[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3859568B2 - Hybrid air conditioner - Google Patents

Hybrid air conditioner Download PDF

Info

Publication number
JP3859568B2
JP3859568B2 JP2002277178A JP2002277178A JP3859568B2 JP 3859568 B2 JP3859568 B2 JP 3859568B2 JP 2002277178 A JP2002277178 A JP 2002277178A JP 2002277178 A JP2002277178 A JP 2002277178A JP 3859568 B2 JP3859568 B2 JP 3859568B2
Authority
JP
Japan
Prior art keywords
solvent
heat exchanger
refrigerant
absorption
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002277178A
Other languages
Japanese (ja)
Other versions
JP2004116806A (en
Inventor
克也 大島
成人 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2002277178A priority Critical patent/JP3859568B2/en
Publication of JP2004116806A publication Critical patent/JP2004116806A/en
Application granted granted Critical
Publication of JP3859568B2 publication Critical patent/JP3859568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸収式冷凍機と圧縮ヒートポンプとを組み合わせたハイブリッド空調機に関する。
【0002】
【従来の技術】
臭化リチウムなどのリチウム塩溶液(吸収溶液)を使用する吸収式冷凍機は、再生器で吸収液を加熱して溶媒蒸気と濃縮吸収溶液とに分離し、冷凍ユニットに供給する。冷凍ユニットは、溶媒蒸気を液化させる溶媒凝縮器、液化溶媒を蒸発させながら作動流体を冷却する溶媒蒸発器、および蒸発した溶媒を濃縮吸収溶液に吸収させながら発生する吸収熱を冷却水に吸熱させて吸収液を冷却し、溶媒蒸発器における液化溶媒の蒸発を持続させる吸収器を備えている。
【0003】
吸収式冷凍機を用いて冷房運転を行う場合には、溶媒蒸気の凝縮熱および吸収熱を大気中に排出するため、溶媒凝縮器および吸収器に冷却機構が付設され、また、溶媒蒸発器と空調熱交換器との間で空調流体を循環させる。冷却機構は、通常、冷却水の循環によって除熱を行う水冷式冷却塔(クーリングタワー)が採られる。
【0004】
冷房運転の際の吸収式冷凍機の冷凍能力は、溶媒蒸発器での液化溶媒の蒸発量と比例しており、蒸発量は吸収器での吸収量に依存している。冷凍能力の向上または冷凍ユニットの小型化には、吸収器での溶媒蒸気の吸収効率を向上させることが重要である。吸収効率の向上は、吸収器での吸収液と溶媒蒸気との接触面積を増大させること、および発生した吸収熱を冷却水に迅速に伝達(熱引き)させることにより達成できる(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開2002−61986公報
【0006】
【発明が解決しようとする課題】
水冷式冷却塔は、水および水に溶けた溶質の除去のために維持、管理(メンテナンス)に手間がかかり、家庭用など小型の空調機では負担が大きく、実用性が低下する原因となっている。空冷式冷却塔を使用すれば維持、管理が容易であるが、水冷式冷却塔が冷却水により40℃付近まで吸収溶液を冷却できる(空調流体を5〜6℃まで下げられる)のに対し、空冷式冷却塔は空気により吸収溶液を50℃程度までしか冷却できない(空調流体は約10℃までしか下げられない)ため、空冷式にて空調流体を5〜6℃まで下げるには溶液濃度を5%程度上げる必要が生じる。溶液濃度を5%程度上げると、溶液の晶析、再生器の温度上昇、それにともなう材料の腐食、水素の発生などの問題が発生する。
【0007】
この発明の目的は、溶液濃度を上げることなく空調能力の増大が可能であるとともに、維持、管理を容易に行うことのできるハイブリッド空調機の提供にある。
【0008】
【課題を解決するための手段】
この発明のハイブリッド空調機は、吸収溶液を加熱して溶媒と濃縮吸収溶液とに分離する再生器、分離された溶媒蒸気を凝縮する溶媒凝縮器、溶媒を蒸発させる溶媒蒸発器、蒸発した溶媒を濃縮吸収溶液に吸収させる吸収器、溶媒を吸収して希釈された吸収溶液を再生器に還流させるポンプを有する吸収式冷凍機と、空調流体が循環する空調熱交換器を備えた空調機と、冷媒圧縮機、冷媒熱交換器、冷媒膨張弁を有する圧縮式冷凍機とからなるハイブリッド空調機であって、冷房運転時には、圧縮式冷凍機と吸収器との間で冷媒を循環させる回路と、溶媒蒸発器と空調熱交換器との間で空調流体を循環させる回路に切り替えることにより、蒸発した溶媒が濃縮吸収溶液に吸収される際に発生する吸収熱を、圧縮式冷凍機の冷媒熱交換器で大気に放出し、暖房運転時には、圧縮式冷凍機と溶媒蒸発器との間で冷媒を循環させる回路と、吸収器と空調熱交換器との間で空調流体を循環させる回路に切り替えることにより、大気熱を圧縮式冷凍機の冷媒熱交換器で吸収し溶媒蒸発器で放出することを特徴とする。
さらに、このハイブリッド空調機は、溶媒凝縮器内の溶媒蒸気を、冷媒熱交換器に付設された送風機で強制冷却できる外部熱交換器に導き凝縮させ、凝縮熱を外部熱交換器から大気に放出することができることを特徴とする。
【0009】
【発明の効果】
この発明では、冷房運転時に圧縮式冷凍機により吸収器に冷媒を循環させて吸収熱を大気に放出させる。このため、メンテナンスが容易であるとともに、冷房能力が増大でき、かつ吸収式冷凍機の問題を回避できる。また、圧縮式冷凍機はコンパクトであるとともに多量に生産されているため低コストであり、設置スペースの有効利用および低コスト化が可能になり、さらに冷房運転と暖房運転が1つの設備で可能になる。
【0010】
【発明の実施の形態】
この発明を図に示す実施例とともに説明する。図1は本実施例にかかるハイブリッド空調機1および冷房運転時の作動流体の流れを、図2は本実施例にかかるハイブリッド空調機1および暖房運転時の作動流体の流れを示す。ハイブリッド空調機1は、臭化リチウム水溶液などのリチウム塩溶液(以下、吸収溶液と称する)を作動流体とした吸収式冷凍機2と、フレオン、炭酸ガスなど圧縮性流体(以下、冷媒と称する)を作動流体とする圧縮式冷凍機3と、該冷媒と同種の流体を空調流体とする空調機4とを組み合わせた構成を有する。
【0011】
吸収式冷凍機2は、高温再生器21と、その上方に配された分離器22と、負圧タンク5とを有し、それぞれが吸収溶液または溶媒の流路で連結されている。高温再生器21は、溶液ポンプ23が設けられた低濃度の吸収溶液(淡液と称する)の淡液流路24を経由して、負圧タンク5の底部から淡液が還流する溶液タンク25と、該溶液タンク25を加熱するための加熱源(バーナ)Bとを備えている。高温再生器21で加熱され沸騰した淡液は、分離器22で水(溶媒)蒸気と、濃縮した中濃度の吸収溶液(中液と称する)とに分離される。
【0012】
水蒸気と高温度の中液とは、それぞれ溶媒流路26および中液流路27を経て、負圧タンク5内の上部に設置された低温再生器51に、区分して供給される。この際に中液流路27を流れる高温度の中液と、淡液流路24を経て溶液タンク25に還流する淡液とは、熱効率の向上のために高温熱交換器11で熱交換される。低温再生器51内には、再生熱交換器52が備えられ、溶媒流路26内の水蒸気と中液との熱交換が行われ、水蒸気は凝縮して水となり、この際に生じる凝縮熱で中液は再沸騰し、水蒸気と、高濃度の吸収溶液(濃液と称する)とが生成される。
【0013】
低温再生器51で生成した水蒸気は、負圧タンク5内の上部に設置された溶媒凝縮器6に導かれる。
冷房運転時には、図1に示すごとく溶媒凝縮器6内の水蒸気は、バルブ66を備えた水蒸気流路60により、後記する圧縮式冷凍機3の送風機33で強制冷却される外部熱交換器63に導かれ、凝縮して溶媒容器62に還流する。凝縮熱は、外部熱交換器63から大気に放出される。
暖房運転時には、図2に示すごとく溶媒凝縮器6内の水蒸気は、溶媒凝縮器6内に備えられた内部熱交換器61に空調流体が流れ、内部熱交換機61の表面で凝縮し、溶媒容器62に溜まる。凝縮熱は内部熱交換器61内を流れる空調流体に吸収される。
【0014】
負圧タンク5の下部には、吸収熱交換器71を備えた吸収器7と、蒸発熱交換器81を備えた溶媒蒸発器8とが設けられている。吸収熱交換器71には、濃液流路64を経て供給される濃液が上から散布される。この際に、濃液は、淡液流路24を経て溶液タンク25に還流する淡液と低温熱交換器12内で熱交換される。蒸発熱交換器81には、溶媒容器62に溜まった水が溶媒流路65を通して上から散布される。
【0015】
蒸発熱交換器81に散布された水は、蒸発熱交換器81の表面で蒸発し、蒸発熱で蒸発熱交換器81内を流れる空調流体を冷却する。蒸発した水は、吸収熱交換器71の表面で濃液に吸収され、この際に発生する吸収熱は、吸収熱交換器71内を流れる作動流体に吸収される。
【0016】
圧縮式冷凍機3は、冷媒圧縮機31と、該冷媒圧縮機31に冷媒流路30で連結された冷媒熱交換器32および膨張弁34を備えている。冷媒熱交換器32には送風機33が付設されている。
【0017】
冷房運転時には、冷媒は冷媒圧縮機31により圧縮され高温となり、冷媒熱交換器32において送風機33によって冷却され凝縮熱を大気に放出する。凝縮された冷媒は膨張弁34で膨張して低温になり、吸収熱交換器71に供給される。低温になった冷媒は吸収熱交換器71の表面で発生した吸収熱を吸収して吸収液を冷却する。すなわち、圧縮式冷凍機3は、吸収熱交換器71で発生する吸収熱を、迅速に大気に放出する作用を有し、ハイブリッド空調機1の冷房能力を増大させている。
【0018】
暖房運転時には、冷媒は膨張弁34により膨張され、冷媒熱交換器32において送風機33によって給熱され蒸発し、蒸発熱として大気熱を吸収する。蒸発した冷媒は冷媒圧縮機31により圧縮されて高温となり、蒸発熱交換器81に供給される。冷媒は蒸発熱交換器81内で凝縮し、凝縮熱を蒸発熱交換器81の表面で発生した溶媒蒸気に蒸発熱として供給する。すなわち、圧縮式冷凍機3は、冷媒熱交換器32で得た大気熱を、迅速に蒸発熱交換器81で発生する溶媒蒸気に供給する作用を有し、ハイブリッド空調機1の暖房能力を増大させている。
【0019】
空調機4は、空調流体が冷媒と同種物質であり、ポンプ41と、該ポンプ41に空調流路40で連結された室内熱交換器などの負荷42とを備える。
【0020】
冷媒流路30、空調流路40、内部熱交換器61、吸収熱交換器71および蒸発熱交換器81は、冷房運転と暖房運転との切り替えを可能とするために、2つの四方弁91、92および1つの三方弁93で連結されている。また、冷房運転と暖房運転で冷媒の流れを逆転させる必要があるため、冷媒流路30において、冷媒圧縮機31と冷媒熱交換器32との間にも四方弁94を備えている。
【0021】
四方弁91は、第1ポートが吸収熱交換器71、第2ポートが空調流路40における負荷42、第3ポートが冷媒流路30における膨張弁34、第4ポートが蒸発熱交換器81と連結している。四方弁92は、第1ポートが蒸発熱交換器81、第2ポートが空調流路40におけるポンプ41、第3ポートが冷媒流路30における四方弁94、第4ポートが内部熱交換器61および三方弁93と連結している。四方弁94は、第1ポートが冷媒圧縮機31の入側、第2ポートが四方弁92、第3ポートが冷媒熱交換器32、第4ポートが冷媒圧縮機31の出側と連結している。
【0022】
冷房運転時には、冷媒は、吸収熱交換器71で生じる吸収熱を吸収して、圧縮式冷凍機3で大気に放出する。そこで、四方弁91では第3ポートから第1ポートへ、四方弁92では第4ポートから第3ポートへ、三方弁93では吸収熱交換器71から四方弁92へ冷媒が流れるように流路を切り替える。四方弁94では、冷媒凝縮熱を大気中に放出するため、第2ポートから第1ポートを経て冷媒圧縮機31へ入り、第4ポートから第3ポートを経て冷媒熱交換器32に送られるように流路を切り替える。
【0023】
空調流体は、負荷42で室内熱を吸収し、蒸発熱交換器81で蒸発熱として放出する。そこで、四方弁91では第2ポートから第4ポートへ、四方弁92では第1ポートから第2ポートへ空調流体が流れるように流路を切り替える。
【0024】
暖房運転時には、冷媒は、圧縮式冷凍機3で大気熱を吸収して、蒸発熱交換器81で蒸発熱として放出する。そこで、四方弁91では第4ポートから第3ポートへ、四方弁92では第3ポートから第1ポートへ冷媒が流れるように流路を切り替える。四方弁94では、大気熱を冷媒蒸発熱として吸収するため、第3ポートから第1ポートを経て冷媒圧縮機31へ入り、第4ポートから第2ポートを経て蒸発熱交換器81、膨張弁34、冷媒熱交換器32の順に送られるように流路を切り替える。
【0025】
空調流体は、吸収熱交換器71で吸収熱を、内部熱交換器61で凝縮熱を吸収し、負荷42で室内へ放出する。そこで、四方弁91では第2ポートから第1ポートへ、四方弁92では第4ポートから第2ポートへ、三方弁93では吸収熱交換器71から内部熱交換器61へ空調流体が流れるように流路を切り替える。
【0026】
ハイブリット空調機1では、メンテナンスが容易で、量産されている圧縮式冷凍機3により冷房または暖房運転をアシストする。このため実用性が高く、また、外気温度が高くても冷媒から大気への放熱が不十分になることはなく、逆に低くても冷媒への大気熱の吸収が不十分になることはない。
また、3つの四方弁91、92、94と1つの三方弁93の流路を切り替えるだけで冷房運転と暖房運転の切り替えが可能となる。
【0027】
〔変形例〕
本実施例では冷房運転時に水蒸気流路60を用いて、溶媒凝縮器6内の水蒸気を凝縮させるようにしたが、吸収熱交換器71を通った後の冷媒が、溶媒凝縮器6の内部熱交換器61に流れる回路にして、水蒸気の凝縮熱が内部熱交換器61内を流れる冷媒に吸収されるようにしてもよい。
【図面の簡単な説明】
【図1】 本実施例のハイブリッド空調機の概略図と冷房運転時の作動流体の流れを示すものである。
【図2】 本実施例のハイブリッド空調機の概略図と暖房運転時の作動流体の流れを示すものである。
【符号の説明】
21 高温再生器
31 冷媒圧縮機
34 膨張弁
42 負荷
5 負圧タンク
51 低温再生器
6 溶媒凝縮器
7 吸収器
8 溶媒蒸発器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hybrid air conditioner that combines an absorption refrigerator and a compression heat pump.
[0002]
[Prior art]
In an absorption refrigerator using a lithium salt solution (absorption solution) such as lithium bromide, the absorption liquid is heated by a regenerator to be separated into a solvent vapor and a concentrated absorption solution and supplied to a refrigeration unit. The refrigeration unit consists of a solvent condenser that liquefies the solvent vapor, a solvent evaporator that cools the working fluid while evaporating the liquefied solvent, and absorption water that is generated while absorbing the evaporated solvent in the concentrated absorbent solution is absorbed by the cooling water. And an absorber that cools the absorbing liquid and keeps the evaporation of the liquefied solvent in the solvent evaporator.
[0003]
When cooling operation is performed using an absorption refrigerator, a cooling mechanism is attached to the solvent condenser and the absorber in order to discharge the condensation heat and absorption heat of the solvent vapor to the atmosphere. Air conditioning fluid is circulated with the air conditioning heat exchanger. The cooling mechanism is usually a water-cooled cooling tower (cooling tower) that removes heat by circulating cooling water.
[0004]
The refrigerating capacity of the absorption refrigerator during cooling operation is proportional to the evaporation amount of the liquefied solvent in the solvent evaporator, and the evaporation amount depends on the absorption amount in the absorber. In order to improve the refrigerating capacity or downsize the refrigeration unit, it is important to improve the absorption efficiency of the solvent vapor in the absorber. The improvement in absorption efficiency can be achieved by increasing the contact area between the absorption liquid and the solvent vapor in the absorber, and by quickly transferring the generated absorption heat to the cooling water (for example, patent document). 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-61986
[Problems to be solved by the invention]
Water-cooled cooling towers require maintenance and management (maintenance) for the removal of water and solutes dissolved in water, which is a burden on small air conditioners such as home use and causes practicality to decline. Yes. If an air-cooled cooling tower is used, it is easy to maintain and manage, but the water-cooled cooling tower can cool the absorption solution to around 40 ° C. with cooling water (air conditioning fluid can be lowered to 5-6 ° C.), Since the air-cooled cooling tower can only cool the absorbing solution to about 50 ° C. by air (air-conditioned fluid can only be lowered to about 10 ° C.), the solution concentration must be reduced to lower the air-conditioned fluid to 5-6 ° C. by air-cooling. It will be necessary to raise it about 5%. When the concentration of the solution is increased by about 5%, problems such as crystallization of the solution, temperature increase of the regenerator, material corrosion, and generation of hydrogen occur.
[0007]
An object of the present invention is to provide a hybrid air conditioner that can increase the air conditioning capability without increasing the solution concentration and can be easily maintained and managed.
[0008]
[Means for Solving the Problems]
Hybrid air conditioner of the present invention, regenerator absorbent solution by heating is separated into a solvent and concentrated absorbent solution, the solvent condenser for condensing the separated solvent vapors, solvent evaporator for evaporating the solvent, the evaporated solvent An absorber to be absorbed into the concentrated absorbent solution, an absorption refrigerator having a pump for recirculating the diluted absorbent solution by absorbing the solvent to the regenerator, an air conditioner having an air conditioning heat exchanger through which the air conditioning fluid circulates, A hybrid air conditioner comprising a refrigerant compressor, a refrigerant heat exchanger, and a compression refrigerator having a refrigerant expansion valve, and during cooling operation, a circuit for circulating the refrigerant between the compressor refrigerator and the absorber; By switching to a circuit that circulates air-conditioned fluid between the solvent evaporator and the air-conditioning heat exchanger, the heat generated when the evaporated solvent is absorbed by the concentrated absorbent solution is exchanged for refrigerant heat in the compression refrigerator. Atmosphere At the time of heating operation, the atmospheric heat is switched by switching to a circuit for circulating the refrigerant between the compression refrigerator and the solvent evaporator and a circuit for circulating the air-conditioning fluid between the absorber and the air-conditioning heat exchanger. Is absorbed by a refrigerant heat exchanger of a compression refrigerator and discharged by a solvent evaporator.
Furthermore, this hybrid air conditioner guides and condenses the solvent vapor in the solvent condenser to an external heat exchanger that can be forcibly cooled by a blower attached to the refrigerant heat exchanger, and releases the condensation heat from the external heat exchanger to the atmosphere. It can be done.
[0009]
【The invention's effect】
In the present invention, during the cooling operation, the refrigerant is circulated through the absorber by the compression refrigerator and the absorbed heat is released to the atmosphere. For this reason, the maintenance is easy, the cooling capacity can be increased, and the problem of the absorption refrigerator can be avoided. In addition, the compression refrigeration machine is compact and produced in large quantities, so it is low-cost, enabling effective use of the installation space and cost reduction, and cooling and heating operations can be performed with a single facility. Become.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described with the embodiments shown in the drawings. FIG. 1 shows the flow of the working fluid during the hybrid air conditioner 1 and the cooling operation according to the present embodiment, and FIG. 2 shows the flow of the working fluid during the heating operation and the hybrid air conditioner 1 according to the present embodiment. The hybrid air conditioner 1 includes an absorption refrigerator 2 using a lithium salt solution (hereinafter referred to as an absorption solution) such as an aqueous lithium bromide solution and a compressive fluid (hereinafter referred to as a refrigerant) such as freon and carbon dioxide. Is a combination of a compression refrigeration machine 3 using a working fluid and an air conditioner 4 using a fluid of the same type as the refrigerant as an air conditioning fluid.
[0011]
The absorption refrigerator 2 includes a high-temperature regenerator 21, a separator 22 disposed above the high-temperature regenerator 21, and a negative pressure tank 5, each of which is connected by an absorption solution or solvent flow path. The high-temperature regenerator 21 is a solution tank 25 in which the fresh liquid recirculates from the bottom of the negative pressure tank 5 via a fresh liquid flow path 24 of a low concentration absorbing solution (referred to as a fresh liquid) provided with a solution pump 23. And a heating source (burner) B for heating the solution tank 25. The fresh liquid heated and boiled by the high-temperature regenerator 21 is separated by the separator 22 into water (solvent) vapor and a concentrated medium concentration absorbing solution (referred to as medium liquid).
[0012]
The water vapor and the high-temperature medium liquid are supplied separately through a solvent flow path 26 and a medium-liquid flow path 27 to a low-temperature regenerator 51 installed in the upper part of the negative pressure tank 5. At this time, the high-temperature intermediate liquid flowing through the intermediate liquid flow path 27 and the fresh liquid returning to the solution tank 25 via the fresh liquid flow path 24 are heat-exchanged by the high-temperature heat exchanger 11 in order to improve thermal efficiency. The A regenerative heat exchanger 52 is provided in the low-temperature regenerator 51, and heat exchange between the water vapor in the solvent flow path 26 and the intermediate liquid is performed, and the water vapor condenses into water. The middle liquid re-boils, and water vapor and a high concentration absorbing solution (referred to as a concentrated liquid) are produced.
[0013]
The water vapor generated by the low temperature regenerator 51 is guided to the solvent condenser 6 installed in the upper part of the negative pressure tank 5.
During the cooling operation, as shown in FIG. 1, the water vapor in the solvent condenser 6 is transferred to the external heat exchanger 63 that is forcedly cooled by the blower 33 of the compression refrigeration machine 3, which will be described later, through the water vapor flow path 60 having the valve 66. It is guided, condensed and refluxed to the solvent container 62. The condensation heat is released from the external heat exchanger 63 to the atmosphere.
During the heating operation, as shown in FIG. 2, the water vapor in the solvent condenser 6 flows into the internal heat exchanger 61 provided in the solvent condenser 6, and is condensed on the surface of the internal heat exchanger 61. Accumulate at 62. Condensation heat is absorbed by the air-conditioning fluid flowing in the internal heat exchanger 61.
[0014]
Under the negative pressure tank 5, an absorber 7 having an absorption heat exchanger 71 and a solvent evaporator 8 having an evaporation heat exchanger 81 are provided. In the absorption heat exchanger 71, the concentrated liquid supplied through the concentrated liquid channel 64 is sprayed from above. At this time, the concentrated liquid is heat-exchanged in the low-temperature heat exchanger 12 with the fresh liquid flowing back to the solution tank 25 via the fresh liquid flow path 24. In the evaporation heat exchanger 81, water accumulated in the solvent container 62 is sprayed from above through the solvent flow path 65.
[0015]
The water sprayed on the evaporating heat exchanger 81 evaporates on the surface of the evaporating heat exchanger 81, and cools the air-conditioning fluid flowing in the evaporating heat exchanger 81 with evaporating heat. The evaporated water is absorbed by the concentrated liquid on the surface of the absorption heat exchanger 71, and the absorption heat generated at this time is absorbed by the working fluid flowing in the absorption heat exchanger 71.
[0016]
The compression refrigerator 3 includes a refrigerant compressor 31, a refrigerant heat exchanger 32 and an expansion valve 34 connected to the refrigerant compressor 31 through a refrigerant flow path 30. A fan 33 is attached to the refrigerant heat exchanger 32.
[0017]
During the cooling operation, the refrigerant is compressed by the refrigerant compressor 31 and becomes a high temperature, and is cooled by the blower 33 in the refrigerant heat exchanger 32 to release condensed heat to the atmosphere. The condensed refrigerant expands at the expansion valve 34 and becomes a low temperature, and is supplied to the absorption heat exchanger 71. The low-temperature refrigerant absorbs the absorption heat generated on the surface of the absorption heat exchanger 71 to cool the absorption liquid. That is, the compression refrigerator 3 has an action of quickly releasing the heat generated by the absorption heat exchanger 71 to the atmosphere, thereby increasing the cooling capacity of the hybrid air conditioner 1.
[0018]
During the heating operation, the refrigerant is expanded by the expansion valve 34, supplied with heat by the blower 33 in the refrigerant heat exchanger 32 and evaporated, and absorbs atmospheric heat as evaporation heat. The evaporated refrigerant is compressed by the refrigerant compressor 31 and becomes high temperature, and is supplied to the evaporation heat exchanger 81. The refrigerant condenses in the evaporation heat exchanger 81 and supplies the condensation heat to the solvent vapor generated on the surface of the evaporation heat exchanger 81 as evaporation heat. In other words, the compression refrigerator 3 has an action of quickly supplying the atmospheric heat obtained by the refrigerant heat exchanger 32 to the solvent vapor generated by the evaporating heat exchanger 81, and increases the heating capacity of the hybrid air conditioner 1. I am letting.
[0019]
The air conditioner 4 includes a pump 41 and a load 42 such as an indoor heat exchanger that is connected to the pump 41 by an air conditioning channel 40.
[0020]
The refrigerant flow path 30, the air conditioning flow path 40, the internal heat exchanger 61, the absorption heat exchanger 71, and the evaporative heat exchanger 81 have two four-way valves 91, in order to enable switching between the cooling operation and the heating operation. 92 and one three-way valve 93. In addition, since it is necessary to reverse the refrigerant flow between the cooling operation and the heating operation, a four-way valve 94 is provided between the refrigerant compressor 31 and the refrigerant heat exchanger 32 in the refrigerant flow path 30.
[0021]
The four-way valve 91 has an absorption heat exchanger 71 as a first port, a load 42 in the air conditioning channel 40 as a second port, an expansion valve 34 in the refrigerant channel 30 as a third port, and an evaporating heat exchanger 81 as a fourth port. It is connected. The four-way valve 92 has a first port as the evaporative heat exchanger 81, a second port as the pump 41 in the air conditioning channel 40, a third port as the four-way valve 94 in the refrigerant channel 30, a fourth port as the internal heat exchanger 61, and A three-way valve 93 is connected. The four-way valve 94 has a first port connected to the inlet side of the refrigerant compressor 31, a second port connected to the four-way valve 92, a third port connected to the refrigerant heat exchanger 32, and a fourth port connected to the outlet side of the refrigerant compressor 31. Yes.
[0022]
During the cooling operation, the refrigerant absorbs the heat generated by the absorption heat exchanger 71 and is released to the atmosphere by the compression refrigerator 3. Therefore, the four-way valve 91 has a flow path from the third port to the first port, the four-way valve 92 has a flow path from the fourth port to the third port, and the three-way valve 93 has a flow path so that the refrigerant flows from the absorption heat exchanger 71 to the four-way valve 92. Switch. In the four-way valve 94, in order to release the refrigerant condensation heat into the atmosphere, the refrigerant enters the refrigerant compressor 31 from the second port via the first port, and is sent from the fourth port to the refrigerant heat exchanger 32 via the third port. Switch the flow path to.
[0023]
The air-conditioning fluid absorbs room heat by the load 42 and releases it as evaporation heat by the evaporation heat exchanger 81. Therefore, the flow path is switched so that the conditioned fluid flows from the second port to the fourth port in the four-way valve 91 and from the first port to the second port in the four-way valve 92.
[0024]
During the heating operation, the refrigerant absorbs atmospheric heat in the compression refrigerator 3 and releases it as evaporation heat in the evaporation heat exchanger 81. Therefore, the flow path is switched so that the refrigerant flows from the fourth port to the third port in the four-way valve 91 and from the third port to the first port in the four-way valve 92. In the four-way valve 94, atmospheric heat is absorbed as refrigerant evaporating heat, so that the refrigerant enters the refrigerant compressor 31 from the third port through the first port, and the evaporating heat exchanger 81 and the expansion valve 34 from the fourth port through the second port. Then, the flow path is switched so as to be sent in the order of the refrigerant heat exchanger 32.
[0025]
The air-conditioning fluid absorbs absorbed heat with the absorption heat exchanger 71, absorbs heat of condensation with the internal heat exchanger 61, and discharges it into the room with the load 42. Therefore, the air-conditioning fluid flows from the second port to the first port in the four-way valve 91, from the fourth port to the second port in the four-way valve 92, and from the absorption heat exchanger 71 to the internal heat exchanger 61 in the three-way valve 93. Switch the flow path.
[0026]
The hybrid air conditioner 1 is easy to maintain and assists cooling or heating operation by the mass-produced compression refrigerator 3. For this reason, it is highly practical, and even if the outside air temperature is high, heat dissipation from the refrigerant to the atmosphere will not be insufficient, and conversely, even if it is low, the absorption of atmospheric heat to the refrigerant will not be insufficient. .
Further, it is possible to switch between the cooling operation and the heating operation only by switching the flow paths of the three four-way valves 91, 92, 94 and the one three-way valve 93.
[0027]
[Modification]
In this embodiment, the water vapor channel 60 is used to condense the water vapor in the solvent condenser 6 during the cooling operation, but the refrigerant after passing through the absorption heat exchanger 71 is the internal heat of the solvent condenser 6. A circuit flowing in the exchanger 61 may be used so that the heat of condensation of the water vapor is absorbed by the refrigerant flowing in the internal heat exchanger 61.
[Brief description of the drawings]
FIG. 1 shows a schematic diagram of a hybrid air conditioner of the present embodiment and the flow of a working fluid during cooling operation.
FIG. 2 is a schematic diagram of the hybrid air conditioner of the present embodiment and shows the flow of working fluid during heating operation.
[Explanation of symbols]
21 High temperature regenerator 31 Refrigerant compressor 34 Expansion valve 42 Load 5 Negative pressure tank 51 Low temperature regenerator 6 Solvent condenser 7 Absorber 8 Solvent evaporator

Claims (2)

吸収溶液を加熱して溶媒と濃縮吸収溶液とに分離する再生器、分離された溶媒蒸気を凝縮する溶媒凝縮器、前記溶媒を蒸発させる溶媒蒸発器、蒸発した溶媒を前記濃縮吸収溶液に吸収させる吸収器、前記溶媒を吸収して希釈された吸収溶液を前記再生器に還流させるポンプを有する吸収式冷凍機と、
空調流体が循環する空調熱交換器を備えた空調機と、
冷媒圧縮機、冷媒熱交換器、冷媒膨張弁を有する圧縮式冷凍機とからなるハイブリッド空調機であって、
冷房運転時には、前記圧縮式冷凍機と前記吸収器との間で冷媒を循環させる回路と、前記溶媒蒸発器と前記空調熱交換器との間で前記空調流体を循環させる回路に切り替えることにより、蒸発した溶媒が前記濃縮吸収溶液に吸収される際に発生する吸収熱を、前記圧縮式冷凍機の前記冷媒熱交換器で大気に放出し、暖房運転時には、前記圧縮式冷凍機と前記溶媒蒸発器との間で前記冷媒を循環させる回路と、前記吸収器と前記空調熱交換器との間で前記空調流体を循環させる回路に切り替えることにより、大気熱を前記圧縮式冷凍機の前記冷媒熱交換器で吸収し前記溶媒蒸発器で放出し、
前記溶媒凝縮器内の溶媒蒸気を、前記冷媒熱交換器に付設された送風機で強制冷却できる外部熱交換器に導き凝縮させ、凝縮熱を前記外部熱交換器から大気に放出することができることを特徴とするハイブリッド空調機。
A regenerator that heats the absorption solution to separate it into a solvent and a concentrated absorption solution, a solvent condenser that condenses the separated solvent vapor, a solvent evaporator that evaporates the solvent, and absorbs the evaporated solvent into the concentrated absorption solution An absorber, an absorption refrigerator having a pump that absorbs the solvent and dilutes the diluted absorption solution to the regenerator;
An air conditioner equipped with an air conditioning heat exchanger through which air conditioning fluid circulates;
A hybrid air conditioner comprising a refrigerant compressor, a refrigerant heat exchanger, and a compression type refrigerator having a refrigerant expansion valve,
During cooling operation, by switching to a circuit for circulating refrigerant between the compression refrigerator and the absorber, and a circuit for circulating the air-conditioned fluid between the solvent evaporator and the air-conditioning heat exchanger, Absorption heat generated when the evaporated solvent is absorbed by the concentrated absorbent solution is released to the atmosphere by the refrigerant heat exchanger of the compression refrigerator, and during the heating operation, the compression refrigerator and the solvent evaporate. Switching to a circuit that circulates the refrigerant between the absorber and a circuit that circulates the air-conditioning fluid between the absorber and the air-conditioning heat exchanger, thereby converting atmospheric heat into the refrigerant heat of the compression refrigerator. Absorbed by the exchanger and discharged by the solvent evaporator ,
Solvent vapor in the solvent condenser can be led to an external heat exchanger that can be forcibly cooled by a blower attached to the refrigerant heat exchanger and condensed, and condensation heat can be released from the external heat exchanger to the atmosphere. A hybrid air conditioner characterized by
請求項1に記載のハイブリッド空調機において、前記再生器は、加熱源で低濃度リチウム塩溶液を加熱して溶媒を蒸発させるとともに中濃度リチウム塩溶液を生成する高温再生器と、前記溶媒蒸気の凝縮熱で前記中濃度リチウム塩溶液を再加熱し、前記溶媒を蒸発させるとともに高濃度リチウム塩溶液を生成する低温再生器からなることを特徴とするハイブリッド空調機。2. The hybrid air conditioner according to claim 1, wherein the regenerator is a high-temperature regenerator that heats a low-concentration lithium salt solution with a heating source to evaporate the solvent and generates a medium-concentration lithium salt solution; A hybrid air conditioner comprising a low-temperature regenerator that reheats the medium concentration lithium salt solution with condensation heat to evaporate the solvent and generate a high concentration lithium salt solution.
JP2002277178A 2002-09-24 2002-09-24 Hybrid air conditioner Expired - Fee Related JP3859568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277178A JP3859568B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277178A JP3859568B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Publications (2)

Publication Number Publication Date
JP2004116806A JP2004116806A (en) 2004-04-15
JP3859568B2 true JP3859568B2 (en) 2006-12-20

Family

ID=32272852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277178A Expired - Fee Related JP3859568B2 (en) 2002-09-24 2002-09-24 Hybrid air conditioner

Country Status (1)

Country Link
JP (1) JP3859568B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4545691B2 (en) * 2006-01-17 2010-09-15 リンナイ株式会社 Hot water storage system
CN103017400B (en) * 2013-01-14 2014-12-10 西安交通大学 Compression/absorption type combined heat pump suitable for intelligent comprehensive urban energy resource regulation
CN110080842A (en) * 2019-05-08 2019-08-02 上海发电设备成套设计研究院有限责任公司 A kind of closed cycle electricity generation system of integrated absorption heat pump

Also Published As

Publication number Publication date
JP2004116806A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4953433B2 (en) Absorption heat pump system
WO2013026255A1 (en) Vapor compression type air conditioner of refrigeration combined with desiccant wheel dehumidification
JP2013002763A (en) Solar heat utilizing air conditioning system
JP4184197B2 (en) Hybrid absorption heat pump system
JP3859566B2 (en) Hybrid air conditioner
JP3859568B2 (en) Hybrid air conditioner
KR100981672B1 (en) Two-stage driven hot water absorption chiller
JP3859567B2 (en) Hybrid air conditioner
JP2004190885A (en) Absorption compression refrigerating machine and refrigerating system
JP4717589B2 (en) Hybrid heat pump system
JP2008304150A (en) Heat pump type air conditioner
JPH0953864A (en) Engine type cooling device
JP2010255862A (en) Refrigerating device
WO2016199671A1 (en) Refrigeration system
JP5338270B2 (en) Absorption refrigeration system
JP2007333342A (en) Multi-effect absorption refrigerating machine
KR100426834B1 (en) Heat Absorbing System for Absorber, Condenser and Evaporator by Using Latent Heat of Phase-change Fluids in Absorption Heat Pump
JP2003004334A (en) Waste heat recovery air conditioner
KR20090125312A (en) Heating and cooling system
JP4184196B2 (en) Hybrid absorption heat pump system
JP2002061983A (en) Absorption refrigerating machine
JP2014129944A (en) Refrigeration device
CN216942587U (en) Heat pump system with double outdoor heat exchangers for assisting condensation and heat absorption
JPH04116352A (en) Absorption cooler/heater
JP5402187B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees