JP3858326B2 - オゾンと光触媒を利用した促進酸化処理装置 - Google Patents
オゾンと光触媒を利用した促進酸化処理装置 Download PDFInfo
- Publication number
- JP3858326B2 JP3858326B2 JP05265297A JP5265297A JP3858326B2 JP 3858326 B2 JP3858326 B2 JP 3858326B2 JP 05265297 A JP05265297 A JP 05265297A JP 5265297 A JP5265297 A JP 5265297A JP 3858326 B2 JP3858326 B2 JP 3858326B2
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- titanium dioxide
- reaction
- tank
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims description 139
- 238000007254 oxidation reaction Methods 0.000 title claims description 47
- 230000003647 oxidation Effects 0.000 title claims description 39
- 239000011941 photocatalyst Substances 0.000 title claims description 26
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 186
- 239000004408 titanium dioxide Substances 0.000 claims description 93
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 65
- 238000006243 chemical reaction Methods 0.000 claims description 62
- 238000013032 photocatalytic reaction Methods 0.000 claims description 32
- 239000000843 powder Substances 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 17
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 230000001681 protective effect Effects 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 82
- 239000007789 gas Substances 0.000 description 24
- 238000003860 storage Methods 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 230000001590 oxidative effect Effects 0.000 description 13
- -1 hydrogen ions Chemical class 0.000 description 9
- 238000006479 redox reaction Methods 0.000 description 8
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 239000005297 pyrex Substances 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 6
- 229910052753 mercury Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000001443 photoexcitation Effects 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 0 CC1CC*CC1 Chemical compound CC1CC*CC1 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000007348 radical reaction Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 125000001867 hydroperoxy group Chemical group [*]OO[H] 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 150000004045 organic chlorine compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Description
【発明の属する技術分野】
本発明は上下水道の処理方法としてのオゾン処理と光触媒を利用した促進酸化処理装置に関するものである。
【0002】
【従来の技術】
オゾンは強力な酸化力を有しており、水中の着色成分とか臭気成分の分解及び従来の前塩素処理を採用した浄水過程で発生する有機塩素化合物であるトリハロメタン(THM)前駆物質を分解する作用があるため、浄水の操作工程中にオゾン処理、又はオゾン処理と活性炭処理との複合処理を行うなど水処理分野で広く利用されており、近時は上水のみならず下水処理にも採用されている。しかしながらオゾンの酸化力には限界があり、低分子の有機物などの有害物質を除去することはできない。
【0003】
上記に対処して、オゾンの酸化力を高める手段として促進酸化処理法が検討されている。この促進酸化処理法とは、オゾンの分解速度を促進してヒドロキシラジカル(以下OHラジカルと略称)の生成速度を増加させ、このOHラジカルの持つ強力な酸化力を利用する手段である。
【0004】
即ち、水中におけるオゾン反応は、オゾン直接反応とOHラジカルによる反応とに区分され、このOHラジカル反応の酸化力はオゾン直接反応の酸化力よりも強く、オゾン直接反応では困難な有機物を水と炭酸ガスに完全分解することが可能である。有機物の分解速度でみると、例えばベンゼンではオゾンとの反応速度が101(L/mol・sec)程度であるのに対して、OHラジカルでは109(L/mol・sec)程度と桁違いに大きくなっている。
【0005】
促進酸化処理法としては、オゾンと紫外線照射の併用処理、オゾンと過酸化水素水の併用処理等の外、光触媒を用い促進酸化処理法としてオゾンと二酸化チタンと紫外線照射の併用処理がある。オゾンと二酸化チタン,紫外線の併用処理での反応は、▲1▼二酸化チタンの紫外線吸収によって起こる光触媒反応、▲2▼オゾンによる紫外線吸収反応の複合反応となる。二酸化チタンの光触媒としての機能は、半導体における光励起反応の原理による。
【0006】
半導体にそのバンドキャップ以上のエネルギーを有する光を照射すると、価電子帯から伝導帯へ電子が励起され、伝導帯に電子が、価電子帯に正孔を生じる。伝導帯に励起された電子は還元力を持ち、価電子帯の正孔は酸化力を持つ。電子と正孔が還元と酸化を行った後は価電子帯と伝導帯は元の状態に戻り、光が照射されると再び電子と正孔が生じて還元と酸化が行われる。
【0007】
二酸化チタンのバンドキャップは約3.0evであり、波長に直すと410nm,即ち410nm以下の光を照射することにより酸化還元反応が進行する。通常の場合、オゾンと二酸化チタンと紫外線の併用処理の光源として低圧水銀ランプが用いられる。この低圧水銀ランプが発する光の主波長は254nmであり、この光が90%以上のエネルギーを占めている。二酸化チタンはこの光を吸収して光励起を起こす。
【0008】
二酸化チタンの光励起による酸化還元反応へのオゾンの関与は明らかではないが、2通りの関与が考えられる。1つはオゾン或いはその分解産物である酸素が励起電子を受け取ることで二酸化チタンでの電荷分離を促進し、結果として正孔での酸化反応を促進するという寄与である。もう1つは二酸化チタン上での酸化還元反応により活性酸素種が生じ、この活性酸素種が促進酸化反応を引き起こすという寄与である。
【0009】
オゾンは活性酸素種との反応により分解されてOHラジカルを生じる。もしくはオゾンが直接二酸化チタン表面上で分解してOHラジカルが生成する可能性も考えられる。いずれにしても生じたOHラジカルが有機物等の分解反応の担い手となる。
【0010】
オゾンに二酸化チタンと紫外線ランプを組み合わせた場合のもう1つの反応は、オゾンによる紫外線の吸収反応である。図11に示したようにオゾンによる紫外線の吸収帯は200nm〜300nmに渡り、255nm付近にピークが存在する。低圧水銀ランプが発する254nmの波長の光はこのピーク付近に位置しており、その結果オゾンの分解が促進され、OHラジカルの生成速度が高くなって促進酸化反応が進行する。
【0011】
【発明が解決しようとする課題】
しかしながら上記した各促進酸化処理装置では光触媒による促進酸化の反応効率が充分に高められているとはいえない面があり、より一層反応効率を高めて処理時間の短縮とか処理装置の小型化をはかることが希求されている現状にある。
【0012】
例えば前記したようにオゾンに二酸化チタンと紫外線を組み合わせた場合、低圧水銀ランプからの波長254nmの光は二酸化チタンに吸収されるのと同時に水中のオゾンにも吸収される。この波長254nmの紫外線はオゾンにより吸収されやすいため、オゾンによる紫外線の吸収反応が支配的となる。
【0013】
オゾンによる紫外線吸収の結果でOHラジカルが生成し、酸化反応が進行する。つまりオゾンと紫外線だけで十分な促進酸化反応が得られるため、二酸化チタンの光触媒の機能が十分に発現されないという問題が生じる。
【0014】
又、二酸化チタンは波長が約410nm以下の光を吸収して光触媒としての機能を発現するが、効率よくエネルギー変換できる波長帯は310nm〜410nmの範囲である。波長254nmの光はこの範囲から外れており、過剰のエネルギー照射となる。このため、低圧水銀ランプを用いた場合には二酸化チタンでの光触媒反応でのエネルギー変換効率が低下する。
【0015】
更に低圧水銀ランプからの波長254nmの光を効率よく利用するためには、ランプ及びその周辺装置の構造物を紫外線の透過率のよい石英管などで構成することが要求されるので、装置自体が高価になるという問題もある。又、オゾンに過酸化水素処理を組み合わせた場合には、過酸化水素は取扱いに注意を要する薬品であるため、処理施設に特殊な過酸化水素用貯蔵庫を設ける必要があり、維持管理とか運搬等で余分なコストが発生するという難点がある。
【0016】
そこで本発明は上記に鑑みてなされたものであり、光触媒による促進酸化の反応効率を高めた処理を実施することにより、処理時間の短縮及び処理装置の小型化をもたらしてコストの低廉化を図ることができる上、従来のオゾン反応槽をそのまま利用することができる促進酸化処理装置を提供することを目的とするものである。
【0017】
【課題を解決するための手段】
本発明は上記の目的を達成するために、請求項1により、反応槽内にランプ保護管を介在させ、そのランプ保護管内に波長310nm〜410nmの波長域を有するブラックライトを配置し、該反応槽の底壁近傍にオゾンガス用の散気管を配置して、反応槽内に投入された被処理水と二酸化チタン粉末に前記ブラックライトから発する光を照射することにより、二酸化チタン粉末に吸収されて生じる光触媒反応でオゾン放散により生じた溶存オゾンを分解して活性酸素種を生成し、この活性酸素種により被処理水中の有機物の酸化除去を行うようにしたことを特徴とするオゾンと光触媒を利用した促進酸化処理装置の構成を提供する。上記光触媒としての二酸化チタン粉末に代えて、二酸化チタン担持体もしくはランプ保護管の外表面にコーティングした二酸化チタンの膜を利用した例を請求項2,3としている。
【0023】
かかる促進酸化処理装置によれば、請求項1による装置の基本的な作用として、被処理水と二酸化チタン粉末とを反応槽内に投入し、反応槽内の底壁近傍に配置された散気管からオゾンガスを水中に放散するのと同時に光源を点灯すると、オゾンが被処理水中に溶解して溶存オゾンが生成され、且つ光源から発せられる波長310nm〜410nmの光が二酸化チタン粉末に吸収されて光触媒反応を起こし、溶存オゾンが光触媒により分解して活性酸素種を生成して該活性酸素種が被処理水との促進酸化処理によって脱臭,脱色,有機物の酸化除去及び殺菌,殺藻及び異臭味の除去等が行われる。
【0025】
この促進酸化反応とは、過酸化水素が水中で水素イオンとヒドロペルオキシイオンに解離し、このヒドロペルオキシイオンがオゾンと反応してOHラジカルとオゾニドイオンを生成し、これらヒドロペルオキシイオン及びオゾニドイオンから特定の経路に基づいてOHラジカルが生成する反応を指している。
【0033】
【発明の実施の形態】
以下に本発明にかかるオゾンと光触媒を利用した促進酸化処理装置の各種実施例を説明する。図1は本発明の第1実施例を示す概要図であって、図中の1はバッチ式の反応槽、2はオゾン発生機、3はオゾンガス用の散気管であり、反応槽1内には上方からランプ保護管4を介在して光源として波長310nm〜410nmの波長域を有するブラックライト5が配置されている。6はブラックライト点灯装置、7は排オゾン処理装置、9は二酸化チタン粉末である。尚、ブラックライト点灯装置6は電源,安定器及び点灯のための予備灯から構成されており、ランプ保護管4にはパイレックス等の上記波長310nm〜410nmの光を透過するガラス管を用いる。
【0034】
かかる第1実施例の作用は以下の通りである。先ず被処理水10と二酸化チタン粉末9とを反応槽1内に投入し、オゾン発生機2を起動して反応槽1内の底壁近傍に配置された散気管3からオゾンガスを水中に放散する。同時にブラックライト点灯装置6のスイッチをオンにしてブラックライト5を点灯する。
【0035】
するとオゾンガス中のオゾンが被処理水10中に溶解して溶存オゾンが生成され、且つブラックライト5から発せられる波長310nm〜410nmの光が二酸化チタン粉末9に吸収されて光触媒反応を起こし、二酸化チタン表面の近傍部位まで拡散してきた溶存オゾンとが光触媒の作用により分解して活性酸素種を生成する。生成した活性酸素種は被処理水10との促進酸化処理により、脱臭,脱色,有機物の酸化除去及び殺菌,殺藻及び異臭味の除去が行われる。
【0036】
尚、反応に使われなかったオゾンガスは反応槽1の上部に引き抜かれ、排オゾン処理装置7により分解されて大気中へ放出される。
【0037】
上記のオゾン,二酸化チタン粉末9,ブラックライト5の組み合わせで有害物質が除去されるメカニズムは以下のように考えられる。先ず二酸化チタンは該二酸化チタンの持つバンドキャップ以下のエネルギーを有する410nm以下の波長の光を受けると、二酸化チタン表面で価電子帯から伝導帯へ電子が励起し、伝導帯に電子が、価電子帯に正孔が生じる。図13に示したようにブラックライト5の主波長は366nm付近にあるため、ブラックライト5から発せられる光が照射されるとオゾンによる吸収が起こらず、二酸化チタン表面には電子と正孔が生成する。
【0038】
伝導帯に励起された電子は還元力を有し、価電子帯の正孔は酸化力を有する。この時に二酸化チタン表面上での酸化還元反応が起こり、近傍まで拡散してきた溶存オゾンと反応してOHラジカルを生成する。この過酸化水素はオゾンと組み合わされて促進酸化処理に寄与する。OHラジカルはその酸化力によって水中に存在する有害物質を完全分解する。図12は二酸化チタンの光吸収特性を示すグラフである。
【0039】
図14はランプ保護管4に用いたパイレックス管の分光透過率を示しており、このパイレックス管が上記した波長310nm〜410nmの光を良く透過することが分かる。従って第1実施例では光照射部にパイレックスガラス等の安価な材料を用いることが可能となる。
【0040】
図2は上記の促進酸化処理装置を用いて下水二次処理水を処理した場合の処理時間と総有機炭素量(TOC)の相関を示すグラフであり、処理条件として▲1▼オゾン+二酸化チタン+ブラックライトの例と、以下比較のために▲2▼ブラックライト+二酸化チタンの例、▲3▼オゾン+ブラックライトの例、▲4▼オゾン+二酸化チタンの各例を示している。
【0041】
図2によれば、比較例である▲2▼▲3▼▲4▼では時間の経過によってTOCの除去がほとんど進行していないのに対して、本実施例である▲1▼オゾン+二酸化チタン+ブラックライトの組み合わせ処理を行うことにより、効果的に有機物の除去を行わせることができる。
【0042】
図3は本発明の第2実施例を示す概要図であって、基本的な構成は図1の第1実施例と同一であるため、同一の構成部分に同一の符号を付して表示してある。前記第1実施例では光触媒として二酸化チタン粉末9を用いたが、このような粉末では二酸化チタンの回収操作が必要であり、連続的な操作が困難になるという課題が残る。そこで本第2実施例では二酸化チタンをシリカゲル等の粒子に担持して粉末が被処理水中に流出しないようにしたことが特徴となっている。
【0043】
図3において、11は二酸化チタン担持体であり、12は該二酸化チタン担持体の流出防止用の支持床である。10は被処理水、20は処理水であり、その他の構成は第1実施例と一致している。
【0044】
かかる第2実施例による基本的作用は第1実施例と同様であるが、光触媒として二酸化チタン担持体11を採用したことによって二酸化チタンの回収操作を不要とし、連続的な操作が可能となる。尚、第2実施例では水頭圧の上昇のために通水量を大きくとれないという問題が生じるが、この場合には上記支持床12として流動床を採用し、被処理水10を反応槽1の底部から流入して上部から引き抜くようにすればよい。
【0045】
次に図4により本発明の第3実施例を説明する。この第3実施例では反応槽1の上方からランプ保護管4,4,4を介在して複数本のブラックライト5,5,5が挿入配置されており、このランプ保護管4,4,4の外表面には、予め二酸化チタンの膜13がコーティングされている。その他の構成は第1実施例と一致している。
【0046】
かかる第3実施例によれば、各ブラックライト5から発せられた波長310nm〜410nmの光がランプ保護管4の外表面にコーティングされた二酸化チタンの膜13に吸収されて光触媒反応を引き起こし、第1実施例で説明したように流入した被処理水10に対する散気管3からのオゾン放散に伴ってランプ保護管4近傍まで拡散してしてきた溶存オゾンと反応してOHラジカルを生成し、生成したOHラジカルの酸化力により被処理水中の有機物等を分解するという作用が得られる。
【0047】
この第3実施例では、前記第2実施例で用いた二酸化チタン担持体11ではブラックライト5から発せられる光のすべてを二酸化チタン担持体11の表面に到達させることができないことに鑑みて、ランプ保護管4の外表面に二酸化チタンの膜13をコーティングしたことによってブラックライト5から発せられた光のほとんどすべてを二酸化チタンの膜13に照射することが可能となり、光触媒反応の効率化をはかるとともにランプ保護管4に付着する汚れ物質の分解作用も得られるため、防汚作用も高めることができる。
【0048】
次に図5により本発明の第4実施例を説明する。図中の14は被処理水10の流路に設けた加圧ポンプ、15は該加圧ポンプ14の下流側に配設したオゾンガス用のエジェクタであり、反応槽1自体の構成は第3実施例と同一となっている。但し反応槽1内には散気管3が配置されておらず、エジェクタ15を通過した被処理水10とオゾンガスの混合物が反応槽1の底部側から流入するように構成されている。
【0049】
この第4実施例では被処理水10が先ず加圧ポンプ14で加圧されてからエジェクタ15でオゾン発生機2から得られるオゾンガスと接触して反応槽1内の下方から流入する間にオゾンガスが被処理水10中に溶解し、溶存オゾンが生成する。そして第3実施例で説明したようにブラックライト5から発せられた波長310nm〜410nmの光がランプ保護管4の外表面にコーティングされた二酸化チタンの膜13に吸収されて光触媒反応を引き起こし、ランプ保護管4近傍まで拡散してきた溶存オゾンと反応してOHラジカルを生成し、このOHラジカルの酸化力によってり被処理水10中の有機物等が分解される。
【0050】
第4実施例によれば、注入型のオゾン溶解部と光触媒反応部とが別々に構成されていることが特徴となっていて、前段のエジェクタ15によるオゾン注入と後段の反応槽1による光触媒反応とを組み合わせることによって促進酸化処理を実施している。
【0051】
図6は本発明の第5実施例を示す概要図であり、この例では反応槽1の内部が越流式のオゾン接触槽16と促進酸化処理槽17及び滞留槽18とに区画されていて、オゾン接触槽16と促進酸化処理槽17の底壁近傍に各オゾンガスの散気管3,3が配置されており、促進酸化処理槽17の上方から前記第3,第4実施例で説明したようにランプ保護管4,4,4を介在して複数本のブラックライト5,5,5が挿入配置されており、このランプ保護管4,4,4の外表面には、予め二酸化チタンの膜13がコーティングされている。
【0052】
かかる第5実施例によれば、被処理水10は先ず反応槽1の前段のオゾン接触槽16でオゾン単独処理が行われて高分子有機物の低分子化とか着色成分,臭気成分が分解された後、次段の促進酸化処理槽17に流入して前記した動作原理に基づく光触媒による促進酸化処理が行われ、以下滞留槽18を経由してから処理水20として流出する。従ってオゾンによる単独処理と促進酸化処理が連続的に行われることにより、処理効率が向上するという作用が得られる。
【0053】
次に図7により本発明の第6実施例を説明する。この第6実施例は過酸化水素蓄積型促進酸化処理装置の例であり、図中の21は過酸化水素蓄積槽、22は該過酸化水素蓄積槽と併設されたオゾン処理槽である。過酸化水素蓄積槽21の上方からランプ保護管4を介在してブラックライト5が挿入配置されており、このランプ保護管4の外表面には第3実施例で説明したように二酸化チタンの膜13がコーティングされている。更にこの実施例では、過酸化水素蓄積槽21の内壁面にも二酸化チタンの膜13aがコーティングされている。オゾン処理槽22の底壁近傍にはオゾンガス用の散気管3が配置されており、オゾン発生機2から得られるオゾンが供給される。
【0054】
6はブラックライト点灯装置、7は排オゾン処理装置である。尚、ブラックライト点灯装置6は電源,安定器及び点灯のための予備灯から構成されており、ランプ保護管4にはパイレックス等の波長310nm〜410nmの光を透過するガラス管が用いられている。
【0055】
かかる第6実施例によれば、被処理水10が過酸化水素蓄積槽21に流入すると同時にブラックライト5を点灯すると、保護管4の外表面と過酸化水素蓄積槽21内壁面にコーティングされた二酸化チタンの膜13,13aの表面に電子と正孔が生成され、酸化還元反応により過酸化水素が生成する。この過酸化水素は水中に拡散して蓄積される。
【0056】
このように過酸化水素が蓄積した被処理水10はオゾン処理槽22に送り込まれ、このオゾン処理槽ではオゾン発生装置2から供給されるオゾンガスが散気管3により水中に放散され、このオゾンガスと水中に含まれている過酸化水素が反応してOHラジカルが生成する。そして被処理水10中に含まれている有害物質がOHラジカルによって炭酸ガスから水に分解される。そしてオゾン処理槽22の下側部から処理水20が流出し、反応に使われなかったオゾンガスはオゾン処理槽22の上部に引き抜かれて排オゾン処理装置7により分解されて大気中へ放出される。
【0057】
この際の促進酸化反応を簡単に説明すると、過酸化水素は水中で水素イオンとHO2 -(ヒドロペルオキシイオン)に解離する。HO2 -はオゾンと反応してスーパーオキサイドとオゾニドイオンを生成する。このオゾニドイオンは酸素を放出してOHラジカルを生成する。
【0058】
図8は本発明の第7実施例を示す概要図であり、基本的な構成は第6実施例と同一であるため、図7と同一の構成部分に同一の符号を付して表示してある。この第7実施例では、前記過酸化水素蓄積槽21の近傍にブロワ23を設置して、該ブロワ23から得られる空気を過酸化水素蓄積槽21の底壁近傍に配置した散気管3に供給するように構成されている。その他の構成は第6実施例と同一である。
【0059】
かかる第7実施例によれば、第6実施例の作用に加えて過酸化水素蓄積槽21内にブロワ23で得られる空気を散気することによって被処理水10中の酸素濃度が高められ、過酸化水素の生成反応が促進されて効率的に過酸化水素を蓄積することができる。尚、空気に代えて酸素ガスを用いると被処理水中の酸素濃度がより一層高められ、過酸化水素の生成反応がさらに促進されるという作用が得られる。
【0060】
図9は本発明の第8実施例を示す概要図であり、この実施例では前記第7実施例の過酸化水素蓄積槽21を挟んで前段オゾン処理槽22aと後段オゾン処理槽22bを配設し、各オゾン処理槽22a,22b内に散気管3,3を配置してオゾン発生機2から得られるオゾンガスを供給するようにしたことが構成上の特徴となっている。その他の構成は第7実施例と同一である。
【0061】
かかる第8実施例によれば、被処理水10は先ず前段オゾン処理槽22a内でのオゾンガスの放散によって高分子有機物の不飽和結合が切断されて、オゾン単独で処理できる色度成分とか臭気成分等の有害物質が除去され、更に高分子有機物が低分子化されてから過酸化水素蓄積槽21に流入し、前記した作動原理に基づくブラックライト5の点灯による酸化還元反応により過酸化水素が生成蓄積し、且つブロワ23の駆動に伴って被処理水10中の酸素濃度が高められて過酸化水素の生成反応が促進されてから後段のオゾン処理槽22bに送り込まれ、オゾンガスと水中に含まれている過酸化水素の反応によりOHラジカルが生成して有害物質が該OHラジカルによって分解される。第8実施例では特に前段オゾン処理槽22aを設置したことによって促進酸化処理がより速く、且つ効果的に進行するという作用が得られる。
【0062】
図10は本発明の第9実施例を示す概要図であり、本例は多段促進酸化処理装置例を構成している。即ち、25は多段処理槽であり、この多段処理槽25は第1槽25a,第2槽25b,第3槽25c,第4槽25d,第5槽25eの5段階の槽で構成され、各槽内には流入水の短絡を防止するために上壁部から隔壁26,26が垂下されて被処理水10に上下流が生じるように構成されている。
【0063】
そして第1槽25a,第3槽25c,第5槽25e内の底壁近傍に配置された散気管3にはオゾン発生機2から得られるオゾンガスが供給され、第2槽25bと第4槽25dの上方からランプ保護管4を介在してブラックライト5が挿入配置されており、このランプ保護管4の外表面と槽内壁面には前記実施例で説明したように二酸化チタンの膜13がコーティングされている。更に第2槽25bと第4槽25d内に配置された散気管3にはブロワ23から得られる空気が供給されるようになっている。
【0064】
かかる第9実施例によれば、被処理水10は第1槽25a内でのオゾンガスの放散によってオゾン単独で処理できる色度成分とか臭気成分等の有害物質が除去され、高分子有機物が低分子化されてから第2槽25bに流入し、ブラックライト5の点灯による酸化還元反応により過酸化水素が生成蓄積し、且つブロワ23の駆動に伴って被処理水10中の酸素濃度が高められて過酸化水素の生成反応が促進されてから第3槽25cに送り込まれ、オゾンガスと水中に含まれている過酸化水素の反応によりOHラジカルが生成して有害物質が該OHラジカルによって分解される。この第4槽25dと第5槽25eで再度繰り返される。
【0065】
従って第9実施例では、オゾンの単独処理と過酸化水素の蓄積処理が交互に且つ2段階に渡って行われるため、促進酸化処理が効果的に進行するという作用が得られる。尚、被処理水10の性状とか水量その他の条件に応じて、上記オゾンの単独処理と過酸化水素の蓄積処理を2段階以上行うように最適な設計を実施することが好ましい。
【0066】
図15A,Bは本発明の第10実施例を示す概要図及び横断面図であって、基本的な構成は第1実施例および第3実施例と同一であるため、同一の構成部分に同一の符号を付して表示してある。この第10実施例ではランプ保護管4の外周に光触媒反応管体31を配設したものである。この光触媒反応管体31は縦方向に複数本のスリット孔32が形成されるとともに、管体31の内外周面には光触媒として二酸化チタンの膜33がコーティングされている。
【0067】
かかる第10実施例によれば、紫外線光源とするブラックライト5から発せられた波長310nm〜410nmの紫外線が、ランプ保護管4にコーティングされた二酸化チタンの膜33に一部吸収され、光触媒反応を引き起こす。ランプ保護管4を透過した残りの紫外線は光触媒反応管体31を通過するとき、この反応管体31の内外周面にコーティングされた二酸化チタンの膜33に吸収され、光触媒反応を引き起こす。これら両光触媒反応の作用によりオゾン分解が促進され、OHラジカルを生成することで被処理水中の汚染物質の分解が進行する。
【0068】
なお、第10実施例において、光触媒反応管体31は管体として説明して来たが、筒体を軸方向に複数個に分割した円弧分割体により光触媒反応体31を形成しても良い。このとき、1つ1つの円弧分割体には隙間を設けるようにして光触媒反応体を構成する。光触媒反応体には二酸化チタンの膜33がコーティングされる。
【0069】
図16は第10実施例の促進酸化処理装置を用いて被処理水を処理したときの実験データを示すグラフであり、図16において、BLは二酸化チタンの膜がコーティングされていないブラックライト5のみ計測例、LPはランプ保護管4だけに、二酸化チタンの膜をコーティングした場合の計測例、GPは光触媒反応管体31だけに、二酸化チタンの膜をコーティングした場合の計測例、LP+GPはランプ保護管4と光触媒反応管体31の両方に、二酸化チタンの膜をコーティングした場合の計測例における紫外線吸光度とオゾン分解速度の関係を表示したものである。この図16からオゾン分解速度が大きいほど、オゾン促進酸化力が高く、OHラジカルによる汚染物質の分解反応が早いことを意味している。
【0070】
オゾン分解速度は紫外線吸収量に比例し、ランプ保護管4、光触媒反応管体31それぞれ単独に二酸化チタンの膜33をコーティングした場合に比較して、ランプ保護管4と光触媒反応管体31の両方に二酸化チタンの膜33をコーティングした方がオゾンの分解速度が大きくなっている。つまり、二酸化チタンの膜33のコーティング面を多重にすることで紫外線の吸収量が大幅に増大し、オゾンの促進酸化力が向上していることを意味している。
【0071】
図17は本発明の第11実施例を示す横断面図であり、この第11実施例では、内周壁面を鏡面34に加工形成した反応槽1としたものである。このように反応槽1の内周壁面に鏡面34を加工することにより、ブラックライト5から発せられた波長310nm〜410nmの紫外線が、ランプ保護管4と光触媒反応管体31にコーティングされた二酸化チタンの膜33に一部吸収され、残りは反応槽1の内壁面に到達する。内壁面に到達した紫外線は鏡面34で反射して、再び反応槽1の中心に向かい光触媒反応管体31およびランプ保護管4を通過する。ここを通過した紫外線は再び二酸化チタンの膜に吸収されて光触媒反応を引き起こす。
【0072】
このように、反応槽1の内壁面に鏡面34を設けることにより、紫外線が二酸化チタン膜を通過する回数を増加させる。これにより、二酸化チタンの膜33による紫外線吸収量を増加させることができ、結果としてオゾンの促進酸化反応を強めて、OHラジカルによる汚染物質の分解反応を促進させることができる。
【0073】
図18は本発明の第12実施例を示す横断面図であり、この第12実施例は上記第11実施例の鏡面34に二酸化チタンの膜33をコーティングする。このように形成することにより、鏡面34に到達した紫外線が反射する前後で二酸化チタンの膜33によって吸収され、光触媒反応を効果的に起こすことができる。
【0074】
図19は本発明の第13実施例を示す横断面図であり、この第13実施例は上記第12実施例の光触媒反応管体31にハーフミラー35の加工を施して、そのハーフミラー面に二酸化チタンの膜33をコーティングする。このように形成することにより、紫外線が光触媒反応管体31と反応槽1の内周面の間を繰り返し、反射往復させることができ、二酸化チタンの膜33への吸収を増加させることができる。
【0075】
図20A,Bは本発明の第14実施例を示す横断面図および反応槽の一部拡大図であり、この第14実施例は上記第12実施例の反応槽1に少なくとも槽内周壁面に凹凸面を形成することにより、ランプ保護管4からの紫外線が反応槽1の凹凸面で反射してランプ保護管4の方向に戻る変わりに、反応槽1の凹凸面から凹凸面へ反射して紫外線が回るようにする。このことにより、二酸化チタンの膜33への吸収を増加させることができる。
【0076】
図21は本発明の第15実施例を示す横断面図であり、この第15実施例は上記第12実施例から光触媒反応管体31を省いた構成にしたもので、このように構成することにより、全体構成を単純化することができる。
【0077】
図22A,Bは本発明の第16実施例を示す横断面図および反応槽の一部拡大図であり、この第16実施例は上記第14実施例から光触媒反応管体31を省いた構成にしたもので、このように構成することにより、全体構成を単純化することができる。
【0078】
【発明の効果】
以上詳細に説明したように、本発明にかかるオゾンと光触媒を利用した促進酸化処理装置によれば、オゾン,二酸化チタン,波長310nm〜410nmの光を発する光源の組み合わせにより、二酸化チタンによる光触媒反応が効率良く進行して水中の有害物質を除去することができる。特に光触媒或いはオゾン処理だけによる従来法に較べて反応時間は大幅に短縮され、その結果として処理水の滞留時間も短縮可能となるので、処理装置自体の小型化がはかれるという効果がある。
【0079】
ランプ保護管として波長310nm〜410nmの光の透過率のよいパイレックス等のガラスが使用可能であり、石英管などに比して材料費は低廉化され、ランプ保護管の外壁面に二酸化チタンの膜をコーティングしたことにより光源から発せられる光のすべてを二酸化チタン表面に到達させることができるので、光触媒反応の効率化をはかるとともにランプ保護管に付着する汚れ物質の分解作用も得られて防汚作用を高める効果がある。
【0080】
また、ランプ保護管の外表面と過酸化水素蓄積槽内壁面に二酸化チタンの膜をコーティングしたことによって光源の照射による酸化還元反応により過酸化水素が生成して蓄積され、オゾン処理槽でオゾンガスと過酸化水素の反応により生成したOHラジカルが被処理水中に含まれている有害物質を高効率で分解することができる。従来のようにオゾンと過酸化水素処理を組み合わせた場合と異なって過酸化水素の取扱いに注意を要するという問題は生じない。
【0081】
従って本発明によれば、活性酸素種及びOHラジカルによる反応効率を高めて促進酸化処理を実施することにより、処理時間の短縮及び処理装置の小型化をもたらしてコストの低廉化をはかることができる上、基本的に従来のオゾン反応槽をそのまま利用することができる促進酸化処理装置を提供することができる。
【0082】
上記の他に本発明によれば、光触媒反応管体や反応槽に鏡面加工を施すようにしたので、二酸化チタンに紫外線を効率よく吸収させて、有機物分加速度を向上させることにより、処理水質の向上、紫外線の必要電力の低減化を図ることができる。
【図面の簡単な説明】
【図1】本発明における促進酸化処理装置の第1実施例を示す概要図。
【図2】本実施例と比較例による処理時間と総有機炭素量(TOC)の相関を示すグラフ。
【図3】本発明の第2実施例を示す概要図。
【図4】本発明の第3実施例を示す概要図。
【図5】本発明の第4実施例を示す概要図。
【図6】本発明の第5実施例を示す概要図。
【図7】本発明の第6実施例を示す概要図。
【図8】本発明の第7実施例を示す概要図。
【図9】本発明の第8実施例を示す概要図。
【図10】本発明の第9実施例を示す概要図。
【図11】オゾンによる紫外線の吸収帯を示すオゾンの紫外吸光スペクトル。
【図12】二酸化チタンの光吸収特性を示すグラフ。
【図13】ブラックライトの主波長域を示すエネルギー分布図。
【図14】パイレックス管の分光透過率を示すグラフ。
【図15】本発明の第10実施例を示す概要図及び横断面図。
【図16】紫外線吸収量とオゾン分解速度の関係を示すグラフ。
【図17】本発明の第11実施例を示す横断面図。
【図18】本発明の第12実施例を示す横断面図。
【図19】本発明の第13実施例を示す横断面図。
【図20】本発明の第14実施例を示す横断面図および一部拡大図。
【図21】本発明の第15実施例を示す横断面図。
【図22】本発明の第16実施例を示す横断面図および一部拡大図。
【符号の説明】
1…反応槽
2…オゾン発生機
3…散気管
4…ランプ保護管
5…ブラックライト
6…ブラックライト点灯装置
7…排オゾン処理装置
9…二酸化チタン粉末
10…被処理水
11…二酸化チタン担持体
12…支持床
13,13a…(二酸化チタンの)膜
14…加圧ポンプ
15…エジェクタ
16…オゾン接触槽
17…促進酸化処理槽
20…処理水
21…過酸化水素蓄積槽
22…オゾン処理槽
23…ブロワ
25…多段接触槽
Claims (3)
- 反応槽内にランプ保護管を介在させ、そのランプ保護管内に波長310nm〜410nmの波長域を有するブラックライトを配置し、該反応槽の底壁近傍にオゾンガス用の散気管を配置して、反応槽内に投入された被処理水と二酸化チタン粉末に前記ブラックライトから発する光を照射することにより、二酸化チタン粉末に吸収されて生じる光触媒反応でオゾン放散により生じた溶存オゾンを分解して活性酸素種を生成し、この活性酸素種により被処理水中の有機物の酸化除去を行うようにしたことを特徴とするオゾンと光触媒を利用した促進酸化処理装置。
- 前記光触媒としての二酸化チタン粉末に代えて、二酸化チタン担持体を用いた請求項1に記載のオゾンと光触媒を利用した促進酸化処理装置。
- 前記光触媒としての二酸化チタン粉末に代えて、ランプ保護管の外表面にコーティングした二酸化チタンの膜を利用した請求項1に記載のオゾンと光触媒を利用した促進酸化処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05265297A JP3858326B2 (ja) | 1996-10-15 | 1997-03-07 | オゾンと光触媒を利用した促進酸化処理装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-271977 | 1996-10-15 | ||
JP27197796 | 1996-10-15 | ||
JP05265297A JP3858326B2 (ja) | 1996-10-15 | 1997-03-07 | オゾンと光触媒を利用した促進酸化処理装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005295831A Division JP4285468B2 (ja) | 1996-10-15 | 2005-10-11 | オゾンと光触媒を利用した促進酸化処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10174983A JPH10174983A (ja) | 1998-06-30 |
JP3858326B2 true JP3858326B2 (ja) | 2006-12-13 |
Family
ID=26393283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05265297A Expired - Fee Related JP3858326B2 (ja) | 1996-10-15 | 1997-03-07 | オゾンと光触媒を利用した促進酸化処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3858326B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103145217A (zh) * | 2013-03-27 | 2013-06-12 | 中北大学 | 超重力多级阴极电Fenton法处理难降解废水的装置及工艺 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6881331B1 (en) * | 1999-09-10 | 2005-04-19 | Ronald L. Barnes | Assembly for purifying water |
JP2002336891A (ja) * | 2001-05-17 | 2002-11-26 | Kurabo Ind Ltd | 難分解性物質の分解システム |
KR100439195B1 (ko) * | 2001-08-06 | 2004-07-07 | 학교법인조선대학교 | 광촉매 반응에 의한 용수 살균 방법 및 장치 |
KR100493713B1 (ko) * | 2001-10-26 | 2005-06-03 | 한국화학연구원 | 수중오염물질을 제거 처리하기 위한 고정화된 이산화티탄 광촉매의 제조방법 |
CN103523891B (zh) * | 2012-07-03 | 2015-09-09 | 中国石油化工股份有限公司 | 含有机物废水催化湿式氧化的方法 |
US9079227B2 (en) | 2013-04-08 | 2015-07-14 | Ronald L. Barnes | Sanitizing and cleaning process and apparatus |
CN104370328A (zh) * | 2014-11-14 | 2015-02-25 | 上海市政工程设计研究总院(集团)有限公司 | 光导介质负载催化剂的光催化水处理设备及其处理方法 |
CN105174423B (zh) * | 2015-07-16 | 2017-12-12 | 南京工业大学 | 一种煤化工生化尾水处理方法 |
JP2017104849A (ja) * | 2015-12-09 | 2017-06-15 | Hack Japan ホールディングス株式会社 | 汚染水処理装置 |
CN105776430B (zh) * | 2016-04-25 | 2018-12-07 | 武汉玻尔科技股份有限公司 | 用于污水处理的电催化氧化装置及方法 |
CN110526488A (zh) * | 2018-05-24 | 2019-12-03 | 山东蓝卫环保科技有限公司 | 活性氧微纳米离子膜油水分解设备及处理方法 |
CN108793384A (zh) * | 2018-07-19 | 2018-11-13 | 苏州方舟环保科技有限公司 | 一种涡轮负压氧化处理设备 |
CN108892204A (zh) * | 2018-09-04 | 2018-11-27 | 湖南汉臻环境科技有限公司 | 高浓度难生化降解有机废水的处理设备及处理方法 |
-
1997
- 1997-03-07 JP JP05265297A patent/JP3858326B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103145217A (zh) * | 2013-03-27 | 2013-06-12 | 中北大学 | 超重力多级阴极电Fenton法处理难降解废水的装置及工艺 |
CN103145217B (zh) * | 2013-03-27 | 2014-05-14 | 中北大学 | 超重力多级阴极电Fenton法处理难降解废水的装置及工艺 |
Also Published As
Publication number | Publication date |
---|---|
JPH10174983A (ja) | 1998-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3858326B2 (ja) | オゾンと光触媒を利用した促進酸化処理装置 | |
JP4355315B2 (ja) | 流体浄化装置 | |
US6391272B1 (en) | Method for exhaust gas decontamination | |
US6030526A (en) | Water treatment and purification | |
JPH1133567A (ja) | オゾン分解方法とその装置 | |
US6238628B1 (en) | Photolytic device for breakdown of organic chlorine compounds | |
JPH1147771A (ja) | 連続通水式水処理装置 | |
JPH1057749A (ja) | オゾン水による空気脱臭方法及び空気脱臭装置 | |
JP4285468B2 (ja) | オゾンと光触媒を利用した促進酸化処理装置 | |
CN203741162U (zh) | 紫外光-臭氧催化氧化污水处理装置 | |
JP3646509B2 (ja) | 光触媒を用いた水処理装置 | |
JPH06277660A (ja) | 水処理装置 | |
KR20060035721A (ko) | 유해 물질을 함유한 사용된 공기 정화 장치 | |
JP4664270B2 (ja) | 水処理装置 | |
CN114620801B (zh) | 一种用于难降解污水处理的光催化回流增效氧化系统 | |
JPH0824629A (ja) | 光触媒反応槽 | |
JP2004267974A (ja) | 有機物連続酸化処理装置 | |
JP2000325971A (ja) | 汚染水浄化方法及びその装置 | |
KR100833814B1 (ko) | 정수 처리 장치 | |
JPH11156377A (ja) | オゾン分解方法とその装置 | |
JP2002336891A (ja) | 難分解性物質の分解システム | |
JP2009112953A (ja) | 水処理方法及び水処理装置 | |
JP2001259621A (ja) | 水処理装置 | |
JPH11221581A (ja) | 酸化分解処理装置 | |
JP2000070971A (ja) | オゾン反応システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060911 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130929 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |