[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3862048B2 - 一缶多水路風呂給湯器 - Google Patents

一缶多水路風呂給湯器 Download PDF

Info

Publication number
JP3862048B2
JP3862048B2 JP14238498A JP14238498A JP3862048B2 JP 3862048 B2 JP3862048 B2 JP 3862048B2 JP 14238498 A JP14238498 A JP 14238498A JP 14238498 A JP14238498 A JP 14238498A JP 3862048 B2 JP3862048 B2 JP 3862048B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
heat exchanger
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14238498A
Other languages
English (en)
Other versions
JPH11325588A (ja
Inventor
久恭 渡辺
和之 飯泉
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP14238498A priority Critical patent/JP3862048B2/ja
Publication of JPH11325588A publication Critical patent/JPH11325588A/ja
Application granted granted Critical
Publication of JP3862048B2 publication Critical patent/JP3862048B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、風呂の追い焚き機能と給湯機能を備えた一缶二水路風呂給湯器などの一缶多水路風呂給湯器に関するものである。
【0002】
【従来の技術】
図6には出願人が開発している一缶多水路風呂給湯器である一缶二水路風呂給湯器のシステム構成が示されている。同図において、器具ケース1内には給湯熱交換器2と追い焚き熱交換器3とが一体化されて配設されている。すなわち、複数の共通のフィンプレート4に給湯側の管路を貫通装着して給湯熱交換器2と成し、同じくフィンプレート4に追い焚き側の管路を貫通装着して追い焚き熱交換器3と成している。
【0003】
これら一体化された熱交換器の下方側には給湯熱交換器2と追い焚き熱交換器3を共通に加熱するバーナ5が配置されており、このバーナ5の燃焼の給排気を行う燃焼ファン6が下側に配置されている。バーナ5にはガス通路6が接続されており、このガス通路6には通路の開閉を行う電磁弁7,8とガスの供給量(バーナの燃焼熱量)を開弁量によって制御する比例弁10が介設されている。なお、前記比例弁10の開弁量制御は、具体的には、比例弁10に印加される電流(開弁駆動電流)の可変制御によって行われている。
【0004】
前記給湯熱交換器2の入側には給水通路としての給水管11が接続されており、この給水管11には給水管11の給水温度を検出する給水温度検出センサ12と、給水流量を検出することにより給湯設定温度の湯が得られる流量を検出する流量検出センサ13が設けられている。なお、給水管11の入口側は水道管に接続されている。
【0005】
前記給湯熱交換器2の出側には給湯通路としての給湯管14が接続されており、この給湯管14は外部配管を介して台所等の所望の給湯場所に導かれている。
前記給湯熱交換器2の出側の流路には給湯熱交換器2から流れ出る湯の温度Toutを検出する流出湯温度センサ45が設けられている。給湯管14と前記給水管11は給湯熱交換器2を迂回する常時バイパス通路30および水量制御用バイパス通路31によって連通接続されており、水量制御用バイパス通路31には電磁弁9が介設されている。
【0006】
給湯通路14には、水量制御用バイパス通路31との接続部よりも下流側に、給湯温度センサ15が設けられている。給湯温度センサ15は、給湯熱交換器2から流れ出る湯に常時バイパス通路30からの水を混ぜた湯水の温度(電磁弁9が開かれたときには、さらに水量制御バイパス通路31からの水を混ぜた湯水の温度)Tmixを検出することにより、給湯温度(出湯温度)を検出する。
【0007】
前記追い焚き熱交換器3の入側には管路16の一端側が接続され、管路16の他端側は循環ポンプ17の吐出側に接続されている。そして、循環ポンプ17の吸込側と浴槽18は戻り管20によって接続されており、この戻り管20には浴槽18の循環湯水の温度を風呂温度として検出する風呂温度センサ21が設けられている。前記追い焚き熱交換器3の出側には往管22の一端側が接続され、往管22の他端側は浴槽18に接続されており、浴槽18から戻り管20を介して循環ポンプ17、管路16、追い焚き熱交換器3および往管22を介して浴槽18に至る通路は追い焚き循環通路23を構成している。
【0008】
前記給湯熱交換器2の給湯管14は給湯通路として機能し、この給湯管14と追い焚き循環通路23(図6においては管路16)は湯張り通路24によって連通接続されており、この湯張り通路24には通路の開閉を行う電磁弁等により構成される注湯弁25が介設され、この注湯弁25の下流側の湯張り通路24には浴槽18の水位を水圧によって検出する水位センサ(圧力センサ)26が設けられている。
【0009】
前記流量検出センサ13、温度センサ12,15,21、水位センサ26等のセンサ検出信号は制御装置27に加えられており、この制御装置27にはリモコン28が接続されている。このリモコン28には給湯温度を設定する給湯温度設定手段や、風呂温度を設定する風呂温度設定手段や、湯張り運転を指令するボタンや、必要な情報を表示する表示部等が設けられている。
【0010】
前記制御装置27は各種センサ検出信号とリモコン28の情報を取り込み、内部に与えられているシーケンスプログラムに従い、給湯運転と、湯張り運転と、追い焚き運転を次のように制御する。
【0011】
例えば、台所等に導かれた給湯通路の水栓30が開けられ、流量検出センサ13により作動流量が検出されると、燃焼ファン6の回転が行われ、電磁弁7,8の開動作が行われてバーナ5に燃料ガスが供給されると共に、図示されていない点着火手段によりバーナ5の燃焼が行われ、給湯温度センサ15で検出される給湯温度がリモコン28で設定される給湯設定温度に一致するように比例弁10への開弁駆動電流を制御し、給湯熱交換器2を通る水をバーナ5の火炎により加熱して設定温度の湯を作り出し、この湯を給湯管14を介して給湯場所へ給湯する。
【0012】
なお、制御装置27には、図示されていないフィードフォワード演算部とフィードバック演算部とが設けられており、上記のような給湯運転に際し、フィードフォワード演算部によってフィードフォワード供給熱量(F/F)の演算が行なわれ、フィードバック演算部によってフィードバック供給熱量(F/B)の演算が行なわれ、これらのフィードフォワード供給熱量とフィードバック供給熱量とを加算することによって求められる総燃焼熱量Q(Q=F/F+F/B)に対応させて、前記の如く比例弁10への快弁駆動電流の制御が行なわれる。
【0013】
前記フィードフォワード供給熱量の演算は、給水温度検出センサ12の検出温度Tinと、給湯設定温度Tspと、流量検出センサ13によって検出される流量Fwにより、次式(1)に基づいて求められ、フィードバック供給熱量は、給湯温度センサ15で検出される検出温度(給湯温度)Tmixが給湯設定温度Tspになるように、PID演算などによって求めた演算値Aと、流量検出センサ13によって検出される流量Fwとにより、次式(2)によって求められる。
【0014】
F/F=(Tset−Tin)×Fw・・・・・(1)
【0015】
F/B=A×Fw・・・・・(2)
【0016】
そして、水栓30が閉められて、流量検出センサ13からオフ信号が出力されたときに、バーナ燃焼を停止し、給湯運転モードの動作を終了する。
【0017】
また、リモコン28により湯張り運転モードが指令されると、注湯弁25が開けられる。そして、流量検出センサ13により作動流量が検出されると、給湯運転の場合と同様にバーナ5の燃焼が開始し、給湯熱交換器2で作り出された湯は給湯管14、湯張り通路24を通り、さらに分岐して管路16から追い焚き熱交換器3を経て往管22を通る通路と戻り管20を通る通路の両側から浴槽18に湯が落とし込まれる。そして、設定水位までの湯の水量が落とし込まれたとき、又は水位センサ26により設定水位が検出されたときに注湯電磁弁25が閉じられバーナ5の燃焼が停止して湯張り運転モードの動作が終了する。
【0018】
追い焚き運転モードの動作においては、注湯弁25が閉じられている状態で、循環ポンプ17が回転駆動され、浴槽18内の湯水の循環が追い焚き循環通路23を介して行われ、風呂温度センサ21により浴槽の風呂温度が検出される。そして、風呂検出温度が風呂設定温度よりも低いときには、バーナ5の燃焼が行われ、追い焚き循環通路23を通して循環する浴槽湯水を追い焚き熱交換器3で加熱する。風呂温度センサ21により浴槽湯水の温度が風呂設定温度に達したことが検出されたときに、循環ポンプ17の停止とバーナ5の燃焼停止が行われて追い焚き運転モードの動作が終了する。
【0019】
上記の如く、一缶二水路風呂給湯器は、共通のバーナ5を用いて一体化された給湯熱交換器2と追い焚き熱交換器3を加熱する方式なので、別体に設けられた給湯熱交換器と追い焚き熱交換器をそれぞれ別個のバーナを用いて燃焼加熱する方式に比べ、装置構成の簡易化が図れ、これに伴い、装置(器具)の小型化とコスト低減が図れることになる。
【0020】
【発明が解決しようとする課題】
しかしながら、一缶二水路風呂給湯器においては、給湯熱交換器2と追い焚き熱交換器3とを共通のバーナ5によって加熱するために、追い焚き熱交換器3内に湯水が残っている状態で、高い給湯設定温度での給湯単独運転が行なわれたり低流量での給湯単独運転が行なわれたりすると、追い焚き熱交換器3内に残留している湯水が流れることなくバーナ5によって高い温度に加熱されることから、この湯水が加熱によって突沸し、蒸気となって(体積が膨張して)追い焚き熱交換器3の入口側や出口側に移動し、追い焚き熱交換器3の入口側や出口側で給湯側給水管で急に冷やされて水に戻される(体積が収縮する)といった現象が生じる。
【0021】
そうすると、このような追い焚き熱交換器3内の湯水の膨張・収縮や移動に伴い、追い焚き熱交換器3と一体化されている給湯熱交換器2内の湯温に影響が及び、図7の特性線dに示すように、給湯熱交換器2から流れ出る湯の温度、すなわち、流出湯温検出センサ45の検出温度Toutがハンチング状態となって変動し、結果的に出湯温度Tmixも時間に対して変化し、出湯温度Tmixの最高温度と最低温度との差が約5℃にもなってしまうといった問題が生じた。
【0022】
本発明は、上記課題を解決するためになされたものであり、その目的は、追い焚き熱交換器内に湯水が残留している状態で、高い設定温度の給湯単独運転が行なわれても給湯設定温度又は給湯設定温度に近い安定した湯温の湯を出湯できる一缶多水路風呂給湯器を提供することにある。
【0023】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、本第1の発明は、給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ循環湯水の追い焚きを行う追い焚き熱交換器とが一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナを有し、前記追い焚き熱交換器を加熱して風呂の追い焚きを行なう追い焚き燃焼の機能と、前記給湯熱交換器を加熱して給湯を行なう給湯燃焼の機能とを備え、給湯設定温度と、入水温度と、加熱によって給湯設定温度の湯が得られる流量の情報を得て、該流量と給湯設定温度と入水温度をパラメータとして予め与えられるフィードフォワード演算式に基づいてフィードフォワード供給熱量を演算するフィードフォワード演算部を有する一缶多水路風呂給湯器であって、前記給湯熱交換器の途中位置の湯温を検出する給湯熱交換器湯温検出手段と;前記給湯熱交換器から流れ出る湯の想定温度を求める想定流出湯温検出手段と;前記給湯熱交換器湯温検出手段により検出される検出温度と、前記想定流出湯温検出手段によって求めた湯の想定温度と、給湯熱交換器に与えられるトータル熱量のうちの給湯熱交換器湯温検出手段の配設位置までの間に与えられる熱量の寄与率とに基づいて求められる仮の入水温度を求める仮入水温検出手段と;を有し、前記フィードフォワード供給熱量演算部は前記仮入水温検出手段によって求めた仮の入水温度を前記フィードフォワード演算式に代入することによりフィードフォワード供給熱量を求める構成を持って課題を解決する手段としている。
【0024】
また、本第2の発明は、上記本第1の発明の構成に加え、前記フィードフォワード供給熱量演算部は、給湯単独運転中に給湯設定温度が予め定められる基準温度以上のときと給湯単独運転中の給湯流量が予め定められた基準流量以下のときの少なくとも一方のときには、前記仮入水温検出手段によって求めた仮の入水温度を前記フィードフォワード演算式に代入することによりフィードフォワード供給熱量を求める構成を持って課題を解決する手段としている。
【0025】
さらに、本第3の発明は、上記本第1または第2の発明の構成に加え、前記給水通路と給湯通路は給湯熱交換器を迂回するバイパス通路によって連通接続されており、給水通路から給水される水の温度を検出する給水温度検出手段を有し、想定流出湯温検出手段は、前記バイパス通路を通る水の流量と給湯熱交換器を通る湯水の流量との流量比と、給湯設定温度と、前記給水温度検出手段によって検出される給水温度とに基づいて給湯熱交換器から流れ出る湯の想定温度を求める構成を持って課題を解決する手段としている。
【0026】
上記構成の本発明において、フィードフォワード演算部は、給湯設定温度と、入水温度と、加熱によって給湯設定温度の湯が得られる流量の情報を得て、該流量と給湯設定温度と入水温度をパラメータとして予め与えられるフィードフォワード演算式に基づいてフィードフォワード供給熱量を演算する。なお、通常は、前記入水温度はほぼ一定である。
【0027】
また、上記構成の本発明においては、給湯熱交換器の途中位置の湯温を検出する給湯熱交換器湯温検出手段が設けられており、本出願人が、この給湯熱交換器湯温検出手段による検出温度をTz1として、設定温度60℃での給湯単独運転における温度Tz1と、出湯湯温Tmixとの関係を調べたところ、温度Tz1は、例えば図7の鎖線に示すようにほぼ周期的に変化し、温度Tz1は、温度の立ち上がりタイミングおよび立ち下がりタイミングが温度Tmixに比べて少しずつ早く、温度変化周期の位相がずれた状態となることが分かった。
【0028】
本発明においては、前記温度Tz1に対応させて、温度Tz1と、想定流出湯温検出手段によって求めた給湯熱交換器から流出する湯の想定温度と、給湯熱交換器に与えられるトータル熱量のうちの給湯熱交換器湯温検出手段の配設位置までの間に与えられる熱量の寄与率とに基づいて、仮入水温検出手段により仮の入水温度を求め、給水温度検出手段などによって検出される一定値の入水温度に代えて、前記温度Tz1の変化と同様の変化形態で変化する仮の入水温度を前記フィードフォワード演算式に代入して前記フィードフォワード供給熱量を求める。
【0029】
そのため、本発明においては、入水温度一定としてフィードフォワード供給熱量を求め、このフィードフォワード供給熱量に基づいてバーナへの供給熱量を制御したときに生じる出湯温度と給湯設定温度とのずれをフィードバック供給熱量により修正するようにしてバーナへの供給熱量を制御する(実際はバーナへの供給ガス量制御により行なわれる)場合に比べて、少し早めに熱量制御の立ち上げや立ち下げタイミング等を制御することにより、温度Tmixの最高温度と最低温度との温度差を打ち消す方向にバーナの燃焼熱量を制御することが可能となり、前記温度差を小さくすることが可能となり、上記課題が解決される。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略する。本実施形態例の一缶多水路風呂給湯器は、図6に示した提案例の一缶多水路風呂給湯器(一缶二水路風呂給湯器)とほぼ同様のシステム構成を有しているが、本実施形態例では、給湯熱交換器2の途中位置に、給湯熱交換器2の途中位置の湯温を検出する給湯熱交換器湯温検出手段としての給湯熱交湯温センサ19を設けている。また、本実施形態例では、図1に示す特有な制御構成を制御装置27に設けている。
【0031】
同図に示すように、制御装置27は、設定温度判断部34、想定流出湯温検出手段35、仮入水温検出手段36、フィードフォワード演算部32、フィードバック演算部33、燃焼制御部37、想定温度検出許可部38を有して構成されている。また、同図に示す給湯温度設定手段29は、給湯設定温度を設定するものであり、リモコン28に設けられている。
【0032】
燃焼制御部37は、前記提案の一缶二水路風呂給湯器と同様に、給湯燃焼運転や湯張り運転、追い焚き燃焼運転を予め与えられたシーケンスプログラムにしたがって制御するものである。
【0033】
設定温度判断部34は、給湯温度設定手段29に設定される給湯設定温度が予め定められる基準温度以上か否かを判断するものであり、燃焼制御部37の燃焼制御信号を取り込んで、給湯単独運転が行なわれるときに、給湯温度設定手段29に設定される給湯設定温度が前記基準温度以上か否かを判断する。
【0034】
追い焚き熱交換器3内に湯水が残っている状態で給湯単独運転を行なったときに、前記のような追い焚き熱交換器3内の湯水の膨張や収縮が生じるのは、給湯設定温度が例えば60℃といった基準温度以上のときであるため、設定温度判断部34は、給湯設定温度が前記基準温度以上のときには、給湯設定温度が基準温度以上であることを知らせる設定高め判断信号を想定流出湯温検出手段35とフィードフォワード演算部32とに加え、一方、給湯設定温度が基準温度未満のときには、設定低め判断信号をフィードフォワード演算部32に加える。
【0035】
想定流出湯温検出手段35は、給湯熱交換器2から流れ出る湯の想定温度を求めるものである。想定流出湯温検出手段35は、例えば、前記常時バイパス通路30および水量制御バイパス通路31を通る水の流量と給湯熱交換器2を通る湯水の流量との流量比と、給湯設定温度Tspと、前記給水温度検出センサ12によって検出される給水温度Tinとに基づいて給湯熱交換器2から流れ出る湯の想定温度Tout-KASOを次式(3)に基づいて求める。
【0036】
Tout-KASO=(Tsp−Tin×Wb)/Bb・・・・・(3)
【0037】
なお、式(3)において、Wbは、給水総流量に対する常時バイパス通路30および水量制御バイパス通路31側の流量を示すものであり、本実施形態例においては、水量制御バイパス通路31の電磁弁9が閉じられている(通常の)状態のときにはWbの値が0.3となる。また、Bbは、給水総流量に対する給湯熱交換器2側の流量を示すものであり、本実施形態例においては、電磁弁9が閉じられている状態のときにはBbの値が0.7となる。従って、電磁弁9が閉じられている状態のときには、想定流出湯温検出手段35は、次式(4)にしたがってTout-KASOを求める。
【0038】
Tout-KASO=(Tsp−Tin×0.3)/0.7・・・・・(4)
【0039】
前記式(3)、(4)において、Tsp波給湯設定温度変更が行なわれなければ一定の値であり、Tinは、通常はほぼ一定であることから、想定温度Tout-KASOは、例えば、図3の特性線fに示すように、時間に対して変化しない一定の値になる。想定流出湯温検出手段35は、求めた想定温度Tout-KASOの値を仮入水温検出手段36に加える。
【0040】
仮入水温検出手段36は、想定流出湯温検出手段35によって求めた湯の想定温度Tout-KASOと、前記給湯熱交湯温センサ19により検出される検出温度Tz1と、給湯熱交換器2に与えられるトータル熱量のうちの給湯熱交湯温センサ19の配設位置までの間に与えられる熱量の寄与率Kとに基づいて、次式(5)にしたがって仮の入水温度Tin’を求めるものであり、求めた仮の入水温度Tin’の値をフィードフォワード演算部32に加える。
【0041】
Tin’=(Tz1−Tout-KASO×K)/(1−K)・・・・・(5)
【0042】
なお、寄与率Kは、換言すれば、給湯熱交換器2の入側から出側に至るまでに湯水が受け取る吸熱熱量Pに対する給湯熱交換器2の入側から給湯熱交湯温センサ19の湯温検出部位に至るまでに湯水が受け取る吸熱熱量Pz1の割合(K=Pz1/P)である。本実施形態例では、例えば寄与率Kは0.3と成しており、従って、仮入水温検出手段36は、次式(6)によって仮の入水温度を求める。
【0043】
Tin’=(Tz1−Tout-KASO×0.3)/0.7・・・・・(6)
【0044】
また、追い焚き熱交換器3に湯水がある状態で、設定温度60℃といった高温で給湯単独運転を行なったときには、給湯熱交湯温センサ19の検出温度Tz1は、図3の特性線cおよび、図7に破線で示した特性線のように、時間に対してほぼ周期的に変化する。なお、この変化形態は、図7に示すように、給湯熱交換器2から流出される湯の温度(流出湯温度センサ45の検出温度)Toutや出湯温度Tmixの変化に比べて温度立ち上がりタイミングおよび温度立ち下がりタイミングが少し早い状態となる。
【0045】
仮入水温検出手段36は、前記の如く、時間に対してほぼ周期的に変化する給湯熱交湯温センサ19の検出温度温度Tz1に対応させて、温度Tz1と、前記想定流出湯温検出手段35によって求めた想定温度Tout-KASOと、前記寄与率とに基づいて、仮の入水温度Tin’を求めるため、例えば図3の特性線eに示すように、仮の入水温度Tin’は、温度Tz1と同様のタイミングで時間に対してほぼ周期的に変化する温度となる。
【0046】
フィードフォワード演算部32は、給湯設定温度と、入水温度と、加熱によって給湯設定温度の湯が得られる流量の情報を得て、この流量Fwと給湯設定温度Tspと入水温度Tinをパラメータとして予め与えられるフィードフォワード演算式、すなわち、前記式(1)に基づいてフィードフォワード供給熱量を演算するものである。
【0047】
フィードフォワード演算部32は、式(1)に、給湯温度設定手段29に設定される設定温度Tspと、流量検出センサ13により検出される流量Fwを代入し、さらに、前記設定温度判断部34から設定高め判断信号が加えられたとき、すなわち、給湯単独運転中に給湯設定温度が前記基準温度以上のときには、仮入水温検出手段36によって求めた仮の入水温度Tin’を式(1)のTinに代入することにより、次式(7)として、フィードフォワード供給熱量を求める。
【0048】
F/F=(Tsp−Tin’)×Fw・・・・・(7)
【0049】
また、フィードフォワード演算部32は、設定温度判断部34から設定低め判断信号が加えられたとき、すなわち、給湯単独運転中に設定温度が前記基準温度未満のときには、給水温度検出センサ12により検出された入水温度を式(1)のTinに代入してフィードフォワード供給熱量を求める。
【0050】
フィードフォワード演算部32は、このようにして求めたフィードフォワード供給熱量の値を燃焼制御部37に加える。
【0051】
フィードバック演算部33は、前記提案の装置と同様に、給湯温度センサ15で検出される検出温度(給湯温度)Tmixが給湯設定温度Tspになるように、PID演算などによって求めた演算値Aと、流量検出センサ13によって検出される流量Fwとにより、前記式(2)によってフィードバック供給熱量を求めるものであり、求めた値を燃焼制御部37に加える。
【0052】
燃焼制御部37は、前記フィードフォワード演算部32から加えられるフィードフォワード供給熱量とフィードバック演算部33から加えられるフィードバック供給熱量を加算して求められる総燃焼熱量Q(Q=F/F+F/B)に応じて比例弁10の開弁量(開弁駆動電流)を制御してバーナへの供給熱量を制御し、燃焼制御を行なう。
【0053】
想定温度検出許可部38は、燃焼制御部37の制御信号を取り込み、給湯開始や、給湯設定温度の変更や、バーナ5を強制的に最小燃焼熱量で燃焼させる強制MIN燃焼や、バーナ5を強制的に最大燃焼熱量で燃焼させる強制MAX燃焼や、大きな流量変更などの動作が行われてから、例えば1分といった予め定められた基準時間が経過した以降に、前記想定流出湯温検出手段35による想定温度Tout-KASOの検出を許可するものである。上記のような、給湯開始動作などの動作が行われてから、一定時間が経過するまでは、給湯熱交湯温センサ19の検出温度が不安定なため、本実施形態例においては、想定温度検出許可部38を設けて、給湯熱交湯温センサ19の検出温度がほぼ安定してから前記の如く想定温度Tout-KASOの検出を行ない、それに基づく仮の入水温度Tin’の検出を行なうようにしている。
【0054】
本実施形態例は以上のように構成されており、次に、本実施形態例における給湯単独燃焼時の燃焼制御動作について、図2に示すフローチャートに基づいて説明する。まず、図2のステップ100で、給湯が開始されたときには、ステップ101で、燃焼制御部37がバーナ5の燃焼が行われたか否かの判断を行ない、バーナ5の燃焼が確認されたときには、ステップ102で、設定温度判断部34により、給湯設定温度が60℃かどうかの判断を行なう。なお、本実施形態例の一缶多水路風呂給湯器においては、安全のために、60℃を超える温度を設定することはできないようになっている。
【0055】
ステップ102で、設定温度判断部34が設定温度は60℃であると判断したときには、設定温度判断部34は、設定高め判断信号を想定流出湯温検出手段35とフィードフォワード演算部32に加え、ステップ103に進み、設定温度が60℃ではないと判断したときには、設定温度判断部34は設定低め判断信号をフィードフォワード演算部32に加え、ステップ111に進む。
【0056】
ステップ103では、想定温度検出許可部38が、給湯開始(ステップ100)から1分経過したか否かの判断を行ない、1分経過したと判断したときに、ステップ104で、想定流出湯温検出手段35が、例えば、給湯設定温度Tspと、前記給水温度検出センサ12によって検出される給水温度Tinと、前記式(4)とに基づいて、給湯熱交換器2から流れ出る湯の想定温度Tout-KASOを求める。そして、想定流出湯温検出手段35は、求めた値を仮入水温検出手段36に加える。
【0057】
仮入水温検出手段36は、ステップ105で、想定流出湯温検出手段35によって求めた湯の想定温度Tout-KASOと、前記給湯熱交湯温センサ19により検出される検出温度Tz1と、給湯熱交換器2に与えられるトータル熱量のうちの給湯熱交湯温センサ19の配設位置までの間に与えられる熱量の寄与率K(例えば0.3)とに基づいて、前記式(6)にしたがって仮の入水温度Tin’を求め、求めた仮の入水温度Tin’の値をフィードフォワード演算部32に加える。
【0058】
フィードフォワード演算部32は、ステップ106で、前記式(1)のTinにTin’を代入し、F/F=Fw(Tsp−Tin’)として、フィードフォワード供給熱量F/Fを求め、求めた値を燃焼制御部37に加え、ステップ107に進む。ステップ107では、燃焼制御部37は、フィードフォワード演算部32から加えられるフィードフォワード供給熱量の演算値(ステップ106で演算した演算値)と、フィードバック演算部33から加えられるフィードバック演算部33の値を加算した総燃焼熱量となるように、比例弁10の開弁駆動電流を制御する。
【0059】
なお、ステップ109で、想定温度検出許可部38が、燃焼制御部37の制御信号に基づき、大きな流量変化があるか否かを判断し、大きな流量変化があったときには、ステップ110に進んで1分カウンターをクリアし、大きな流量変化がなく、給湯設定温度が60℃のときには、前記ステップ102からステップ109までの動作を繰り返す。
【0060】
また、前記ステップ102で、設定温度判断部34により、給湯設定温度が60℃ではないと判断されて、ステップ111に進んだときには、設定温度判断部34は、給湯設定温度が60℃よりも低い温度から60℃に変更されたか否かを判断し、この設定温度変更があったときにはステップ110に進み、設定温度変更がないときには、ステップ112に進む。ステップ112では、フィードフォワード演算部32は、給水温度検出センサの検出温度Tinを前記式(1)に代入してフィードフォワード供給熱量F/Fを求め、ステップ107に進む。
【0061】
ステップ107では、燃焼制御部37は、フィードフォワード演算部32から加えられるフィードフォワード供給熱量の演算値(ステップ112で演算した演算値)と、フィードバック演算部33から加えられるフィードバック演算部33の値を加算した総燃焼熱量となるように、比例弁10の開弁駆動電流を制御する。
【0062】
なお、上記動作において、給湯開始や給湯設定温度の変更から1分未満のときに、ステップ102の動作によるフィードフォワード供給熱量の演算を行なうのと同様に、バーナ5を強制的に最小燃焼熱量で燃焼させる強制MIN燃焼や、バーナ5を強制的に最大燃焼熱量で燃焼させる強制MAX燃焼等の動作が行われたときには、これらの動作が行われてから1分未満のときには、ステップ112の動作により、フィードフォワード供給熱量の演算を行なう。
【0063】
図4には、上記動作により、給湯設定温度が60℃のときに行われる比例弁10の開弁駆動電流値と、この開弁駆動電流で比例弁10の開弁量を制御してバーナ5の燃焼熱量を制御したときの出湯温度(給湯温度センサ15の検出温度)Tmixの時間変化が示されている。なお、同図には、従来の一缶二水路風呂給湯器における給湯設定温度60℃の給湯単独運転のときの、比例弁10の開弁駆動電流と、このときの出湯温度Tmixの時間変化と共に示してある。
【0064】
同図において、特性線aは、本実施形態例の制御を行なったときの出湯温度Tmix、特性線a’は、従来の制御を行なったときの出湯温度Tmix、特性線bは、本実施形態例における比例弁10の開弁駆動電流、特性線b’は、従来の一缶多水路風呂給湯器における比例弁10の開弁駆動電流をそれぞれ示している。また、特性線cは、給湯熱交湯温センサ19の検出温度Tz1を示している。さらに、図5には、図4の特性線b、b’のA部の拡大図が、特性線cの拡大図と共に示されている。
【0065】
前記の如く、本実施形態例においては、給水温度検出センサ12などによって検出される一定値の入水温度に代えて、図3の特性線eに示したように、時間に対して温度Tz1と同様の周期および同様の位相でほぼ周期的に変化する仮の入水温度Tin’を前記フィードフォワード演算式に代入して、フィードフォワード供給熱量を求めることにしたために、図4,5の特性線bに示したように、フィードフォワード供給熱量に基づいて行われる比例弁10の開弁駆動電流(図4における比例弁電流)制御も、温度Tz1(特性線c)の変化タイミングとほぼ同じタイミングで可変制御される。なお、比例弁電流の立ち上がりタイミングは温度Tz1の立ち下がりタイミングに対応(同期)し、比例弁電流の立ち下がりタイミングが温度Tz1の立ち上がりタイミングに対応(同期)するように比例弁電流が可変制御される。
【0066】
そのため、従来の一缶二水路風呂給湯器においては、給湯設定温度が60℃の高温での給湯単独運転のときにも、低流量での給湯単独運転のときにも、図7に示したように、入水温度Tinを一定としてフィードフォワード供給熱量を求め、このフィードフォワード供給熱量に基づいてバーナへの供給熱量を制御したときに生じる出湯温度と給湯設定温度とのずれをフィードバック供給熱量により修正するようにしてバーナへの供給熱量を制御することにより、追い焚き熱交換器3内の湯水の膨張および収縮等に伴って変化する出湯温度Tmix(特性線a’)とほぼ同じ周期および同じ位相で比例弁電流が制御されていたのに対し(特性線b’)、本実施形態例では、特性線bに示すように、給湯設定温度が60℃での給湯単独運転のときには、上記動作によって、従来の比例弁電流制御に比べて少し早めに比例弁電流制御の立ち上げや立ち下げタイミング等を制御することになる。
【0067】
したがって、本実施形態例によれば、給湯設定温度が60℃のときの給湯単独運転中に、前記追い焚き熱交換器3内の湯水の膨張および収縮などに伴って変化する給湯出湯温度の変化を打ち消す方向にバーナ5の燃焼熱量を制御することが可能となり、図4の特性線aに示すように、同図の特性線a’に示す従来の出湯温度に比べ、出湯温度Tmixの最高温度と最低温度との差を小さくすることができる。
【0068】
また、本実施形態例によれば、想定流出湯温検出手段35が前記式(4)に基づいて想定温度Tout-KASOを検出するために、給湯熱交換器2から流れ出る湯の温度をほぼ実際の温度に近い適切な温度に想定することが可能となり、フィードフォワード供給熱量熱量演算を適切に行ない、バーナ5の燃焼熱量をより一層適切に行なうことができる。
【0069】
なお、図3の特性線aには、本実施形態例において、追い焚き熱交換器3内に湯水が残っている状態で給湯設定温度60℃で給湯単独運転を行なったときの出湯温度Tmixの時間変化が示されており、この温度Tmixの最高温度と最低温度との温度差は約2℃であった。したがって、図7の特性線aに示した従来の一缶多水路風呂給湯器における出湯温度Tmixの最高温度と最低温度との温度差(約5℃)に比べ、温度差を小さくすることができ、出湯温度の安定化を図れることが確認された。
【0070】
なお、本発明は上記実施形態例に限定されることはなく様々な実施の態様を採り得る。例えば、上記実施形態例では、一缶二水路風呂給湯器は常時バイパス通路30と水量制御バイパス通路31を有する構成としたが、これらのバイパス通路の一方または両方を省略することもできるし、これらのバイパス通路に加えて、さらに、給湯熱交換器を迂回して給水管11と給湯管14とを連通する他のバイパス通路を設けてもよい。また、バイパス通路を通る流量と給湯熱交換器2を通る流量との流量比等も特に限定されるものではなく、適宜設定されるものである。
【0071】
また、上記実施形態例では、フィードフォワード演算部32は、給湯単独運転中の給湯設定温度が例えば60℃といった基準温度以上のときに、前記入水温度をフィードフォワード演算式に代入してフィードフォワード供給熱量を求めたが、フィードフォワード演算部32は、給湯単独運転中の給湯流量が予め定められる基準流量以下のときに、前記入水温度をフィードフォワード演算式に代入してフィードフォワード供給熱量を求めるようにしてもよい。
【0072】
さらに、上記実施形態例では、給水管12の入口側に流量検出センサ13を設けたが、図6の破線cに示すように、流量検出センサ13を水量制御バイパス通路31の入口側と常時バイパス通路30の入口側との間の給湯管12に設けてもよいし、同図の破線dに示すように、流量検出センサ13を給湯管14に設けてもよい。流量検出センサ13をこのような位置に設けた場合にも、常時バイパス通路30を通る湯水の流量と水量制御バイパス通路31を通る湯水の流量と給湯熱交換器2を通る湯水の流量との比などに基づいて、給湯設定温度の湯を得ることができる流量を検出できるようにすればよい。
【0073】
以上のように、本発明の一缶多水路風呂給湯器のシステム構成は上記実施形態例に限定されるものではなく、適宜設定されるものである。
【0074】
なお、バイパス通路を設けずに一缶多水路風呂給湯器を構成した場合は、想定流出湯温検出手段35は、給湯熱交換器2から流れ出る湯の想定温度を、例えば給湯設定温度とすればよい。
【0075】
また、上記実施形態例では、想定温度検出許可部38を設け、例えば給湯開始から基準時間としての1分経過した以降に想定流出湯温検出手段35による想定温度検出を行なうことにしたが、基準時間は必ずしも1分とは限らず、適宜設定されるものである。
【0076】
さらに、上記実施形態例では、60℃を超える温度は、給湯温度設定手段29に設定できないように構成したが、給湯温度設定手段29に、60℃を超える温度を設定できるようにしてもよい。
【0077】
さらに、本発明は、一缶二水路風呂給湯器に限らず、給湯熱交換器と追い焚き熱交換器が設けられて、これら熱交換器が一体化され、この一体化された熱交換器加熱するを共通のバーナを備えた一缶多水路風呂給湯器であればよい。
【0078】
【発明の効果】
本発明によれば、給湯熱交換器の途中位置の湯温(Tz1とする)に対応させて、温度Tz1と、想定流出湯温検出手段によって求めた給湯熱交換器から流出する湯の想定温度と、給湯熱交換器に与えられるトータル熱量のうちの温度Tz1検出位置までの間に与えられる熱量の寄与率とに基づいて、仮の入水温度を求め、例えば給水温度検出手段などによって検出される一定値の入水温度に代えて、前記温度Tz1の変化と同様の変化形態で変化する仮の入水温度を前記フィードフォワード演算式に代入して前記フィードフォワード供給熱量を求めるため、入水温度一定としてフィードフォワード供給熱量を求めてバーナへの供給熱量を制御する場合に比べて、少し早めにバーナの熱量制御の立ち上げや立ち下げタイミング等を制御することにより、給湯で湯温度の最高温度と最低温度との温度差を打ち消す方向にバーナの燃焼熱量を制御することが可能となり、前記温度差を小さくすることができる。
【0079】
そのため、本発明によれば、たとえ追い焚き熱交換器内に湯水が残っている状態で高い給湯設定温度での給湯単独運転を行なっても、追い焚き熱交換器内の湯水の膨張や収縮に伴う給湯出湯温度変化が少ない安定した出湯温度の一缶多水路風呂給湯器とすることができる。
【0080】
また、バイパス通路を設けて一缶多水路風呂給湯器を構成し、バイパス通路を通る水の流量と給湯熱交換器を通る湯水の流量との流量比と、給湯設定温度と、前記給水温度検出手段によって検出される給水温度とに基づいて、想定流出湯温検出手段が給湯熱交換器から流れ出る湯の想定温度を求める構成とした本発明によれば、給湯熱交換器から流れ出る湯の温度をほぼ実際の温度に近い適切な温度に想定することが可能となり、フィードフォワード供給熱量熱量演算を適切に行ない、バーナの燃焼熱量をより一層適切に行なうことができる。
【図面の簡単な説明】
【図1】本発明に係る一缶多水路風呂給湯器の一実施形態例の制御構成を示す要部構成図である。
【図2】上記実施形態例における給湯単独運転制御動作を示すフローチャートである。
【図3】上記実施形態例において求めた仮の入水温度Tin’と想定温度Tout-KASOおよび、給湯熱交湯温センサ19の検出温度Tz1と出湯温度検出センサ15の検出温度Tmixの関係を示すグラフである。
【図4】上気実施形態例と従来の一缶多水路風呂給湯器における給湯単独運転中の比例弁駆動電流と出湯温度検出センサの検出温度をそれぞれ比較して示すグラフである。
【図5】図4の特性線b、b’のA部を本実施形態例における給湯熱交湯温センサ19の検出温度Tz1と共に拡大して示す説明図である。
【図6】一缶多水路風呂給湯器のモデル例を示すシステム構成図である。
【図7】従来例の一缶多水路風呂給湯器における給水温度検出センサ12の検出温度Tinと流出湯温度センサ45の検出温度Toutと出湯温度検出センサ15の検出温度Tmixの関係を示すグラフである。
【符号の説明】
2 給湯熱交換器
3 追い焚き熱交換器
5 バーナ
12 給水温度検出センサ
13 流量検出センサ
15 給湯温度センサ
19 給湯熱交湯温センサ
29 給湯設定温度部
32 フィードフォワード演算部
35 想定流出湯温検出手段
36 仮入水温検出手段
37 燃焼制御部

Claims (3)

  1. 給水通路から供給される水を加熱して給湯通路へ送出する給湯熱交換器と、浴槽湯水の追い焚き循環通路に組み込まれ循環湯水の追い焚きを行う追い焚き熱交換器とが一体化され、この一体化された給湯熱交換器と追い焚き熱交換器を加熱する共通のバーナを有し、前記追い焚き熱交換器を加熱して風呂の追い焚きを行なう追い焚き燃焼の機能と、前記給湯熱交換器を加熱して給湯を行なう給湯燃焼の機能とを備え、給湯設定温度と、入水温度と、加熱によって給湯設定温度の湯が得られる流量の情報を得て、該流量と給湯設定温度と入水温度をパラメータとして予め与えられるフィードフォワード演算式に基づいてフィードフォワード供給熱量を演算するフィードフォワード演算部を有する一缶多水路風呂給湯器であって、前記給湯熱交換器の途中位置の湯温を検出する給湯熱交換器湯温検出手段と;前記給湯熱交換器から流れ出る湯の想定温度を求める想定流出湯温検出手段と;前記給湯熱交換器湯温検出手段により検出される検出温度と、前記想定流出湯温検出手段によって求めた湯の想定温度と、給湯熱交換器に与えられるトータル熱量のうちの給湯熱交換器湯温検出手段の配設位置までの間に与えられる熱量の寄与率とに基づいて求められる仮の入水温度を求める仮入水温検出手段と;を有し、前記フィードフォワード供給熱量演算部は前記仮入水温検出手段によって求めた仮の入水温度を前記フィードフォワード演算式に代入することによりフィードフォワード供給熱量を求めることを特徴とする一缶多水路風呂給湯器。
  2. フィードフォワード供給熱量演算部は、給湯単独運転中に給湯設定温度が予め定められる基準温度以上のときと給湯単独運転中の給湯流量が予め定められた基準流量以下のときの少なくとも一方のときには、前記仮入水温検出手段によって求めた仮の入水温度を前記フィードフォワード演算式に代入することによりフィードフォワード供給熱量を求めることを特徴とする請求項1記載の一缶多水路風呂給湯器。
  3. 給水通路と給湯通路は給湯熱交換器を迂回するバイパス通路によって連通接続されており、給水通路から給水される水の温度を検出する給水温度検出手段を有し、想定流出湯温検出手段は、前記バイパス通路を通る水の流量と給湯熱交換器を通る湯水の流量との流量比と、給湯設定温度と、前記給水温度検出手段によって検出される給水温度とに基づいて給湯熱交換器から流れ出る湯の想定温度を求める構成としたことを特徴とする請求項1又は請求項2記載の一缶多水路風呂給湯器。
JP14238498A 1998-05-08 1998-05-08 一缶多水路風呂給湯器 Expired - Fee Related JP3862048B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14238498A JP3862048B2 (ja) 1998-05-08 1998-05-08 一缶多水路風呂給湯器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14238498A JP3862048B2 (ja) 1998-05-08 1998-05-08 一缶多水路風呂給湯器

Publications (2)

Publication Number Publication Date
JPH11325588A JPH11325588A (ja) 1999-11-26
JP3862048B2 true JP3862048B2 (ja) 2006-12-27

Family

ID=15314120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14238498A Expired - Fee Related JP3862048B2 (ja) 1998-05-08 1998-05-08 一缶多水路風呂給湯器

Country Status (1)

Country Link
JP (1) JP3862048B2 (ja)

Also Published As

Publication number Publication date
JPH11325588A (ja) 1999-11-26

Similar Documents

Publication Publication Date Title
JP3862048B2 (ja) 一缶多水路風呂給湯器
JP2018100810A (ja) 燃焼装置
JP3533799B2 (ja) 給湯装置
JP3876877B2 (ja) ガス給湯暖房機
JP4004168B2 (ja) 熱源設備
JP3773618B2 (ja) 給湯装置
JPH081329B2 (ja) 給湯器の制御装置
JP3177203B2 (ja) 給湯装置
JPH08247547A (ja) 給湯装置
JP3872864B2 (ja) 給湯燃焼装置
JP2560578B2 (ja) バイパスミキシング方式の給湯装置
JPH07103564A (ja) 給湯装置
JPH06347095A (ja) 給湯装置
JP3889152B2 (ja) 一缶多水路風呂給湯器
JP3859811B2 (ja) 給湯燃焼装置
JP4004169B2 (ja) 熱源設備
JP4315615B2 (ja) 給湯装置
JP3798142B2 (ja) 燃焼機器
JP3908330B2 (ja) 給湯燃焼装置
JP2616694B2 (ja) 給湯器の過流出防止装置
JP3144602B2 (ja) 給湯装置
JPH08320149A (ja) 1缶2水路式風呂釜装置
JP3922788B2 (ja) 給湯方法および給湯装置
JP3719272B2 (ja) 給湯器付風呂釜
JP3487905B2 (ja) 給湯器およびこれを用いた燃焼制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees