[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3860687B2 - Dielectric porcelain and laminate - Google Patents

Dielectric porcelain and laminate Download PDF

Info

Publication number
JP3860687B2
JP3860687B2 JP30836399A JP30836399A JP3860687B2 JP 3860687 B2 JP3860687 B2 JP 3860687B2 JP 30836399 A JP30836399 A JP 30836399A JP 30836399 A JP30836399 A JP 30836399A JP 3860687 B2 JP3860687 B2 JP 3860687B2
Authority
JP
Japan
Prior art keywords
weight
dielectric
terms
dielectric ceramic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30836399A
Other languages
Japanese (ja)
Other versions
JP2001130952A (en
Inventor
辰治 古瀬
誠一郎 平原
秀司 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30836399A priority Critical patent/JP3860687B2/en
Priority to EP00123551A priority patent/EP1096674B1/en
Priority to US09/699,666 priority patent/US6417461B1/en
Publication of JP2001130952A publication Critical patent/JP2001130952A/en
Application granted granted Critical
Publication of JP3860687B2 publication Critical patent/JP3860687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波、ミリ波等の高周波領域において、高いQ値を有する誘電体磁器に関するものであり、例えば、マイクロ波やミリ波などの高周波領域において使用される種々の共振器用磁器やMIC用誘電体基板、誘電体導波路や積層型セラミックコンデンサ等に用いることができる誘電体磁器および積層体に関するものである。
【0002】
【従来技術】
従来、誘電体磁器は、マイクロ波やミリ波等の高周波領域において、誘電体共振器、MIC用誘電体基板や導波路等に広く利用されている。そして、近年においては、携帯電話をはじめとする移動体通信等の発達および普及に伴い、電子回路基板や電子部品の材料として誘電体セラミックスの需要が増大しつつある。
【0003】
電子回路基板や電子部品において、誘電体セラミックスと内部導体を同時焼成するに際しては、従来の誘電体セラミックスの焼成温度が1100℃以上という高温であったため、導体材料としては、比較的高融点であるPt、Pd、W、Mo等が使用されていた。これら高融点の導体材料は導通抵抗が大きいため、従来の電子回路基板において、共振回路やインダクタンスのQ値が小さくなってしまい、導体線路の伝送損失が大きくなる等の問題があった。
【0004】
そこで、係る問題点を解決すべく、導通抵抗の小さいAg、Cu等と同時焼成可能な低温焼成の誘電体セラミックスが提案されている。例えば、本出願人が先に出願した特開平8−208330号公報に開示された誘電体磁器組成物は、MgO、CaO、TiO2 とB2 3 、Li2 CO3 からなるものであり、900〜1050℃の比較的低温でAg、Cu等の内部導体と同時に焼成でき、誘電体磁器の比誘電率εrが18以上、測定周波数7GHzでのQ値が2000以上の優れた特性を有し、高周波電子部品の小型化と高性能化を実現できるものであった。
【0005】
【発明が解決しようとする課題】
しかしながら特開平8−208330号公報に開示された誘電体磁器組成物は、焼結温度がまだ高く、さらに焼結における収縮開始温度が845〜960℃と高温であるため、導体材料との収縮挙動のマッチングが悪く、焼成された基板や電子部品が反る、歪む等の問題があった。
【0006】
即ち、導体としては、Agおよび/またはCuを主成分とするもの、例えば、Ag、Cu、あるいはAg、Cuに対してガラス成分やセラミック成分、Pt、Pd等の金属を添加したものがあるが、これらの導体は、焼成時における収縮開始温度が高くとも650℃程度であるため、上記誘電体磁器組成物の収縮開始温度との差が大きく、これにより、基板等が変形する等の問題があった。
【0007】
また、上記公報に開示された誘電体磁器組成物では、比誘電率εrが18以上と高いため、この誘電体磁器組成物を用いて高周波用のモジュール基板を作製すると、例えば、容量を必要としない配線間、線路間、配線と線路間等に浮遊容量(寄生容量)が発生し、高周波特性が劣化したり、回路上の制約が生じるという問題があった。
【0008】
本発明は上記課題に鑑みなされたもので、焼成温度を従来よりもさらに低下させることができ、収縮開始温度を低くして、導体の収縮開始温度に近づけることができ、AgやCuを主成分とする導体と同時焼成した場合でも反りや歪みを抑制できるとともに、比誘電率の低い誘電体磁器および積層体を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の誘電体磁器は、フォルステライト結晶粒子と(Mg,Ti) (BO )Oからなる結晶粒子とを含むとともに、粒界に、元素としてB、Li、アルカリ土類金属が存在するものである。
【0010】
このような構成を採用することにより、フォルステライト本来のQ値をそれほど劣化させることなく、920℃以下の低温焼成が可能となるとともに、フォルステライト自体が低誘電率であるため、比誘電率を大きく低下できる。
【0011】
ここで、誘電体磁器は、MgをMgO換算で28.8〜42.0重量%、TiをTiO 換算で12.4〜48.0重量%、BをB 換算で8.9〜15.3重量%含有することが望ましい。また、誘電体磁器は、LiをLi CO 換算で0.8〜8.0重量%、アルカリ土類金属を酸化物換算で0.8〜4.6重量%、SiをSiO 換算で3.4〜38.7重量%含有することが望ましい。
【0012】
このような構成を採用することにより、比誘電率が6〜12で、測定周波数10GHzでのQ値が1000以上であり、かつ、焼成温度を870〜920℃、収縮開始温度を760〜860℃とすることが可能となる。従って、基板や電子部品において、Ag、Cuを主成分とする導体と同時焼成した場合でも反りや歪み等の発生を抑制することができる。
【0013】
また、MnをMnO 換算で0.9〜2.2重量%含有することが望ましい。これにより、誘電体磁器の焼結性をさらに向上できる。
【0014】
本発明の積層体は、誘電体層を複数積層してなる誘電基板の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有する積層体であって、前記誘電体層のうち少なくとも一層が上記誘電体磁器からなるものである。
【0015】
このような構成を採用することにより、内部導体としてAgおよび/またはCuを主成分とする導体を使用しても積層体の変形がなく、高い高周波特性を有するとともに、低温焼成ができ、さらに、誘電体層が低誘電率であるため、容量を必要としない配線間、線路間、配線と線路間等における浮遊容量の発生を抑制できる。
【0016】
【発明の実施の形態】
本発明の誘電体磁器は、フォルステライト結晶粒子と(Mg,Ti) (BO )Oからなる結晶粒子とを含むとともに、粒界に、元素としてB、Li、アルカリ土類金属が存在するものである。
【0017】
そして、モル比による組成式を(1−x)MgSiO・xMgTiOと表した時、xが、0≦x≦0.8を満足する主成分と、該主成分100重量部に対して、BをB換算で3〜20重量部、LiをLiCO換算で1〜10重量部、SiをSiO換算で0〜30重量部、アルカリ土類金属を酸化物換算で1〜5重量部含有することが望ましい。
【0018】
ここで、Mg2 SiO4 とMgTiO3 のモル比xを、0≦x≦0.8としたのは、xが0.8を越える場合には、高誘電率のMgTiO3 の割合が増加するため、比誘電率が大きくなるからである。とりわけ誘電体磁器の比誘電率を小さくするという点からxは0≦x≦0.5が好ましい。さらに、例えば、本発明の誘電体層とMgTiO3 −CaTiO3 系の誘電体層との積層体を作製する場合には、焼成収縮挙動を近くするという点からxは0<x≦0.5が望ましい。
【0019】
また、主成分100重量部に対して、B 換算量が3重量部未満の場合には1100℃でも焼結せず、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に20重量部を越える場合には、焼結体中のガラス相の割合が増加して、Q値が低下するからである。よって、焼結性を維持し、高いQ値を得るという観点からBはB換算で5〜15重量部含有することが望ましい。また、誘電体磁器の全量中にBをB 換算で8.9〜15.3重量%含有することが望ましい。硼素含有化合物としては、金属硼素、B、コレマイト、CaB、ホウケイ酸ガラス、ホウケイ酸アルカリガラス、ホウケイ酸アルカリ土類ガラス等がある。また、誘電体磁器の全量中にMgをMgO換算で28.8〜42.0重量%、TiをTiO 換算で12.4〜48.0重量%含有することが望ましい。
【0020】
またLiCO換算量が1重量部未満の場合には1100℃でも焼結せず、AgまたはCuを主成分とする導体と同時焼成ができなくなり、逆に10重量部を越える場合には、Q値が低下するからである。焼結性と誘電体磁器のQ値の観点からLiのLiCO換算量は4〜9重量部が望ましい。また、誘電体磁器の全量中にLiをLi CO 換算で0.8〜8.0重量%含有することが望ましい。
【0021】
さらにSiO換算量が30重量部を越えると、ガラス相の割合が減少してQ値が低下するからである。誘電体磁器のQ値の観点からは、SiのSiO換算量は10重量部以下含有することが望ましい。また、また、誘電体磁器の全量中にSiをSiO 換算で3.4〜38.7重量%含有することが望ましい。
【0022】
また、主成分100重量部に対して、アルカリ土類金属(Mg、Ca、Sr、Ba)の少なくとも一種を酸化物換算で1〜5重量部含有したのは、これらが酸化物換算で1重量部未満の場合には、誘電体磁器の焼結過程における収縮開始温度が約870℃と高く、添加効果が得られない。一方、5重量部を越えると、誘電体磁器のQ値が低下する。とりわけ誘電体磁器の焼結性とQ値の観点からはアルカリ土類金属は酸化物(MgO,CaO,SrO,BaO)換算で合計1.5〜3.5重量部含有することが好ましい。アルカリ土類金属はBa、Caが高Q値となるという点から望ましい。また、誘電体磁器の全量中にアルカリ土類金属を酸化物換算で0.8〜4.6重量%含有することが望ましい。
【0023】
さらに、本発明の誘電体磁器では、焼結性を改善する点から、主成分100重量部に対して、さらにMnをMnO換算で0.1〜3重量部含有することが望ましい。MnをMnO換算で0.1〜3重量部含有せしめたのは、0.1重量部よりも少ない場合にはその添加効果が小さく、さらに3重量部よりも多い場合には誘電特性が悪化するからである。MnはMnO換算で1.2〜1.8重量部含有することが望ましい。また、誘電体磁器の全量中にMnをMnO 換算で0.9〜2.2重量%含有することが望ましい。
【0024】
本発明の誘電体磁器は、原料粉末として、例えば、Mg2 SiO4 粉末と、MgTiO3 粉末と、B2 3 粉末、Li2 CO3 粉末、SiO2 粉末、アルカリ土類酸化物粉末(MgO,CaO,SrO,BaO)を準備し、これらを上記した組成比となるように秤量し、ZrO2 ボールにより粉砕混合し、この混合粉末を650〜850℃で仮焼した後、再度ZrO2 ボールにより粉砕粒径が2.5μm以下になるまで粉砕、混合する。
【0025】
この仮焼粉末をプレス成形やドクターブレード法等の公知の方法により所定形状に成形し、大気中、酸素雰囲気中または窒素雰囲気等の非酸化性雰囲気において870〜920℃で0.5〜2時間焼成することにより得られる。原料粉末は、焼成により酸化物を生成する水酸化物、炭酸塩、硝酸塩等の金属塩を用いても良い。本発明の誘電体磁器中には、不可避不純物として、Al、Fe、Hf、Sn等が含まれることもある。
【0026】
アルカリ土類金属は、ガラスフリットとして添加することが焼結性向上の点から望ましい。例えば、B2 3 粉末、Li2 CO3 粉末、SiO2 粉末、アルカリ土類金属酸化物粉末を用いてガラスフリットを作製して添加する。この際、B2 3 粉末、Li2 CO3 粉末、SiO2 粉末、アルカリ土類酸化物粉末として添加される量は、上記ガラスフリットで用いられた量を差し引いた量であることは言うまでもない。
【0027】
本発明の誘電体磁器では、フォルステライト結晶粒子を主結晶粒子とし、これに必要に応じて金属元素として少なくともMgとTiを含有する複合酸化物からなる結晶粒子、主には(Mg,Ti)2 (BO3 )Oが析出し、組成によってはMgTiO3 が析出する場合もある。
【0028】
尚、アルカリ土類金属は、MgTiO3 のAサイトに固溶したり、あるいはガラスとなって、焼結性を向上させることになる。本発明の誘電体磁器では平均結晶粒径が1〜5μmのものである。
【0029】
本発明の積層体は、誘電体層を複数積層してなる誘電基板の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有する積層体であって、誘電体層のうち少なくとも一層が上記誘電体磁器からなるものであり、例えば、本発明の低誘電率の誘電体層と高誘電率のMgTiO3 −CaTiO3 系の誘電体層との積層体を作製すると、高誘電率が要求されるコンデンサ、フィルタ等を高誘電率のMgTiO3 −CaTiO3 系の誘電体層で形成し、配線間等の浮遊容量を発生させたくない配線等については、本発明の低誘電率の誘電体層で形成することができる。
【0030】
このような積層体では、内部導体としてAgおよび/またはCuを主成分とする導体を使用しても積層体の変形がなく、高い高周波特性を有するとともに、低温焼成ができ、さらに、誘電体層のうち少なくとも一層が本発明の低誘電率の誘電体磁器からなるため、この誘電体層を利用して電極、線路等を形成することにより、容量を必要としない配線間、線路間、配線と線路間等における浮遊容量の発生を抑制できる。
【0031】
【実施例】
粉末、LiCO粉末、SiO粉末、アルカリ土類酸化物(MgO,CaO,SrO,BaO)粉末を表1に示すような組成で添加し、これを用いて作製されたガラスフリットと、原料として純度99%以上のMgSiO、MgTiO粉末を表1に示す割合となるように秤量し、純水を媒体とし、ZrOボールを用いたボールミルにて20時間湿式混合した。なお、表1において括弧中にない値は、主成分を100重量部として、この主成分100重量部に対して加えた各成分を重量部で表示したものである。また、表1において括弧中に示した値は、誘電体磁器中に各成分が占める割合を重量%で示したものである。すなわち、まず、主成分を100重量部とし、これにB 、Li CO 、SiO 、アルカリ土類酸化物の重量部を加えると100重量部を超える値となる。この値で、各成分の重量部を除し、さらに100を掛けると括弧中の重量%で表される値となる。
【0032】
次にこの混合物を乾燥(脱水)し、800℃で1時間仮焼した。この仮焼物を、粉砕粒径が1.4μm以下になるように粉砕し、誘電特性評価用の試料として直径0.01m、高さ0.008mの円柱状に10000ton/m2 の圧力でプレス成形し、これを900℃で2時間焼成し、直径0.008m、高さ0.006mの円柱状の試料を得た。
【0033】
尚、本発明者等は、X線回折測定およびX線マイクロアナライザー(EPMA)により、本発明の試料では主結晶粒子がフォルステライト結晶粒子と、(Mg,Ti)(BO)Oで表される結晶粒子が存在し、粒界に、元素としてB、Li、アルカリ土類金属が存在することを確認した。
【0034】
誘電特性の評価は、前記試料を用いて誘電体円柱共振器法にて周波数10GHzにおける比誘電率とQ値を測定した。
【0035】
【表1】

Figure 0003860687
【0036】
この表1から、本発明の誘電体磁器では、比誘電率が6〜14、測定周波数10GHzでのQ値が500以上の誘電特性を有するとともに、焼成温度を920℃以下とすることができ、焼成収縮開始温度を860℃以下とできる。
【0037】
特に、モル比による組成式(1−x)Mg2 SiO4 ・xMgTiO3 においてxが、0≦x≦0.8を満足し、BをB2 3 換算で3〜20重量部、LiをLi2 CO3 換算で1〜10重量部、SiをSiO2 換算で0〜30重量部、アルカリ土類金属を酸化物換算で1〜5重量部含有する場合には、比誘電率が6〜12で、測定周波数10GHzでのQ値が1000以上であり、かつ、焼成温度を870〜920℃、収縮開始温度を760〜860℃とできることが判る。これにより、基板や電子部品において、Ag、Cuを主成分とする導体と同時焼成した場合でも反りや歪み等の発生を抑制することができる。
【0038】
一方、Liを含有しない場合には、試料No.7に示すように、焼成温度が1150℃、収縮開始温度が1050℃と高くなり、Ag、Cuを主成分とする導体と同時焼成できないことが判る。
【0039】
さらに、アルカリ土類金属を含有しない場合には、試料No.11に示すように、焼成温度が950℃、収縮開始温度が870℃と高くなることが判る。
【0040】
【発明の効果】
以上詳述した通り、本発明によれば、フォルステライト本来のQ値をそれほど劣化させることなく、920℃以下の低温焼成が可能となるとともに、フォルステライト自体が低誘電率であるため、比誘電率を14以下と低下できる。
【0041】
特に、モル比による組成式を、(1−x)Mg2 SiO4 ・xMgTiO3 と表した時、xが、0≦x≦0.8を満足する主成分と、該主成分100重量部に対して、BをB2 3 換算で3〜20重量部、LiをLi2 CO3 換算で1〜10重量部、SiをSiO2 換算で0〜30重量部、アルカリ土類金属を酸化物換算で1〜5重量部含有する誘電体磁器では、比誘電率が6〜12で、測定周波数10GHzでのQ値が1000以上であり、かつ、焼成温度を870〜920℃、収縮開始温度を760〜860℃とすることができ、基板や電子部品において、Ag、Cuを主成分とする導体と同時焼成した場合でも反りや歪み等の発生を抑制することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic having a high Q value in a high frequency region such as a microwave and a millimeter wave. For example, various resonator ceramics and MICs used in a high frequency region such as a microwave and a millimeter wave. The present invention relates to a dielectric ceramic that can be used for a dielectric substrate, a dielectric waveguide, a multilayer ceramic capacitor, and the like, and a multilayer body.
[0002]
[Prior art]
Conventionally, dielectric ceramics are widely used for dielectric resonators, dielectric substrates for MICs, waveguides, and the like in a high frequency region such as microwaves and millimeter waves. In recent years, with the development and widespread use of mobile communications such as mobile phones, the demand for dielectric ceramics as materials for electronic circuit boards and electronic components is increasing.
[0003]
In the simultaneous firing of dielectric ceramics and internal conductors in electronic circuit boards and electronic parts, the firing temperature of conventional dielectric ceramics is as high as 1100 ° C. or higher, so the conductor material has a relatively high melting point. Pt, Pd, W, Mo, etc. were used. Since these high melting point conductor materials have a large conduction resistance, the conventional electronic circuit board has a problem that the Q value of the resonance circuit and the inductance is reduced, and the transmission loss of the conductor line is increased.
[0004]
Therefore, in order to solve such problems, low-temperature fired dielectric ceramics that can be fired simultaneously with Ag, Cu, etc. having a low conduction resistance have been proposed. For example, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 8-208330 filed earlier by the present applicant is composed of MgO, CaO, TiO 2 and B 2 O 3 , Li 2 CO 3 . It can be fired simultaneously with internal conductors such as Ag and Cu at a relatively low temperature of 900 to 1050 ° C., and has an excellent characteristic that the dielectric constant εr of the dielectric ceramic is 18 or more, and the Q value at a measurement frequency of 7 GHz is 2000 or more. Therefore, the high-frequency electronic components can be reduced in size and performance.
[0005]
[Problems to be solved by the invention]
However, the dielectric ceramic composition disclosed in Japanese Patent Application Laid-Open No. 8-208330 has a high sintering temperature and a shrinkage start temperature in sintering as high as 845 to 960 ° C. There are problems such as poor matching, and the fired substrate and electronic parts are warped and distorted.
[0006]
That is, as a conductor, there is a conductor mainly composed of Ag and / or Cu, for example, a conductor obtained by adding a metal such as a glass component, a ceramic component, Pt, or Pd to Ag, Cu, or Ag, Cu. Since these conductors have a shrinkage start temperature of about 650 ° C. at the highest at the time of firing, there is a large difference from the shrinkage start temperature of the dielectric ceramic composition, thereby causing problems such as deformation of the substrate and the like. there were.
[0007]
Moreover, since the dielectric ceramic composition disclosed in the above publication has a high relative dielectric constant εr of 18 or more, when a high-frequency module substrate is produced using this dielectric ceramic composition, for example, a capacitance is required. There is a problem in that stray capacitance (parasitic capacitance) is generated between wirings that are not connected, between lines, between wirings, and the like, so that high-frequency characteristics are deteriorated and restrictions on circuits are generated.
[0008]
The present invention has been made in view of the above problems, and can lower the firing temperature further than before, lower the shrinkage start temperature, and can approach the shrinkage start temperature of the conductor. An object of the present invention is to provide a dielectric ceramic and a laminate that can suppress warping and distortion even when fired simultaneously with a conductor as described above and have a low relative dielectric constant.
[0009]
[Means for Solving the Problems]
The dielectric ceramic of the present invention includes forsterite crystal particles and crystal particles made of (Mg, Ti) 2 (BO 3 ) O, and B, Li, and alkaline earth metal are present as elements at the grain boundaries. Is.
[0010]
By adopting such a configuration, low-temperature firing at 920 ° C. or less is possible without significantly degrading the original Q value of forsterite, and forsterite itself has a low dielectric constant. Can be greatly reduced.
[0011]
Here, in the dielectric ceramic, Mg is 28.8 to 42.0 wt% in terms of MgO, Ti is 12.4 to 48.0 wt% in terms of TiO 2 , and B is 8.9 in terms of B 2 O 3. It is desirable to contain -15.3 wt% . The dielectric porcelain, the Li from .8 to 8.0% by weight Li 2 CO 3 terms, from 0.8 to 4.6 wt% in terms of oxide of the alkaline earth metals, the Si in terms of SiO 2 It is desirable to contain 3.4 to 38.7% by weight.
[0012]
By adopting such a configuration, the relative dielectric constant is 6 to 12, the Q value at a measurement frequency of 10 GHz is 1000 or more, the firing temperature is 870 to 920 ° C., and the shrinkage start temperature is 760 to 860 ° C. It becomes possible. Therefore, even when a substrate or an electronic component is simultaneously fired with a conductor containing Ag and Cu as main components, the occurrence of warpage, distortion, and the like can be suppressed.
[0013]
Further, it is desirable to contain 0.9 to 2.2 wt% of Mn with MnO 2 basis. Thereby, the sinterability of the dielectric ceramic can be further improved.
[0014]
The laminate of the present invention is a laminate having a conductor mainly composed of Ag and / or Cu inside and / or on the surface of a dielectric substrate formed by laminating a plurality of dielectric layers, Of these, at least one layer is made of the dielectric ceramic.
[0015]
By adopting such a configuration, even when a conductor mainly composed of Ag and / or Cu is used as an internal conductor, the laminate is not deformed, has high-frequency characteristics, and can be fired at a low temperature. Since the dielectric layer has a low dielectric constant, it is possible to suppress the generation of stray capacitance between wires that do not require capacitance, between lines, between wires and lines, and the like.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The dielectric ceramic of the present invention includes forsterite crystal particles and crystal particles made of (Mg, Ti) 2 (BO 3 ) O, and B, Li, and alkaline earth metal are present as elements at the grain boundaries. Is.
[0017]
And when the composition formula by molar ratio is expressed as (1-x) Mg 2 SiO 4 .xMgTiO 3 , x is a main component satisfying 0 ≦ x ≦ 0.8 and 100 parts by weight of the main component B is 3 to 20 parts by weight in terms of B 2 O 3 , Li is 1 to 10 parts by weight in terms of Li 2 CO 3 , Si is 0 to 30 parts by weight in terms of SiO 2 , and alkaline earth metal is in terms of oxide It is desirable to contain 1-5 parts by weight .
[0018]
Here, the molar ratio x between Mg 2 SiO 4 and MgTiO 3 is set to 0 ≦ x ≦ 0.8. When x exceeds 0.8, the proportion of MgTiO 3 having a high dielectric constant increases. This is because the relative dielectric constant increases. In particular, x is preferably 0 ≦ x ≦ 0.5 from the viewpoint of reducing the dielectric constant of the dielectric ceramic. Further, for example, when a laminate of the dielectric layer of the present invention and a MgTiO 3 —CaTiO 3 based dielectric layer is produced, x is 0 <x ≦ 0.5 from the viewpoint of close firing shrinkage behavior. Is desirable.
[0019]
In addition, when the B 2 O 3 equivalent amount is less than 3 parts by weight with respect to 100 parts by weight of the main component, sintering is not performed even at 1100 ° C., and co-firing with a conductor having Ag or Cu as the main component becomes impossible. Conversely, when it exceeds 20 parts by weight, the ratio of the glass phase in the sintered body increases and the Q value decreases. Therefore, it is desirable to contain 5 to 15 parts by weight of B in terms of B 2 O 3 from the viewpoint of maintaining sinterability and obtaining a high Q value. Moreover, it is desirable to contain 8.9 to 15.3% by weight of B in terms of B 2 O 3 in the total amount of the dielectric ceramic . Examples of the boron-containing compound include metal boron, B 2 O 3 , collimite, CaB 2 O 4 , borosilicate glass, borosilicate alkali glass, and borosilicate alkaline earth glass. Further, it is desirable to contain 28.8 to 42.0% by weight of Mg in terms of MgO and 12.4 to 48.0% by weight of Ti in terms of TiO 2 in the total amount of the dielectric ceramic .
[0020]
In addition , when the Li 2 CO 3 equivalent is less than 1 part by weight, it does not sinter even at 1100 ° C., and cannot be co-fired with a conductor mainly composed of Ag or Cu, and conversely exceeds 10 parts by weight. This is because the Q value decreases. From the viewpoint of the sinterability and the Q value of the dielectric ceramic, the Li 2 CO 3 equivalent amount of Li is preferably 4 to 9 parts by weight. Further, it is desirable to contain Li in an amount of 0.8 to 8.0% by weight in terms of Li 2 CO 3 in the total amount of the dielectric ceramic .
[0021]
Furthermore , if the SiO 2 equivalent exceeds 30 parts by weight, the glass phase ratio decreases and the Q value decreases. From the viewpoint of the Q value of the dielectric ceramic, it is desirable that the amount of Si converted to SiO 2 is 10 parts by weight or less. Further, it is desirable that Si is contained in an amount of 3.4 to 38.7% by weight in terms of SiO 2 in the total amount of the dielectric ceramic .
[0022]
Moreover, the reason why 1 to 5 parts by weight of an alkaline earth metal (Mg, Ca, Sr, Ba) is contained in terms of oxide is 1 weight in terms of oxide with respect to 100 parts by weight of the main component. In the case of less than the part, the shrinkage start temperature in the sintering process of the dielectric ceramic is as high as about 870 ° C., and the addition effect cannot be obtained. On the other hand, when the amount exceeds 5 parts by weight, the Q value of the dielectric ceramic decreases. In particular, from the viewpoint of sinterability and Q value of the dielectric ceramic, the alkaline earth metal is preferably contained in a total amount of 1.5 to 3.5 parts by weight in terms of oxide (MgO, CaO, SrO, BaO). Alkaline earth metals are desirable because Ba and Ca have high Q values. Moreover, it is desirable to contain 0.8 to 4.6% by weight of an alkaline earth metal in terms of oxide in the total amount of the dielectric ceramic.
[0023]
Furthermore, in the dielectric ceramic according to the present invention, it is desirable to further contain 0.1 to 3 parts by weight of Mn in terms of MnO 2 with respect to 100 parts by weight of the main component from the viewpoint of improving the sinterability. When Mn is added in an amount of 0.1 to 3 parts by weight in terms of MnO 2 , the addition effect is small when the amount is less than 0.1 part by weight, and the dielectric property is deteriorated when the amount is more than 3 parts by weight. Because it does. It is desirable to contain 1.2 to 1.8 parts by weight of Mn in terms of MnO 2 . Further, it is desirable to contain 0.9 to 2.2% by weight of Mn in terms of MnO 2 in the total amount of the dielectric ceramic .
[0024]
The dielectric ceramic of the present invention includes, for example, Mg 2 SiO 4 powder, MgTiO 3 powder, B 2 O 3 powder, Li 2 CO 3 powder, SiO 2 powder, alkaline earth oxide powder (MgO) as raw material powder. , CaO, SrO, BaO) are prepared, weighed so as to have the above-described composition ratio, pulverized and mixed with a ZrO 2 ball, this mixed powder was calcined at 650 to 850 ° C., and then again ZrO 2 ball The mixture is pulverized and mixed until the pulverized particle size becomes 2.5 μm or less.
[0025]
This calcined powder is molded into a predetermined shape by a known method such as press molding or a doctor blade method, and is 0.5 to 2 hours at 870 to 920 ° C. in a non-oxidizing atmosphere such as air, oxygen atmosphere or nitrogen atmosphere. It is obtained by firing. The raw material powder may be a metal salt such as a hydroxide, carbonate, nitrate, etc. that generates an oxide upon firing. The dielectric ceramic of the present invention may contain Al, Fe, Hf, Sn, etc. as inevitable impurities.
[0026]
The alkaline earth metal is preferably added as a glass frit from the viewpoint of improving the sinterability. For example, a glass frit is prepared and added using B 2 O 3 powder, Li 2 CO 3 powder, SiO 2 powder, or alkaline earth metal oxide powder. At this time, it goes without saying that the amount added as B 2 O 3 powder, Li 2 CO 3 powder, SiO 2 powder, alkaline earth oxide powder is an amount obtained by subtracting the amount used in the glass frit. .
[0027]
In the dielectric ceramic according to the present invention, forsterite crystal particles are used as main crystal particles, and crystal particles made of a complex oxide containing at least Mg and Ti as metal elements as necessary, mainly (Mg, Ti). 2 (BO 3 ) O precipitates, and MgTiO 3 may precipitate depending on the composition.
[0028]
The alkaline earth metal is solid-solved at the A site of MgTiO 3 or becomes glass to improve the sinterability. The dielectric ceramic of the present invention has an average crystal grain size of 1 to 5 μm.
[0029]
The laminate of the present invention is a laminate having a conductor mainly composed of Ag and / or Cu inside and / or on the surface of a dielectric substrate formed by laminating a plurality of dielectric layers, At least one layer is made of the above dielectric ceramic. For example, when a laminate of the low dielectric constant dielectric layer of the present invention and a high dielectric constant MgTiO 3 —CaTiO 3 dielectric layer is produced, The low dielectric constant of the present invention is used for wiring, etc., in which capacitors, filters, etc. that require a high dielectric constant are formed of a high dielectric constant MgTiO 3 —CaTiO 3 based dielectric layer and the floating capacitance between wirings and the like is not to be generated. The dielectric layer can be formed.
[0030]
In such a laminated body, even when a conductor mainly composed of Ag and / or Cu is used as an internal conductor, the laminated body is not deformed, has high-frequency characteristics, and can be fired at a low temperature. Of these, at least one layer is made of the dielectric ceramic having a low dielectric constant according to the present invention, so that electrodes, lines, etc. are formed using this dielectric layer, so that no wiring is required between the lines, between the lines, Generation of stray capacitance between lines can be suppressed.
[0031]
【Example】
B 2 O 3 powder, Li 2 CO 3 powder, SiO 2 powder, alkaline earth oxide (MgO, CaO, SrO, BaO) powder was added in the composition shown in Table 1 and produced using this. Glass frit and Mg 2 SiO 4 and MgTiO 3 powders with a purity of 99% or more as raw materials are weighed so as to have the ratios shown in Table 1, and are wet for 20 hours in a ball mill using pure water as a medium and ZrO 2 balls. Mixed. In Table 1, values that are not in parentheses are those in which the main component is 100 parts by weight and each component added to 100 parts by weight of the main component is expressed in parts by weight. Further, the values shown in parentheses in Table 1 indicate the ratio of each component in the dielectric ceramic in weight%. That is, first, when the main component is 100 parts by weight, and the parts by weight of B 2 O 3 , Li 2 CO 3 , SiO 2 and alkaline earth oxide are added to this, the value exceeds 100 parts by weight. When this part is divided by the weight part of each component and multiplied by 100, the value is expressed in weight% in parentheses.
[0032]
The mixture was then dried (dehydrated) and calcined at 800 ° C. for 1 hour. The calcined product is pulverized so that the pulverized particle size is 1.4 μm or less, and is press-molded at a pressure of 10000 ton / m 2 into a cylindrical shape having a diameter of 0.01 m and a height of 0.008 m as a sample for dielectric property evaluation. This was fired at 900 ° C. for 2 hours to obtain a cylindrical sample having a diameter of 0.008 m and a height of 0.006 m.
[0033]
In addition, the present inventors, by X-ray diffraction measurement and X-ray microanalyzer (EPMA), in the sample of the present invention, the main crystal particles are represented by forsterite crystal particles and (Mg, Ti) 2 (BO 3 ) O. It was confirmed that crystal grains to be present exist, and B, Li, and alkaline earth metal exist as elements at the grain boundaries.
[0034]
Evaluation of dielectric characteristics was performed by measuring the relative dielectric constant and Q value at a frequency of 10 GHz by the dielectric cylindrical resonator method using the sample.
[0035]
[Table 1]
Figure 0003860687
[0036]
From Table 1, in the dielectric ceramic of the present invention, the dielectric constant is 6 to 14, the Q value at a measurement frequency of 10 GHz is 500 or more, and the firing temperature can be 920 ° C. or less. The firing shrinkage start temperature can be 860 ° C. or less.
[0037]
In particular, in the composition formula (1-x) Mg 2 SiO 4 .xMgTiO 3 by molar ratio, x satisfies 0 ≦ x ≦ 0.8, B is 3 to 20 parts by weight in terms of B 2 O 3 , and Li is When containing 1 to 10 parts by weight in terms of Li 2 CO 3 , 0 to 30 parts by weight in terms of Si 2 in terms of SiO 2 , and 1 to 5 parts by weight in terms of oxides of alkaline earth metals, the relative dielectric constant is 6 to 12 shows that the Q value at a measurement frequency of 10 GHz is 1000 or more, the firing temperature can be set to 870 to 920 ° C., and the shrinkage start temperature can be set to 760 to 860 ° C. Thereby, in a board | substrate and an electronic component, generation | occurrence | production of a curvature, a distortion | strain, etc. can be suppressed even when co-firing with the conductor which has Ag and Cu as a main component.
[0038]
On the other hand, when Li is not contained, as shown in Sample No. 7, the firing temperature is as high as 1150 ° C. and the shrinkage start temperature is as high as 1050 ° C., which cannot be simultaneously fired with a conductor mainly composed of Ag and Cu. I understand.
[0039]
Further, when no alkaline earth metal is contained, as shown in Sample No. 11, it can be seen that the firing temperature is as high as 950 ° C. and the shrinkage start temperature is as high as 870 ° C.
[0040]
【The invention's effect】
As described in detail above, according to the present invention, low-temperature firing at 920 ° C. or less is possible without significantly degrading the original Q value of forsterite, and the forsterite itself has a low dielectric constant. The rate can be reduced to 14 or less.
[0041]
In particular, when the composition formula by molar ratio is expressed as (1-x) Mg 2 SiO 4 .xMgTiO 3 , x is a main component satisfying 0 ≦ x ≦ 0.8, and 100 parts by weight of the main component. On the other hand, B is 3 to 20 parts by weight in terms of B 2 O 3 , Li is 1 to 10 parts by weight in terms of Li 2 CO 3 , Si is 0 to 30 parts by weight in terms of SiO 2 , and alkaline earth metal is an oxide In a dielectric ceramic containing 1 to 5 parts by weight in terms of relative dielectric constant, the dielectric constant is 6 to 12, the Q value at a measurement frequency of 10 GHz is 1000 or more, the firing temperature is 870 to 920 ° C., and the shrinkage start temperature is The temperature can be set to 760 to 860 ° C., and the occurrence of warpage, distortion, and the like can be suppressed even when the substrate and the electronic component are simultaneously fired with a conductor mainly composed of Ag and Cu.

Claims (5)

ォルステライト結晶粒子と(Mg,Ti) (BO )Oからなる結晶粒子とを含むとともに、粒界に、元素としてB、Li、アルカリ土類金属が存在することを特徴とする誘電体磁器。 Off Orusuteraito crystal grains and (Mg, Ti) together and a 2 (BO 3) O composed of crystal grains, the dielectric ceramic, wherein the grain boundaries, B as the element, Li, the presence of alkaline earth metal . MgをMgO換算で28.8〜42.0重量%、TiをTiO 換算で12.4〜48.0重量%、BをB 換算で8.9〜15.3重量%含有することを特徴とする請求項1記載の誘電体磁器。 28.8 to 42.0% by weight of Mg in terms of MgO, 12.4 to 48.0% by weight of Ti in terms of TiO 2, which contained 8.9 to 15.3 wt% in terms of B 2 O 3 B The dielectric ceramic according to claim 1. LiをLi CO 換算で0.8〜8.0重量%、アルカリ土類金属を酸化物換算で0.8〜4.6重量%、SiをSiO 換算で3.4〜38.7重量%含有することを特徴とする請求項1または2記載の誘電体磁器。 Li is 0.8 to 8.0 wt% in terms of Li 2 CO 3 , alkaline earth metal is 0.8 to 4.6 wt% in terms of oxide, and Si is 3.4 to 38.7 in terms of SiO 2. The dielectric ceramic according to claim 1, wherein the dielectric ceramic is contained by weight% . nをMnO換算で0.9〜2.2重量%含有することを特徴とする請求項1乃至3のうちいずれかに記載の誘電体磁器。The dielectric ceramic according to any one of claims 1 to 3, characterized in that it contains 0.9 to 2.2% by weight of M n with MnO 2 basis. 誘電体層を複数積層してなる誘電基板の内部および/または表面に、Agおよび/またはCuを主成分とする導体を有する積層体であって、前記誘電体層のうち少なくとも一層が、請求項1乃至4のうちいずれかに記載の誘電体磁器からなることを特徴とする積層体。A laminate having a conductor mainly composed of Ag and / or Cu in and / or on a surface of a dielectric substrate formed by laminating a plurality of dielectric layers, wherein at least one of the dielectric layers is a claim. A laminated body comprising the dielectric ceramic according to any one of 1 to 4.
JP30836399A 1999-10-29 1999-10-29 Dielectric porcelain and laminate Expired - Lifetime JP3860687B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP30836399A JP3860687B2 (en) 1999-10-29 1999-10-29 Dielectric porcelain and laminate
EP00123551A EP1096674B1 (en) 1999-10-29 2000-10-27 Circuit substrate
US09/699,666 US6417461B1 (en) 1999-10-29 2000-10-30 Circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30836399A JP3860687B2 (en) 1999-10-29 1999-10-29 Dielectric porcelain and laminate

Publications (2)

Publication Number Publication Date
JP2001130952A JP2001130952A (en) 2001-05-15
JP3860687B2 true JP3860687B2 (en) 2006-12-20

Family

ID=17980172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30836399A Expired - Lifetime JP3860687B2 (en) 1999-10-29 1999-10-29 Dielectric porcelain and laminate

Country Status (1)

Country Link
JP (1) JP3860687B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535592B2 (en) * 2000-09-28 2010-09-01 京セラ株式会社 Laminated body
JP4632534B2 (en) * 2000-12-27 2011-02-16 京セラ株式会社 Dielectric porcelain and manufacturing method thereof
JP5187997B2 (en) * 2001-09-19 2013-04-24 京セラ株式会社 Dielectric porcelain, method of manufacturing the same, and dielectric resonator using the same
US7368407B2 (en) * 2003-05-30 2008-05-06 Yasufuku Ceramics Co., Ltd. High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
KR100567322B1 (en) * 2003-12-12 2006-04-04 한국전자통신연구원 Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
JP5170522B2 (en) * 2007-02-22 2013-03-27 Tdk株式会社 Dielectric porcelain composition
US8765621B2 (en) 2008-11-25 2014-07-01 Ube Industries, Ltd. Dielectric ceramic composition for high-frequency use and method for producing the same, as well as dielectric ceramic for high-frequency use and method for producing the same and high-frequency circuit element using the same
JP2011162418A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP6912188B2 (en) * 2016-11-25 2021-08-04 京セラ株式会社 Ceramic porcelain, wiring boards and electronic components
CN112979304B (en) * 2021-04-25 2021-08-27 北京中科三环高技术股份有限公司 Microwave dielectric ceramic, preparation method thereof and microwave device

Also Published As

Publication number Publication date
JP2001130952A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP5076907B2 (en) Method for producing forsterite powder, forsterite powder, forsterite sintered body, insulator ceramic composition, and multilayer ceramic electronic component
JP4535592B2 (en) Laminated body
EP1331208A2 (en) Dielectric ceramic composition and dielectric ceramics
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP2001114554A (en) Low-temperature burnable ceramic composition and ceramic multilayer substrate
JP3860687B2 (en) Dielectric porcelain and laminate
JP4249690B2 (en) High frequency dielectric ceramics and laminates
JP2000239061A (en) Dielectric porcelain composition
JP3793550B2 (en) Dielectric porcelain and laminate
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP3631607B2 (en) High frequency dielectric ceramics and laminates
JP2010037126A (en) Ceramic composition and ceramic sintered compact
JP4618856B2 (en) Low temperature fired porcelain
JP3793549B2 (en) Dielectric porcelain composition and laminate
JP2001284807A (en) Circuit board
JP4325920B2 (en) Dielectric porcelain composition and method for producing dielectric porcelain
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JP3754798B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3905993B2 (en) High frequency dielectric ceramic composition and laminated part using the same
JP3631589B2 (en) Dielectric porcelain composition and laminate
JP3754778B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JPH10189828A (en) Low-temperature baked ceramic composition and manufacturing method of low-temperature baked ceramic
JP3411190B2 (en) Dielectric porcelain composition
JP3631580B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JPH11278925A (en) Dielectric porcelain composition and laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060922

R150 Certificate of patent or registration of utility model

Ref document number: 3860687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

EXPY Cancellation because of completion of term