[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3852376B2 - Battery outer case - Google Patents

Battery outer case Download PDF

Info

Publication number
JP3852376B2
JP3852376B2 JP2002190464A JP2002190464A JP3852376B2 JP 3852376 B2 JP3852376 B2 JP 3852376B2 JP 2002190464 A JP2002190464 A JP 2002190464A JP 2002190464 A JP2002190464 A JP 2002190464A JP 3852376 B2 JP3852376 B2 JP 3852376B2
Authority
JP
Japan
Prior art keywords
power generation
generation element
concave portion
laminate film
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190464A
Other languages
Japanese (ja)
Other versions
JP2004039271A (en
Inventor
典彦 枚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002190464A priority Critical patent/JP3852376B2/en
Publication of JP2004039271A publication Critical patent/JP2004039271A/en
Application granted granted Critical
Publication of JP3852376B2 publication Critical patent/JP3852376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池の発電要素の外装にラミネートフィルムを用いて、その周縁部を熱溶着などにより接合して密封する電池外装ケースに関する。
【0002】
【従来の技術】
近年、自動車の排ガスによる大気汚染が世界的な問題となっている中で、電気を動力源とする電気自動車やエンジンとモータを組み合わせて走行するハイブリッドカーが注目を集めており、これらに搭載する高エネルギ密度、高出力密度となる高出力型電池の開発が産業上重要な位置を占めている。
【0003】
このような高出力型電池としては例えばリチウムイオン電池があり、この場合、正極板と負極板との間にセパレータを介在させて巻回した円筒型電池や、平板状の正極板と負極板とをセパレータを介在させつつ積層した積層型電池がある。
【0004】
後者の積層型電池では、扁平状で矩形状となった発電要素の両面を一対のラミネートフィルムで挟み、その周縁部を熱溶着により接合して発電要素とともに電解液を密封している。この場合、例えば特開2000−200585号公報に開示されるように、一方のラミネートフィルムに発電要素を収納する凹部を形成して、この凹部に電解液とともに発電要素を収納して他方のラミネートフィルムで覆った後、それぞれの周縁部を熱溶着して外装ケースとしている。
【0005】
【発明が解決しようとする課題】
ところで、一対のラミネートフィルムで発電要素を密封する際、正極板と負極板との間のセパレータ中に電解液を効率よく含浸させ、また、発電要素の膨潤などによる体積変化を抑制するために、外装ケース内を減圧した状態でラミネートフィルムの周縁部を接合している。
【0006】
ところが、この場合には、ラミネートフィルムが発電要素の特に角部に対応する部分に密着しにくく、角部に対応するラミネートフィルムに皺が発生する。この皺発生は、電解液の分解によるガス発生や内部に浸入した水分の化学変化によるガス発生を見込んで、ラミネートフィルムと発電要素との間に余剰となる空間容積を持たせる必要があることから、減圧した際にこの余剰部分の弛みが角部に集まって、この角部に皺が発生しやすいものとなる。
【0007】
このようにラミネートフィルムに皺が発生すると、ラミネートフィルム内部のアルミ箔層に亀裂を引き起こして電池性能の早期劣化を引き起こす可能性がある。
【0008】
そこで、本発明は、発電要素を収納する外装ケースの皺発生を抑制することにより、皺に起因する電池性能の劣化を防止することを目的とする。
【0009】
【課題を解決するための手段】
本発明の電池外装ケースは、正極板と負極板とをセパレータを介在しつつ積層した多角形状の発電要素の両面を覆う金属層と樹脂層とを有するラミネートフィルムを備え、このラミネートフィルムの少なくとも一方の面に前記発電要素の外側形状にほぼ相似な凹部を形成して、この凹部に前記発電要素を収納しつつ前記ラミネートフィルムの周縁部の互いに対向する面同士を接合して密封した電池外装ケースにおいて、前記凹部の角部内側に、この凹部の角部に対向する前記発電要素の角部との間の空間部を埋めるスペーサを配置し、このスペーサは、前記凹部における角部両側の内側面に対向する外側面を備え、この外側面の前記凹部における底面側の縁部を、前記発電要素を収納するケース内部を減圧して密封する際に、前記ラミネートフィルムの角部内側面の形状を保持する凸曲面状とした構成としてある。
【0010】
【発明の効果】
本発明の電池外装ケースによれば、発電要素を収納するラミネートフィルムの凹部の角部内側に、ケース内部を減圧して密封する際に、ラミネートフィルムの角部内側面の形状を保持する凸曲面状部を有するスペーサを配置して、凹部の角部に対向する発電要素の角部との間の空間部を埋めるようにしたため、ラミネートフィルムと発電要素との間に余剰分の空間容積を設けてラミネートフィルム同士を減圧状態で密封する際に、前記スペーサによって凹部の形状を保持できる。
【0011】
このため、ラミネートフィルムに皺が発生するのを防止もしくは効果的に抑制し、特に角部に皺が集中して発生するのを抑制できるため、ラミネートフィルムにおける金属箔層の破損を防止して、電池性能の劣化を防止することができる。
【0012】
また、このようにラミネートフィルムの皺を抑制できることから、個々の電池の品質安定化を図ることができる。
【0013】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。
【0014】
図1〜図5は本発明に係わる電池外装ケースの密封構造の一実施形態を示している。図1は電池の平面図、図2は図1中A−A線に沿った拡大断面図、図3は発電要素をラミネートフィルムの凹部に組み付ける状態を示す分解斜視図、図4は図1中B部の拡大断面図、図5中(a)はスペーサの上方斜視図、同(b)はスペーサの下方斜視図である。
【0015】
本実施形態の電池外装ケースの密封構造が適用される電池10は、図1,図2に示すように発電要素としての積層電極11を、一対のラミネートフィルム12,13の中央部間に配置し、これら一対のラミネートフィルム12,13によって積層電極11の両面(図中、表裏方向)を挟むようにして覆ってある。
【0016】
前記積層電極11は、図2に示すように複数枚の正極板11A,11A…および負極板11B,11B…を、それぞれセパレータ11C,11C…を介在しつつ順次積層して構成してある。各正極板11A,11A…は正極リード11D,11D…を介して正極タブ14に接続するとともに、各負極板11B,11B…は負極リード11E,11E…を介して負極タブ15に接続し、これら正極タブ14および負極タブ15を、前記ラミネートフィルム12,13の接合部分16から外方に引き出している。
【0017】
積層構造として形成した前記積層電極11は、所定肉厚を持った扁平な矩形状をなしており、図3に示すように一方のラミネートフィルム12に形成した凹部20に電解液とともに収納する、そして、この凹部20を覆うように他方のラミネートフィルム13を配置して、これら両方のラミネートフィルム12,13の周縁部を減圧条件下で熱溶着して密封することにより外装ケース17を構成している。
【0018】
なお、図3は図2に示した一方のラミネートフィルム12を上下に反転した状態で示し、この反転状態で電池10の組付けが行われる。
【0019】
このようにして構成される電池10としては、例えばリチウムイオン二次電池があり、この場合、正極板11A,11A,……を形成している正極の正極活物質として、リチウムニッケル複合酸化物、具体的には一般式LiNi1-xMxO2(但し、0.01≦x≦0.5であり、MはFe,Co,Mn,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表せる化合物を含有する。
【0020】
また、正極はリチウムニッケル複合酸化物以外の正極活物質を含有することも可能である。リチウムニッケル複合酸化物以外の正極活物質としては、例えば一般式LiyMn2-zM'zO4(但し、0.9≦y≦1.2、0.01≦z≦0.5であり、M'はFe,Co,Ni,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表される化合物であるリチウムマンガン複合酸化物が挙げられる。また、一般式LiCo1-xMxO2(但し、0.01≦x≦0.5であり、MはFe,Ni,Mn,Cu,Zn,Al,Sn,B,Ga,Cr,V,Ti,Mg,Ca,Srの少なくとも一つである。)で表せる化合物であるリチウムコバルト複合酸化物を含有してもよい。
【0021】
リチウムニッケル複合酸化物、リチウムマンガン複合酸化物およびリチウムコバルト複合酸化物は、例えばリチウム、ニッケル、マンガン、コバルトなどの炭酸塩を組成に応じて混合し、酸素存在雰囲気中において600℃〜1000℃の温度範囲で焼成することにより得られる。なお、出発原料は炭酸塩に限定されず、水酸化物、酸化物、硝酸塩、有機酸塩等からも同様に合成可能である。
【0022】
なお、リチウムニッケル複合酸化物やリチウムマンガン複合酸化物などの正極活物質の平均粒径は、30μm以下であることが好ましい。
【0023】
また、負極板11B,11B,……を形成している負極活物質としては、比表面積が0.05m2/g以上、2m2/g以下の範囲であるものを使用する。この範囲とすることにより、負極表面上におけるSEI(Solid Electrolyte Interface:固体電解質界面)の形成を充分に抑制することができる。
【0024】
負極活物質の比表面積が0.05m2/g未満である場合、リチウムの出入り可能な場所が小さすぎるため、充電時において負極活物質中にドープされたリチウムが放電時において負極活物質中から充分に脱ドープされず、充放電効率が低下する。一方、負極活物質の比表面積が2m2/gを越える場合、負極表面上におけるSEI形成を制御することができない。
【0025】
負極活物質としては、対リチウム電位が2.0V以下の範囲でリチウムをドープ・脱ドープすることが可能な材料であれば何れも使用可能であり、具体的には難黒鉛化性炭素材料、人造黒鉛、天然黒鉛、熱分解黒鉛類、ピッチコークスやニードルコークスや石油コークスなどのコークス類、グラファイト、ガラス状炭素類、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラックなどの炭素質材料を使用することが可能である。
【0026】
また、リチウムと合金を形成可能な金属、およびその合金も使用可能であり、具体的には、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化スズ等の比較的低電位でリチウムをドープ・脱ドープする酸化物やその窒化物、3B族典型元素の他、SiやSnなどの元素、または例えばMxSi、MxSn(但し、式中MはSi又はSnを除く1つ以上の金属元素を表す。)で表されるSiやSnの合金などを使用することができる。これらの中でも、特にSiまたはSi合金を使用することが好ましい。
【0027】
さらに、電解液としては、電解質塩を非水溶媒に溶解して調製される液状のものの他、電解質塩を非水溶媒に溶解した溶液を高分子マトリクス中に保持させたポリマーゲル電解質であってもよい。
【0028】
非水電解質としてはポリマーゲル電解質を用いる場合、使用する高分子材料として、ポリフッ化ビニリデン、ポリアクリロニトリルなどが挙げられる。
【0029】
非水溶媒としては、この種の非水電解質二次電池においてこれまで使用されている非水溶媒であれば何でも使用可能であり、例えばプロピレンカーボネート、エチレンカーボネート、1,2-ジメトキシエタン、ジエチルカーボネート、ジメチルカーボネート、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリルなどが挙げられる。なお、これらの非水溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。
【0030】
特に、非水溶媒は不飽和カーボネートを含有することが好ましく、具体的には、ビニレンカーボネート、エチレンエチリデンカーボネート、エチレンイソプロプロピリデンカーボネート、プロピリデンカーボネートなどを含有することが好ましい。また、これらの中でも、ビニレンカーボネートを含有することが最も好ましい。非水溶媒として不飽和カーボネートを含有することにより、負極活物質に生成するSEIの性状(保護膜の機能)に起因する効果が得られ、耐過放電特性がより向上すると考えられる。
【0031】
また、この不飽和カーボネートは電解質中に0.05重量%以上、5重量%以下の割合で含有されることが好ましく、特に0.5重量%以上、3重量%以下の割合で含有されることが最も好ましい。不飽和カーボネートの含有量を上記範囲とすることで、初期放電容量が高く、エネルギ密度の高い非水二次電池となる。
【0032】
電解質塩としては、イオン伝導性を示すリチウム塩であれば特に限定されることはなく、例えばLiClO4、LiAsF6、LiPF6、LiBF4、LiB(C6H5)4、LiCl、LiBr、CH3SO3Li、CF3SO3Liなどが使用可能である。これらの電解質塩は、1種類を単独で用いてもよく、2種類以上を混合して用いることも可能である。
【0033】
ところで、前記一方のラミネートフィルム12に形成した凹部20は、積層電極11の外側形状にほぼ相似した矩形状に凹設され、この凹部20の開口面積を積層電極11の外側形状よりもやや大きく形成して、凹部20の内側面20aと積層電極11の外周縁との間に適宜隙間を設けている。
【0034】
また、前記凹部20の深さD(図3参照)は積層電極11の厚さとほぼ等しく形成し、かつ、この凹部20には矩形状の積層電極11の各角部C1a,C2a,C3a,C4aに対応する4つの角部C1,C2,C3,C4が設けられる。
【0035】
前記ラミネートフィルム12,13は、図4に示すように外側から接合部分16に向かって樹脂層としてのナイロン層α、接着剤層β、金属層としてのアルミ箔層γ、樹脂層としてのPE(ポリエチレン)またはPP(ポリプロピレン)層δで構成される。
【0036】
ここで本実施形態では、前記凹部20の各角部C1,C2,C3,C4の内側に、これら角部C1,C2,C3,C4に対向する前記積層電極11の角部C1a,C2a,C3a,C4aとの間の空間部を埋める絶縁性のスペーサ30,30…を配置してある。
【0037】
スペーサ30は、合成樹脂で形成し、図5(a),(b)に示すように凹部20内側の角部C1,C2,C3,C4のそれぞれの両側の内側面20a,20aに対向する外側面31,32と、凹部20内側の底面20bに対向する設置面33とをそれぞれ備えて全体的に略三角柱状に形成してある。
【0038】
そして、図5(b)中2点鎖線で示すように、前記外側面31,32と前記設置面33とが交わる稜線R1部分から、外側面31,32の前記角部C1,C2,C3,C4に対応する稜線R2部分に亘って曲面Sを形成してある。すなわち、外側面31,32の凹部20における底面20b側の縁部を凸曲面状としてある。
【0039】
また、本実施形態では図5(a)に示すように、平面視形状が三角形となる前記スペーサ30の周囲側面は、前記外側面31,32とこれら外側面31,32相互間の斜面34とを備えるが、この斜面34側を前記積層電極11の角部C1a,C2a,C3a,C4aを載置するための載置部35を残して三角形状に切除(切除部分36)してある。
【0040】
これにより前記スペーサ30は、前記切除部分36を形成することにより、外側面31,32に沿ったL字状をなし、このL字状のスペーサ30の底部側に前記載置部35を設けた形状となる。
【0041】
したがって、本実施形態の電池10を組み付ける際には、図3に示すように一方のラミネートフィルム12に凹設した凹部20の四隅の角部C1,C2,C3,C4に、外側面31,32を凹部20の内側面20aに沿わせるとともに、設置面33を凹部20の底面20bに設置させるようにしてスペーサ30を配置する。
【0042】
そして、各スペーサ30の切除部分36に積層電極11の角部C1a,C2a,C3a,C4aを位置合わせしつつ、切除部分36の載置部35に積層電極11の四隅を載置して凹部20内に収納する。この状態で、他方のラミネートフィルム13で凹部20を覆い、減圧条件下で両方のラミネートフィルム12,13の周縁部を熱溶着する。電解液の注入については、例えばラミネートフィルム12,13の周縁部の一部のみを残した状態で熱溶着した後に、この一部の開口部から行う。
【0043】
以上の構成により、本実施形態の電池外装ケース17の密封構造にあっては、ラミネートフィルム12の凹部20に積層電極11を収納する際に、この凹部20の角部C1,C2,C3,C4内側に配置したスペーサ30,30…によって、積層電極11の角部C1a,C2a,C3a,C4aとの間の空間部を埋めることができる。
【0044】
このため、ラミネートフィルム12,13と積層電極11との間に、余剰となる空間容積を設けてラミネートフィルム12,13同士を減圧状態で密封する際に、前記スペーサ30が積層電極11に支持された状態で各スペーサ30,30…相互間の距離を維持しようとするため、凹部20の表面が収縮するのを阻止してその凹部20の形状を保持できる。
【0045】
このため、ラミネートフィルム12に皺が発生するのを防止もしくは効果的に抑制でき、特に、凹部20の角部に皺が集中するのを抑制できるため、ラミネートフィルム12のアルミ箔層γ(図4参照)に亀裂などの破損が発生するのを回避して、電池性能の劣化を防止することができる。
【0046】
また、このようにラミネートフィルム12の皺を抑制できることから、個々の電池の品質安定化を図ることができ、特に、スペーサ30の形状サイズや積層電極11との設置個所などを予め規定しておくことにより、減圧密封後の電池10の形状(ラミネートフィルム12の皺も含む)のバラツキや電池信頼性のバラツキを低減することができる。
【0047】
ところで、本実施形態のスペーサ30は、外側面31,32と設置面33とが交わる稜線R1部分から、凹部20の角部C1,C2,C3,C4に対応する稜線R2部分に亘って曲面Sを形成したので、凹部20の角部C1,C2,C3,C4が減圧により収縮する際に、その収縮部分のラミネートフィルム12を前記曲面Sに沿って滑らかに変形させて、極度の曲げや深い皺の発生を確実に防止することができる。
【0048】
したがって、上記した曲面Sを設けることで、ラミネートフィルム12のアルミ箔層γに作用する応力を緩和して亀裂発生などの破損を確実に防止し、電池の長期信頼性をさらに向上することができる。
【0049】
また、スペーサ30に載置部35を設けることで、積層電極11の凹部20へのセット作業が容易となる。
【0050】
図6は、本発明の他の実施形態に係わるスペーサ30aを示す。
【0051】
前記実施形態で説明したスペーサ30は、図5(a)および(b)に示したように載置部35を残して切除部分36を形成しほぼL字状としているが、この実施形態のスペーサ30aは、図5に示すスペーサ30から前記載置部35を除去し、外側面31,32を残すほぼL字状としている。この場合積層電極11は、凹部20の底面20bに直接載置する。
【0052】
ところで、本発明の電池外装ケースの密封構造は前記各実施形態に例を取って説明したが、これに限ることなく本発明の要旨を逸脱しない範囲で各種実施形態を採用することができる。
【0053】
例えば、積層電極11が矩形状である関係上、凹部20も四隅を備えた矩形状としたが、積層電極11がその他の多角形状である場合は、凹部20はこの積層電極11にほぼ相似する形状とし、スペーサの数もその多角形状に対応して増減すればよい。
【0054】
スペーサの形状についても、斜面34に除部分36を設けずに、単に三角柱形状とし、積層電極11の角部C1,C2,C3,C4をこの三角柱形状の斜面34に当接させるようにしてもよい。
【0055】
また、前記凹部20を積層電極11の両面を挟むラミネートフィルム12,13のうち一方のラミネートフィルム12に形成したが、両方のラミネートフィルム12,13にそれぞれ凹部20を形成した場合にあっても本発明を適用することができる。この場合には、両方の凹部20の各角部にスペーサ30あるいは30aを配置することになる。
【0056】
さらに、電池10としてはリチウムイオン二次電池に限ることなく、同様の構成となる他の電池にあっても本発明を適用することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における電池の平面図である。
【図2】図1中A−A線に沿った拡大断面図である。
【図3】本発明の一実施形態における発電要素をラミネートフィルムの凹部に組み付ける状態を示す分解斜視図である。
【図4】図1中B部の拡大断面図である。
【図5】(a)はスペーサの上方斜視図、(b)はスペーサの下方斜視図である。
【図6】本発明の他の実施形態を示し、(a)はスペーサの上方斜視図、(b)はスペーサの下方斜視図である。
【符号の説明】
10 電池
11 積層電極(発電要素)
11A 正極板
11B 負極板
11C セパレータ
12,13 ラミネートフィルム
17 外装ケース
20 凹部
20a 角部両側の内側面
20b 凹部の底面
30,30a スペーサ
31,32 外側面
35 載置部
C1,C2,C3,C4 凹部の角部
C1a,C2a,C3a,C4a 発電要素の角部
S 曲面
α ナイロン層(樹脂層)
γ アルミ箔層(金属層)
δ PE/PP層(樹脂層)
[0001]
BACKGROUND OF THE INVENTION
The present invention uses the exterior to the laminate film of the power generating element of the battery, a battery outer case that the peripheral portion is sealed by joining by thermal welding.
[0002]
[Prior art]
In recent years, air pollution caused by exhaust gas from automobiles has become a global problem, and electric cars powered by electricity and hybrid cars that run in combination with an engine and a motor are attracting attention and will be installed in these. The development of high-power batteries with high energy density and high power density occupies an important industrial position.
[0003]
Examples of such a high-power battery include a lithium ion battery. In this case, a cylindrical battery wound with a separator interposed between a positive electrode plate and a negative electrode plate, a flat positive electrode plate and a negative electrode plate, There is a laminated battery in which the separator is laminated with a separator interposed.
[0004]
In the latter stacked battery, both sides of a flat and rectangular power generation element are sandwiched between a pair of laminate films, and the peripheral portions thereof are joined by heat welding to seal the electrolyte together with the power generation element. In this case, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-200585, a concave portion for storing the power generation element is formed in one laminate film, and the power generation element is stored in the concave portion together with the electrolytic solution. After covering with, each peripheral edge is thermally welded to form an exterior case.
[0005]
[Problems to be solved by the invention]
By the way, when sealing the power generation element with a pair of laminate films, in order to efficiently impregnate the electrolyte in the separator between the positive electrode plate and the negative electrode plate, and to suppress volume change due to swelling of the power generation element, The peripheral part of the laminate film is joined in a state where the pressure inside the outer case is reduced.
[0006]
However, in this case, the laminate film hardly adheres to the portion corresponding to the corner portion of the power generation element, and wrinkles occur in the laminate film corresponding to the corner portion. This soot generation requires gas space due to decomposition of the electrolyte solution and gas generation due to chemical changes in the moisture that has entered the interior, so that it is necessary to provide an extra space volume between the laminate film and the power generation element. When the pressure is reduced, the slack of the surplus portion gathers at the corner portion, and wrinkles are easily generated at the corner portion.
[0007]
When wrinkles occur in the laminate film in this manner, there is a possibility that the aluminum foil layer inside the laminate film is cracked and the battery performance is deteriorated early.
[0008]
Therefore, an object of the present invention is to prevent deterioration of battery performance caused by soot by suppressing the occurrence of soot in an outer case that houses a power generation element.
[0009]
[Means for Solving the Problems]
The battery outer case of the present invention includes a laminate film having a metal layer and a resin layer covering both surfaces of a polygonal power generation element in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, and at least one of the laminate films The battery outer case is formed by forming a recess substantially similar to the outer shape of the power generation element on the surface of the laminated film, and sealing the peripheral surfaces of the laminate film facing each other while housing the power generation element in the recess A spacer is disposed inside the corner of the recess to fill a space between the corner of the power generation element facing the corner of the recess, and the spacer is an inner surface on both sides of the corner of the recess. An outer surface facing the outer surface, and the bottom surface side edge of the concave portion of the outer surface is sealed when the inside of the case housing the power generation element is decompressed and sealed. We are constituted that the convex curved surface for holding the shape of Tsunobeuchi sides of Irumu.
[0010]
【The invention's effect】
According to the battery outer case of the present invention, when the inside of the case is sealed by reducing the pressure inside the concave portion of the concave portion of the laminate film that houses the power generation element, the convex curved shape that retains the shape of the inner side surface of the corner portion of the laminated film Since the spacer having a portion is arranged so as to fill the space between the corner of the power generation element facing the corner of the recess, an extra space volume is provided between the laminate film and the power generation element. When the laminate films are sealed in a reduced pressure state, the shape of the recess can be maintained by the spacer.
[0011]
For this reason, it is possible to prevent or effectively suppress the generation of wrinkles in the laminate film, and in particular, to suppress the generation of wrinkles in the corners, thereby preventing the metal foil layer from being damaged in the laminate film, It is possible to prevent deterioration of battery performance.
[0012]
Moreover, since the wrinkles of the laminate film can be suppressed in this way, the quality of individual batteries can be stabilized.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0014]
1 to 5 show an embodiment of a battery outer case sealing structure according to the present invention. 1 is a plan view of the battery, FIG. 2 is an enlarged cross-sectional view taken along the line AA in FIG. 1, FIG. 3 is an exploded perspective view showing a state where the power generation element is assembled to the concave portion of the laminate film, and FIG. FIG. 5A is an upper perspective view of the spacer, and FIG. 5B is a lower perspective view of the spacer.
[0015]
In the battery 10 to which the sealing structure of the battery outer case of the present embodiment is applied, a laminated electrode 11 as a power generation element is disposed between the center portions of a pair of laminated films 12 and 13 as shown in FIGS. The pair of laminated films 12 and 13 cover both surfaces of the laminated electrode 11 (front and back directions in the figure).
[0016]
As shown in FIG. 2, the laminated electrode 11 is formed by sequentially laminating a plurality of positive plates 11A, 11A... And negative plates 11B, 11B. Each of the positive plates 11A, 11A,... Is connected to the positive tab 14 via the positive leads 11D, 11D, and each of the negative plates 11B, 11B,. The positive electrode tab 14 and the negative electrode tab 15 are drawn outward from the joint portion 16 of the laminate films 12 and 13.
[0017]
The laminated electrode 11 formed as a laminated structure has a flat rectangular shape with a predetermined thickness, and is housed together with an electrolyte in a recess 20 formed in one laminate film 12 as shown in FIG. The other laminate film 13 is disposed so as to cover the recess 20, and the outer peripheral portion of both the laminate films 12 and 13 is sealed by thermal welding under reduced pressure conditions. .
[0018]
Note that FIG. 3 shows the one laminate film 12 shown in FIG. 2 in an inverted state, and the battery 10 is assembled in this inverted state.
[0019]
As the battery 10 thus configured, for example, there is a lithium ion secondary battery. In this case, as the positive electrode active material of the positive electrode forming the positive electrode plates 11A, 11A,. Specifically, the general formula LiNi 1-x MxO 2 (where 0.01 ≦ x ≦ 0.5, M is Fe, Co, Mn, Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg And at least one of Ca and Sr.).
[0020]
The positive electrode can also contain a positive electrode active material other than the lithium nickel composite oxide. As the positive electrode active material other than the lithium nickel composite oxide, for example, a general formula LiyMn 2-z M′zO 4 (where 0.9 ≦ y ≦ 1.2, 0.01 ≦ z ≦ 0.5, and M ′ is Fe, Co, Ni, And at least one of Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca, and Sr.). In addition, the general formula LiCo 1-x MxO 2 (where 0.01 ≦ x ≦ 0.5, M is Fe, Ni, Mn, Cu, Zn, Al, Sn, B, Ga, Cr, V, Ti, Mg, Ca , And at least one of Sr.) may be included.
[0021]
Lithium nickel composite oxide, lithium manganese composite oxide and lithium cobalt composite oxide are mixed with carbonates such as lithium, nickel, manganese, cobalt, etc., depending on the composition. It is obtained by firing in the temperature range. The starting material is not limited to carbonates, and can be synthesized in the same manner from hydroxides, oxides, nitrates, organic acid salts, and the like.
[0022]
The average particle size of the positive electrode active material such as lithium nickel composite oxide or lithium manganese composite oxide is preferably 30 μm or less.
[0023]
As the negative electrode active material forming the negative electrode plate 11B, 11B, a ... a specific surface area to use a 0.05 m 2 / g or more, a range of 2m 2 / g. By setting it as this range, formation of SEI (Solid Electrolyte Interface) on the negative electrode surface can be sufficiently suppressed.
[0024]
When the specific surface area of the negative electrode active material is less than 0.05 m 2 / g, the place where lithium can enter and exit is too small, so that the lithium doped in the negative electrode active material during charging is sufficient from the negative electrode active material during discharge. Therefore, the charge and discharge efficiency is reduced. On the other hand, when the specific surface area of the negative electrode active material exceeds 2 m 2 / g, SEI formation on the negative electrode surface cannot be controlled.
[0025]
Any material can be used as the negative electrode active material as long as the material can be doped / undoped with lithium in a range where the potential with respect to lithium is 2.0 V or less. Specifically, a non-graphitizable carbon material, an artificial material can be used. Graphite, natural graphite, pyrolytic graphites, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenolic resin, furan resin, etc. It is possible to use carbonaceous materials such as fired bodies, carbon fibers, activated carbon, and carbon black.
[0026]
Metals capable of forming alloys with lithium and alloys thereof can also be used. Specifically, iron is doped with lithium at a relatively low potential such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, and tin oxide. In addition to oxides to be dedoped, nitrides thereof, group 3B typical elements, elements such as Si and Sn, or, for example, MxSi, MxSn (where M represents one or more metal elements excluding Si or Sn. Si and Sn alloys represented by () can be used. Among these, it is particularly preferable to use Si or Si alloy.
[0027]
Further, as the electrolytic solution, in addition to a liquid one prepared by dissolving an electrolyte salt in a non-aqueous solvent, a polymer gel electrolyte in which a solution obtained by dissolving an electrolyte salt in a non-aqueous solvent is held in a polymer matrix. Also good.
[0028]
When a polymer gel electrolyte is used as the non-aqueous electrolyte, examples of the polymer material to be used include polyvinylidene fluoride and polyacrylonitrile.
[0029]
As the non-aqueous solvent, any non-aqueous solvent used so far in this type of non-aqueous electrolyte secondary battery can be used, for example, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, diethyl carbonate. Dimethyl carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile and the like. In addition, these non-aqueous solvents may be used individually by 1 type, and may mix and use 2 or more types.
[0030]
In particular, the non-aqueous solvent preferably contains an unsaturated carbonate, and specifically, preferably contains vinylene carbonate, ethylene ethylidene carbonate, ethylene isopropylidene carbonate, propylidene carbonate, and the like. Among these, it is most preferable to contain vinylene carbonate. By containing unsaturated carbonate as the non-aqueous solvent, it is considered that the effect due to the properties of SEI (function of the protective film) produced in the negative electrode active material is obtained, and the overdischarge resistance is further improved.
[0031]
The unsaturated carbonate is preferably contained in the electrolyte in a proportion of 0.05% by weight or more and 5% by weight or less, and particularly preferably 0.5% by weight or more and 3% by weight or less. By setting the unsaturated carbonate content in the above range, a non-aqueous secondary battery having a high initial discharge capacity and a high energy density is obtained.
[0032]
The electrolyte salt is not particularly limited as long as it is a lithium salt exhibiting ionic conductivity.For example, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. can be used. These electrolyte salts may be used alone or in combination of two or more.
[0033]
By the way, the concave portion 20 formed in the one laminate film 12 is formed in a rectangular shape substantially similar to the outer shape of the laminated electrode 11, and the opening area of the concave portion 20 is formed slightly larger than the outer shape of the laminated electrode 11. Thus, an appropriate gap is provided between the inner side surface 20 a of the recess 20 and the outer peripheral edge of the laminated electrode 11.
[0034]
Further, the depth D (see FIG. 3) of the concave portion 20 is formed to be substantially equal to the thickness of the laminated electrode 11, and the concave portion 20 has corners C1a, C2a, C3a, C4a of the rectangular laminated electrode 11. Are provided with four corners C1, C2, C3, C4.
[0035]
As shown in FIG. 4, the laminate films 12 and 13 are made of a nylon layer α as a resin layer, an adhesive layer β, an aluminum foil layer γ as a metal layer, and PE (as a resin layer) from the outside toward the joining portion 16. Polyethylene) or PP (polypropylene) layer δ.
[0036]
Here, in this embodiment, the corners C1a, C2a, C3a of the laminated electrode 11 facing the corners C1, C2, C3, C4 inside the corners C1, C2, C3, C4 of the recess 20 are described. , C4a are provided with insulating spacers 30, 30.
[0037]
The spacers 30 are made of synthetic resin, and as shown in FIGS. 5 (a) and 5 (b), the spacers 30 are outer surfaces facing the inner side surfaces 20a and 20a on both sides of the corners C1, C2, C3 and C4 inside the recess 20, respectively. The side surfaces 31 and 32 and the installation surface 33 facing the bottom surface 20b inside the recess 20 are respectively provided and formed in a substantially triangular prism shape as a whole.
[0038]
Then, as shown by a two-dot chain line in FIG. 5B, from the ridgeline R1 portion where the outer surfaces 31, 32 and the installation surface 33 intersect, the corners C1, C2, C3 of the outer surfaces 31, 32 are obtained. A curved surface S is formed over the ridge line R2 corresponding to C4. That is, the edge on the bottom surface 20b side of the concave portion 20 of the outer side surfaces 31 and 32 has a convex curved surface shape.
[0039]
Further, in the present embodiment, as shown in FIG. 5A, the peripheral side surface of the spacer 30 having a triangular shape in plan view includes the outer side surfaces 31 and 32 and a slope 34 between the outer side surfaces 31 and 32. However, the inclined surface 34 side is cut into a triangular shape (removed portion 36), leaving a mounting portion 35 for mounting the corner portions C1a, C2a, C3a, and C4a of the laminated electrode 11.
[0040]
Thereby, the spacer 30 is formed in the L shape along the outer surfaces 31 and 32 by forming the cut portion 36, and the mounting portion 35 is provided on the bottom side of the L-shaped spacer 30. It becomes a shape.
[0041]
Therefore, when assembling the battery 10 of the present embodiment, as shown in FIG. 3, the outer surfaces 31, 32 are provided at the corners C 1, C 2, C 3, C 4 of the four corners of the recess 20 provided in the one laminate film 12. Is arranged along the inner side surface 20 a of the recess 20, and the spacer 30 is arranged so that the installation surface 33 is installed on the bottom surface 20 b of the recess 20.
[0042]
The corners C1a, C2a, C3a, and C4a of the stacked electrode 11 are aligned with the cut portions 36 of the spacers 30 while the four corners of the stacked electrode 11 are mounted on the mounting portion 35 of the cut portion 36 to form the recess 20. Store inside. In this state, the recess 20 is covered with the other laminate film 13, and the peripheral portions of both the laminate films 12 and 13 are heat-welded under reduced pressure conditions. The injection of the electrolytic solution is performed through, for example, a part of the opening after heat welding in a state where only a part of the peripheral part of the laminate films 12 and 13 is left.
[0043]
With the above configuration, in the sealing structure of the battery outer case 17 of the present embodiment, when the laminated electrode 11 is stored in the recess 20 of the laminate film 12, the corners C1, C2, C3, C4 of the recess 20 are stored. Spaces between the corners C1a, C2a, C3a, and C4a of the laminated electrode 11 can be filled by the spacers 30, 30.
[0044]
For this reason, the spacer 30 is supported by the laminated electrode 11 when an excess space volume is provided between the laminated films 12 and 13 and the laminated electrode 11 to seal the laminated films 12 and 13 together in a reduced pressure state. In order to maintain the distance between the spacers 30, 30..., The surface of the recess 20 can be prevented from shrinking and the shape of the recess 20 can be maintained.
[0045]
For this reason, it is possible to prevent or effectively suppress the generation of wrinkles in the laminate film 12, and in particular, it is possible to suppress wrinkles from concentrating on the corners of the recesses 20. The battery performance can be prevented from being deteriorated by avoiding the occurrence of breakage such as cracks in the reference).
[0046]
Moreover, since the wrinkles of the laminate film 12 can be suppressed in this way, the quality of each battery can be stabilized, and in particular, the shape size of the spacer 30 and the installation location with the laminated electrode 11 are specified in advance. Thereby, the variation in the shape of the battery 10 (including the wrinkles of the laminate film 12) after sealing under reduced pressure and the variation in battery reliability can be reduced.
[0047]
By the way, the spacer 30 of the present embodiment has a curved surface S extending from the ridge line R1 where the outer surfaces 31 and 32 and the installation surface 33 intersect to the ridge line R2 corresponding to the corners C1, C2, C3 and C4 of the recess 20. When the corners C1, C2, C3, and C4 of the recess 20 are shrunk due to reduced pressure, the laminate film 12 of the shrunken part is smoothly deformed along the curved surface S, thereby causing extreme bending and deepness. Generation of soot can be reliably prevented.
[0048]
Therefore, by providing the curved surface S described above, the stress acting on the aluminum foil layer γ of the laminate film 12 can be relieved to reliably prevent breakage such as cracking, and further improve the long-term reliability of the battery. .
[0049]
Further, by providing the mounting portion 35 on the spacer 30, the setting operation of the laminated electrode 11 to the concave portion 20 becomes easy.
[0050]
FIG. 6 shows a spacer 30a according to another embodiment of the present invention.
[0051]
As shown in FIGS. 5A and 5B, the spacer 30 described in the above embodiment forms a cut portion 36 with the placement portion 35 being left, and is substantially L-shaped. 30a is substantially L-shaped by removing the mounting portion 35 from the spacer 30 shown in FIG. In this case, the laminated electrode 11 is directly placed on the bottom surface 20 b of the recess 20.
[0052]
By the way, although the sealing structure of the battery outer case of the present invention has been described by taking the above embodiments as examples, various embodiments can be adopted without departing from the gist of the present invention without being limited thereto.
[0053]
For example, since the laminated electrode 11 has a rectangular shape, the concave portion 20 has a rectangular shape with four corners. However, when the laminated electrode 11 has another polygonal shape, the concave portion 20 is substantially similar to the laminated electrode 11. The shape may be increased and the number of spacers may be increased or decreased corresponding to the polygonal shape.
[0054]
The shape of the spacer is also without providing the resection portion 36 on the inclined surface 34, simply a triangular prism shape, and the corners C1, C2, C3, C4 of the stacked electrode 11 so as to abut against the inclined surface 34 of the triangular prism Also good.
[0055]
Moreover, although the said recessed part 20 was formed in one laminated film 12 among the laminated films 12 and 13 which pinch | interpose both surfaces of the laminated electrode 11, even when the recessed part 20 is formed in both the laminated films 12 and 13, respectively, this book The invention can be applied. In this case, the spacers 30 or 30a are disposed at the corners of both the recesses 20.
[0056]
Furthermore, the battery 10 is not limited to a lithium ion secondary battery, and the present invention can be applied to other batteries having the same configuration.
[Brief description of the drawings]
FIG. 1 is a plan view of a battery according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view taken along the line AA in FIG.
FIG. 3 is an exploded perspective view showing a state in which the power generating element according to the embodiment of the present invention is assembled to the concave portion of the laminate film.
4 is an enlarged cross-sectional view of a portion B in FIG.
5A is an upper perspective view of a spacer, and FIG. 5B is a lower perspective view of the spacer.
6A and 6B show another embodiment of the present invention, in which FIG. 6A is an upper perspective view of a spacer, and FIG. 6B is a lower perspective view of the spacer.
[Explanation of symbols]
10 Battery 11 Multilayer electrode (power generation element)
11A Positive electrode plate 11B Negative electrode plate 11C Separator 12, 13 Laminate film 17 Outer case 20 Recess 20a Inner side surface 20b on both sides of corner portion Recess bottom surface 30, 30a Spacer 31, 32 Outer side surface 35 Mounting portion C1, C2, C3, C4 Recess Corners C1a, C2a, C3a, C4a of the power generation element S curved surface α nylon layer (resin layer)
γ Aluminum foil layer (metal layer)
δ PE / PP layer (resin layer)

Claims (2)

正極板と負極板とをセパレータを介在しつつ積層した多角形状の発電要素の両面を覆う金属層と樹脂層とを有するラミネートフィルムを備え、このラミネートフィルムの少なくとも一方の面に前記発電要素の外側形状にほぼ相似な凹部を形成して、この凹部に前記発電要素を収納しつつ前記ラミネートフィルムの周縁部の互いに対向する面同士を接合して密封した電池外装ケースにおいて、前記凹部の角部内側に、この凹部の角部に対向する前記発電要素の角部との間の空間部を埋めるスペーサを配置し、このスペーサは、前記凹部における角部両側の内側面に対向する外側面を備え、この外側面の前記凹部における底面側の縁部を、前記発電要素を収納するケース内部を減圧して密封する際に、前記ラミネートフィルムの角部内側面の形状を保持する凸曲面状としたことを特徴とする電池外装ケースA laminate film having a metal layer and a resin layer covering both surfaces of a polygonal power generation element in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, and at least one surface of the laminate film has an outer side of the power generation element. In a battery outer case in which a concave portion substantially similar to the shape is formed, and the opposing surfaces of the peripheral edge of the laminate film are joined and sealed while accommodating the power generation element in the concave portion, the inner side of the corner of the concave portion A spacer that fills a space between the corner portion of the power generation element facing the corner portion of the concave portion, and the spacer includes outer surfaces facing inner side surfaces on both sides of the corner portion of the concave portion, The shape of the inner side surface of the corner portion of the laminate film when sealing the inner side of the case containing the power generation element by reducing the bottom side edge of the concave portion of the outer side surface Battery outer case, characterized in that it has a convex curved shape for holding. 前記スペーサは、前記凹部における底面に対向して前記発電要素を載置する載置部を備えていることを特徴とする請求項1記載の電池外装ケース The battery outer case according to claim 1 , wherein the spacer includes a mounting portion that mounts the power generation element so as to face a bottom surface of the concave portion.
JP2002190464A 2002-06-28 2002-06-28 Battery outer case Expired - Fee Related JP3852376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190464A JP3852376B2 (en) 2002-06-28 2002-06-28 Battery outer case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190464A JP3852376B2 (en) 2002-06-28 2002-06-28 Battery outer case

Publications (2)

Publication Number Publication Date
JP2004039271A JP2004039271A (en) 2004-02-05
JP3852376B2 true JP3852376B2 (en) 2006-11-29

Family

ID=31700374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190464A Expired - Fee Related JP3852376B2 (en) 2002-06-28 2002-06-28 Battery outer case

Country Status (1)

Country Link
JP (1) JP3852376B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591656B2 (en) * 2003-12-10 2010-12-01 株式会社Gsユアサ battery
JP2005310579A (en) * 2004-04-22 2005-11-04 Matsushita Electric Ind Co Ltd Square secondary battery
WO2006123812A1 (en) * 2005-05-17 2006-11-23 Honda Motor Co., Ltd. Rectangular storage battery
JP4803360B2 (en) * 2005-12-02 2011-10-26 三菱自動車工業株式会社 Lithium ion secondary battery
JP5273331B2 (en) * 2006-08-22 2013-08-28 大日本印刷株式会社 Flat electrochemical cell
JP5213024B2 (en) * 2008-01-21 2013-06-19 Necエナジーデバイス株式会社 Stacked sealed battery
JP5371254B2 (en) * 2008-01-31 2013-12-18 三洋電機株式会社 Stacked battery and method for manufacturing the same
EP3091590B1 (en) * 2014-02-14 2020-04-01 LG Chem, Ltd. Battery cell comprising wrinkle preventing member
CN111907924A (en) * 2014-07-29 2020-11-10 积水化学工业株式会社 Film molded body, film package using same, method for producing film molded body, and method for producing film package
US10115938B2 (en) 2014-09-17 2018-10-30 Lg Chem, Ltd. Battery case having anti-wrinkle pattern
KR101786908B1 (en) * 2014-09-17 2017-10-18 주식회사 엘지화학 Battery Case Having Pattern For Anti-wrinkle
KR102347884B1 (en) * 2017-10-17 2022-01-06 주식회사 엘지에너지솔루션 Sealing Block to Prevent Crack of Pouch-Type Secondary Battery, Pouch-Type Battery Case and Sealing Method for Pouch-Type Battery Case Using thereof
JP7163647B2 (en) * 2018-07-13 2022-11-01 日産自動車株式会社 battery
CN110048036B (en) * 2019-04-19 2024-05-17 桑顿新能源科技有限公司 Reinforcing rib sheet and preparation method thereof, battery cell and preparation method thereof, and soft package battery
WO2022014244A1 (en) 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 Battery and method for producing same
JP7548128B2 (en) 2021-06-01 2024-09-10 トヨタ自動車株式会社 Exterior body and battery
JP2023100111A (en) 2022-01-05 2023-07-18 トヨタ自動車株式会社 battery

Also Published As

Publication number Publication date
JP2004039271A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP3852376B2 (en) Battery outer case
US7282297B2 (en) Laminate cell, assembled battery, battery module and electric vehicle
JP3649213B2 (en) Module battery
JP3624903B2 (en) Module battery
JP3767531B2 (en) Battery assembly
JP4114415B2 (en) Electrode laminated battery cooling device
US7326492B2 (en) Laminate sheet, laminate battery and related method
US20090053614A1 (en) Non-aqueous electrolytic solution secondary battery
JP3767526B2 (en) Battery assembly
JP2007018917A (en) Stacked battery, and battery pack
JP3891054B2 (en) Structure of electrode tab lead-out part of stacked battery
JP3591528B2 (en) Module battery
JP2004087337A (en) Battery laminated aggregate and battery used for it
JP2004055153A (en) Layer-built battery
JP2004031272A (en) Electrode stack type battery
JP3565216B2 (en) Module battery
JP3526786B2 (en) Lithium secondary battery
JP3818232B2 (en) Multilayer battery case
JP6531491B2 (en) Secondary battery
JP2004055154A (en) Sealing structure and method for layer-built battery
JP4075534B2 (en) Laminated secondary battery, assembled battery module, assembled battery and electric vehicle equipped with this battery
JP2004047185A (en) Sealing structure of battery, and mounting board of this battery
JP2004039485A (en) Module battery
JP3985616B2 (en) Battery pack using stacked battery
JP2004047334A (en) Battery pack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees