[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3859415B2 - Optical scanning device - Google Patents

Optical scanning device Download PDF

Info

Publication number
JP3859415B2
JP3859415B2 JP2000023930A JP2000023930A JP3859415B2 JP 3859415 B2 JP3859415 B2 JP 3859415B2 JP 2000023930 A JP2000023930 A JP 2000023930A JP 2000023930 A JP2000023930 A JP 2000023930A JP 3859415 B2 JP3859415 B2 JP 3859415B2
Authority
JP
Japan
Prior art keywords
scanning direction
sub
focal position
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000023930A
Other languages
Japanese (ja)
Other versions
JP2001215422A (en
Inventor
悟 伊藤
清三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000023930A priority Critical patent/JP3859415B2/en
Priority to US09/716,949 priority patent/US6785028B1/en
Publication of JP2001215422A publication Critical patent/JP2001215422A/en
Priority to US10/912,231 priority patent/US7012724B2/en
Application granted granted Critical
Publication of JP3859415B2 publication Critical patent/JP3859415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、デジタル複写機やレーザプリンターなどの光走査装置に関するものであり、特に、画像形成装置、計測器、検査装置などに適用可能な光走査装置に関するものである。
【0002】
【従来の技術】
従来から温度変動による光ビームの焦点位置のずれを調整することができる光走査装置が提案されている。例えば、特開平4−107581号公報に記載されているものは、温度変動を検知すると共に、温度が変動したときの被走査面上での光ビームの結像状態を検知することにより、これらの検知信号に基づいて補正レンズを光軸方向に移動させて温度変動による光ビームの焦点位置を調整している。上記公報記載のものは、温度変動を検知するだけでは光ビームの焦点位置を調整することができず、結像状態も検知しなければならないため、結像状態を検知する手段を必要とし、コストが高くなってしまう。また、光ビームの焦点位置の調整をコリメータレンズ系やレーザ光源の位置を調整することにより行っているため、主走査方向の焦点位置を最適に調整することはできても、副走査方向の焦点位置を最適に調整することは困難である。
【0003】
そこで、温度変動のみを検知し、その変動量に応じて、主走査方向の焦点位置と副走査方向の焦点位置をそれぞれ独立に調整することができる光走査装置が考えられている。この装置によれば、温度変動のみを検知することにより光ビームの焦点位置を調整することができるので、結像状態を検知する手段を不要とし、上記公報記載のものに比べてコストを低くすることができると共に、主走査方向の焦点位置と副走査方向の焦点位置をそれぞれ独立に調整することができるため、光ビームの焦点位置を最適に調整することができる。
【0004】
【発明が解決しようとする課題】
複数の光ビームを一括して走査する場合には、光ビームの主走査方向の焦点位置と副走査方向の焦点位置をそれぞれ独立に調整しようとすると、副走査方向のビームピッチが変動してしまうが、上記温度変動のみを検知して調整する装置は、副走査方向のビームピッチを調整する手段が設けられていないため、複数の光ビームを一括して走査する場合において、光ビームの焦点位置を調整することはできても、副走査方向のビームピッチは調整することができないという問題がある。
【0005】
本発明は以上のような従来技術の問題点を解消するためになされたものであり、温度変動のみを検知し、その変動量に応じて、主走査方向の焦点位置と副走査方向の焦点位置をそれぞれ独立に調整することができると共に、副走査方向のビームピッチを調整することができる光走査装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、光ビームを放射する複数の光源と、上記複数の光源から放射された複数の光ビームを一括偏向して被走査面上に集光させる走査光学系と、温度を検知する温度検知手段と、上記被走査面上の光ビームの主走査方向の焦点位置を調整する補正レンズを光軸方向に移動させる第2調整手段と、副走査方向の焦点位置を調整する補正レンズを光軸方向に移動させる第3調整手段と、副走査方向のビームピッチを調整する光源ユニットを光軸方向に移動させる第1調整手段とからなる調整手段を有する光走査装置において、上記第2調整手段による補正レンズの光軸方向への移動に対する主走査方向の焦点位置の変動量の傾きをあらかじめ求め、上記第3調整手段による補正レンズの光軸方向への移動に対する副走査方向の焦点位置の変動量の傾きをあらかじめ求め、上記光源ユニットの光軸方向への移動に対する副走査方向のビームピッチの変動量の傾きをあらかじめ求め、温度の変動量に対する、上記被走査面上の光ビームの主走査方向の焦点位置ずれ、副走査方向の焦点位置ずれおよび副走査方向のビームピッチずれをあらかじめ求め、上記主走査方向の焦点位置の変動量の傾き、上記副走査方向の焦点位置の変動量の傾きならびに上記副走査方向のビームピッチの変動量の傾きと、上記被走査面上の主走査方向焦点位置ずれ、副走査方向焦点位置ずれならびに副走査方向のビームピッチずれに基づいて、上記温度検知手段により検知した温度の変動量に応じた上記調整手段の移動量を算出し、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整することを特徴とする。
【0007】
請求項2記載の発明は、光ビームを放射する複数の光源と、
上記複数の光源から放射された複数の光ビームを一括偏向して被走査面上に集光させる走査光学系と、
温度を検知する温度検知手段と、
上記被走査面上の光ビームの、副走査方向のビームピッチを調整する第1調整手段、主走査方向の焦点位置を調整する第2調整手段、および副走査方向の焦点位置を調整する第3調整手段を有する光走査装置において、
温度の変動量に対する光ビームの主走査方向の焦点位置のずれをM、温度の変動量に対する光ビームの副走査方向の焦点位置のずれをS、温度の変動量に対する副走査方向のビームピッチのずれをPとし、上記第調整手段による補正レンズの光軸方向の移動量をX、上記第調整手段による補正レンズの光軸方向の移動量をX、上記第調整手段による光源ユニットの光軸方向の移動量をX、これら第2、第3および第1調整手段による上記補正レンズおよび光源ユニットの光軸方向への移動に対する、主走査方向の焦点位置の変動量の傾きをそれぞれ 12 、a 13 、a 11 、副走査方向の焦点位置の変動量の傾きをそれぞれ 22 、a 23 、a 21 、副走査方向のビームピッチの変動量の傾きをそれぞれ 32 、a 33 、a 31 としたとき、

Figure 0003859415
を解いて上記調整手段の変動量を算出し、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整することを特徴とする。
【0008】
請求項3記載の発明は、請求項1または2記載の発明において、あらかじめ上記調整手段の移動量に対して求めた、主走査方向および副走査方向の焦点位置の変動量と、副走査方向のビームピッチの変動量から、上記温度検知手段により検知した温度の変動量に応じて、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整することを特徴とする。
【0009】
請求項4記載の発明は、請求項1または2記載の発明において、あらかじめ求めた温度に対する上記調整手段の位置情報を記録する記録手段を有し、この記録手段に記録された上記調整手段の位置情報に基づき、上記温度検知手段により検知した温度の変動量に応じて、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整することを特徴とする。
【0010】
請求項5記載の発明は、請求項1または2記載の発明において、温度検知手段は、光走査装置内に設けられた複数の温度検知センサーで構成され、この複数の温度検知センサーによって温度をそれぞれ検知し、この検知された温度を検知部位により重み付け平均して温度を検知することを特徴とする。
請求項6記載の発明は、請求項1ないし5のいずれかに記載の光走査装置を用いて画像形成装置を構成したことを特徴とする。
【0011】
【発明の実施の形態】
以下、図面を参照しながら本発明にかかる光走査装置の実施の形態について説明する。図1に示す符号1は、光ビームを放射する複数の光源で構成された光源ユニット(以下、「LDユニット」という)を示している。この光源ユニット1は、第1調整機構12によって光軸方向に移動することができるようになっている。この第1調整機構12によって光源ユニット1を光軸方向に移動させることにより、感光体6の被走査面上の光ビームの副走査方向のビームピッチを調整することができる。
【0012】
上記光源ユニット1の放射側には、光源ユニット1から光ビームを偏向器としての回転多面鏡4へ導く補正レンズ2、補正レンズ3が配置されている。上記補正レンズ2は、主走査方向のみパワーをもっており、一方、上記補正レンズ3は、副走査方向のみパワーをもっているものである。上記補正レンズ2は、第2調整機構13によって光軸方向に移動することができるようになっていて、この第2調整機構13によって補正レンズ2を光軸方向に移動させることにより、感光体6の被走査面上の主走査方向における光ビームの焦点位置を調整することができる。また、上記補正レンズ3は、第3調整機構14によって光軸方向に移動することができるようになっていて、この第3調整機構14によって補正レンズ3を光軸方向に移動させることにより、感光体6の被走査面上の副走査方向における光ビームの焦点位置を調整することができる。上記補正レンズ2、3としてはシリンドリカルレンズを用いることができる。
【0013】
上記第1調整機構12、第2調整機構13、第3調整機構14は、感光体6の被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整する調整手段を構成していて、光源ユニット1、補正レンズ2、および補正レンズ3をそれぞれ独立に光軸方向に移動させるものであり、上記第1調整機構12はピッチ制御部11によって制御され、上記第2調整機構13、第3調整機構14は、ビーム径制御部10によって制御されている。
【0014】
上記回転多面鏡4の偏向反射面によって偏向された光ビームの反射光路上には、回転多面鏡4により偏向された複数の光ビームを感光体6の被走査面に対して走査線として結像させるためのfθレンズ5と、このfθレンズ5を透過した光ビームを感光体6の被走査面上に向けて反射させるための反射ミラー15が配置されている。また、反射ミラー15と感光体6の被走査面との間には、防塵ガラス16が配置されていて、反射ミラー15によって反射された光ビームは、防塵ガラス16を透過して感光体8の被走査面上に集光する。上記回転多面鏡4、fθレンズ5、および反射ミラー15は、前記光源ユニット1の複数の光源から放射された複数の光ビームを一括偏向して感光体6の被走査面上に集光させる走査光学系を構成している。
【0015】
図1に示すように、上記LDユニット1の複数の光源から放射された複数の光ビームは、補正レンズ2、補正レンズ3を透過し、補正レンズ3で副走査方向にのみ収束されて、回転多面鏡4の偏向反射面付近に主走査方向に長い線像として集光される。回転多面鏡4の偏向反射面付近に集光された光ビームは、回転多面鏡4の回転によって一括して偏向反射され、fθレンズ5を透過し、反射ミラー15によって反射され、防塵ガラス16を透過して感光体6の被走査面上に光スポットとして集光するとともに、被走査面上を走査する。この走査方向が主走査方向であり、これに直交する方向が副走査方向である。
【0016】
次に、本発明の特徴について説明する。図1に示すように、感光体6の被走査面近傍には、温度を検知する温度検知手段としての温度検知センサー7が配置されている。この温度検知センサー7の検知信号は、温度計測部8に送信される。温度計測部8は温度検知センサー7から送信された検知信号を温度信号に変換するものである。温度計測部8によって変換された温度信号は、変動量演算部9に送信される。変動量演算部9は、温度計測部8から送信された温度信号の変動量に応じて、LDユニット1、補正レンズ2、および補正レンズ3の光軸方向の移動量を算出する。
【0017】
上記変動量演算部9における、LDユニット1、補正レンズ2、補正レンズ3の光軸方向の移動量の算出についてより具体的に説明する。まず、あらかじめ前記調整手段による光源ユニット1、補正レンズ2、補正レンズ3の光軸方向の移動量に対する、主走査方向の焦点位置の変動量、副走査方向の焦点位置の変動量、および副走査方向のビームピッチの変動量を図2ないし図10に示すようにシミュレーションもしくは実測で求めておく。図2には、第1調整機構12による光源ユニット1の移動量に対する主走査方向の焦点位置の変動量を示していて、この変動量の傾きをa11とする。図3には、第1調整機構12による光源ユニット1の移動量に対する副走査方向の焦点位置の変動量を示していて、この変動量の傾きをa21とする。図4には、第1調整機構12による光源ユニット1の移動量に対する副走査方向のビームピッチの変動量を示していて、この変動量の傾きをa31とする。
【0018】
図5には、第2調整機構13による補正レンズ2の移動量に対する主走査方向の焦点位置の変動量を示していて、この変動量の傾きをa12とする。図6には、第2調整機構13による補正レンズ2の移動量に対する副走査方向の焦点位置の変動量を示していて、この変動量の傾きをa22とする。図7には、第2調整機構13による補正レンズ2の移動量に対する副走査方向のビームピッチの変動量を示していて、この変動量の傾きをa32とする。また、図8には、第3調整機構14による補正レンズ3の移動量に対する主走査方向の焦点位置の変動量を示していて、この変動量の傾きをa13とする。図9には、第3調整機構14による補正レンズ3の移動量に対する副走査方向の焦点位置の変動量を示していて、この変動量の傾きをa23とする。図10には、第3調整機構14による補正レンズ3の移動量に対する副走査方向のビームピッチの変動量を示していて、この変動量の傾きをa33とする。
【0019】
次に、温度の変動量に対する、感光体6の被走査面上の光ビームの主走査方向および副走査方向の焦点位置のずれと、副走査方向のビームピッチのずれを図11ないし図13に示すようにあらかじめシミュレーションもしくは実測で求めておく。図11には、温度の変動量に対する光ビームの主走査方向の焦点位置のずれを示し、図12には、温度の変動量に対する光ビームの副走査方向の焦点位置のずれを示し、図13には、温度の変動量に対する副走査方向のビームピッチのずれを示している。
【0020】
ここで、温度の変動量に対する光ビームの主走査方向の焦点位置のずれをM、温度の変動量に対する光ビームの副走査方向の焦点位置のずれをS、温度の変動量に対する副走査方向のビームピッチのずれをPとし、補正レンズ2の光軸方向の移動量をX、補正レンズ3の光軸方向の移動量をX、LDユニット1の光軸方向の移動量をXとすると、M、S、Pは、図2ないし図10に示す変動量の傾きa11、a21、a31、a12、a22、a32、a13、a23、a33を用いて、
Figure 0003859415
で示すことができ、従って、X1、X2、X3は、
Figure 0003859415
で示すことができ、この式からLDユニット1、補正レンズ2、補正レンズ3の光軸方向の移動量X、X、Xを算出することができる。
【0021】
上述のように、上記変動量演算部9によって算出された補正レンズ2の光軸方向の移動量Xは、電気信号としてビーム径制御部10に送信される。ビーム径制御部10は、この電気信号に基づいて第2調整機構13を制御し、第2調整機構13は補正レンズ2を上記移動量だけ光軸方向に移動させる。これによって、感光体6の被走査面上の光ビームの主走査方向の焦点位置が調整される。同様に、上記変動量演算部9によって算出された補正レンズ3の光軸方向の移動量Xは、電気信号としてビーム径制御部10に送信される。ビーム径制御部10は、この電気信号に基づいて第3調整機構14を制御し、第3調整機構14は補正レンズ3を上記移動量だけ光軸方向に移動する。これによって、感光体6の被走査面上の光ビームの副走査方向の焦点位置が調整される。
【0022】
また、上記変動量演算部9によって算出されたLDユニット1の光軸方向の移動量Xは、電気信号としてピッチ制御部11に送信される。ピッチ制御部11は、この電気信号に基づいて第1調整機構12を制御し、第1調整機構12は光源ユニット1を上記移動量だけ光軸方向に移動する。これによって、副走査方向のビームピッチが調整される。
【0023】
上記実施の形態によれば、温度検知センサー7によって検知した温度の変動量に応じて、感光体6の被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整するようにしているため、結像状態を検知する手段を不要とし、従来のものに比べてコストを低くすることができる。また、主走査方向の焦点位置と副走査方向の焦点位置および副走査方向のビームピッチをそれぞれ独立に調整することができるため、光ビームの主走査方向および副走査方向の焦点位置および副走査方向のビームピッチを最適に調整することができる。
【0024】
また、上記調整は、あらかじめ上記調整手段の移動量に対して求めた、主走査方向および副走査方向の焦点位置の変動量と、副走査方向のビームピッチの変動量から、温度検知センサー7により検知した温度の変動量に応じて行っているため、感光体6の被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを迅速に調整することができる。
【0025】
また、あらかじめ求めた温度に対する上記調整手段の位置情報を記録する記録手段を設けておけば、この記録手段に記録された上記調整手段の位置情報に基づき、温度検知センサー7により検知した温度の変動量に応じて、被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチの調整を簡単に、かつ、最適に行うことができる。
【0026】
また、上記実施の形態における温度検知手段は、感光体6の被走査面近傍に配置された一つの温度検知センサー7で構成されているが、上記温度検知手段を、光走査装置内の各検知部位に設けられた複数の温度検知センサーで構成することができる。この場合、各検知部位に設けられた温度検知センサーによる検知温度を検知部位により重み付け平均して温度を検知するようにする。より具体的に述べると、結像素子5近傍や光源ユニット1近傍など(図1参照)、温度変動の影響が大きい検知部位に設けられた温度検知センサーの検知温度を重要視してその重み付けを重くし、それぞれの温度検知センサーによる検知温度を平均化して温度を検知する。このようにすることにより、温度検知精度を高くすることができる。
【0027】
なお、本発明にかかる光走査装置は、帯電、露光、現像、転写、定着、クリーニングなどのプロセスからなる電子写真プロセスによって画像を形成する画像形成装置に用いることができる。より具体的には、感光体6の被走査面上での光走査が、上記露光プロセスとなる。
【0028】
【発明の効果】
請求項1記載の発明によれば、光ビームを放射する複数の光源と、上記複数の光源から放射された複数の光ビームを一括偏向して被走査面上に集光させる走査光学系と、温度を検知する温度検知手段と、上記被走査面上の光ビームの、副走査方向のビームピッチを調整する第1調整手段、主走査方向の焦点位置を調整する第2調整手段、および副走査方向の焦点位置を調整する第3調整手段とを有する光走査装置において、上記温度検知手段により検知した温度の変動量に応じて、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整するため、結像状態を検知する手段を不要とし、従来のものに比べてコストを低くすることができる。また、主走査方向の焦点位置と副走査方向の焦点位置および副走査方向のビームピッチをそれぞれ独立に調整することができるため、光ビームの主走査方向および副走査方向の焦点位置および副走査方向のビームピッチを最適に調整することができる。
請求項2記載の発明によっても、同様の効果を得ることができる。
【0029】
請求項記載の発明によれば、請求項1または2記載の発明において、あらかじめ上記調整手段の移動量に対して求めた、主走査方向および副走査方向の焦点位置の変動量と、副走査方向のビームピッチの変動量から、上記温度検知手段により検知した温度の変動量に応じて、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整するため、被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを迅速に調整することができる。
【0030】
請求項記載の発明によれば、請求項1または2記載の発明において、あらかじめ求めた温度に対する上記調整手段の位置情報を記録する記録手段を有し、この記録手段に記録された上記調整手段の位置情報に基づき、上記温度検知手段により検知した温度の変動量に応じて、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整するため、被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチの調整を簡単に、かつ、最適に行うことができる。
【0031】
請求項記載の発明によれば、請求項1または2記載の発明において、上記温度検知手段は、光走査装置内に設けられた複数の温度検知センサーで構成され、この複数の温度検知センサーによって温度をそれぞれ検知し、この検知された温度を検知部位により重み付け平均して温度を検知するため、温度検知精度を高くすることができる。
【図面の簡単な説明】
【図1】本発明にかかる光走査装置の実施の形態を示す光学配置図である。
【図2】上記実施の形態に適用された光源ユニットの移動量に対する主走査方向の焦点位置の変動量を示すグラフである。
【図3】上記実施の形態に適用された光源ユニットの移動量に対する副走査方向の焦点位置の変動量を示すグラフである。
【図4】上記実施の形態に適用された光源ユニットの移動量に対する副走査方向のビームピッチの変動量を示すグラフである。
【図5】上記実施の形態に適用された補正レンズの移動量に対する主走査方向の焦点位置の変動量を示すグラフである。
【図6】上記実施の形態に適用された補正レンズの移動量に対する副走査方向の焦点位置の変動量を示すグラフである。
【図7】上記実施の形態に適用された補正レンズの移動量に対する副走査方向のビームピッチの変動量を示すグラフである。
【図8】上記実施の形態に適用された別の補正レンズの移動量に対する主走査方向の焦点位置の変動量を示すグラフである。
【図9】上記実施の形態に適用された別の補正レンズの移動量に対する副走査方向の焦点位置の変動量を示すグラフである。
【図10】上記実施の形態に適用された別の補正レンズの移動量に対する副走査方向のビームピッチの変動量を示すグラフである。
【図11】上記実施の形態における温度の変動量に対する光ビームの主走査方向の焦点位置のずれを示すグラフである。
【図12】上記実施の形態における温度の変動量に対する光ビームの副走査方向の焦点位置のずれを示すグラフである。
【図13】上記実施の形態における温度の変動量に対する副走査方向のビームピッチのずれを示すグラフである。
【符号の説明】
1 光源ユニット
2 補正レンズ
3 補正レンズ
4 回転多面鏡
5 fθレンズ
6 感光体
7 温度検知センサー
8 温度計測部
9 変動量演算部
10 ビーム径制御部
11 ピッチ制御部
12 第1調整機構
13 第2調整機構
14 第3調整機構[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical scanning apparatus such as a digital copying machine or a laser printer, and more particularly to an optical scanning apparatus applicable to an image forming apparatus, a measuring instrument, an inspection apparatus, and the like.
[0002]
[Prior art]
Conventionally, there has been proposed an optical scanning device capable of adjusting the shift of the focal position of a light beam due to temperature fluctuation. For example, Japanese Patent Application Laid-Open No. 4-107581 discloses a technique that detects temperature fluctuations and detects the imaging state of a light beam on a scanned surface when the temperature fluctuates. Based on the detection signal, the correction lens is moved in the optical axis direction to adjust the focal position of the light beam due to temperature fluctuation. In the above-mentioned publication, the focal position of the light beam cannot be adjusted only by detecting the temperature variation, and the imaging state must be detected. Becomes higher. In addition, since the focal position of the light beam is adjusted by adjusting the position of the collimator lens system and the laser light source, the focal position in the main scanning direction can be optimally adjusted, but the focal point in the sub scanning direction can be adjusted. It is difficult to adjust the position optimally.
[0003]
Therefore, an optical scanning device is conceivable that detects only temperature fluctuations and can independently adjust the focal position in the main scanning direction and the focal position in the sub-scanning direction according to the fluctuation amount. According to this apparatus, since the focal position of the light beam can be adjusted by detecting only temperature fluctuations, no means for detecting the imaging state is required, and the cost is lower than that described in the above publication. In addition, since the focal position in the main scanning direction and the focal position in the sub-scanning direction can be independently adjusted, the focal position of the light beam can be optimally adjusted.
[0004]
[Problems to be solved by the invention]
When scanning a plurality of light beams at once, if the focus position of the light beam in the main scanning direction and the focus position in the sub scanning direction are adjusted independently, the beam pitch in the sub scanning direction fluctuates. However, since the device that detects and adjusts only the temperature fluctuation is not provided with means for adjusting the beam pitch in the sub-scanning direction, the focal position of the light beam when scanning a plurality of light beams at once. However, there is a problem that the beam pitch in the sub-scanning direction cannot be adjusted.
[0005]
The present invention has been made to solve the above-described problems of the prior art, and detects only temperature fluctuations, and the focal position in the main scanning direction and the focal position in the sub-scanning direction according to the fluctuation amount. It is an object of the present invention to provide an optical scanning device that can adjust the beam pitch independently and adjust the beam pitch in the sub-scanning direction.
[0006]
[Means for Solving the Problems]
The invention described in claim 1 includes a plurality of light sources that emit light beams, a scanning optical system that collectively deflects the plurality of light beams emitted from the plurality of light sources and condenses them on a surface to be scanned, and a temperature. Temperature detecting means for detecting, second adjusting means for moving the correction lens for adjusting the focal position of the light beam on the surface to be scanned in the main scanning direction , and correction for adjusting the focal position in the sub-scanning direction and third adjustment means for moving the lens in the optical axis direction, in the optical scanning apparatus having the adjustment means comprises a first adjusting means for moving the light source unit that adjust the sub-scanning direction of the beam pitch in the optical axis direction, The inclination of the fluctuation amount of the focal position in the main scanning direction with respect to the movement of the correction lens in the optical axis direction by the second adjustment unit is obtained in advance, and the sub-scanning direction with respect to the movement of the correction lens in the optical axis direction by the third adjustment unit Scorching Previously obtains the inclination of the variation amount of the position, determined beforehand the inclination of the variation amount of the beam pitch in the sub-scanning direction against the movement in the optical axis direction of the light source units, for the amount of variation of the temperature, on the surface to be scanned The focal position deviation in the main scanning direction, the focal position deviation in the sub scanning direction, and the beam pitch deviation in the sub scanning direction of the light beam are obtained in advance, the inclination of the fluctuation amount of the focal position in the main scanning direction, and the focal position in the sub scanning direction. Based on the inclination of the fluctuation amount of the beam , the inclination of the fluctuation amount of the beam pitch in the sub- scanning direction, the focal position deviation in the main scanning direction on the surface to be scanned, the focal position deviation in the sub-scanning direction, and the beam pitch deviation in the sub-scanning direction. The amount of movement of the adjusting means is calculated in accordance with the amount of temperature variation detected by the temperature detecting means, and the adjusting means determines the main scanning direction and sub-scanning direction of the light beam on the surface to be scanned. And adjusting the focal position of 査 direction, the sub-scanning direction of the beam pitch.
[0007]
The invention according to claim 2 is a plurality of light sources that emit light beams;
A scanning optical system for collectively deflecting a plurality of light beams emitted from the plurality of light sources and condensing them on a surface to be scanned;
Temperature detection means for detecting temperature;
First adjusting means for adjusting the beam pitch in the sub-scanning direction of the light beam on the surface to be scanned, second adjusting means for adjusting the focal position in the main scanning direction, and third adjusting the focal position in the sub-scanning direction. In the optical scanning device having the adjusting means,
The deviation of the focal position of the light beam in the main scanning direction with respect to the temperature fluctuation amount is M, the deviation of the focal position of the light beam in the sub scanning direction with respect to the temperature fluctuation amount is S, and the beam pitch in the sub scanning direction with respect to the temperature fluctuation amount. The displacement is P, the movement amount of the correction lens in the optical axis direction by the second adjustment means is X 2 , the movement amount of the correction lens in the optical axis direction by the third adjustment means is X 3 , and the light source by the first adjustment means The amount of movement of the unit in the optical axis direction is X 1 , and the inclination of the variation amount of the focal position in the main scanning direction with respect to the movement of the correction lens and the light source unit in the optical axis direction by the second, third and first adjusting means. the a 12, respectively, a 13, a 11, a 22 inclination of the variation amount of the focus position in the sub-scanning direction, respectively, a 23, a 21, a sub-scanning direction of the beam pitch of variation of the inclination respectively a 32, 33, when it was a 31,
Figure 0003859415
Solve calculates the amount of variation of the adjustment means, and the focal positions in the main scanning direction and the sub-scanning direction of the light beam on said respective adjusting means said surface to be scanned, adjusting the sub-scanning direction of the beam pitch Features.
[0008]
According to a third aspect of the invention of claim 1 or 2, was determined in advance against the amount of movement of the adjustment means, and the variation of the focal position in the main scanning direction and the sub-scanning direction, the sub-scanning direction Based on the fluctuation amount of the beam pitch, the adjusting means adjusts the focal position of the light beam on the surface to be scanned in the main scanning direction and the sub scanning direction according to the temperature fluctuation amount detected by the temperature detecting means, and the sub scanning direction. The beam pitch is adjusted.
[0009]
According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the recording apparatus has a recording unit that records position information of the adjusting unit with respect to a previously obtained temperature , and the position of the adjusting unit recorded in the recording unit. Based on the information, according to the amount of temperature variation detected by the temperature detecting means, the adjusting means causes the focal position of the light beam on the scanned surface in the main scanning direction and the sub-scanning direction, and the beam pitch in the sub-scanning direction. It is characterized by adjusting .
[0010]
According to a fifth aspect of the present invention, in the first or second aspect of the present invention, the temperature detection means includes a plurality of temperature detection sensors provided in the optical scanning device, and the temperature is detected by the plurality of temperature detection sensors, respectively. The temperature is detected by weighting and averaging the detected temperature by the detection part.
According to a sixth aspect of the present invention, an image forming apparatus is configured using the optical scanning device according to any one of the first to fifth aspects .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of an optical scanning device according to the present invention will be described with reference to the drawings. Reference numeral 1 shown in FIG. 1 indicates a light source unit (hereinafter referred to as “LD unit”) composed of a plurality of light sources that emit light beams. The light source unit 1 can be moved in the optical axis direction by the first adjustment mechanism 12. By moving the light source unit 1 in the optical axis direction by the first adjusting mechanism 12, the beam pitch in the sub-scanning direction of the light beam on the surface to be scanned of the photosensitive member 6 can be adjusted.
[0012]
A correction lens 2 and a correction lens 3 for guiding a light beam from the light source unit 1 to the rotary polygon mirror 4 as a deflector are disposed on the radiation side of the light source unit 1. The correction lens 2 has power only in the main scanning direction, while the correction lens 3 has power only in the sub-scanning direction. The correction lens 2 can be moved in the optical axis direction by the second adjustment mechanism 13, and the photoconductor 6 is moved by moving the correction lens 2 in the optical axis direction by the second adjustment mechanism 13. The focal position of the light beam in the main scanning direction on the surface to be scanned can be adjusted. Further, the correction lens 3 can be moved in the optical axis direction by the third adjustment mechanism 14, and by moving the correction lens 3 in the optical axis direction by the third adjustment mechanism 14, the photosensitive lens can be moved. The focal position of the light beam in the sub-scanning direction on the surface to be scanned of the body 6 can be adjusted. As the correction lenses 2 and 3, cylindrical lenses can be used.
[0013]
The first adjustment mechanism 12, the second adjustment mechanism 13, and the third adjustment mechanism 14 are the focal positions of the light beam on the scanned surface of the photoreceptor 6 in the main scanning direction and the sub scanning direction, and the beam pitch in the sub scanning direction. The light source unit 1, the correction lens 2, and the correction lens 3 are independently moved in the optical axis direction, and the first adjustment mechanism 12 is controlled by the pitch control unit 11. The second adjustment mechanism 13 and the third adjustment mechanism 14 are controlled by the beam diameter control unit 10.
[0014]
A plurality of light beams deflected by the rotating polygon mirror 4 are imaged as scanning lines on the surface to be scanned of the photosensitive member 6 on the reflection optical path of the light beam deflected by the deflecting reflecting surface of the rotating polygon mirror 4. An fθ lens 5 for reflecting the light beam and a reflection mirror 15 for reflecting the light beam transmitted through the fθ lens 5 toward the surface to be scanned of the photosensitive member 6 are disposed. A dust-proof glass 16 is disposed between the reflection mirror 15 and the surface to be scanned of the photosensitive member 6, and the light beam reflected by the reflection mirror 15 passes through the dust-proof glass 16 and passes through the photosensitive member 8. Condensed on the surface to be scanned. The rotary polygon mirror 4, the fθ lens 5, and the reflection mirror 15 are used for collectively deflecting a plurality of light beams emitted from a plurality of light sources of the light source unit 1 and condensing them on a surface to be scanned of the photoreceptor 6. An optical system is configured.
[0015]
As shown in FIG. 1, a plurality of light beams emitted from a plurality of light sources of the LD unit 1 pass through the correction lens 2 and the correction lens 3 and are converged only in the sub-scanning direction by the correction lens 3 and rotated. A line image that is long in the main scanning direction is collected near the deflecting and reflecting surface of the polygon mirror 4. The light beam collected near the deflection reflection surface of the rotary polygon mirror 4 is collectively deflected and reflected by the rotation of the rotary polygon mirror 4, passes through the fθ lens 5, is reflected by the reflection mirror 15, and passes through the dust-proof glass 16. The light passes through and is condensed as a light spot on the surface to be scanned of the photosensitive member 6 and is scanned on the surface to be scanned. This scanning direction is the main scanning direction, and the direction orthogonal thereto is the sub-scanning direction.
[0016]
Next, features of the present invention will be described. As shown in FIG. 1, a temperature detection sensor 7 as a temperature detection means for detecting the temperature is disposed near the surface to be scanned of the photoreceptor 6. The detection signal of the temperature detection sensor 7 is transmitted to the temperature measurement unit 8. The temperature measuring unit 8 converts the detection signal transmitted from the temperature detection sensor 7 into a temperature signal. The temperature signal converted by the temperature measuring unit 8 is transmitted to the fluctuation amount calculating unit 9. The fluctuation amount calculation unit 9 calculates the movement amount of the LD unit 1, the correction lens 2, and the correction lens 3 in the optical axis direction according to the fluctuation amount of the temperature signal transmitted from the temperature measurement unit 8.
[0017]
The calculation of the movement amount of the LD unit 1, the correction lens 2, and the correction lens 3 in the optical axis direction in the fluctuation amount calculation unit 9 will be described more specifically. First, the fluctuation amount of the focal position in the main scanning direction, the fluctuation amount of the focal position in the sub-scanning direction, and the sub-scanning with respect to the movement amount of the light source unit 1, the correction lens 2, and the correction lens 3 in the optical axis direction by the adjusting unit in advance. The amount of change in the beam pitch in the direction is obtained by simulation or actual measurement as shown in FIGS. In FIG. 2, and shows the variation of the focal position in the main scanning direction with respect to the moving amount of the light source unit 1 according to the first adjusting mechanism 12, the inclination of the variation amount and a 11. In FIG. 3, and shows the variation of the focal position in the sub-scanning direction with respect to the amount of movement of the light source unit 1 according to the first adjusting mechanism 12, the inclination of the variation amount and a 21. FIG. 4, and shows the variation in the sub-scanning direction of the beam pitch with respect to the amount of movement of the light source unit 1 according to the first adjusting mechanism 12, the inclination of the variation amount and a 31.
[0018]
FIG 5, and shows the variation of the focal position in the main scanning direction with respect to the moving amount of the correction lens 2 by the second adjusting mechanism 13, the inclination of the variation amount and a 12. Figure 6 is shows the variation of the focal position in the sub-scanning direction with respect to the moving amount of the correction lens 2 by the second adjusting mechanism 13, the inclination of the variation amount and a 22. Figure 7 is shows the variation in the sub-scanning direction of the beam pitch with respect to the amount of movement of the correction lens 2 by the second adjusting mechanism 13, the inclination of the variation amount and a 32. Further, in FIG. 8 is shows the variation of the focal position in the main scanning direction with respect to the moving amount of the correction lens 3 of the third adjustment mechanism 14, the inclination of the variation amount and a 13. FIG. 9, shows the variation of the focal position in the sub-scanning direction with respect to the moving amount of the correction lens 3 of the third adjustment mechanism 14, the inclination of the variation amount and a 23. Figure 10 is shows the variation in the sub-scanning direction of the beam pitch with respect to the moving amount of the correction lens 3 of the third adjustment mechanism 14, the inclination of the variation amount and a 33.
[0019]
Next, FIG. 11 to FIG. 13 show the deviation of the focal position of the light beam on the scanned surface of the photosensitive member 6 in the main scanning direction and the sub scanning direction and the deviation of the beam pitch in the sub scanning direction with respect to the temperature fluctuation amount. As shown, it is obtained in advance by simulation or actual measurement. 11 shows the shift of the focal position of the light beam in the main scanning direction with respect to the temperature fluctuation amount, and FIG. 12 shows the shift of the focal position of the light beam in the sub-scanning direction with respect to the temperature fluctuation amount. Shows the deviation of the beam pitch in the sub-scanning direction with respect to the temperature fluctuation amount.
[0020]
Here, the deviation of the focal position of the light beam in the main scanning direction with respect to the temperature fluctuation amount is M, the deviation of the focal position of the light beam in the sub scanning direction with respect to the temperature fluctuation amount is S, and the deviation in the sub scanning direction with respect to the temperature fluctuation amount. The deviation of the beam pitch is P, the movement amount of the correction lens 2 in the optical axis direction is X 2 , the movement amount of the correction lens 3 in the optical axis direction is X 3 , and the movement amount of the LD unit 1 in the optical axis direction is X 1 . Then, M, S, and P use the fluctuation amount gradients a11, a21, a31, a12, a22, a32, a13, a23, and a33 shown in FIGS.
Figure 0003859415
Therefore, X1, X2, and X3 are
Figure 0003859415
From this equation, the movement amounts X 1 , X 2 , X 3 of the LD unit 1, the correction lens 2, and the correction lens 3 in the optical axis direction can be calculated.
[0021]
As described above, the moving amount X 2 of the optical axis of the correction lens 2 that is calculated by the fluctuation amount calculating section 9 is transmitted as an electrical signal to the beam diameter controller 10. The beam diameter control unit 10 controls the second adjustment mechanism 13 based on this electric signal, and the second adjustment mechanism 13 moves the correction lens 2 in the optical axis direction by the above movement amount. As a result, the focal position in the main scanning direction of the light beam on the surface to be scanned of the photoreceptor 6 is adjusted. Similarly, the moving amount X 3 in the optical axis direction of the correcting lens 3 calculated by the fluctuation amount calculating section 9 is transmitted as an electrical signal to the beam diameter controller 10. The beam diameter control unit 10 controls the third adjustment mechanism 14 based on this electric signal, and the third adjustment mechanism 14 moves the correction lens 3 in the optical axis direction by the above-mentioned movement amount. As a result, the focal position in the sub-scanning direction of the light beam on the surface to be scanned of the photoreceptor 6 is adjusted.
[0022]
Further, the movement amount X 1 of the optical axis of the LD unit 1 calculated by the fluctuation amount calculating section 9 is transmitted as an electrical signal to the pitch control unit 11. The pitch control unit 11 controls the first adjustment mechanism 12 based on this electrical signal, and the first adjustment mechanism 12 moves the light source unit 1 in the optical axis direction by the movement amount. As a result, the beam pitch in the sub-scanning direction is adjusted.
[0023]
According to the above-described embodiment, the focal position of the light beam on the surface to be scanned of the photosensitive member 6 in the main scanning direction and the sub-scanning direction, and the sub-scanning direction in accordance with the temperature fluctuation amount detected by the temperature detection sensor 7. Since the beam pitch is adjusted, a means for detecting the imaging state is not required, and the cost can be reduced as compared with the conventional one. In addition, since the focal position in the main scanning direction, the focal position in the sub scanning direction, and the beam pitch in the sub scanning direction can be adjusted independently, the focal position in the main scanning direction and the sub scanning direction of the light beam and the sub scanning direction can be adjusted. Can be optimally adjusted.
[0024]
The adjustment is performed by the temperature detection sensor 7 based on the fluctuation amount of the focal position in the main scanning direction and the sub-scanning direction and the fluctuation amount of the beam pitch in the sub-scanning direction, which are obtained in advance with respect to the movement amount of the adjusting means. Since it is performed in accordance with the detected temperature fluctuation amount, the focal position of the light beam on the surface to be scanned of the photosensitive member 6 in the main scanning direction and the sub scanning direction and the beam pitch in the sub scanning direction can be quickly adjusted. Can do.
[0025]
Further, if a recording means for recording the position information of the adjusting means with respect to the temperature determined in advance is provided, the temperature variation detected by the temperature detecting sensor 7 based on the position information of the adjusting means recorded in the recording means. Depending on the amount, it is possible to easily and optimally adjust the focal position of the light beam on the surface to be scanned in the main scanning direction and the sub scanning direction and the beam pitch in the sub scanning direction.
[0026]
Further, the temperature detecting means in the above embodiment is constituted by one temperature detecting sensor 7 arranged in the vicinity of the surface to be scanned of the photosensitive member 6, but the temperature detecting means is used for each detection in the optical scanning device. It can be composed of a plurality of temperature detection sensors provided at the site. In this case, the temperature detected by the temperature detection sensor provided at each detection part is weighted and averaged by the detection part to detect the temperature. More specifically, the detection temperature of the temperature detection sensor provided in the detection region where the influence of temperature fluctuation is large, such as the vicinity of the imaging element 5 or the light source unit 1 (see FIG. 1), is weighted. The temperature is detected by averaging the temperature detected by each temperature sensor. By doing in this way, temperature detection accuracy can be made high.
[0027]
The optical scanning apparatus according to the present invention can be used in an image forming apparatus that forms an image by an electrophotographic process including processes such as charging, exposure, development, transfer, fixing, and cleaning. More specifically, optical scanning on the surface to be scanned of the photoreceptor 6 is the above-described exposure process.
[0028]
【The invention's effect】
According to the first aspect of the present invention, a plurality of light sources that emit light beams, a scanning optical system that collectively deflects the plurality of light beams emitted from the plurality of light sources and condenses them on the surface to be scanned; Temperature detecting means for detecting temperature; first adjusting means for adjusting the beam pitch of the light beam on the surface to be scanned in the sub- scanning direction ; second adjusting means for adjusting the focal position in the main scanning direction ; and sub-scanning In the optical scanning device having the third adjusting means for adjusting the focal position in the direction, the adjusting means controls the light beam on the surface to be scanned in the main scanning direction according to the amount of temperature variation detected by the temperature detecting means. Further, since the focal position in the sub-scanning direction and the beam pitch in the sub-scanning direction are adjusted, a means for detecting the imaging state is unnecessary, and the cost can be reduced as compared with the conventional one. In addition, since the focal position in the main scanning direction, the focal position in the sub scanning direction, and the beam pitch in the sub scanning direction can be adjusted independently, the focal position in the main scanning direction and the sub scanning direction of the light beam and the sub scanning direction can be adjusted. Can be optimally adjusted.
According to the second aspect of the invention, the same effect can be obtained.
[0029]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the fluctuation amount of the focal position in the main scanning direction and the sub-scanning direction obtained in advance with respect to the movement amount of the adjusting means, and the sub-scanning Based on the amount of change in the beam pitch in the direction, the adjusting means adjusts the focal position of the light beam on the surface to be scanned in the main scanning direction and the sub-scanning direction according to the amount of temperature fluctuation detected by the temperature detecting means, and the sub-scanning direction. Since the beam pitch in the scanning direction is adjusted, the focal position of the light beam on the surface to be scanned in the main scanning direction and the sub-scanning direction and the beam pitch in the sub-scanning direction can be quickly adjusted.
[0030]
According to the invention described in claim 4, in the invention described in claim 1 or 2 , the adjusting means recorded in the recording means has recording means for recording position information of the adjusting means with respect to the temperature determined in advance. Based on the positional information, the adjusting means adjusts the focal position of the light beam on the surface to be scanned in the main scanning direction and the sub-scanning direction and the sub-scanning direction in accordance with the amount of temperature variation detected by the temperature detecting means. Since the beam pitch is adjusted, it is possible to easily and optimally adjust the focal position of the light beam on the surface to be scanned in the main scanning direction and the sub scanning direction and the beam pitch in the sub scanning direction.
[0031]
According to a fifth aspect of the invention, in the first or second aspect of the invention, the temperature detecting means is composed of a plurality of temperature detecting sensors provided in the optical scanning device, and the plurality of temperature detecting sensors Since each temperature is detected and the detected temperature is weighted and averaged by the detection part to detect the temperature, the temperature detection accuracy can be increased.
[Brief description of the drawings]
FIG. 1 is an optical layout diagram showing an embodiment of an optical scanning device according to the present invention.
FIG. 2 is a graph showing a fluctuation amount of a focal position in a main scanning direction with respect to a movement amount of a light source unit applied to the embodiment.
FIG. 3 is a graph showing the amount of change in the focal position in the sub-scanning direction with respect to the amount of movement of the light source unit applied to the embodiment.
FIG. 4 is a graph showing the fluctuation amount of the beam pitch in the sub-scanning direction with respect to the movement amount of the light source unit applied to the embodiment.
FIG. 5 is a graph showing a fluctuation amount of a focal position in a main scanning direction with respect to a movement amount of a correction lens applied to the embodiment.
FIG. 6 is a graph showing the amount of change in the focal position in the sub-scanning direction with respect to the amount of movement of the correction lens applied to the embodiment.
FIG. 7 is a graph showing the variation amount of the beam pitch in the sub-scanning direction with respect to the movement amount of the correction lens applied to the embodiment.
FIG. 8 is a graph showing the amount of fluctuation of the focal position in the main scanning direction with respect to the amount of movement of another correction lens applied to the embodiment.
FIG. 9 is a graph showing the amount of change in the focal position in the sub-scanning direction with respect to the amount of movement of another correction lens applied to the embodiment.
FIG. 10 is a graph showing the amount of change in beam pitch in the sub-scanning direction with respect to the amount of movement of another correction lens applied to the embodiment.
FIG. 11 is a graph showing the shift of the focal position of the light beam in the main scanning direction with respect to the temperature fluctuation amount in the embodiment.
FIG. 12 is a graph showing the shift of the focal position of the light beam in the sub-scanning direction with respect to the temperature fluctuation amount in the embodiment.
FIG. 13 is a graph showing the deviation of the beam pitch in the sub-scanning direction with respect to the temperature fluctuation amount in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source unit 2 Correction lens 3 Correction lens 4 Rotating polygon mirror 5 f (theta) lens 6 Photoconductor 7 Temperature detection sensor 8 Temperature measurement part 9 Fluctuation amount calculation part 10 Beam diameter control part 11 Pitch control part 12 1st adjustment mechanism 13 2nd adjustment Mechanism 14 Third adjustment mechanism

Claims (4)

光ビームを放射する複数の光源と、
上記複数の光源から放射された複数の光ビームを一括偏向して被走査面上に集光させる走査光学系と、
温度を検知する温度検知手段と、
上記被走査面上の光ビームの主走査方向の焦点位置を調整する補正レンズを光軸方向に移動させる第2調整手段と、副走査方向の焦点位置を調整する補正レンズを光軸方向に移動させる第3調整手段と、副走査方向のビームピッチを調整する光源ユニットを光軸方向に移動させる第1調整手段とからなる調整手段を有する光走査装置において、
上記第2調整手段による補正レンズの光軸方向への移動に対する主走査方向の焦点位置の変動量の傾きをあらかじめ求め、上記第3調整手段による補正レンズの光軸方向への移動に対する副走査方向の焦点位置の変動量の傾きをあらかじめ求め、上記光源ユニットの光軸方向への移動に対する副走査方向のビームピッチの変動量の傾きをあらかじめ求め、
温度の変動量に対する、上記被走査面上の光ビームの主走査方向の焦点位置ずれ、副走査方向の焦点位置ずれおよび副走査方向のビームピッチずれをあらかじめ求め、
上記主走査方向の焦点位置の変動量の傾き、上記副走査方向の焦点位置の変動量の傾きならびに上記副走査方向のビームピッチの変動量の傾きと、上記被走査面上の主走査方向焦点位置ずれ、副走査方向焦点位置ずれならびに副走査方向のビームピッチずれに基づいて、上記温度検知手段により検知した温度の変動量に応じた上記調整手段の移動量を算出し、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整することを特徴とする光走査装置。
A plurality of light sources emitting a light beam;
A scanning optical system that collectively deflects and condenses a plurality of light beams emitted from the plurality of light sources on a surface to be scanned;
Temperature detection means for detecting temperature;
Second correction means for moving the correction lens for adjusting the focal position of the light beam on the surface to be scanned in the main scanning direction in the optical axis direction, and the correction lens for adjusting the focal position in the sub-scanning direction are moved in the optical axis direction. the optical scanning device comprising a third adjustment means for the adjustment means comprises a first adjusting means for moving the light source unit that adjust the sub-scanning direction of the beam pitch in the optical axis direction,
The inclination of the fluctuation amount of the focal position in the main scanning direction with respect to the movement of the correction lens in the optical axis direction by the second adjustment unit is obtained in advance, and the sub-scanning direction with respect to the movement of the correction lens in the optical axis direction by the third adjustment unit the previously determined the slope of variation of the focal position, previously obtained the inclination of the variation amount of the beam pitch of the sub-scanning direction against the movement in the optical axis direction of the light source unit,
The focal position deviation in the main scanning direction, the focal position deviation in the sub-scanning direction, and the beam pitch deviation in the sub-scanning direction of the light beam on the surface to be scanned with respect to the temperature fluctuation amount are obtained in advance.
The inclination of the fluctuation amount of the focal position in the main scanning direction, the inclination of the fluctuation amount of the focal position in the sub scanning direction and the inclination of the fluctuation amount of the beam pitch in the sub scanning direction, and the focal point in the main scanning direction on the surface to be scanned. Based on the positional deviation, the focal position deviation in the sub-scanning direction, and the beam pitch deviation in the sub-scanning direction, the movement amount of the adjusting means is calculated according to the temperature variation detected by the temperature detecting means, and the adjusting means An optical scanning apparatus characterized by adjusting a focal position of a light beam on a surface to be scanned in a main scanning direction and a sub scanning direction and a beam pitch in the sub scanning direction.
光ビームを放射する複数の光源と、
上記複数の光源から放射された複数の光ビームを一括偏向して被走査面上に集光させる走査光学系と、
温度を検知する温度検知手段と、
上記被走査面上の光ビームの、副走査方向のビームピッチを調整する第1調整手段、主走査方向の焦点位置を調整する第2調整手段、および副走査方向の焦点位置を調整する第3調整手段を有する光走査装置において、
温度の変動量に対する光ビームの主走査方向の焦点位置のずれをM、温度の変動量に対する光ビームの副走査方向の焦点位置のずれをS、温度の変動量に対する副走査方向のビームピッチのずれをPとし、上記第調整手段による補正レンズの光軸方向の移動量をX、上記第調整手段による補正レンズの光軸方向の移動量をX、上記第調整手段による光源ユニットの光軸方向の移動量をX、これら第2、第3および第1調整手段による上記補正レンズおよび光源ユニットの光軸方向への移動に対する、主走査方向の焦点位置の変動量の傾きをそれぞれ 12 、a 13 、a 11 、副走査方向の焦点位置の変動量の傾きをそれぞれ 22 、a 23 、a 21 、副走査方向のビームピッチの変動量の傾きをそれぞれ 32 、a 33 、a 31 としたとき、
Figure 0003859415
を解いて上記調整手段の変動量を算出し、上記調整手段が上記被走査面上の光ビームの主走査方向および副走査方向の焦点位置と、副走査方向のビームピッチを調整することを特徴とする光走査装置。
A plurality of light sources emitting a light beam;
A scanning optical system that collectively deflects and condenses a plurality of light beams emitted from the plurality of light sources on a surface to be scanned;
Temperature detection means for detecting temperature;
First adjusting means for adjusting the beam pitch in the sub-scanning direction of the light beam on the surface to be scanned, second adjusting means for adjusting the focal position in the main scanning direction, and third adjusting the focal position in the sub-scanning direction. In the optical scanning device having the adjusting means,
The deviation of the focal position of the light beam in the main scanning direction with respect to the temperature fluctuation amount is M, the deviation of the focal position of the light beam in the sub scanning direction with respect to the temperature fluctuation amount is S, and the beam pitch in the sub scanning direction with respect to the temperature fluctuation amount. The displacement is P, the movement amount of the correction lens in the optical axis direction by the second adjustment means is X 2 , the movement amount of the correction lens in the optical axis direction by the third adjustment means is X 3 , and the light source by the first adjustment means The amount of movement of the unit in the optical axis direction is X 1 , and the inclination of the variation amount of the focal position in the main scanning direction with respect to the movement of the correction lens and the light source unit in the optical axis direction by the second, third and first adjusting means. the a 12, respectively, a 13, a 11, a 22 inclination of the variation amount of the focus position in the sub-scanning direction, respectively, a 23, a 21, a sub-scanning direction of the beam pitch of variation of the inclination respectively a 32, 33, when it was a 31,
Figure 0003859415
Solve calculates the amount of variation of the adjustment means, and the focal positions in the main scanning direction and the sub-scanning direction of the light beam on said respective adjusting means said surface to be scanned, adjusting the sub-scanning direction of the beam pitch An optical scanning device.
上記温度検知手段は、光走査装置内に設けられた複数の温度検知センサーで構成され、この複数の温度検知センサーによって温度をそれぞれ検知し、この検知された温度を検知部位により重み付け平均して温度を検知することを特徴とする請求項1または2記載の光走査装置。  The temperature detection means is composed of a plurality of temperature detection sensors provided in the optical scanning device, detects the temperature by each of the plurality of temperature detection sensors, and weights and averages the detected temperatures by the detection part. 3. The optical scanning device according to claim 1, wherein: 請求項1ないし3のいずれかに記載の光走査装置を用いたことを特徴とする画像形成装置。  An image forming apparatus using the optical scanning device according to claim 1.
JP2000023930A 1999-11-24 2000-02-01 Optical scanning device Expired - Lifetime JP3859415B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000023930A JP3859415B2 (en) 2000-02-01 2000-02-01 Optical scanning device
US09/716,949 US6785028B1 (en) 1999-11-24 2000-11-22 Optical scanning device having a temperature compensation unit
US10/912,231 US7012724B2 (en) 1999-11-24 2004-08-06 Optical scanning device having a temperature compensation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000023930A JP3859415B2 (en) 2000-02-01 2000-02-01 Optical scanning device

Publications (2)

Publication Number Publication Date
JP2001215422A JP2001215422A (en) 2001-08-10
JP3859415B2 true JP3859415B2 (en) 2006-12-20

Family

ID=18550010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000023930A Expired - Lifetime JP3859415B2 (en) 1999-11-24 2000-02-01 Optical scanning device

Country Status (1)

Country Link
JP (1) JP3859415B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271822B2 (en) * 2004-07-28 2007-09-18 Hewlett-Packard Development Company, L.P. Seamless stitching of multiple image fields in a wide-format laser printer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304724A (en) * 1995-04-28 1996-11-22 Hitachi Koki Co Ltd Optical scanner
JP3448137B2 (en) * 1995-09-18 2003-09-16 株式会社リコー Image forming device
US5936717A (en) * 1997-05-06 1999-08-10 Agfa Corporation Thermal compensation focus adjustment
JPH11295627A (en) * 1998-04-15 1999-10-29 Ricoh Co Ltd Multibeam scanner

Also Published As

Publication number Publication date
JP2001215422A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
US6785028B1 (en) Optical scanning device having a temperature compensation unit
JP5009573B2 (en) Optical scanning apparatus and image forming apparatus
JP5153561B2 (en) Scanning optical device and image forming apparatus using the same
JP2010134434A (en) Scanning optical apparatus and image forming apparatus using the same
JP2005234359A (en) Optical characteristic measuring apparatus of scanning optical system, method of calibrating optical characteristic measuring apparatus of scanning optical system, scanning optical system and image forming apparatus
US7602554B2 (en) Optical scanning apparatus
JP4759179B2 (en) Scanning optical device and image forming apparatus using the same
JP3859415B2 (en) Optical scanning device
US9025197B2 (en) Optical scanning device in image forming apparatus, and control method thereof
US7889221B2 (en) Optical scanning apparatus
JP2006301447A (en) Scanning line bending measurement apparatus and optical scanner
JP5962267B2 (en) Optical scanning apparatus and image forming apparatus
JP5094170B2 (en) Image forming apparatus
JP3287945B2 (en) Scanning optical device
JP2007283690A (en) Image-forming apparatus
JP4373800B2 (en) Optical scanning apparatus, color image forming apparatus, and laser beam detection method
JP2017078800A (en) Optical scanner and image forming apparatus using the same
JP2018132537A (en) Image writing device, image formation device, and pitch unevenness prevention method
JPH1184803A (en) Image forming device
JP2001264668A (en) Optical scanner
JP4197806B2 (en) Scanning optical system and focus position adjusting method thereof
JP4634831B2 (en) Optical scanning apparatus, image forming apparatus, and scanning line tilt detection method
JP6512809B2 (en) Scanning optical apparatus and image forming apparatus
JP2001194604A (en) Optical scanner
JP2008181080A (en) Optical scanning apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20040213

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6