JP3846541B2 - NOx adsorbent regeneration device and regeneration method - Google Patents
NOx adsorbent regeneration device and regeneration method Download PDFInfo
- Publication number
- JP3846541B2 JP3846541B2 JP2000053506A JP2000053506A JP3846541B2 JP 3846541 B2 JP3846541 B2 JP 3846541B2 JP 2000053506 A JP2000053506 A JP 2000053506A JP 2000053506 A JP2000053506 A JP 2000053506A JP 3846541 B2 JP3846541 B2 JP 3846541B2
- Authority
- JP
- Japan
- Prior art keywords
- nox
- exhaust gas
- end side
- adsorbent
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、NOx吸着材再生装置及び再生方法に係り、更に詳細には、ガソリンや潤滑オイル中に含まれる硫黄(S)分によって被毒されたNOx吸着材の再生方法に関し、特に、自動車(ガソリン、ディーゼル)やボイラーなどの内燃機関等から排出される排気ガス中の炭化水素(HC)、一酸化炭素(CO)、および窒素酸化物(NOx)を浄化するために設置されるNOx吸着材などで好適に使用される。
【0002】
【従来の技術】
近年、石油資源の枯渇問題、地球温暖化問題から、低燃費自動車の要求が高まっており、ガソリン自動車に対しては希薄燃焼自動車の開発が注目されている。かかる希薄燃焼自動車においては、希薄燃焼走行時、排気ガス雰囲気が理論空燃状態(ストイキ)に比べ酸素過剰雰囲気(リーン状態)となるが、リーン状態で通常の三元触媒を適用させた場合、過剰な酸素の影響からNOx浄化作用が不十分となるという問題があった。
【0003】
このため酸素が過剰となってもNOxを浄化できる触媒が開発されており、例えば、特開平5−168860号公報には、Ptとランタンを多孔質担体に担持した触媒であって、排気ガスが酸素過剰のときに(リーン域)にNOxを吸収させ、吸収させたNOxをストイキ時に放出させ浄化する触媒が記載されている。
【0004】
【発明が解決しようとする課題】
しかし、燃料及び潤滑油内には硫黄が含まれており、この硫黄が酸化物として排気ガス中に排出されるため、NOx吸収材が硫黄による被毒(これを「硫黄被毒」という。)を受け、NOx吸収性能の低下が起こる。
この硫黄被毒を防止する方法として、特開平6−58138号公報では、NOx吸収触媒の前段に硫黄トラップ触媒を配置し、リーン域でこの硫黄トラップ触媒に硫黄酸化物を吸収させ、後段のNOx吸収触媒に硫黄酸化物を流入させない方法が開示されている。
また、特開平7−217474号公報では、ある程度の硫黄被毒は仕方がないものとし、一定期間毎にNOx吸収触媒を高温(空燃比A/Fをリッチ状態)にして吸着した硫黄を脱離させ、NOx吸収触媒の性能回復を図る方法が開示されている。
【0005】
しかしながら、特開平6−58138号公報に開示されている方法では、硫黄トラップ触媒が吸収した硫黄酸化物により飽和してしまい、それ以上の硫黄酸化物はNOx吸収触媒に流入(吸着)して、硫黄被毒が起きてしまうという課題があった。
また、特開平7−217474号公報に開示されている方法では、硫黄の脱離操作の際にNOx吸蔵触媒の熱劣化が起こるような高温(700℃以上)でなければ、NOx吸蔵触媒の前側から脱離させた硫黄が、NOx吸蔵触媒の後側に吸着してしまい、NOx吸蔵触媒全体としての硫黄吸着量は殆ど変わらず、被毒は緩和されないという課題があった。
【0006】
本発明者らは、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、硫黄被毒を受けたNOx吸着材のNOx吸収性能の低下を抑制し、長期に亘りNOxを効率良く吸収(トラップ)することが可能となるNOx吸着材再生装置、再生方法及び排気ガス浄化装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意研究を重ねた結果、内燃機関等の排気流路に設置したNOx吸着手段を流通する排気ガスの流れ方向を、適切に切り換えることにより、上記課題が達成されることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明のNOx吸着材再生装置は、窒素酸化物を吸着するNOx吸着材を担体に担持したNOx吸着手段と、このNOx吸着手段への排気ガスの流通方向を制御するガス流制御手段と、を備え、
上記ガス流制御手段が、上記NOx吸着手段を排気ガス流れ方向に対して垂直方向にある回転軸を中心にして反転可能な回動手段を備え、上記排気ガスの流通方向を、上記NOx吸着手段における担体の一端側から他端側への順方向、又は他端側から一端側への逆方向に切り換え可能であることを特徴とするNOx吸着材再生装置。
【請求項2】 上記ガス流制御手段が、上記NOx吸着手段を通過する本流路と、上記NOx吸着手段を迂回して上記担体の一端側から他端側に連通するバイパス流路と、この本流路及びバイパス流路を開閉する弁を備えることを特徴とする。
【0009】
また、本発明のNOx吸着材再生装置の好適形態は、上記ガス流制御手段が、上記NOx吸着手段を通過する本流路と、上記NOx吸着手段を迂回して上記担体の一端側から他端側に連通するバイパス流路と、この本流路及びバイパス流路を開閉する弁を備えることを特徴とする。
【0011】
更にまた、本発明のNOx吸着材再生方装置の更に他の好適形態は、上記排気ガスの流通方向の切り換えを、上記NOx吸着手段のNOx吸着材が硫黄被毒を受けて窒素酸化物吸収性能が低下したときに行うことを特徴とする。
【0012】
また、本発明のNOx吸着材再生装置の他の好適形態は、上記排気ガスの流通方向の切り換えを行った際に、排気ガスをストイキ〜リッチにし、上記NOx吸着手段を600℃以上に加熱することを特徴とする。
【0013】
更に、本発明のNOx吸着材再生装置の更に他の好適形態は、上記NOx吸着材が、アルカリ金属、アルカリ土類金属、希土類及び遷移金属から成る群より選ばれた少なくとも1種の元素を含有することを特徴とする。
【0014】
更にまた、本発明のNOx吸着材再生方法は、上記NOx吸着材再生装置を用いたNOx吸着材再生方法であって、
上記NOx吸着手段を反転させることにより、排気ガスの流通方向を該NOx吸着手段における担体の一端側から他端側への順方向、又は他端側から一端側への逆方向に切り換えながら供給することを特徴とする。
【0015】
また、本発明のNOx吸着材再生方法の好適形態は、上記排気ガスの流通方向の切り換えを、上記NOx吸着手段のNOx吸着材が硫黄被毒を受けて窒素酸化物吸収性能が低下したときに行うことを特徴とする。
【0016】
更に、本発明の排気ガス浄化装置は、上記NOx吸着材再生装置をリーンバーン内燃機関の排気ガス流路に設置して成る排気ガス浄化装置であって、
上記NOx吸着手段における担体に、排気ガス浄化能を有する触媒成分を更に担持して成ることを特徴とする。
【0017】
【作用】
本発明のNOx吸着材再生装置においては、NOx吸着手段を流通する排気ガスを、逆方向から流通するように切り換え可能とした。よって、NOx吸着手段に担持するNOx吸着材の硫黄被毒が比較的少ない部分を随時利用することにより、長期に亘ってNOx吸着手段を使用できるNOx吸着材再生装置となる。
また、本発明のNOx吸着材再生方法の好適形態においては、排気ガスの流通方向を切り換えた際に、排気ガスをストイキ〜リッチにし、NOx吸着手段を600℃以上に加熱することとした。よって、NOx吸着材上の硫黄被毒に係る硫黄分を有効に脱離・除去でき、NOx吸着材をより確実に再生することができる。
【0018】
【発明の実施の形態】
以下、本発明のNOx吸着材再生装置及び再生方法について詳細に説明する。
上述の如く、本発明のNOx吸着材再生装置は、窒素酸化物を吸着するNOx吸着材を担体に担持したNOx吸着手段と、このNOx吸着手段への排気ガスの流通方向を制御するガス流制御手段と、を備える。
【0019】
ここで、上記NOx吸着手段の構成成分であるNOx吸着材としては、アルカリ金属、アルカリ土類金属、希土類、遷移金属及びこれらを任意に組み合わせたものを含有する材料などが例示できる。
また、これらNOx吸着材を担持する担体としては、耐熱性材料からなるモノリス担体(ハニカム構造など)などの一体構造型担体が好ましく、例えばコーディライトなどのセラミックス製のものや、フェライト系ステンレスなどの金属製のものを使用できる。更に、NOx吸着材を粒状やペレット状の担体に担持し、これらを容器に充填してNOx吸着手段を形成してもよい。なお、一体構造型担体を使用するときは、複数個の担体とタンデム配置してもよいが、この場合はタンデム配置した担体群を1つの担体として取り扱うことを要する。
【0020】
一方、上記ガス流制御手段は、上記NOx吸着手段への排気ガスの流通方向を制御するものである。即ち、排気ガスの流通方向を、上記NOx吸着手段における担体の一端側から他端側への順方向、又は他端側から一端側への逆方向に切り換えることができるものである。
【0021】
また、本発明では、上記ガス流制御手段として、上記NOx吸着手段を排気ガス流れ方向に対して垂直方向にある回転軸を中心にして反転可能な回動手段を備え、上記排気ガスの流通方向を適切に切り換えながら排気ガスを供給することにより、上記NOx吸着材を再生する。このとき、流通方向の切り換えは、後述するようにセンサーからの信号や一定時間を基準として行うことができる。
具体的には、図1に示すように、回動手段として回動軸21を設置して、NOx吸着手段20の前後を反転させることができる。このとき、反転は自動又は手動で行うことができる。
【0022】
更に、上記ガス流制御手段には、上記NOx吸着手段を通過する本流路と、上記NOx吸着手段を迂回して上記担体の一端側から他端側に連通するバイパス流路と、この本流路及びバイパス流路を開閉する弁を備えることができる。
具体的には、図2に示すように、エンジン1に接続された本流路の一例である排気流路10に、担体に担持されたNOx吸着手段20(NOx吸着材)を迂回するように2つのバイパス流路11、12を接続し、排気流路10とバイパス流路11、12との接続部位に弁30〜32を設けて成るガス流制御手段を例示することができる。このガス流制御手段は、NOx吸着手段20へ順方向に排気ガスを流通させたいときは、図2(a)に示すように弁30〜32でバイパス流路11、12を遮断し、排気流路10のみに排気ガスを流通させることができ、また逆方向に排気ガスを流通させたいときは、図2(b)に示すように弁30〜32で排気流路10の一部を遮断して、排気ガスの流れ方向をバイパス流路11、12を通じて変化させることができる。また、本例では設置していないが、バイパス流路11の下流側の排気ガス流路10との接続部に更に弁を設けることもできる。更に、これら弁の開閉はコントローラー34により行うことができる。
【0023】
なお、上記排気流路10は直線状である場合に限られず、NOx吸着手段20(担体)は排気流路の形状に対応させて設置できることは言うまでもない。更に、上記「担体の一端側から他端側に連通するバイパス流路」の「一端側」及び「他端側」とは、厳密には、一端構造型担体より前方及び後方の排気流路部分を意味する。
【0024】
また、これらガス流制御手段による上記排気ガスの流通方向の切り換えは、上記NOx吸着手段のNOx吸着材が硫黄被毒を受けて窒素酸化物吸収性能が低下したときに行うことが好ましい。
【0025】
例えば、大気中に放出されるNOx濃度がNOx排出許容量より高くなったとき(センサー出力N>NOx排出許容濃度Nlim)に、排気ガスの流通方向を切換えることが有効である。ここで、「N」はNOxセンサー(図2では33)の示すNOx濃度である。
他の方法としては、エンジン運転条件から算出した単位時間当たりのNOx排出量を積算して、NOx吸着材に吸着されているNOx量を推定し、この推定NOx量が所定量を超えたら排気ガスの流通方向を切り換えるようにしてもよい。
【0026】
ここで、上記NOx吸着材が燃料中に含まれる硫黄成分により硫黄被毒(以下「S被毒」と略す)を受ける場合には、NOx吸着材の一端(前側)から他端(後側)に向かって順に硫黄(S)が吸着し易い。また、これはNOxの吸収についても同様であり、NOx吸着材の前側ほどNOxやSが多く吸収され、後側ほどこれらの吸収量が少ないことが多い。
【0027】
上記NOx吸着材にSが吸着する原因は、以下のように考えることができる。
燃料の中などに含まれるS(排気ガス中ではSO2)が、酸素過剰条件(リーン条件)で、通常設置される触媒(三元触媒など)に含まれる貴金属(Pt、Pd、Rhなど)の触媒作用を受けて酸化され、NOx吸着材(アルカリ、アルカリ土類金属又は希土類等)に硫酸塩となって吸収されることがある。この反応は非常に安定であるため、NOx吸着材中でSが接触したところから順に硫酸塩が生成し、NOx吸着材に強く吸着し易い。
【0028】
従って、かかるS被毒では、NOx吸着材の前後において、吸着するS量に濃度勾配が発生し、吸着材の前側(上流側)ほどSの吸着量が多くなることがある。 即ち、Sが吸着してしまった部分では、NOx吸着材の活性点に不純物であるSが強く吸着してNOx吸着材活性が低下又は消失してしまうため、Sの吸着量が多いNOx吸着材の前側ほどNOxを吸収できなくなっている。
一方、NOx吸着材の前側がかなりのS被毒を受けていても、上記NOx吸着材の後側は、殆どSが吸着しておらず、NOx吸着材の前側よりも活性が高い状態にある。但し、NOx吸着材全体としてはS被毒を受けているので、排気ガス中のNOxを充分に吸収するのが困難な状態にある。
【0029】
そこで、本発明では、上記排気ガスの流通方向の切り換えを、上記NOx吸着手段のNOx吸着材が硫黄被毒を受けて窒素酸化物吸収性能が低下したときに行い得るようにした。この結果、上記NOx吸着材の使用期間を大幅に延長し得るため、長期に亘りNOx吸収性能が維持されることとなる。
即ち、Sが吸着してNOx吸収性能を発揮できなくなったNOx吸着手段の一端が、NOx吸収性能につき比較的影響の小さい後側となり、Sが殆ど吸着しておらずNOx吸収性能を十分に発揮し得る他端が、NOx吸収性能につき影響の大きい前側となるように、NOx吸着材上の排気ガスの流通方向を反転することにより、NOx吸収性能を再生できる。代表的には、NOx吸着材のSに対する耐久性が1.8〜2倍に増大し得る。
なお、上記流通方向の切り換えは、好適なNOx吸収能を維持することができる限り繰り返し可能であり、硫黄被毒の度合いや硫黄の脱離操作の有無により差があるが、NOx吸着材1個当たり、600℃未満の加熱処理では1回程度の切り換えとなるのに対し、600℃以上の高温処理であれば更に5回程度切り換えを行うことができる。また、NOx吸着材に吸着するSの濃度勾配は、例えば、自動車のエンジンに設置される排気ガス浄化装置などでは、5000km程度の走行で顕著に発現する。
【0030】
また、本発明では、排気ガスの流通方向の切り換えを行った際に、排気ガスをストイキ〜リッチにし、上記NOx吸着手段を600℃以上に加熱することが好ましく、この結果、NOx吸着材に吸着しているSを脱離させ、NOx吸着材を再生させることができる。このときの加熱手段としては、電熱器などを例示できる。
【0031】
更に、上述したように、排気ガスの流通方向を切り換えた後は、NOx吸着材上では排気ガスの流通方向に対して下流側(後側)にSが多く吸着しているため、この位置からSが脱離するとNOx吸着材に再度吸着されることなく、NOx吸着手段から除外されるので、NOx吸着手段全体としてもS吸着量が減少され易い。なお、このとき排気流路に硫黄トラップ触媒などを配置すれば、S成分の外部への放出を防止することができる。
【0032】
なお、上記S脱離操作の他にも、NOx吸着材に吸着しているSの脱離操作としては、排気ガスを受けるNOx吸着材の前後を反転せず、空燃比をリッチ〜ストイキにし、600℃程度の高温にする方法があるが、この方法ではNOx吸着材(触媒)の前側から脱離したSが上記S吸着量の濃度勾配により吸着材の後側に再吸着してしまうので、吸着したSを望み通りに除去することができない。
また、空燃比A/Fを更にリッチ化する方法や流通する排気ガスを700℃以上まで高温にする方法などもあるが、A/Fを更にリッチ化する方法では燃費向上効果が得られなくなることがあり、また、排気ガスを700℃以上の高温とする方法ではNOx吸着材がシンタリングにより活性劣化し易くなるなど熱耐久性の面から好ましくない。
これに対して、本発明では、上述のようにNOx吸着材のS被毒を解除し、NOx吸収性能をより確実に再生・持続することができる。また、Sの脱離操作の際には上述したSの再吸着も起こりにくいことから、排気ガスの温度が少なくとも600℃であればSの脱離を達成できる。
【0033】
以上に説明した、上記NOx吸着手段(担体)へ流通させる排気ガスの切り換え制御の代表例、即ち、NOx吸着材の回動手段(図1)及び排気ガスの迂回手段(図2)の作動は、包括的に行うことが好ましく、代表的には図3に示すフローチャートに従って実行することができる。なお、以下のフローチャート中で行うS脱離操作は、排気ガス温度600℃〜650℃、空燃比13.5〜14.6、時間5分の条件で行うことを想定している。
【0034】
以下、図3(A)に示すフローチャートをステップ順に説明する。このフローチャートはNOx吸着材の回動手段(図1)に係るものである。
まず、ステップ1(以下、[S1]と略す)では、N>Nlimであるかどうかが判定される。この判定により、Noであるときは、まだNOx吸着材のNOx吸収量が吸収許容限界量に達していないので、そのまま排気ガスの流通が継続される[S2]。
一方、Yesであるときは、大気中に放出されるNOx濃度が高くなってしまうので、N>Nlimになったと同時にNOx吸着手段の回動手段が作動される[S3]。
【0035】
[S3]の後に、N>Nlimであるかが再度判定される。この判定により、Noであるときは、まだNOx吸収量が吸収許容限界量に達していないので、そのまま排気ガスの流通が継続される[S4]。
一方、Yesであるとき[S5]は、大気中に放出されるNOx濃度が高くなってしまうので、N>Nlimになったと同時に、NOx吸着材中のSを脱離させるためS脱離操作が行われる[S6]。
【0036】
次に、図3(B)は、図2に示す排気ガスの迂回手段を作動する際に、弁30〜32を開放(本流路のみを流通)するとき(図(a))、又は遮断(バイパス流路を使用)するとき(図(b))、を判断するフローチャートである。なお、フローチャート中の「F」は、迂回手段の作動回数を示す。
【0037】
以下、図3(B)に示すフローチャートをステップ順に説明する。
まず、[S10]では、作動回数パラメーターであるFに1が加えられる。 次いで、Fの値が偶数か奇数かが判定される[S11]。この判定の結果、F=偶数であるときは、図2(a)の状態、即ち、排気流路10にある弁が開放され、排気ガスがNOx吸着手段を順方向から流通される[S12]。一方、F=奇数であるときは、図2(b)の状態、即ち、上記弁により排気ガス流路10の一部は遮断され、排気ガスがバイパス流路を流通するように切り換えられ、NOx吸着材に逆方向から流通される[S13]。
なお、図3(B)のフローチャート中に、図3(A)に示すS1及びS2を取り入れて、硫黄の被毒量を迂回操作の基準とすることもできる。
【0038】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0039】
なお、以下の実施例及び比較例では、担体にNOx吸着材を担持したNOx吸着手段に、更に排気ガス浄化成分を担持して成る排気ガス浄化装置を使用した。即ち、Baを20wt%、Pdを5wt%及びRhを1wt%Al2O3に担持し、これをハニカム担体にコートしたものを使用した。また、使用前に以下に示す熱耐久を行なった。
【0040】
[耐久方法]
排気量4400ccのエンジンの排気系に上記排気ガス浄化装置を装着し、NOx吸着材入口温度を650℃とし、50時間運転した。この時、ガソリン中のS濃度を3ppm以下にした。
【0041】
(実施例1)
ガソリン中のS濃度を300ppmとし、排気量2000ccのエンジンの排気系に上記排気ガス浄化装置を装着して、10−15モードをN>Nlimになるまで繰返し走行した。N>Nlimになった時点で、上記NOx吸着手段を取外し、前後を反転して取り付け、再び10−15モードをN>Nlimになるまで繰返し走行した。なお、このときNOx吸着手段の取外し、前後を反転しての取り付けは人の手によって行なった。
【0042】
(参考例1)
NOx吸着手段の反転を行わず、図2に示すように排気ガスの流れ方向をバイパス流路を用いて切り換えた以外は、実施例1と同様の操作を繰返し走行した。
【0043】
(実施例2)
NOx吸着手段の反転を図1に示すNOx吸着手段反転装置(回動軸)21を用いて行なった以外は、実施例1と同様の操作を繰返し走行した。
【0044】
(実施例3)
ガソリン中のS濃度を300ppmとし、排気量2000ccのエンジンの排気系に上記排気ガス浄化装置を装着して、10−15モードを図3のフローチャートに従い、N>Nlimになるまで繰返し走行した。
また、N>Nlimになった時点でNOx吸着手段を取外し、前後を反転して取り付け、温度600℃、空燃比14.6、時間5分、ガソリン中のS濃度を3ppm以下にしてのS脱離操作を行なった(1)。
この後、ガソリン中のS濃度を300ppmとし、再び10−15モードをN>Nlimになるまで繰返し走行した(2)。
この(1)の操作及び(2)の走行をS脱離操作を行なってもN<Nlimにならなくなるまで繰返した。なお、この時のNOx吸着手段の取外し、前後を反転しての取り付けは人の手によって行なった。
【0045】
(参考例2)
NOx吸着手段の反転を行わず、図2に示すように排気ガスの流れをバイパスを用いて切り換えた以外は、実施例3と同様の操作を繰返し走行した。
【0046】
(実施例4)
NOx吸着手段の反転を図1に示すNOx吸着手段反転装置21を用いて行なった以外は、実施例3と同様の操作を繰返し走行した。
【0047】
(比較例1)
ガソリン中のS濃度を300ppmとし、排気量2000ccのエンジンの排気系に上記排気ガス浄化装置を設置して、10−15モードをN>Nlimになるまで繰返し走行した。また、NOx吸着手段を反転しなかった。なお、これ以外は、実施例1と同様の操作を繰返し走行した。
【0048】
(比較例2)
NOx吸着手段を反転しなかった以外は、実施例3と同様の操作を繰返し走行した。
【0049】
(参考例3)
S脱離操作時の温度を550℃にした以外は、実施例3と同様の操作を繰返し走行した。
【0050】
[評価]
上記実施例及び比較例おいて、NOx転化率が65%以下になってしまうまで10−15モードを繰り返して走行できた回数を比較した。この結果を表1に示す。なお、N<NlimであるときのNOx転化率は、68〜70%であった。
【0051】
【表1】
【0052】
実施例1及び比較例1から、NOx吸着手段を反転するときは、10−15モードを走行できる回数が約2倍に増えている。即ち、実施例1ではNOx吸着材のSに対する耐久性が2倍になったことを意味する。
また、実施例3及び比較例2から、NOx吸着手段を反転することにより、10−15モードを走行できる回数が約2倍に増えていることがわかる。これは、NOx吸着手段を反転することによって、NOx吸着材から脱離したSの再吸着が防止されたためであると考えられる。
更に、実施例3及び参考例3から、NOx吸着手段を反転しても、Sの脱離温度が本発明の好適範囲でないときは、10−15モードを走行できる回数が約1/3になることがわかる。これは、600℃未満の温度では脱離されるSが少ないためと考えられる。
【0053】
【発明の効果】
以上説明してきたように、本発明によれば、内燃機関等の排気流路に設置したNOx吸着手段を流通する排気ガスの流れ方向を、適切に切り換えることとしたため、硫黄被毒を受けたNOx吸着材のNOx吸収性能の低下を抑制し、長期に亘りNOxを効率良く吸収(トラップ)することが可能となるNOx吸着材再生装置、再生方法及び排気ガス浄化装置を提供することができる。
【図面の簡単な説明】
【図1】 ガス流制御手段の一例であるNOx吸着手段反転装置の概略図である。
【図2】 ガス流制御手段の一例であって、排気ガスの流通方向を順方向(a)及び逆方向(b)に制御する際の概略を示す図である。
【図3】 排気ガスの流通方向を制御するフローチャートである。
【符号の説明】
1 エンジン
10 排気流路(本流路)
11 バイパス流路(下流側)
12 バイパス流路(上流側)
20 NOx吸着手段(触媒)
21 NOx吸着手段反転装置(回動軸)
30 弁1
31 弁2
32 弁3
33 NOxセンサー
34 コントローラー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a NOx adsorbent regeneration device and a regeneration method, and more particularly to a method for regenerating NOx adsorbent poisoned by sulfur (S) contained in gasoline or lubricating oil, and more particularly, an automobile ( NOx adsorbents installed to purify hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in exhaust gas discharged from internal combustion engines such as gasoline and diesel and boilers Etc. are preferably used.
[0002]
[Prior art]
In recent years, demand for fuel-efficient vehicles has increased due to the problem of depletion of petroleum resources and global warming, and the development of lean burn vehicles has attracted attention for gasoline vehicles. In such a lean burn automobile, the exhaust gas atmosphere becomes an oxygen excess atmosphere (lean state) compared to the theoretical air combustion state (stoichi) during lean burn running, but when a normal three-way catalyst is applied in the lean state, There is a problem that the NOx purification action becomes insufficient due to the influence of excessive oxygen.
[0003]
For this reason, a catalyst capable of purifying NOx even when oxygen is excessive has been developed. For example, Japanese Patent Laid-Open No. 5-168860 discloses a catalyst in which Pt and lanthanum are supported on a porous carrier, and the exhaust gas is A catalyst is described in which NOx is absorbed when oxygen is excessive (lean region), and the absorbed NOx is released and purified when stoichiometric.
[0004]
[Problems to be solved by the invention]
However, since sulfur is contained in the fuel and the lubricating oil, and this sulfur is discharged into the exhaust gas as an oxide, the NOx absorbent is poisoned by sulfur (this is referred to as “sulfur poisoning”). As a result, the NOx absorption performance is reduced.
As a method for preventing this sulfur poisoning, Japanese Patent Application Laid-Open No. 6-58138 discloses that a sulfur trap catalyst is disposed in front of a NOx absorption catalyst, and sulfur oxide is absorbed by the sulfur trap catalyst in a lean region. A method for preventing sulfur oxide from flowing into the absorption catalyst is disclosed.
In JP-A-7-217474, sulfur poisoning to some extent is unavoidable, and the adsorbed sulfur is desorbed by setting the NOx absorption catalyst to a high temperature (air-fuel ratio A / F in a rich state) at regular intervals. And a method for recovering the performance of the NOx absorption catalyst is disclosed.
[0005]
However, in the method disclosed in Japanese Patent Laid-Open No. 6-58138, the sulfur trap catalyst is saturated by the sulfur oxide absorbed, and the sulfur oxide further flows into (adsorbs) the NOx absorption catalyst, There was a problem that sulfur poisoning would occur.
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 7-217474, the front side of the NOx occlusion catalyst is not used unless the NOx occlusion catalyst undergoes thermal degradation during the desorption operation of sulfur. The sulfur desorbed from the NOx is adsorbed on the rear side of the NOx storage catalyst, and the sulfur adsorption amount of the NOx storage catalyst as a whole is hardly changed, and there is a problem that poisoning is not alleviated.
[0006]
The present inventors have been made in view of such problems of the prior art, and the object of the present invention is to suppress a decrease in the NOx absorption performance of the NOx adsorbent that has been subjected to sulfur poisoning. It is an object of the present invention to provide a NOx adsorbent regeneration device, a regeneration method, and an exhaust gas purification device that can efficiently absorb (trap) NOx.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-described problems, the present inventors have appropriately switched the flow direction of the exhaust gas flowing through the NOx adsorbing means installed in the exhaust flow path of the internal combustion engine or the like. Has been achieved, and the present invention has been completed.
[0008]
That is, the NOx adsorbent regeneration apparatus according to the present invention includes a NOx adsorbing means in which a NOx adsorbent that adsorbs nitrogen oxide is supported on a carrier, and a gas flow control means for controlling the flow direction of exhaust gas to the NOx adsorbing means. With
The gas flow control means includes rotation means capable of reversing the NOx adsorption means about a rotation axis perpendicular to the exhaust gas flow direction, and the exhaust gas flow direction is determined by the NOx adsorption means. The NOx adsorbent regenerator can be switched in the forward direction from one end side to the other end side of the carrier or in the reverse direction from the other end side to the one end side.
2. The gas flow control means comprises: a main flow path that passes through the NOx adsorption means; a bypass flow path that bypasses the NOx adsorption means and communicates from one end side to the other end side of the carrier; And a valve for opening and closing the passage and the bypass passage.
[0009]
Further, in a preferred embodiment of the NOx adsorbent regenerator of the present invention, the gas flow control means is configured such that the gas flow control means bypasses the NOx adsorption means and the NOx adsorption means bypasses one end side to the other end side of the carrier. And a bypass channel that communicates with the main channel and a valve that opens and closes the main channel and the bypass channel.
[0011]
Furthermore, in another preferred embodiment of the NOx adsorbent regeneration method according to the present invention, the NOx adsorbent of the NOx adsorbing means is subjected to sulfur poisoning and the nitrogen oxide absorption performance is switched. It is characterized by being performed when
[0012]
In another preferred embodiment of the NOx adsorbent regenerator of the present invention, when the flow direction of the exhaust gas is switched, the exhaust gas is stoichiometrically rich and the NOx adsorbing means is heated to 600 ° C. or higher. It is characterized by that.
[0013]
Furthermore, in another preferred embodiment of the NOx adsorbent regenerator of the present invention, the NOx adsorbent contains at least one element selected from the group consisting of alkali metals, alkaline earth metals, rare earths and transition metals. It is characterized by doing.
[0014]
Furthermore, the NOx adsorbent regeneration method of the present invention is a NOx adsorbent regeneration method using the NOx adsorbent regeneration apparatus,
By reversing the NOx adsorption means, the exhaust gas flow direction is supplied while switching the forward direction from one end side to the other end side of the carrier in the NOx adsorption means or the reverse direction from the other end side to the one end side. It is characterized by that.
[0015]
Further, the preferred form of the NOx adsorbent regeneration method of the present invention is to switch the flow direction of the exhaust gas when the NOx adsorbent of the NOx adsorbing means is subjected to sulfur poisoning and the nitrogen oxide absorption performance is lowered. It is characterized by performing.
[0016]
Furthermore, the exhaust gas purification apparatus of the present invention is an exhaust gas purification apparatus comprising the NOx adsorbent regeneration device installed in an exhaust gas flow path of a lean burn internal combustion engine,
The carrier in the NOx adsorbing means is further supported with a catalyst component having an exhaust gas purifying ability.
[0017]
[Action]
In the NOx adsorbent regenerator of the present invention, the exhaust gas flowing through the NOx adsorbing means can be switched so as to flow from the reverse direction. Therefore, the NOx adsorbent regenerator that can use the NOx adsorbing means for a long period of time can be obtained by using the portion of the NOx adsorbing material that is carried on the NOx adsorbing means that is relatively low in sulfur poisoning as needed.
In the preferred form of the NOx adsorbent regeneration method of the present invention, when the flow direction of the exhaust gas is switched, the exhaust gas is stoichiometrically rich and the NOx adsorbing means is heated to 600 ° C. or higher. Therefore, the sulfur content related to sulfur poisoning on the NOx adsorbent can be effectively desorbed and removed, and the NOx adsorbent can be more reliably regenerated.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the NOx adsorbent regeneration apparatus and the regeneration method of the present invention will be described in detail.
As described above, the NOx adsorbent regeneration apparatus according to the present invention includes a NOx adsorbing means that supports a NOx adsorbent that adsorbs nitrogen oxides on a carrier, and a gas flow control that controls the flow direction of exhaust gas to the NOx adsorbing means. Means.
[0019]
Here, examples of the NOx adsorbent that is a constituent component of the NOx adsorbing means include alkali metals, alkaline earth metals, rare earths, transition metals, and materials containing any combination thereof.
In addition, as a carrier for supporting these NOx adsorbents, a monolithic carrier such as a monolithic carrier (honeycomb structure or the like) made of a heat resistant material is preferable. For example, a ceramic carrier such as cordierite, a ferrite stainless steel, or the like Metal ones can be used. Further, the NOx adsorbing material may be formed by supporting the NOx adsorbing material on a granular or pellet-shaped carrier and filling these into a container. When using a monolithic structure type carrier, a plurality of carriers and a tandem arrangement may be used. In this case, it is necessary to handle a carrier group arranged in a tandem as one carrier.
[0020]
On the other hand, the gas flow control means controls the flow direction of the exhaust gas to the NOx adsorption means. That is, the flow direction of the exhaust gas can be switched in the forward direction from one end side to the other end side of the carrier in the NOx adsorbing means, or in the reverse direction from the other end side to the one end side.
[0021]
In the present invention, as the gas flow control means, the NOx adsorbing means is provided with a rotating means capable of reversing around a rotation axis perpendicular to the exhaust gas flow direction, and the exhaust gas flow direction The NOx adsorbent is regenerated by supplying exhaust gas while appropriately switching between. At this time, the distribution direction can be switched based on a signal from the sensor or a predetermined time as described later.
Specifically, as shown in FIG. 1, a
[0022]
Further, the gas flow control means includes a main flow path that passes through the NOx adsorption means, a bypass flow path that bypasses the NOx adsorption means and communicates from one end side to the other end side of the carrier, A valve for opening and closing the bypass channel can be provided.
Specifically, as shown in FIG. 2 , the
[0023]
Needless to say, the
[0024]
Further, the switching of the exhaust gas flow direction by the gas flow control means is preferably performed when the NOx adsorbent of the NOx adsorption means is subjected to sulfur poisoning and the nitrogen oxide absorption performance is lowered.
[0025]
For example, it is effective to switch the flow direction of the exhaust gas when the NOx concentration released into the atmosphere becomes higher than the NOx emission allowable amount (sensor output N> NOx emission allowable concentration Nlim). Here, “N” is the NOx concentration indicated by the NOx sensor (33 in FIG. 2 ).
As another method, the NOx emission amount per unit time calculated from the engine operating conditions is integrated to estimate the NOx amount adsorbed on the NOx adsorbent, and if this estimated NOx amount exceeds a predetermined amount, the exhaust gas The distribution direction may be switched.
[0026]
Here, when the NOx adsorbent is subjected to sulfur poisoning (hereinafter abbreviated as “S poison”) by the sulfur component contained in the fuel, the NOx adsorbent is at one end (front side) to the other end (rear side). Sulfur (S) tends to be adsorbed in order toward the surface. This also applies to the absorption of NOx, and more NOx and S are absorbed on the front side of the NOx adsorbent, and the amount of these absorptions is less on the rear side.
[0027]
The reason why S is adsorbed on the NOx adsorbent can be considered as follows.
S (SO2 in exhaust gas) contained in the fuel or the like is a precious metal (Pt, Pd, Rh, etc.) contained in a catalyst (such as a three-way catalyst) that is normally installed under an oxygen excess condition (lean condition). Oxidized by catalysis, it may be absorbed as a sulfate by NOx adsorbent (alkali, alkaline earth metal or rare earth). Since this reaction is very stable, sulfates are generated in order from the point where S contacts in the NOx adsorbent, and are strongly adsorbed by the NOx adsorbent.
[0028]
Therefore, in such S poisoning, a concentration gradient occurs in the amount of S adsorbed before and after the NOx adsorbent, and the amount of S adsorbed may increase toward the front side (upstream side) of the adsorbent. That is, in the portion where S has been adsorbed, S, which is an impurity, is strongly adsorbed on the active point of the NOx adsorbent, and the NOx adsorbent activity is reduced or lost. NOx cannot be absorbed as far as the front side.
On the other hand, even if the front side of the NOx adsorbent is subjected to considerable S poisoning, the rear side of the NOx adsorbent is hardly adsorbing S and is in a state of higher activity than the front side of the NOx adsorbent. . However, since the entire NOx adsorbent is subjected to S poisoning, it is difficult to sufficiently absorb NOx in the exhaust gas.
[0029]
Therefore, in the present invention, the flow direction of the exhaust gas can be switched when the NOx adsorbent of the NOx adsorbing means is subjected to sulfur poisoning and the nitrogen oxide absorption performance is lowered. As a result, the use period of the NOx adsorbent can be greatly extended, so that the NOx absorption performance is maintained over a long period of time.
That is, one end of the NOx adsorbing means that has become unable to exhibit the NOx absorption performance due to the adsorption of S is the rear side having a relatively small influence on the NOx absorption performance, and the NOx absorption performance is sufficiently exhibited with almost no S adsorbed. The NOx absorption performance can be regenerated by reversing the flow direction of the exhaust gas on the NOx adsorbent so that the other end that can be used is the front side that has a large influence on the NOx absorption performance. Typically, the durability of the NOx adsorbent with respect to S can be increased by 1.8 to 2 times.
The switching of the flow direction can be repeated as long as a suitable NOx absorption capacity can be maintained, and there is a difference depending on the degree of sulfur poisoning and the presence or absence of sulfur desorption operation, but one NOx adsorbent. On the other hand, the heat treatment at less than 600 ° C. can be switched about once, whereas the heat treatment at 600 ° C. or higher can be further switched about five times. Further, the concentration gradient of S adsorbed on the NOx adsorbent, for example, is remarkably manifested when traveling about 5000 km in an exhaust gas purification device installed in an automobile engine.
[0030]
Further, in the present invention, when the flow direction of the exhaust gas is switched, the exhaust gas is preferably stoichiometrically rich and the NOx adsorbing means is preferably heated to 600 ° C. or higher. As a result, the NOx adsorbent is adsorbed. The desorbed S can be desorbed and the NOx adsorbent can be regenerated. An example of the heating means at this time is an electric heater.
[0031]
Further, as described above, after switching the exhaust gas flow direction, a large amount of S is adsorbed on the downstream side (rear side) with respect to the exhaust gas flow direction on the NOx adsorbent. When S is desorbed, it is removed from the NOx adsorbing means without being adsorbed again by the NOx adsorbing material, so that the S adsorbing amount is easily reduced by the entire NOx adsorbing means. At this time, if a sulfur trap catalyst or the like is disposed in the exhaust passage, the release of the S component to the outside can be prevented.
[0032]
In addition to the above S desorption operation, as the desorption operation of S adsorbed on the NOx adsorbent, the air-fuel ratio is made rich to stoichiometric without reversing the front and rear of the NOx adsorbent that receives the exhaust gas, There is a method of raising the temperature to about 600 ° C., but in this method, S desorbed from the front side of the NOx adsorbent (catalyst) is re-adsorbed to the rear side of the adsorbent due to the concentration gradient of the S adsorption amount. The adsorbed S cannot be removed as desired.
In addition, there are a method of further enriching the air-fuel ratio A / F and a method of raising the circulating exhaust gas to a high temperature up to 700 ° C. or higher. However, the method of further enriching the A / F cannot obtain the fuel efficiency improvement effect. In addition, the method of setting the exhaust gas to a high temperature of 700 ° C. or higher is not preferable from the viewpoint of thermal durability because the NOx adsorbent is likely to be activated and deteriorated by sintering.
On the other hand, in the present invention, the NO poisoning of the NOx adsorbent can be released as described above, and the NOx absorption performance can be regenerated and sustained more reliably. Further, since the above-described re-adsorption of S does not easily occur during the desorption operation of S, the desorption of S can be achieved if the temperature of the exhaust gas is at least 600 ° C.
[0033]
The above-described representative example of the switching control of the exhaust gas flowing to the NOx adsorbing means (carrier), that is, the operation of the NOx adsorbing material rotating means ( FIG. 1 ) and the exhaust gas detouring means ( FIG. 2 ) generically is preferably carried out, typically it can be performed according to the flowchart shown in FIG. It is assumed that the S desorption operation performed in the following flowchart is performed under conditions of an exhaust gas temperature of 600 ° C. to 650 ° C., an air-fuel ratio of 13.5 to 14.6, and a time of 5 minutes.
[0034]
Hereinafter, explaining the flow chart shown in FIG. 3 (A) to the order of steps. This flow chart relates to the NOx adsorbent turning means ( FIG. 1 ).
First, in step 1 (hereinafter abbreviated as [S1]), it is determined whether N> Nlim. If the result of this determination is No, the NOx absorption amount of the NOx adsorbent has not yet reached the allowable absorption limit amount, so that the exhaust gas flow is continued as it is [S2].
On the other hand, when it is Yes, the concentration of NOx released into the atmosphere becomes high, so that the rotation means of the NOx adsorption means is activated at the same time as N> Nlim [S3].
[0035]
After [S3], it is determined again whether N> Nlim. If the result of this determination is No, the NOx absorption amount has not yet reached the allowable absorption limit amount, so that the exhaust gas flow continues as it is [S4].
On the other hand, when [Yes] is [S5], since the concentration of NOx released into the atmosphere becomes high, N> Nlim, and at the same time, the S desorption operation is performed to desorb S in the NOx adsorbent. Performed [S6].
[0036]
Next, FIG. 3 (B) shows that when the exhaust gas bypass means shown in FIG. 2 is operated, the
[0037]
The flowchart shown in FIG. 3B will be described below in the order of steps.
First, in [S10], 1 is added to F which is the operation frequency parameter. Next, it is determined whether the value of F is even or odd [S11]. If F is an even number as a result of this determination, the state shown in FIG. 2A , that is, the valve in the
Incidentally, in the flowchart in FIG. 3 (B), incorporating S1 and S2 shown in FIG. 3 (A), can be a reference for bypass operations poisoning of sulfur.
[0038]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0039]
In the following examples and comparative examples, an exhaust gas purification device in which an exhaust gas purification component is further carried on the NOx adsorption means having a NOx adsorbent carried on a carrier is used. That is, Ba was supported on 20 wt%, Pd was supported on 5 wt%, and Rh was supported on 1 wt% Al 2 O 3 , and this was coated on a honeycomb carrier. Moreover, the thermal durability shown below was performed before use.
[0040]
[Durability]
The exhaust gas purification device was mounted on the exhaust system of an engine with a displacement of 4400 cc, the NOx adsorbent inlet temperature was 650 ° C., and the engine was operated for 50 hours. At this time, the S concentration in gasoline was set to 3 ppm or less.
[0041]
Example 1
The exhaust gas purification device was mounted on the exhaust system of an engine with a displacement of 2000 cc and the S concentration in gasoline was 300 ppm, and the 10-15 mode was repeatedly run until N> Nlim. When N> Nlim, the NOx adsorbing means was removed, attached with the front and rear reversed, and the 10-15 mode was run repeatedly until N> Nlim again. At this time, the NOx adsorbing means was removed, and the attachment with the front and rear reversed was performed manually.
[0042]
( Reference Example 1 )
The same operation as in Example 1 was repeated except that the NOx adsorption means was not reversed and the flow direction of the exhaust gas was switched using the bypass flow path as shown in FIG .
[0043]
( Example 2 )
The same operation as in Example 1 was repeated except that the NOx adsorption means was reversed using the NOx adsorption means reversing device (rotating shaft) 21 shown in FIG .
[0044]
( Example 3 )
The exhaust gas purification device was installed in the exhaust system of an engine with a displacement of 2000 cc and the S concentration in gasoline was 300 ppm, and the 10-15 mode was repeatedly run until N> Nlim according to the flowchart of FIG .
When N> Nlim, the NOx adsorbing means is removed, and the front and rear are reversed, and the temperature is 600 ° C., the air-fuel ratio is 14.6, the time is 5 minutes, and the S concentration in gasoline is 3 ppm or less. The separation operation was performed (1).
Thereafter, the S concentration in the gasoline was set to 300 ppm, and the 10-15 mode was repeated until N> Nlim again (2).
The operation of (1) and the running of (2) were repeated until N <Nlim was not reached even when the S desorption operation was performed. The removal of the NOx adsorbing means at this time and the attachment with the front and rear reversed were performed manually.
[0045]
( Reference Example 2 )
The same operation as in Example 3 was repeated except that the NOx adsorption means was not reversed and the flow of the exhaust gas was switched using a bypass as shown in FIG .
[0046]
( Example 4 )
The same operation as in Example 3 was repeated except that the NOx adsorption means was reversed using the NOx adsorption means reversing
[0047]
(Comparative Example 1)
The exhaust gas purification device was installed in the exhaust system of an engine with a displacement of 2000 cc and the S concentration in gasoline was 300 ppm, and the 10-15 mode was repeatedly run until N> Nlim. Further, the NOx adsorption means was not reversed. Except for this, the same operation as in Example 1 was repeated.
[0048]
(Comparative Example 2)
The same operation as in Example 3 was repeated except that the NOx adsorption means was not reversed.
[0049]
( Reference Example 3 )
The same operation as in Example 3 was repeated except that the temperature during the S desorption operation was 550 ° C.
[0050]
[Evaluation]
In the above examples and comparative examples, the number of times the vehicle was able to travel by repeating the 10-15 mode until the NOx conversion rate became 65% or less was compared. The results are shown in Table 1. The NOx conversion rate when N <Nlim was 68 to 70%.
[0051]
[Table 1]
[0052]
From Example 1 and Comparative Example 1, when the NOx adsorption means is reversed, the number of times that the vehicle can travel in the 10-15 mode has increased approximately twice. That is, in Example 1, it means that the durability of the NOx adsorbent with respect to S is doubled.
In addition, it can be seen from Example 3 and Comparative Example 2 that the number of times that the vehicle can travel in the 10-15 mode is increased approximately twice by inverting the NOx adsorption means. This is considered to be because the re-adsorption of S desorbed from the NOx adsorbent was prevented by inverting the NOx adsorption means.
Furthermore, from Example 3 and Reference Example 3 , even if the NOx adsorption means is reversed, if the desorption temperature of S is not within the preferred range of the present invention, the number of times that the vehicle can travel in the 10-15 mode is about 1/3. I understand that. This is presumably because there is little S desorbed at temperatures below 600 ° C.
[0053]
【The invention's effect】
As described above, according to the present invention, the flow direction of the exhaust gas flowing through the NOx adsorbing means installed in the exhaust flow path of the internal combustion engine or the like is appropriately switched, so that the NOx that has received sulfur poisoning. It is possible to provide a NOx adsorbent regeneration device, a regeneration method, and an exhaust gas purification device that can suppress NOx absorption performance of the adsorbent and efficiently absorb (trap) NOx over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic view of a NOx adsorbing means reversing device as an example of a gas flow control means.
FIG. 2 is an example of gas flow control means, and is a diagram showing an outline when controlling the flow direction of exhaust gas in a forward direction (a) and a reverse direction (b).
FIG. 3 is a flowchart for controlling the flow direction of exhaust gas.
[Explanation of symbols]
1
11 Bypass channel (downstream side)
12 Bypass channel (upstream side)
20 NOx adsorption means (catalyst)
21 NOx adsorption means reversing device (rotating shaft)
30
31
32
33
Claims (10)
上記ガス流制御手段が、上記NOx吸着手段を排気ガス流れ方向に対して垂直方向にある回転軸を中心にして反転可能な回動手段を備え、上記排気ガスの流通方向を、上記NOx吸着手段における担体の一端側から他端側への順方向、又は他端側から一端側への逆方向に切り換え可能であることを特徴とするNOx吸着材再生装置。A NOx adsorbing means carrying a NOx adsorbent for adsorbing nitrogen oxides on a carrier; and a gas flow control means for controlling the flow direction of exhaust gas to the NOx adsorbing means,
The gas flow control means includes rotation means capable of reversing the NOx adsorption means about a rotation axis perpendicular to the exhaust gas flow direction, and the exhaust gas flow direction is determined by the NOx adsorption means. The NOx adsorbent regenerator can be switched in the forward direction from one end side to the other end side of the carrier or in the reverse direction from the other end side to the one end side.
上記NOx吸着手段を反転させることにより、排気ガスの流通方向を該NOx吸着手段における担体の一端側から他端側への順方向、又は他端側から一端側への逆方向に切り換えながら供給することを特徴とするNOx吸着材再生方法。 A NOx adsorbent regeneration method using the NOx adsorbent regeneration apparatus according to any one of claims 1 to 5,
By reversing the NOx adsorption means, the exhaust gas flow direction is supplied while switching the forward direction from one end side to the other end side of the carrier in the NOx adsorption means or the reverse direction from the other end side to the one end side. NOx adsorbent regeneration wherein the.
上記NOx吸着手段における担体に、排気ガス浄化能を有する触媒成分を更に担持して成ることを特徴とする排気ガス浄化装置。An exhaust gas purification device comprising the NOx adsorbing material regeneration device according to any one of claims 1 to 5 installed in an exhaust gas flow path of a lean burn internal combustion engine,
An exhaust gas purifying apparatus, wherein the carrier in the NOx adsorption means further carries a catalyst component having an exhaust gas purifying ability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000053506A JP3846541B2 (en) | 2000-02-29 | 2000-02-29 | NOx adsorbent regeneration device and regeneration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000053506A JP3846541B2 (en) | 2000-02-29 | 2000-02-29 | NOx adsorbent regeneration device and regeneration method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001241318A JP2001241318A (en) | 2001-09-07 |
JP3846541B2 true JP3846541B2 (en) | 2006-11-15 |
Family
ID=18574883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000053506A Expired - Lifetime JP3846541B2 (en) | 2000-02-29 | 2000-02-29 | NOx adsorbent regeneration device and regeneration method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3846541B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4581287B2 (en) * | 2000-04-28 | 2010-11-17 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP2008121598A (en) * | 2006-11-14 | 2008-05-29 | Toyota Motor Corp | Exhaust emission control device for internal combustion engine |
-
2000
- 2000-02-29 JP JP2000053506A patent/JP3846541B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001241318A (en) | 2001-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5037283B2 (en) | Exhaust gas purification device for internal combustion engine | |
US6758036B1 (en) | Method for sulfur protection of NOx adsorber | |
BRPI0706870A2 (en) | APPLIANCE FOR PURIFICATION OF EXHAUST GAS AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THE APPLIANCE FOR PURIFICATION OF EXHAUST GAS | |
US20090081087A1 (en) | Exhaust gas purifier | |
KR20110041502A (en) | Exhaust system for a lean burn ic engine | |
EP1608854A1 (en) | Exhaust-gas purification system for the selective catalytic reduction of nitrogen oxides in the lean exhaust gas of internal combustion engines and method of exhaust-gas purification | |
WO2007123011A1 (en) | Exhaust gas purification method and exhaust gas purification system | |
JP2001355485A (en) | Exhaust emission control device having nitrogen oxides storage and reduction type catalyst | |
JP4168781B2 (en) | NOx catalyst regeneration method for NOx purification system and NOx purification system | |
JP4244648B2 (en) | Exhaust gas purification device | |
WO2005090760A1 (en) | Device for clarifying exhaust gas from internal combustion engine, method for clarifying exhaust gas, and s component capturing agent for internal combustion engine | |
JP2011041905A (en) | Exhaust gas cleaning device | |
JPH05231134A (en) | Engine exhaust emission control system | |
JP3157556B2 (en) | Exhaust gas purification catalyst device | |
JPH0674019A (en) | Exhaust emission control device | |
JPH06272545A (en) | Exhaust emission control device for internal combustion engine | |
JP3846541B2 (en) | NOx adsorbent regeneration device and regeneration method | |
JP3933015B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2018145869A (en) | Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system | |
JP3945137B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP5094199B2 (en) | Exhaust gas purification device | |
JPH07102948A (en) | Exhaust emission control device for internal combustion engine | |
JP2006272116A (en) | Exhaust gas purifying apparatus | |
JP2002168117A (en) | Exhaust emission control system | |
JP3736373B2 (en) | Engine exhaust purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040812 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041021 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041117 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060203 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060815 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3846541 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110901 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120901 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130901 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140901 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |