[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3845766B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP3845766B2
JP3845766B2 JP2001331223A JP2001331223A JP3845766B2 JP 3845766 B2 JP3845766 B2 JP 3845766B2 JP 2001331223 A JP2001331223 A JP 2001331223A JP 2001331223 A JP2001331223 A JP 2001331223A JP 3845766 B2 JP3845766 B2 JP 3845766B2
Authority
JP
Japan
Prior art keywords
liquid crystal
diffuse reflection
reflection film
film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001331223A
Other languages
Japanese (ja)
Other versions
JP2003131217A (en
Inventor
利春 西野
則博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2001331223A priority Critical patent/JP3845766B2/en
Publication of JP2003131217A publication Critical patent/JP2003131217A/en
Application granted granted Critical
Publication of JP3845766B2 publication Critical patent/JP3845766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、反射型の液晶表示素子に関するものである。
【0002】
【従来の技術】
反射型の液晶表示素子は、表示の観察側である前側の基板とこの前側基板に対向する後側基板の内面にそれぞれ電極が設けられ、これらの基板間に液晶層が設けられるとともに、前記液晶層よりも後側、例えば前記後側基板の外面側に、アルミニウム膜等からなる反射膜が設けられた構成となっている。
【0003】
この反射型液晶表示素子は、表示の観察側である前側から入射した光を前記反射膜により反射させて前側に出射するため、前記反射膜を、入射光を正反射させる鏡面反射膜としたものは、反射光の出射角度範囲が極端に狭く、したがって表示の視野角が狭い。
【0004】
そのため、従来は、前記反射膜を、表面を粗面化した拡散反射膜とすることにより、入射光を拡散させて反射し、視野角を広くしている。
【0005】
【発明が解決しようとする課題】
しかし、従来の反射型液晶表示素子は、前記拡散反射膜が入射光をランダムな方向に拡散させて反射するため、観察方向に出射する光の強度が低下し、表示が暗くなる。
【0006】
この発明は、特定の角度範囲の方向に均一な強度分布の拡散反射光を出射し、視野角を充分に広くするとともに、その視野角の方向から、高輝度でしかも均一な明るさの表示を観察させることができる反射型の液晶表示素子を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
この発明の液晶表示素子は、表示の観察側である前側の基板とこの前側基板に対向する後側基板の内面にそれぞれ電極が設けられ、これらの基板間に液晶層が設けられるとともに、前記液晶層よりも後側に、入射する光の前記基板の面と平行な面に対する正反射方向を中心としてその両側に予め定めた角度2θの広がり角で前記入射する光を拡散する指向性を持たせるための凹凸面を有する拡散反射膜が設けられており、前記拡散反射膜の凹凸面は、前記拡散反射膜に入射する光の前記正反射方向からの前記拡散光の広がり角2θの1/2の角度をθmax、前記凹凸のピッチをP、前記凹凸の各点の平面座標をx、前記凹凸の各点の高さ座標をzとしたとき、
【数2】

Figure 0003845766
で表わされる凹凸形状に形成されていることを特徴とするものである。
【0008】
この液晶表示素子によれば、前記拡散反射膜が、入射光を、その正反射方向を中心にして一方の方向と他方の方向とにそれぞれθmaxの2倍の角度ずつ傾いた角度範囲(入射光の正反射方向を中心にして±2θmaxの角度範囲)の方向に均一に拡散させて反射するため、特定の角度範囲の方向に均一な強度分布の拡散反射光を出射し、視野角を充分に広くするとともに、その視野角の方向から、高輝度でしかも均一な明るさの表示を観察させることができる。
【0012】
また、この発明の液晶表示素子において、前記拡散反射膜は、後側基板の内面に設けるのが望ましい。
【0013】
さらに、前記拡散反射膜は、表面が凹凸面に形成された下地膜と、前記下地膜の凹凸面上に被着された金属膜とからなっているのが好ましい。
【0014】
【発明の実施の形態】
図1はこの発明の一実施例を示す液晶表示素子の一部分の断面図である。
【0015】
この液晶表示素子は、その使用環境の光である外光を利用して表示する反射型液晶表示素子であり、表示の観察側である前側の基板(例えばガラス基板)1とこの前側基板1に対向する後側基板(例えばガラス基板)2の内面にそれぞれITO等の透明導電膜により形成された電極3,4が設けられ、これらの基板1,2間に液晶層10が設けられるとともに、前記液晶層10よりも後側、例えば後側基板2の内面に、後述する形状の凹凸面を有する指向性をもった拡散反射膜7が設けられ、前記前側基板1の前側に偏光板11が配置された構成となっている。
【0016】
なお、前記前側基板1と後側基板2は、その周縁部において図示しない枠状のシール材を介して接合されており、これらの基板1,2間の前記シール材で囲まれた領域に前記液晶層10が設けられている。
【0017】
この実施例の液晶表示素子は、単純マトリックス型のものであり、一方の基板、例えば前側基板1の内面に設けられた電極3は、行方向(図1において紙面に垂直な方向)に沿わせて互いに平行に形成された複数の走査電極、他方の基板である後側基板2の内面に設けられた電極4は、列方向(図1において紙面に平行な方向)に沿わせて互いに平行に形成された複数の信号電極である。
【0018】
また、この液晶素子1は、前記複数の走査電極3と信号電極4とが互いに対向する複数の画素にそれぞれ対応する複数の色、例えば赤、緑、青のカラーフィルタ5R,5G,5Bを備えており、これらのカラーフィルタ5R,5G,5Bは、前記後側基板2の内面に設けられた前記拡散反射膜7の上に形成され、前記複数の信号電極4は、前記カラーフィルタ5R,5G,5Bの上に設けられている。
【0019】
さらに、この液晶表示素子は、STN(スーパーツイステッドネマティック)型のものであり、前記液晶層10の液晶分子は、前記一対の基板1,2の最も内面にそれぞれ設けられた配向膜8,9によりそれぞれの基板1,2の近傍における配向方向を規制され、両基板1,2間において180〜270度(好ましくは240〜260度)のツイスト角でツイスト配向しており、前記偏光板11は、その透過軸を、前記液晶層10の液晶分子が初期のツイスト配向にあるときと、前記液晶分子が前記電極3,4間に印加された電界により基板1,2面に対して略垂直に立ち上がり配向したときの表示のコントラストが最も高くなる方向に向けて設けられている。
【0020】
また、前記偏光板11と前側基板1の間には、前記液晶層10の複屈折効果による透過光の帯色を補償するためと、表示のコントラストを上げるための位相板12が配置されており、さらに、この位相板12と前側基板1の間に、拡散層13が設けられている。
【0021】
次に、前記拡散反射膜7について説明すると、図2および図3は前記拡散反射膜7の平面図および一部分の拡大断面図である。
【0022】
この拡散反射膜7は、凹凸面を有しており、その凹凸面は、前記拡散反射膜に入射する光の正反射方向からの拡散光の広がり角の1/2の角度をθmaxとしたとき、傾き角が+θmaxと−θmaxの範囲で異なる複数の微小反射面を有し、これらの異なる傾き角をもった複数の微小反射面がそれぞれ実質的に等しい割合で存在する前記複数の微小反射面の集合体からなり、且つ、前記異なる傾き角をもった複数の微小反射面が連続して繋がった曲面に形成されている。
【0023】
すなわち、前記拡散反射膜7の凹凸面は、前記拡散反射膜7に入射する光の正反射方向からの拡散光の広がり角の1/2の角度をθmax、前記凹凸のピッチをP、前記凹凸の各点の平面座標をx、前記凹凸の各点の高さ座標をzとしたとき、
【数3】
Figure 0003845766
で表わされる凹凸形状に形成されている。
【0024】
この実施例では、図1および図3に示したように、前記後側基板2の内面に、表面を前記拡散反射膜7の凹凸形状の条件式を満足する凹凸面に形成した下地膜6を設け、この下地膜6の凹凸面上にアルミニウム膜等の金属膜を蒸着またはスパッタにより被着させることにより、前記下地膜6と、この下地膜6の凹凸面上に被着された金属膜とにより拡散反射膜7を形成している。
【0025】
前記下地膜6は、後側基板2上にフォトレジストをスピンコート法等により均一な膜厚に塗布し、そのフォトレジスト膜を、前記拡散反射膜7の凹凸のピッチPに応じた周期で連続的に露光時間を変化させて露光処理した後に現像処理することにより形成されている。
【0026】
なお、反射型液晶表示素子は、通常、その画面の法線に対して前記画面の上縁方向に30°〜60°程度傾いた方向を、使用環境のうちの最も明るい方向に向けて使用されるため、最も明るい外光の入射方向は、前記画面の法線に対して前記画面の上縁方向に30°〜60°程度傾いた方向である。
【0027】
そのため、この実施例では、前記拡散反射膜7を、前記最も明るい外光の入射方向に対して直交する方向、つまり画面の左右方向に沿った横長の凸部と凹部が連続する凹凸形状に形成している。
【0028】
図4の(a)は前記拡散反射膜7の凹凸面の断面形状を示し、図4の(b)は前記凹凸面を構成する微小な部分である微小反射面の傾き角(後側基板2の内面に対する角度)の変化を示している。
【0029】
前記拡散反射膜7の凹凸面の凹凸形状は、その凹凸の山部と谷部の形状が対称形で、且つ図4の(b)に示すように、前記凹凸面を構成する微小反射面の傾き角の変化が±θmaxの範囲で直線的に変化する凹凸形状に形成されている。
【0030】
なお、図4の(a)では前記拡散反射膜7の凹凸の高さを大きく誇張して示しているが、前記拡散反射膜7の凹凸面を構成する微小反射面の傾き角の最大値θmaxは、高さ座標が0.0のときに例えばθmax=10°、前記凹凸のピッチPは、例えばP=20μm、前記凹凸の高さは、例えば前記凹凸の中心高さ(高さ座標xがx=0)に対して±0.5μm以内の範囲である。
【0031】
前記拡散反射膜7は、上記のように、前記拡散反射膜7に入射する光の正反射方向からの拡散光の広がり角の1/2の角度をθmaxとしたとき、傾き角が+θmaxと−θmaxの範囲で異なる複数の微小反射面を有し、これらの異なる傾き角をもった微小反射面が実質的に等しい割合で存在する前記複数の微小反射面の集合体からなる凹凸面を有するものであれば、±θmaxの範囲で傾き角が異なる複数の平面状反射面が不規則に並んだ凹凸面状、または前記傾き角が異なる複数の平面状反射面が多角面状態に繋がった形状でも、さらには、前記複数の微小反射面が連続した曲面を形成するように繋がった形状でも良い。
【0032】
前記拡散反射膜7の凹凸面の凹凸形状を前記曲面に形成するときは、この実施例のように、その断面形状を、上記[数3]の式で表わされる条件を満足する凹凸形状に形成すれば良く、このような凹凸形状の拡散反射膜7は、特定の角度範囲に指向性をもった拡散反射特性を有している。
【0033】
すなわち、前記拡散反射膜7は、入射光を、その正反射方向を中心にして一方の方向と他方の方向とにそれぞれ前記凹凸面の微小反射面の傾き角の最大値θmaxの2倍の角度ずつ傾いた角度範囲(入射光の正反射方向を中心にして±2θmaxの角度範囲)の方向に均一に拡散させて反射する。
【0034】
上述した拡散反射特性を有する拡散反射膜は、図5に示したように、入射光を、その正反射方向を中心にして一方の方向と他方の方向とにそれぞれ2θmaxずつ傾いた角度範囲の方向に反射する複数の反射面を備えていることが要求される。
【0035】
図5において、A,B,Cは、傾き角が異なる3つの反射面であり、実線で示した反射面Aは、傾き角が0°の水平反射面、破線で示した反射面Bは、前記水平反射面Aに対して図において左回り方向に予め定めた傾き角θmaxで傾斜する第1の傾斜反射面、二点鎖線で示した反射面Cは、前記水平反射面Aに対して図において右回り方向に前記第1の傾斜反射面Bの傾き角と同じ傾き角θmaxで傾斜する第2の傾斜反射面である。
【0036】
これらの反射面A,B,Cに、前記水平反射面Aの法線hに対して一方の方向に傾いた方向から一定の入射角、例えば30°の入射角で入射した光の正反射方向を見ると、前記水平反射面Aに入射した光は、図に実線矢印で示したように、前記法線hに対して他方の方向に傾いた方向に前記入射角と同じ反射角30°で反射され、前記第1の傾斜反射面Bに入射した光は、図に破線矢印で示したように、前記水平反射面Aに入射した光の反射方向に対して左回り方向に前記第1の傾斜反射面Bの傾き角θmaxの2倍の傾き角2θmaxで傾いた方向に反射され、前記第2の傾斜反射面Cに入射した光は、図に鎖線矢印で示したように、前記水平反射面Aに入射した光の反射方向に対して右回り方向に前記第2の傾斜反射面Cの傾き角θmaxの2倍の傾き角2θmaxで傾いた方向に反射される。
【0037】
したがって、反射膜に入射した光を、その正反射方向を中心にして一方の方向と他方の方向とにそれぞれ2θmaxずつ傾いた角度範囲の方向に拡散反射する指向性をもたせて反射するためには、前記反射膜を、傾き角が0°の水平面に対して±θmaxの範囲で異なる様々な傾き角の微小反射面を形成する必要がある。
【0038】
さらに、反射膜に、入射光を前記角度範囲の方向に均一に拡散させて反射する特性をもたせるためには、前記反射膜中に、傾き角が前記±θmaxの範囲で異なる複数の微小反射面がそれぞれ実質的に等しい割合で存在させる必要がある。
【0039】
上記拡散反射膜7は、水平面、つまり後側基板2の基板面に対して0°〜±θmaxの範囲で傾き角が異なる微小な反射面を多数集め、これらの微小反射面を滑らかな曲面となるように連続させた形状の凹凸面を有するものであり、その凹凸面を、図4(b)に示すように微小反射面の傾き角が直線的に変化する曲面とすることにより、前記±θmaxの範囲で傾き角が異なる複数の微小反射面の出現頻度を図6のように均等にし、傾き角が±θmaxの範囲で異なる複数の微小反射面をそれぞれ実質的に等しい割合で存在させたものである。
【0040】
この拡散反射膜7の凹凸面の凹凸形状は、図4(b)に示した微小反射面の傾き角を平面座標xと高さ座標zについて微分方程式を立て、これを解くことにより、次の手順で求めることができる。
【0041】
すなわち、図4(b)の平面座標xが0≦x≧2/4Pの範囲において、凹凸面の微小部分の傾き角θは、
【数4】
Figure 0003845766
で表わされる。
【0042】
上記(1),(2)式より、
【数5】
Figure 0003845766
上記(5)式で、上記(4)式を書き換えると、
【数6】
Figure 0003845766
となる。
【0043】
上記(8)式から、平面座標xの範囲の条件を取り除いて凹凸面の凹凸のピッチPを用いて一般化すると、前記拡散反射膜7の凹凸面の凹凸形状は、
【数7】
Figure 0003845766
で表される。
【0044】
上記条件式を満足する凹凸形状の凹凸面を有する前記拡散反射膜7は、入射光を、その正反射方向を中心にして一方の方向と他方の方向とにそれぞれ前記凹凸面を構成する微小部分の傾き角の最大値θmaxの2倍の角度ずつ傾いた角度範囲(入射光の正反射方向を中心にして±2θmaxの角度範囲)の方向に均一に拡散させて反射する。
【0045】
図7は、画面の法線に対して前記画面の上縁方向に傾いた方向から30°の入射角で入射し、前記拡散反射膜7により拡散反射された光の反射角と相対反射率(入射光に対する反射光の比率)の関係を示しており、前記30°の入射角で入射し、前記拡散反射膜7により拡散反射された光は、図のように、30°+2θmax〜30°+2θmaxの角度範囲の方向に、均一な相対反射率で反射される。
【0046】
そのため、この液晶表示素子によれば、特定の角度範囲、つまり入射光の正反射方向を中心にして±2θmaxの角度範囲の方向に均一な強度分布の拡散反射光を出射し、視野角を充分に広くするとともに、その視野角の方向から、高輝度でしかも均一な明るさの表示を観察させることができる。
【0047】
なお、この実施例の液晶表示素子は、後側基板2の内面に前記拡散反射膜7を設け、前側基板1の前側に偏光板11を配置したものであるため、前側から前記偏光板11を透過して直線偏光となって入射し、前記液晶層10による液晶分子の配向状態に応じた複屈折作用を受けて前記拡散反射膜7により拡散反射され、前記液晶層10を再び透過して前記偏光板11に入射した光のうち、前記偏光板11の吸収軸に沿った偏光成分の光が、この偏光板11により吸収され、前記偏光板11の透過軸に沿った偏光成分の光が、この偏光板11を透過して前側に出射する。
【0048】
この液晶表示素子は、前記拡散反射膜7を後側基板2の内面に設けたものであるため、光の入出射面である前記偏光板11の前面から前記拡散反射膜7までの距離が小さく、したがって、前側から入射した光の光路と、前記拡散反射膜7により反射されて前側に出射する反射光の光路とのずれを小さくし、複数の画素のうちの1つの画素を通って入射した光の反射光が他の画素を通って出射することによる表示品質の低下を防ぐことができる。
【0049】
しかも、この実施例では、前記偏光板11と前側基板1の間に位相板12を配置しているため、前記位相板12により、液晶層10の複屈折効果による透過光の帯色を補償するとともに表示のコントラストを上げことができる。
【0050】
さらに、この実施例では、前記位相板12と前側基板1の間に拡散層13を設けているため、前記拡散反射膜7により拡散反射された光を前記拡散層13によりさらに拡散させ、より均一な明るさの表示を得ることができるとともに、前記拡散反射膜7の凹凸形状が観察側(前側)から見えないようにし、良好な画質の画像を表示することができる。
【0051】
また、この実施例では、前記後側基板2の内面に、表面が凹凸面に形成されたフォトレジストからなる下地膜6を設け、この下地膜6の上に金属膜を被着させることにより、前記下地膜6とその凹凸面上に被着された金属膜とからなる拡散反射膜7を形成しているため、上述した凹凸形状の凹凸面を有する拡散反射膜を容易に精度良く形成することができる。
【0052】
なお、上記実施例では、前記拡散反射膜7の凹凸面を、前記最も明るい外光の入射方向に対して直交する方向、つまり画面の左右方向に沿った横長の凸部と凹部が連続する凹凸形状に形成しているが、前記拡散反射膜7は、図8に示したように、画面の左右方向と上下方向に沿った横長および縦長の凸部と凹部が連続する凹凸形状に形成してもよく、前記拡散反射膜7をこのような凹凸形状に形成することにより、視野角を画面の左右方向と上下方向の2方向に広くすることができるとともに、その視野角の方向から、高輝度でしかも均一な明るさの表示を観察させることができる。
【0053】
さらに、前記拡散反射膜7の凹凸面は、図9および図10に示したように、画面の中央部を中心とする同心円状または同心楕円状の凸部と凹部が連続する凹凸形状に形成してもよく、前記拡散反射膜7をこのような凹凸形状に形成することにより、視野角を画面の全周方向に広くすることができるとともに、その視野角の方向から、高輝度でしかも均一な明るさの表示を観察させることができる。
【0054】
ただし、液晶表示素子の表示は、画面の法線に対して前記画面の上縁方向に傾いた方向から観察されることはほとんど無いため、視野角は、前記画面の法線に対して前記画面の下縁方向に傾いた方向に設定される。
【0055】
また、前記拡散反射膜7は、図11および図12に示したように、画面の下縁の中央部を中心とする同心半円状または同心半楕円状の凸部と凹部が連続する凹凸形状に形成しても良く、前記拡散反射膜7の凹凸面をこのような凹凸形状に形成にしても、液晶表示素子の左右方向の拡散特性を等しくすることができる。
【0056】
また、上記実施例の液晶表示素子は、後側基板2の内面に拡散反射膜7を設けたものであるが、拡散反射膜は、前記後側基板2の外面側に設けてもよい。
【0057】
なお、拡散反射膜を前記後側基板2の外面側に設ける場合も、その拡散反射膜は、表面が拡散反射膜凹凸面に形成されたフォトレジストからなる下地膜と、この下地膜の凹凸面上に被着された金属膜とにより形成するのが好ましく、このようにすることにより、前記拡散反射膜を容易に精度良く形成することができる。
【0058】
さらに、前記拡散反射膜7は、入射光を全て拡散反射するものに限らず、入射光を予め定めた反射率および透過率で反射および透過させる半透過反射膜としてもよく、前記拡散反射膜7を半透過反射膜とし、その後側に、後側からの入射光を直線偏光として入射させるための偏光板を配置することにより、液晶表示素子に、外光を利用する反射表示と、液晶表示素子の後側に配置された面光源からの照明光を利用する透過表示との両方の表示を行なわせることができる。
【0059】
また、上記実施例の液晶表示素子はSTN型のものであるが、この発明は、液晶層10の液晶分子を略90°のツイスト角でツイスト配向させたTN型、液晶分子を一方の方向に分子長軸が揃うようにホモジニアス配向させたホモジニアス配向型、強誘電性液晶または反強誘電性液晶を用いた液晶表示素子等にも適用することができ、さらに、単純マトリックス型に限らず、アクティブマトリックス型の液晶表示素子にも適用することができる。
【0060】
【発明の効果】
この発明の液晶表示素子は、表示の観察側である前側の基板とこの前側基板に対向する後側基板の内面にそれぞれ電極が設けられ、これらの基板間に液晶層が設けられるとともに、前記液晶層よりも後側に、入射する光の前記基板の面と平行な面に対する正反射方向を中心としてその両側に予め定めた角度2θの広がり角で前記入射する光を拡散する指向性を持たせるための凹凸面を有する拡散反射膜が設けられており、前記拡散反射膜の凹凸面は、前記拡散反射膜に入射する光の前記正反射方向からの前記拡散光の広がり角2θの1/2の角度をθmax、前記凹凸のピッチをP、前記凹凸の各点の平面座標をx、前記凹凸の各点の高さ座標をzとしたとき、
【数8】
Figure 0003845766
で表わされる凹凸形状に形成されていることを特徴とするものであるから、特定の角度範囲の方向に均一な強度分布の拡散反射光を出射し、視野角を充分に広くするとともに、その視野角の方向から、高輝度でしかも均一な明るさの表示を観察させることができる。
【0062】
この発明の液晶表示素子において、前記拡散反射膜は、後側基板の内面に設けるのが望ましく、このようにすることにより、前側から入射した光の光路と、前記拡散反射膜により反射されて前側に出射する反射光の光路とのずれを小さくし、複数の画素のうちの1つの画素を通って入射した光の反射光が他の画素を通って出射することによる表示品質の低下を防ぐことができる。
【0063】
また、前記拡散反射膜は、表面が凹凸面に形成された下地膜と、前記下地膜の凹凸面上に被着された金属膜とからなっているのが好ましく、このようにすることにより、前記凹凸形状の凹凸面を有する拡散反射膜を容易に精度良く形成することができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示す液晶表示素子の一部分の断面図。
【図2】拡散反射膜の平面図。
【図3】拡散反射膜の一部分の拡大断面図。
【図4】拡散反射膜に形成された凹凸面の凹凸形状と、その凹凸面を構成する微小部分の傾き角の変化を示す図。
【図5】反射膜に、入射光をその正反射方向を中心にして一方の方向と他方の方向とにそれぞれ2θmaxずつ傾いた角度範囲の方向に拡散反射する指向性をもつ反射面の条件を示す図。
【図6】図4に示した拡散反射膜の凹凸面を形成する傾き角が異なる複数の微小反射面の出現頻度を示す図。
【図7】拡散反射膜により拡散反射された光の反射角と相対反射率の関係を示す拡散反射特性図。
【図8】拡散反射膜の他の凹凸形状を示す平面図。
【図9】拡散反射膜の他の凹凸形状を示す平面図。
【図10】拡散反射膜の他の凹凸形状を示す平面図。
【図11】拡散反射膜の他の凹凸形状を示す平面図。
【図12】拡散反射膜の他の凹凸形状を示す平面図。
【符号の説明】
1,2…基板
3,4…電極
5R,5G,5B…カラーフィルタ
6…下地膜
7…拡散反射膜
8,9…配向膜
10…液晶層
11…偏光板
12…位相板
13…拡散層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reflective liquid crystal display element.
[0002]
[Prior art]
In the reflective liquid crystal display element, electrodes are provided on an inner surface of a front substrate which is an observation side of display and a rear substrate facing the front substrate, a liquid crystal layer is provided between the substrates, and the liquid crystal A reflection film made of an aluminum film or the like is provided on the rear side of the layer, for example, on the outer surface side of the rear substrate.
[0003]
In this reflection type liquid crystal display element, since the light incident from the front side which is the observation side of the display is reflected by the reflection film and emitted to the front side, the reflection film is a specular reflection film which regularly reflects the incident light. The output angle range of reflected light is extremely narrow, and therefore the viewing angle of display is narrow.
[0004]
For this reason, conventionally, the reflection film is a diffuse reflection film having a roughened surface to diffuse and reflect incident light, thereby widening the viewing angle.
[0005]
[Problems to be solved by the invention]
However, in the conventional reflective liquid crystal display element, since the diffuse reflection film diffuses and reflects incident light in a random direction, the intensity of the light emitted in the observation direction is reduced, and the display becomes dark.
[0006]
The present invention emits diffusely reflected light having a uniform intensity distribution in the direction of a specific angle range, widens the viewing angle, and displays high brightness and uniform brightness from the viewing angle direction. An object of the present invention is to provide a reflective liquid crystal display element that can be observed.
[0007]
[Means for Solving the Problems]
In the liquid crystal display element of the present invention, electrodes are provided on the inner surface of the front substrate on the display viewing side and the rear substrate facing the front substrate, a liquid crystal layer is provided between these substrates, and the liquid crystal Provided with a directivity for diffusing the incident light at a predetermined angle of 2θ on both sides centered on the regular reflection direction of the incident light with respect to a plane parallel to the surface of the substrate, on the rear side of the layer. And a diffusive reflection film having a concavo-convex surface for the diffusive reflection film. The concavo-convex surface of the diffusive reflection film is ½ of the spread angle 2θ of the diffused light from the regular reflection direction of light incident on the diffusive reflective film Is θmax , the pitch of the unevenness is P, the plane coordinate of each point of the unevenness is x, and the height coordinate of each point of the unevenness is z,
[Expression 2]
Figure 0003845766
It is formed in the uneven | corrugated shape represented by these.
[0008]
According to this liquid crystal display element, the diffuse reflection film causes the incident light to be incident on an angle range (incident light that is inclined by an angle twice as large as θmax in one direction and the other direction around the regular reflection direction). The diffuse reflection light with a uniform intensity distribution is emitted in the direction of a specific angle range, and the viewing angle is sufficient. In addition to widening, a display with high brightness and uniform brightness can be observed from the viewing angle direction.
[0012]
In the liquid crystal display element of the present invention, it is preferable that the diffuse reflection film is provided on the inner surface of the rear substrate.
[0013]
Furthermore, it is preferable that the diffuse reflection film is composed of a base film having a surface formed with an uneven surface and a metal film deposited on the uneven surface of the base film.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view of a part of a liquid crystal display device showing an embodiment of the present invention.
[0015]
This liquid crystal display element is a reflective liquid crystal display element that displays using external light, which is light in its use environment, and is provided on a front substrate (for example, a glass substrate) 1 that is an observation side of the display and the front substrate 1. Electrodes 3 and 4 each formed of a transparent conductive film such as ITO are provided on the inner surface of the opposing rear substrate (for example, glass substrate) 2, and a liquid crystal layer 10 is provided between these substrates 1 and 2. A diffusive reflection film 7 having a directivity having a concavo-convex surface to be described later is provided on the rear side of the liquid crystal layer 10, for example, on the inner surface of the rear substrate 2, and a polarizing plate 11 is disposed on the front side of the front substrate 1. It has been configured.
[0016]
The front substrate 1 and the rear substrate 2 are joined to each other at a peripheral portion thereof via a frame-shaped sealing material (not shown), and the region between the substrates 1 and 2 is surrounded by the sealing material. A liquid crystal layer 10 is provided.
[0017]
The liquid crystal display element of this embodiment is of a simple matrix type, and the electrode 3 provided on one substrate, for example, the inner surface of the front substrate 1 is aligned along the row direction (direction perpendicular to the paper surface in FIG. 1). The plurality of scanning electrodes formed in parallel with each other and the electrode 4 provided on the inner surface of the rear substrate 2 which is the other substrate are parallel to each other along the column direction (direction parallel to the paper surface in FIG. 1). A plurality of formed signal electrodes.
[0018]
In addition, the liquid crystal element 1 includes a plurality of colors, for example, red, green, and blue color filters 5R, 5G, and 5B, corresponding to the plurality of pixels in which the plurality of scanning electrodes 3 and the signal electrodes 4 face each other. These color filters 5R, 5G, and 5B are formed on the diffuse reflection film 7 provided on the inner surface of the rear substrate 2, and the plurality of signal electrodes 4 include the color filters 5R, 5G. , 5B.
[0019]
Further, this liquid crystal display element is of the STN (super twisted nematic) type, and the liquid crystal molecules of the liquid crystal layer 10 are formed by alignment films 8 and 9 provided on the innermost surfaces of the pair of substrates 1 and 2, respectively. The alignment direction in the vicinity of each of the substrates 1 and 2 is regulated, and the twist alignment is performed at a twist angle of 180 to 270 degrees (preferably 240 to 260 degrees) between the substrates 1 and 2. With respect to the transmission axis, when the liquid crystal molecules of the liquid crystal layer 10 are in the initial twist alignment, the liquid crystal molecules rise substantially perpendicular to the surfaces of the substrates 1 and 2 by the electric field applied between the electrodes 3 and 4. It is provided in the direction in which the display contrast when it is oriented is highest.
[0020]
Further, a phase plate 12 is arranged between the polarizing plate 11 and the front substrate 1 for compensating the band color of transmitted light due to the birefringence effect of the liquid crystal layer 10 and for increasing the display contrast. Furthermore, a diffusion layer 13 is provided between the phase plate 12 and the front substrate 1.
[0021]
Next, the diffuse reflection film 7 will be described. FIGS. 2 and 3 are a plan view and a partially enlarged sectional view of the diffuse reflection film 7.
[0022]
The diffuse reflection film 7 has a concavo-convex surface, and the concavo-convex surface is obtained when θmax is a half of the spread angle of the diffused light from the regular reflection direction of the light incident on the diffusive reflective film. The plurality of micro-reflecting surfaces having a plurality of micro-reflecting surfaces having different inclination angles in the range of + θmax and −θmax, and the plurality of micro-reflecting surfaces having different inclination angles existing at substantially equal ratios. And is formed into a curved surface in which a plurality of minute reflecting surfaces having different inclination angles are continuously connected.
[0023]
That is, the concavo-convex surface of the diffusive reflective film 7 has an angle ½ of the spread angle of diffused light from the regular reflection direction of light incident on the diffusive reflective film 7, θmax, the concavo-convex pitch P, Where x is the plane coordinate of each point and z is the height coordinate of each point of the unevenness,
[Equation 3]
Figure 0003845766
It is formed in the uneven | corrugated shape represented by these.
[0024]
In this embodiment, as shown in FIG. 1 and FIG. 3, the base film 6 is formed on the inner surface of the rear substrate 2 so that the surface is an uneven surface that satisfies the conditional expression of the uneven shape of the diffuse reflection film 7. And providing a metal film such as an aluminum film on the concavo-convex surface of the base film 6 by vapor deposition or sputtering, so that the base film 6 and a metal film deposited on the concavo-convex surface of the base film 6 are provided. Thus, the diffuse reflection film 7 is formed.
[0025]
The base film 6 is formed by coating a photoresist on the rear substrate 2 with a uniform film thickness by a spin coating method or the like, and continuously coating the photoresist film at a cycle corresponding to the pitch P of the unevenness of the diffuse reflection film 7. In particular, it is formed by developing the exposure process after changing the exposure time.
[0026]
The reflective liquid crystal display element is usually used with the direction inclined by about 30 ° to 60 ° in the upper edge direction of the screen with respect to the normal line of the screen toward the brightest direction in the usage environment. Therefore, the brightest incident direction of external light is a direction inclined about 30 ° to 60 ° in the upper edge direction of the screen with respect to the normal line of the screen.
[0027]
Therefore, in this embodiment, the diffuse reflection film 7 is formed in a concavo-convex shape in which a laterally long convex portion and a concave portion are continuous in a direction orthogonal to the incident direction of the brightest outside light, that is, in the horizontal direction of the screen. is doing.
[0028]
4A shows the cross-sectional shape of the concavo-convex surface of the diffuse reflection film 7, and FIG. 4B shows the inclination angle (rear substrate 2) of the micro-reflection surface which is a minute part constituting the concavo-convex surface. The angle with respect to the inner surface is shown.
[0029]
The concavo-convex shape of the concavo-convex surface of the diffuse reflection film 7 is such that the ridges and valleys of the concavo-convex shape are symmetrical, and, as shown in FIG. It is formed in a concavo-convex shape in which the change in inclination angle changes linearly within a range of ± θmax.
[0030]
In FIG. 4A, although the height of the unevenness of the diffuse reflection film 7 is greatly exaggerated, the maximum value θmax of the inclination angle of the minute reflection surface constituting the uneven surface of the diffuse reflection film 7 is shown. When the height coordinate is 0.0, for example, θmax = 10 °, the unevenness pitch P is, for example, P = 20 μm, and the height of the unevenness is, for example, the center height of the unevenness (the height coordinate x is x = 0) within a range of ± 0.5 μm.
[0031]
As described above, the diffuse reflection film 7 has an inclination angle of + θmax and − when a half angle of the spread angle of the diffused light from the regular reflection direction of the light incident on the diffuse reflection film 7 is θmax. having a plurality of micro-reflecting surfaces that are different in the range of θmax, and having an uneven surface composed of an assembly of the plurality of micro-reflecting surfaces in which these micro-reflecting surfaces having different inclination angles exist at substantially the same rate If so, even in the shape of an uneven surface in which a plurality of planar reflecting surfaces with different inclination angles in a range of ± θmax are irregularly arranged, or a shape in which the plurality of planar reflecting surfaces with different inclination angles are connected to a polygonal state Furthermore, a shape in which the plurality of minute reflecting surfaces are connected so as to form a continuous curved surface may be used.
[0032]
When the uneven shape of the uneven surface of the diffuse reflection film 7 is formed on the curved surface, the cross-sectional shape thereof is formed into an uneven shape satisfying the condition represented by the formula [Equation 3] as in this embodiment. The uneven reflection film 7 having such an uneven shape has diffuse reflection characteristics having directivity in a specific angle range.
[0033]
That is, the diffuse reflection film 7 has an angle of twice the maximum value θmax of the inclination angle of the minute reflection surface of the concave and convex surface in one direction and the other direction centering on the regular reflection direction of the incident light. The light is uniformly diffused and reflected in the direction of the inclined angle range (angle range of ± 2θmax centered on the regular reflection direction of incident light).
[0034]
As shown in FIG. 5, the diffuse reflection film having the above-described diffuse reflection characteristic is a direction in an angle range in which incident light is inclined by 2θmax in one direction and the other direction around the regular reflection direction. It is required to have a plurality of reflecting surfaces that reflect light.
[0035]
In FIG. 5, A, B, and C are three reflecting surfaces having different inclination angles, the reflecting surface A indicated by a solid line is a horizontal reflecting surface having an inclination angle of 0 °, and the reflecting surface B indicated by a broken line is A first inclined reflecting surface, which is inclined at a predetermined inclination angle θmax in the counterclockwise direction in the figure with respect to the horizontal reflecting surface A, and a reflecting surface C indicated by a two-dot chain line are illustrated with respect to the horizontal reflecting surface A. The second inclined reflection surface is inclined in the clockwise direction at the same inclination angle θmax as the inclination angle of the first inclined reflection surface B.
[0036]
The regular reflection direction of light incident on these reflection surfaces A, B, and C from a direction inclined in one direction with respect to the normal h of the horizontal reflection surface A, for example, at an incident angle of 30 °. , The light incident on the horizontal reflecting surface A has a reflection angle of 30 °, which is the same as the incident angle, in a direction inclined in the other direction with respect to the normal h, as indicated by a solid arrow in the figure. The light that is reflected and incident on the first inclined reflecting surface B is, as indicated by a broken-line arrow in the figure, the first anticlockwise direction with respect to the reflection direction of the light incident on the horizontal reflecting surface A. Light reflected in a direction inclined at an inclination angle 2θmax that is twice the inclination angle θmax of the inclined reflecting surface B and incident on the second inclined reflecting surface C, as indicated by a chain line arrow in the figure, is reflected in the horizontal reflection. An inclination angle that is twice the inclination angle θmax of the second inclined reflection surface C in the clockwise direction with respect to the reflection direction of the light incident on the surface A Reflected in a direction inclined at 2θmax.
[0037]
Therefore, in order to reflect the light incident on the reflective film with directivity that diffusely reflects in the direction of the angle range inclined by 2θmax in one direction and the other direction with the regular reflection direction as the center, In addition, it is necessary to form minute reflective surfaces having various inclination angles different from each other in a range of ± θmax with respect to a horizontal plane having an inclination angle of 0 °.
[0038]
Further, in order to have the reflecting film have the characteristic of uniformly diffusing incident light in the direction of the angle range and reflecting it, a plurality of minute reflecting surfaces having different inclination angles in the range of ± θmax are included in the reflecting film. Must be present in substantially equal proportions.
[0039]
The diffuse reflection film 7 collects a large number of minute reflection surfaces having different inclination angles in the range of 0 ° to ± θmax with respect to the horizontal plane, that is, the substrate surface of the rear substrate 2, and these minute reflection surfaces are formed into smooth curved surfaces. As shown in FIG. 4B, the irregular surface is a curved surface in which the inclination angle of the micro-reflecting surface changes linearly. The appearance frequency of a plurality of minute reflecting surfaces having different inclination angles in the range of θmax is made uniform as shown in FIG. 6, and the plurality of minute reflecting surfaces having different inclination angles in the range of ± θmax are present at a substantially equal ratio. Is.
[0040]
The concavo-convex shape of the concavo-convex surface of the diffusive reflective film 7 is as follows. The inclination angle of the minute reflective surface shown in FIG. It can be found in the procedure.
[0041]
That is, in the range where the plane coordinate x in FIG. 4B is 0 ≦ x ≧ 2 / 4P, the inclination angle θ of the minute portion of the uneven surface is
[Expression 4]
Figure 0003845766
It is represented by
[0042]
From the above formulas (1) and (2),
[Equation 5]
Figure 0003845766
If the above equation (4) is rewritten with the above equation (5),
[Formula 6]
Figure 0003845766
It becomes.
[0043]
From the above equation (8), when the condition of the range of the plane coordinate x is removed and generalized using the uneven pitch P of the uneven surface, the uneven shape of the uneven surface of the diffuse reflection film 7 is
[Expression 7]
Figure 0003845766
It is represented by
[0044]
The diffuse reflection film 7 having a concavo-convex surface having a concavo-convex shape that satisfies the above conditional expression is configured so that a minute portion that constitutes the concavo-convex surface in one direction and the other direction with respect to incident light. The light is uniformly diffused and reflected in the direction of an angle range (angle range of ± 2θmax with the regular reflection direction of incident light as the center) inclined by twice the maximum value θmax of the inclination angle.
[0045]
FIG. 7 shows the angle of reflection and the relative reflectance of light incident at an incident angle of 30 ° from the direction inclined toward the upper edge of the screen with respect to the normal of the screen and diffusely reflected by the diffuse reflection film 7. The ratio of the reflected light to the incident light) is shown. The light incident at the incident angle of 30 ° and diffusely reflected by the diffuse reflection film 7 is 30 ° + 2θmax to 30 ° + 2θmax as shown in the figure. Are reflected with a uniform relative reflectance in the direction of the angle range.
[0046]
Therefore, according to this liquid crystal display element, diffuse reflected light having a uniform intensity distribution is emitted in a specific angle range, that is, in the direction of ± 2θmax around the specular reflection direction of incident light, and the viewing angle is sufficient. In addition, the display with high brightness and uniform brightness can be observed from the viewing angle direction.
[0047]
In the liquid crystal display element of this embodiment, the diffuse reflection film 7 is provided on the inner surface of the rear substrate 2 and the polarizing plate 11 is disposed on the front side of the front substrate 1. The light is transmitted as linearly polarized light, is subjected to a birefringence action according to the alignment state of the liquid crystal molecules by the liquid crystal layer 10, is diffusely reflected by the diffuse reflection film 7, is transmitted again through the liquid crystal layer 10, and Of the light incident on the polarizing plate 11, the light of the polarization component along the absorption axis of the polarizing plate 11 is absorbed by the polarizing plate 11, and the light of the polarization component along the transmission axis of the polarizing plate 11 is The light passes through the polarizing plate 11 and is emitted to the front side.
[0048]
In this liquid crystal display element, since the diffuse reflection film 7 is provided on the inner surface of the rear substrate 2, the distance from the front surface of the polarizing plate 11, which is a light incident / exit surface, to the diffuse reflection film 7 is small. Therefore, the deviation between the optical path of the light incident from the front side and the optical path of the reflected light reflected by the diffuse reflection film 7 and emitted to the front side is reduced, and the light is incident through one of the plurality of pixels. It is possible to prevent display quality from deteriorating due to the reflected light of light being emitted through other pixels.
[0049]
In addition, in this embodiment, since the phase plate 12 is disposed between the polarizing plate 11 and the front substrate 1, the phase plate 12 compensates the band color of transmitted light due to the birefringence effect of the liquid crystal layer 10. At the same time, the display contrast can be increased.
[0050]
Further, in this embodiment, since the diffusion layer 13 is provided between the phase plate 12 and the front substrate 1, the light diffused and reflected by the diffuse reflection film 7 is further diffused by the diffusion layer 13, and more uniform. In addition to being able to obtain a display with high brightness, it is possible to prevent the uneven shape of the diffuse reflection film 7 from being seen from the observation side (front side) and display an image with good image quality.
[0051]
In this embodiment, the inner surface of the rear substrate 2 is provided with a base film 6 made of a photoresist having a rugged surface, and a metal film is deposited on the base film 6. Since the diffusive reflection film 7 composed of the base film 6 and the metal film deposited on the concavo-convex surface is formed, the diffusive reflection film having the concavo-convex concavo-convex surface described above can be easily and accurately formed. Can do.
[0052]
In the above-described embodiment, the uneven surface of the diffuse reflection film 7 has an uneven surface in which a horizontally long convex portion and a concave portion are continuous in a direction orthogonal to the incident direction of the brightest outside light, that is, in the horizontal direction of the screen. As shown in FIG. 8, the diffuse reflection film 7 is formed in a concavo-convex shape in which horizontal and vertical convex portions and concave portions along the horizontal direction and the vertical direction of the screen are continuous. In addition, by forming the diffusive reflection film 7 in such a concavo-convex shape, the viewing angle can be widened in two directions, that is, the horizontal direction and the vertical direction of the screen. Moreover, a display with uniform brightness can be observed.
[0053]
Further, as shown in FIGS. 9 and 10, the concavo-convex surface of the diffuse reflection film 7 is formed in a concavo-convex shape in which concentric circular or concentric elliptical convex portions and concave portions are continuous with the central portion of the screen as the center. In addition, by forming the diffusive reflection film 7 in such a concavo-convex shape, the viewing angle can be widened in the entire circumferential direction of the screen, and the luminance is uniform and uniform from the viewing angle direction. The display of brightness can be observed.
[0054]
However, since the display of the liquid crystal display element is hardly observed from a direction inclined in the upper edge direction of the screen with respect to the normal line of the screen, the viewing angle is the screen with respect to the normal line of the screen. It is set in the direction inclined to the lower edge direction.
[0055]
Further, as shown in FIGS. 11 and 12, the diffuse reflection film 7 has an uneven shape in which a concentric semicircular or concentric semi-elliptical convex part and a concave part centered on the central part of the lower edge of the screen. Even if the concavo-convex surface of the diffuse reflection film 7 is formed in such an concavo-convex shape, the diffusion characteristics in the left-right direction of the liquid crystal display element can be made equal.
[0056]
In the liquid crystal display element of the above embodiment, the diffuse reflection film 7 is provided on the inner surface of the rear substrate 2, but the diffuse reflection film may be provided on the outer surface side of the rear substrate 2.
[0057]
Even when the diffuse reflection film is provided on the outer surface side of the rear substrate 2, the diffuse reflection film includes a base film made of a photoresist whose surface is formed on the uneven surface of the diffuse reflection film, and an uneven surface of the base film. It is preferable to form it with a metal film deposited thereon. By doing so, the diffuse reflection film can be formed easily and accurately.
[0058]
Further, the diffuse reflection film 7 is not limited to diffuse reflection of all incident light, but may be a transflective film that reflects and transmits incident light at a predetermined reflectance and transmittance. Is formed as a transflective film, and a polarizing plate for allowing incident light from the rear side to be incident as linearly polarized light is disposed on the rear side of the liquid crystal display element. Both display with transmissive display using illumination light from the surface light source arranged on the rear side can be performed.
[0059]
In addition, the liquid crystal display element of the above embodiment is an STN type. However, in the present invention, the TN type liquid crystal molecules in which the liquid crystal molecules of the liquid crystal layer 10 are twisted with a twist angle of about 90 ° are arranged in one direction. It can also be applied to homogeneous alignment types that align homogeneously so that the molecular long axes are aligned, liquid crystal display elements using ferroelectric liquid crystals or anti-ferroelectric liquid crystals, and is not limited to simple matrix types. The present invention can also be applied to a matrix type liquid crystal display element.
[0060]
【The invention's effect】
In the liquid crystal display element of the present invention, electrodes are provided on the inner surface of the front substrate on the display viewing side and the rear substrate facing the front substrate, a liquid crystal layer is provided between these substrates, and the liquid crystal Provided with a directivity for diffusing the incident light at a predetermined angle of 2θ on both sides centered on the regular reflection direction of the incident light with respect to a plane parallel to the surface of the substrate, on the rear side of the layer. And a diffusive reflection film having a concavo-convex surface for the diffusive reflection film. The concavo-convex surface of the diffusive reflection film is ½ of the spread angle 2θ of the diffused light from the regular reflection direction of light incident on the diffusive reflective film Is θmax , the pitch of the unevenness is P, the plane coordinate of each point of the unevenness is x, and the height coordinate of each point of the unevenness is z,
[Equation 8]
Figure 0003845766
It is characterized by being formed in a concavo-convex shape represented by the above, so that diffuse reflected light with a uniform intensity distribution is emitted in the direction of a specific angle range, the viewing angle is sufficiently widened, and the field of view From the corner direction, a display with high brightness and uniform brightness can be observed.
[0062]
In the liquid crystal display element of the present invention, it is desirable that the diffuse reflection film is provided on the inner surface of the rear substrate. By doing so, the optical path of light incident from the front side and the front side reflected by the diffuse reflection film are provided. To reduce the deviation from the optical path of the reflected light emitted to the display, and to prevent the display quality from deteriorating due to the reflected light of the light incident through one pixel of the plurality of pixels being emitted through the other pixels. Can do.
[0063]
Further, the diffuse reflection film is preferably composed of a base film whose surface is formed on an uneven surface, and a metal film deposited on the uneven surface of the base film. It is possible to easily and accurately form a diffuse reflection film having the uneven surface.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
FIG. 2 is a plan view of a diffuse reflection film.
FIG. 3 is an enlarged cross-sectional view of a part of a diffuse reflection film.
FIG. 4 is a diagram showing a concavo-convex shape of a concavo-convex surface formed on a diffuse reflection film and a change in an inclination angle of a minute portion constituting the concavo-convex surface.
FIG. 5 shows the conditions of a reflecting surface having directivity that diffusely reflects incident light in the direction of an angle range inclined by 2θmax in one direction and the other direction around the regular reflection direction of the incident light. FIG.
6 is a diagram showing the appearance frequency of a plurality of minute reflecting surfaces with different inclination angles forming the uneven surface of the diffuse reflecting film shown in FIG. 4;
FIG. 7 is a diffuse reflection characteristic diagram showing the relationship between the reflection angle of light diffusely reflected by the diffuse reflection film and the relative reflectance.
FIG. 8 is a plan view showing another uneven shape of the diffuse reflection film.
FIG. 9 is a plan view showing another uneven shape of the diffuse reflection film.
FIG. 10 is a plan view showing another uneven shape of the diffuse reflection film.
FIG. 11 is a plan view showing another uneven shape of the diffuse reflection film.
FIG. 12 is a plan view showing another uneven shape of the diffuse reflection film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 ... Substrate 3, 4 ... Electrode 5R, 5G, 5B ... Color filter 6 ... Base film 7 ... Diffuse reflection film 8, 9 ... Orientation film 10 ... Liquid crystal layer 11 ... Polarizing plate 12 ... Phase plate 13 ... Diffusion layer

Claims (4)

表示の観察側である前側の基板とこの前側基板に対向する後側基板の内面にそれぞれ電極が設けられ、これらの基板間に液晶層が設けられるとともに、前記液晶層よりも後側に、入射する光の前記基板の面と平行な面に対する正反射方向を中心としてその両側に予め定めた角度2θの広がり角で前記入射する光を拡散する指向性を持たせるための凹凸面を有する拡散反射膜が設けられており、前記拡散反射膜の凹凸面は、前記拡散反射膜に入射する光の前記正反射方向からの前記拡散光の広がり角2θの1/2の角度をθmax、前記凹凸のピッチをP、前記凹凸の各点の平面座標をx、前記凹凸の各点の高さ座標をzとしたとき、
Figure 0003845766
で表わされる凹凸形状に形成されていることを特徴とする液晶表示素子。
Electrodes are provided on the inner surface of the front substrate, which is the viewing side of the display, and the rear substrate opposite to the front substrate, and a liquid crystal layer is provided between the substrates, and incident on the rear side of the liquid crystal layer. Diffuse reflection having a concavo-convex surface for imparting directivity for diffusing the incident light at a spread angle of a predetermined angle 2θ on both sides of the specular reflection direction with respect to a plane parallel to the surface of the substrate. A film is provided, and the uneven surface of the diffuse reflection film has an angle ½ of the spread angle 2θ of the diffused light from the regular reflection direction of light incident on the diffuse reflection film as θmax , When the pitch is P, the plane coordinate of each point of the unevenness is x, and the height coordinate of each point of the unevenness is z,
Figure 0003845766
A liquid crystal display element characterized by being formed in a concavo-convex shape represented by
拡散反射膜は、後側基板の内面に設けられていることを特徴とする請求項1に記載の液晶表示素子。The liquid crystal display element according to claim 1 , wherein the diffuse reflection film is provided on an inner surface of the rear substrate. 拡散反射膜は、表面が凹凸面に形成された下地膜と、前記下地膜の凹凸面上に被着された金属膜とからなっていることを特徴とする請求項1乃至2のいずれかに記載の液晶表示素子。  The diffuse reflection film is composed of a base film whose surface is formed on a concavo-convex surface, and a metal film deposited on the concavo-convex surface of the base film. The liquid crystal display element as described. 拡散反射膜の凹凸面は、同心円状に形成されていることを特徴とする請求項1乃至2のいずれかに記載の液晶表示素子。  3. The liquid crystal display element according to claim 1, wherein the uneven surface of the diffuse reflection film is formed concentrically.
JP2001331223A 2001-10-29 2001-10-29 Liquid crystal display element Expired - Fee Related JP3845766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331223A JP3845766B2 (en) 2001-10-29 2001-10-29 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331223A JP3845766B2 (en) 2001-10-29 2001-10-29 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2003131217A JP2003131217A (en) 2003-05-08
JP3845766B2 true JP3845766B2 (en) 2006-11-15

Family

ID=19146836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331223A Expired - Fee Related JP3845766B2 (en) 2001-10-29 2001-10-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP3845766B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267981B2 (en) * 2014-02-04 2018-01-24 株式会社 オルタステクノロジー Reflector for display device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003131217A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP2862571B2 (en) Transmissive liquid crystal display
US8619215B2 (en) Optical element, method for manufacturing the same, liquid crystal device, and electronic apparatus
JP3301219B2 (en) Liquid crystal display
US9709841B2 (en) Liquid crystal display device
JPH04243226A (en) Reflection type liquid crystal display device and production thereof
JP3845766B2 (en) Liquid crystal display element
JPH11212048A (en) Liquid crystal light valve and liquid crystal projector
JP2002090512A (en) Reflector and reflection type liquid crystal display device having the reflector
JP3407641B2 (en) Liquid crystal devices and electronic equipment
JP2001174797A (en) Semitransmissive liquid crystal display device
JP2000330106A (en) Electrode substrate for reflection type liquid crystal display device and reflection type liquid crystal display device using the same
JP3294988B2 (en) Liquid crystal display
JP2002107725A (en) Liquid crystal display device
JP4989001B2 (en) Transflective liquid crystal display element
JP3899880B2 (en) Liquid crystal display
JP3653065B2 (en) Anisotropic reflector, liquid crystal display device, anisotropic reflector and liquid crystal display manufacturing method
JP3760675B2 (en) Liquid crystal device and electronic device
JP3603810B2 (en) Liquid crystal devices and electronic equipment
KR20030039701A (en) Reflection film and color LCD therewith
JPH09244023A (en) Reflection type liquid crystal display element
JP2000009910A (en) Production of diffusion reflection plate and reflection display device
JPH1010512A (en) Liquid crystal display element
JP3301218B2 (en) Reflective color liquid crystal display
JP3395579B2 (en) Liquid crystal display device
JP2004038000A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees