpose of suppressing the volatilization of the salt component in the waste liquid, the required amount of the melt auxiliary material is supplied in advance before the waste liquid is supplied, or is supplied together with the supply of the waste liquid. Is preferred.
[0017]
(Rapid cooling process)
When the melting step is finished, the hot water coil 21 is energized to heat the hot water nozzle 22 and melt the glass stopper in the hot water nozzle, thereby starting the hot water. The melted hot water is poured into the water in the water storage tank 4, quenched, and granulated slag that is naturally crushed into granules is obtained. The temperature of the water in the water storage tank 4 rises to near 100 ° C. due to the hot water, but is naturally cooled because there is time until the next hot water. In addition, the amount of water consumed by the rapid cooling of the melt is replenished before the next tapping.
[0018]
What should be noted in the present invention is a phenomenon in which many of the nuclides originally contained in the concentrated waste liquid are lost or reduced in the obtained granulated slag. That is, it was observed that C-14, H-3, Ru-103, Ru-106 and the like disappeared by almost 100%, and Cs-134 and Cs-137 were reduced to about ½. This is because volatile nuclides volatilized during the melting process and transferred to exhaust gas (carrier air) .
[0019]
In the granulated slag of the present invention, the concentration of volatile nuclides can be reduced in this way, and as a result, there is almost no C-14 contained in a large amount, so when a solidified material for disposal is prepared using this granulated slag, The advantage is that the possibility of exceeding the disposal site acceptance standard is reduced. That is, since a dilution process is unnecessary, there is an advantage that a solidified material for disposal excellent in volume reduction can be obtained. Further, in the case of sulfuric acid or nitric acid waste liquid, there is an advantage that the volume reduction is further improved because the salt component is decomposed. Further, the concentrated waste liquid containing the organic matter can be treated with the apparatus of the present invention, and there is an advantage that separate incineration is not necessary.
[0020]
(Conveying process)
The granulated slag in the water storage tank 4 is taken out from the water by a granulated slag conveyor 41, drained by a draining table 42, and then stored in an appropriate container 43 such as a 200 L drum. In addition, if a drum can is used for the storage container 43, it is also possible to store intermediately for waiting for a process in the state which stored the granulated slag.
[0021]
(Cement solidification process)
The granulated slag stored in the container 43 is supplied from the granulated slag hopper 51 to the kneader 5. The kneader 5 is supplied with cement (premixed type) c, admixture d and water e from the cement hopper 52, admixture tank 53, and water tank 54 at a predetermined ratio. The granulated slag kneaded with cement or the like is filled into a 200 L drum by a mortar pump 55 as a mortar f. After the mortar-filled drum can is cured, it is buried in a disposal site as a cement solidified body 6 which is a kind of a homogeneous solidified body. Note that this cement solidified body 6 is a “solidification material or solidified material for solidification” in a notice (Article 4, Paragraph 2, Item 6) that defines technical details related to measures concerning the embedding of nuclear fuel materials, etc. Homogeneously kneading mold material and admixture material with radioactive waste, or uniformly mixing solidified material or solidified material and admixture material with radioactive waste previously homogenized " It corresponds to a homogeneous solidified body.
[0022]
In this case, in the present invention, since the granulated slag is held in a state where the salt component in the waste liquid is fixed in the glass, it does not affect the solidification action with cement, so low-cost Portland cement or The advantage that a blast furnace cement or a super fast cement can be used is obtained. For the same reason, there is an advantage that the use of a special admixture becomes unnecessary. Furthermore, since the nuclides are also held in a fixed state in the glass, there is an advantage that the nuclides are prevented from flowing out to the vicinity of the disposal site and are easily emotionally acceptable to the residents. In addition, the granulated slag content rate in mortar can be adjusted in 30-80 weight%.
[0023]
(Secondary waste treatment method: exhaust gas)
The exhaust gas g generated in the evaporation process and the melting process is sucked by the exhaust gas blower 73, and dust containing radioactive substances is removed by the filter 71 and the high-performance filter 72, and then in the atmosphere through the ventilation air conditioning equipment such as a nuclear reactor facility. To release.
[0024]
(Same as cooling water and washing water)
Since the cooling water in the water storage tank 4 is gradually contaminated with radioactive substances, it is preferable to collect it in the concentrated waste liquid tank 1 once a year and perform the treatment in this treatment system.
Further, the kneading machine 5, the mortar pump 55, and the piping connecting them need to be washed so that the adhered mortar does not solidify when the operation is stopped. Since the washing water drainage generated at this time contains a radioactive substance, it is preferably collected in the concentrated waste liquid tank 1 and processed in this processing system to form a closed system similar to the case of cooling water.
[0025]
Next, the volume reduction effect based on this invention is demonstrated.
First, the disposal waste liquid amount is 15 m 3 (1.65 × 10 7 g), the radioactive concentration of the concentrated waste liquid is C-14: 1.2 × 10 2 Bq / g, Nb-94: 5.0 × 10 −1 Bq / g, and disposal The field density standards are premised on C-14: 1.69 × 10 7 Bq / piece, Nb-94: 1.67 × 10 5 Bq / piece (the number is equivalent to a 200-liter drum).
[0026]
When processing the concentrated waste liquid and embedding it in the disposal site, it is necessary to disperse the radioactive substance contained in the concentrated waste liquid into a plurality of drums so that the concentration of the radioactive material in each drum can be within the concentration standard of the disposal site. According to the prior art, the required number of drums is about 120 based on the C-14 standard and about 50 based on the Nb-94 standard. On the other hand, in the present invention, C-14 is almost negligible and only Nb-94 needs to be considered, so that it can be reduced to about 50. Therefore, the required number of drums can be reduced to about 40% of the conventional number of drums, and the disposal cost can be reduced as much as volume reduction is improved.
[0027]
In addition, the cement solidified body produced by the present invention is dependent on only the cement fixing mechanism and the nuclide confinement property is insufficient. Since it is fixed in the glass component of the slag, the granulated slag itself has nuclide confinement, so it can be said that safer disposal can be realized.
[0028]
Furthermore, using the process of the present invention, meltable inorganic waste such as incineration ash of radioactive waste can be melted to form granulated slag to obtain a cement solidified body. Therefore, wastes other than the concentrated waste liquid can be treated together, so that there is an advantage that the total cost can be reduced by expanding the treatment object. In particular, it can be said that the cost can be reduced most in the present invention in which incinerated ash is applied to a melting aid and combined with inexpensive Portland cement or blast furnace cement.
[0029]
【The invention's effect】
Since the concentrated waste liquid treatment method of the present invention is configured as described above, it is volatile such as H-3, C-14, Ru-103 / 106, I-129, Cs-134 / 137 in the concentrated waste liquid . suppressing the migration to the nucleus species for disposal solidified body in, it becomes possible to create a disposal cement solidified with enhanced volume reduction of the cost. In addition, there is an excellent effect that safety can be improved due to the effect of nuclide confinement by the granulated slag. Therefore, the present invention has an extremely great industrial value as a concentrated waste liquid treatment method that has solved the conventional problems.
[Brief description of the drawings]
FIG. 1 is a flowchart of a processing apparatus for explaining an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Concentrated waste liquid tank, 11 Concentrated waste liquid supply pump, 2 Melting furnace, 21 Hot water coil, 22 Hot water nozzle, 3 Auxiliary supply device, 4 Water storage tank, 41 Granulated slag conveyor, 42 Draining stand, 43 Storage container, 5 Kneader , 51 Granulated slag hopper, 52 Cement hopper, 53 Admixture tank, 54 Water tank, 55 Mortar pump, 6 Cement solidified material, a Concentrated waste liquid, b Melting aid, c Cement, d Admixture, e Water, f Mortar.

Claims (3)

原子力発電所などから発生する揮発性の異なる複数の核種および、ホウ酸塩、硫酸塩、塩酸塩または硝酸塩の塩類を含む濃縮廃液を溶融炉において溶融する溶融工程と、溶融炉内の溶融物を水中で急冷して水砕スラグを得る急冷工程と、該水砕スラグをセメントで固化し処分用均質固化体を形成する固化工程とを含む濃縮廃液処理方法であって、前記溶融工程において、炉内にSiO2、Al23、CaO、MgOの1種または2種以上含む溶融助剤を投入し、かつその溶融工程を、運転温度を変えることにより低温での水分蒸発と高温での溶融を分けるとともに、水分蒸発から溶融に移る過程でキャリア空気の流量を小さくするように調整して、溶融時に揮発性大の核種を前記キャリア空気側に移行させ、揮発性小の核種を固定し核種濃度を低減させた水砕スラグを用いて前記処分用均質固化体を形成するようにしたことを特徴とする濃縮廃液処理方法。A melting process for melting a concentrated waste liquid containing a plurality of volatile nuclides generated from a nuclear power plant and the like and borate, sulfate, hydrochloride or nitrate salts in a melting furnace, and a melt in the melting furnace A concentrated waste liquid treatment method comprising: a quenching step of quenching in water to obtain granulated slag; and a solidification step of solidifying the granulated slag with cement to form a homogeneous solidified material for disposal, wherein in the melting step, a furnace Inside, a melting aid containing one or more of SiO 2 , Al 2 O 3 , CaO, MgO is charged, and the melting process is performed by changing the operating temperature to evaporate water at a low temperature and melt at a high temperature. In addition, the flow rate of carrier air is adjusted to be reduced in the process of moving from moisture evaporation to melting, and the volatile nuclide is transferred to the carrier air side during melting, and the small volatile nuclide is fixed and the nuclide is fixed. Dark Concentrated liquid waste processing method is characterized in that so as to form the disposition for homogeneous solidified body with a granulated slag with reduced. 前記溶融工程において、水分蒸発を100〜1000℃、溶融を700〜1600℃で行う請求項1に記載の濃縮廃液処理方法。The concentrated waste liquid treatment method according to claim 1, wherein in the melting step, water evaporation is performed at 100 to 1000 ° C. and melting is performed at 700 to 1600 ° C. 前記セメントがポルトランドセメント、超速硬セメントまたは高炉セメントである請求項1または2に記載の濃縮廃液処理方法。The concentrated waste liquid treatment method according to claim 1, wherein the cement is Portland cement, super-hard cement, or blast furnace cement.
JP2001275132A 2001-09-11 2001-09-11 Concentrated waste liquid treatment method Expired - Fee Related JP3865605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275132A JP3865605B2 (en) 2001-09-11 2001-09-11 Concentrated waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275132A JP3865605B2 (en) 2001-09-11 2001-09-11 Concentrated waste liquid treatment method

Publications (2)

Publication Number Publication Date
JP2003084092A JP2003084092A (en) 2003-03-19
JP3865605B2 true JP3865605B2 (en) 2007-01-10

Family

ID=19100052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275132A Expired - Fee Related JP3865605B2 (en) 2001-09-11 2001-09-11 Concentrated waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP3865605B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213702A (en) * 2012-03-30 2013-10-17 Ihi Corp Method for producing solidified body, method for producing crushed aggregate, method for producing earth crust-like composition, solidified object, crushed aggregate, paste-form earth crust-like composition, and earth crust-like composition
JP2015055533A (en) * 2013-09-11 2015-03-23 三菱マテリアル株式会社 Method and apparatus for removing radioactive cesium
CN113856421B (en) * 2021-10-11 2024-01-16 中国科学技术大学 Air carrier band tritium-containing wastewater system suitable for spent fuel aftertreatment

Also Published As

Publication number Publication date
JP2003084092A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP5973157B2 (en) Treatment method for radioactive cesium contaminants
KR101061480B1 (en) Treatment Method and Manufacturing Method of Clean Aggregate from Radioactive Concrete Waste
JP5175995B1 (en) Method for removing radioactive cesium from soil
JP6835318B2 (en) Systems and methods for processing used ion exchange media
JPS6046394B2 (en) Method for solidifying high-level radioactive waste liquid using glass
Wattal Indian programme on radioactive waste management
JPH09329692A (en) Method for removing volatile and floating extrainment resulting from glassification of radioactive waste and/or hazardous waste
JP3865605B2 (en) Concentrated waste liquid treatment method
KR100768093B1 (en) Method for vitrifying low and intermediate level radioactive waste using iron-phosphate glass
JP2012159419A (en) Radioactive organic waste solidification processing method
JP7114816B2 (en) Additives for the vitrification of liquid, radioactive, cesium radionuclide-containing wastes with high retention efficiency of radionuclides over the entire vitrification temperature range, methods for their preparation and their use
KR20220103125A (en) How to dispose of radioactive waste containing liquid tritium
KR19990026212A (en) High temperature melt processing systems and methods for flammable and non-combustible radioactive waste
JP4089269B2 (en) Method and apparatus for solidifying radioactive liquid waste
Sobolev et al. High temperature treatment of intermediate-level radioactive wastes-sia radon experience
Baehr Industrial vitrification processes for high-level liquid waste solutions
CN101732959A (en) Method for capturing heavy metal in flue gas
CN114068057A (en) Glass solidification treatment method for radioactive waste
JP6185100B2 (en) Treatment method for radioactive cesium contaminants
JP2014134463A (en) Radioactive waste solidification method, and solidification device therefor
Hamodi et al. Immobilization of spent ion exchange resin arising from nuclear power plants: an introduction
Courtois et al. Review of the development of waste form conditioning processes in France
RU2160937C1 (en) Monolithic block for immobilizing liquid radioactive wastes
JP6199703B2 (en) Radioactive waste disposal method
JP6019439B2 (en) Treatment method for radioactive cesium contaminants

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees