[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3843507B2 - Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds - Google Patents

Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds Download PDF

Info

Publication number
JP3843507B2
JP3843507B2 JP28851196A JP28851196A JP3843507B2 JP 3843507 B2 JP3843507 B2 JP 3843507B2 JP 28851196 A JP28851196 A JP 28851196A JP 28851196 A JP28851196 A JP 28851196A JP 3843507 B2 JP3843507 B2 JP 3843507B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
temperature
range
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28851196A
Other languages
Japanese (ja)
Other versions
JPH10130736A (en
Inventor
雅司 堀
隆彦 小倉
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP28851196A priority Critical patent/JP3843507B2/en
Publication of JPH10130736A publication Critical patent/JPH10130736A/en
Application granted granted Critical
Publication of JP3843507B2 publication Critical patent/JP3843507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱延鋼板の製造方法、更に詳しくは、自動車用部品の素材に使用される、アーク溶接部の耐疲労特性および耐食性に優れた、38〜45kgf/mm2(以下、41kgf/mm2級鋼板という)の引張り強度を有する熱延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、自動車業界においては、自動車によって生ずる環境問題の改善と、自動車の衝突安全性とが、重要な研究開発課題として挙げられており、その対策として、燃料消費量の低減のために、車体の軽量化が求められている。
【0003】
車体の軽量化に当たっては、自動車用鋼板を高強度化してその板厚を薄くすることが必要である。このような薄肉の高強度自動車用鋼板の材料特性として、加工性が良く、自動車の足廻り部品として耐孔あき性等の耐食性と、溶接部の耐疲労特性の向上が要求されている(以下、要求課題という)。
【0004】
前記要求課題の一般的な解決方法として、鋼板の耐食性向上には、めっき処理が行われている。しかし、めっき処理は、鋼板の加工性を低下させ、更に、溶接部にブローホールを発生させるため、溶接部の耐疲労特性をも劣化させるという問題がある。
【0005】
そこで、加工性および溶接性を保ちながら鋼板に耐食性を持たせるために、鋼板自体に耐食性を付与することが提案されている。この方法によれば、めっき処理を施す場合でも、めっき厚を薄くして、加工性の低下や耐疲労特性の劣化の問題を解決することができる。このような鋼板として、例えば、特開平7−70637号公報には、アーク溶接部の耐疲労特性に優れた耐食性鋼板が開示されている(以下、先行技術1という)。また、特公平1−29859号公報には、含リン高溶接耐食鋼が開示されている(以下、先行技術2という)。更に、特開平7−3383号公報には、打ち抜き性を改善した耐食性鋼板が開示されている(以下、先行技術3という)。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した先行技術1、2および3には、次のような問題がある。 即ち、先行技術1は、Si含有量が0.6〜1.6wt.%、Mn含有量が0.5〜1.5wt.%と多く、引張り強さ55〜80kgf/mm2の範囲の高強度鋼板に関するものであり、自動車の足廻り部品として使用される引張り強さ41kgf/mm2級の鋼板に関するものではないため、前記要求課題を解決できない。
【0007】
先行技術2は、Si含有量が0.17wt.%で、板厚が25mmの厚板用材料であり、引張り強さ41kgf/mm2級の自動車用薄鋼板とは異なるため、前記要求課題を解決できない。更に、この鋼板は赤スケールが発生し易く、表面性状に劣り、且つ、プレス成形性に劣るという欠点がある。
【0008】
先行技術3は、熱延鋼板の圧下条件や冷却条件が通常の一般的な条件であり、耐疲労特性を改善するものではないため、前記要求課題を解決できない。
従って、この発明の目的は、自動車用部品、例えば、自動車のロアアーム等のような足廻り部品の素材に使用される41kgf/mm2級鋼板において、自動車の安全性の点で重要となるアーク溶接部の耐疲労特性および耐食性に優れた熱延鋼板の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は、上述した目的を達成すべく、鋭意研究を重ねた。その結果、鋼の成分組成と、熱延条件、冷却条件および巻取り条件を最適化することによって、鋼板に耐食性と耐疲労特性の双方をバランス良く付与し得ることを見いだした。
【0010】
即ち、鋼中に所定量のCuおよびPを添加するとともに、CおよびMnの含有量を最適範囲に限定することにより鋼板の耐食性を向上させ、熱延工程における仕上げ温度と、大圧下率による仕上げ圧延と、その直後の急冷と、最適巻取り温度とにより、鋼板の組織を、微細フェライトと第2相をベイナイトになすことによって、アーク溶接部止端部の溶接熱影響後の組織を、亀裂が発生しにくい組織となし得ることを知見した。
【0011】
この発明は、上記知見に基づきなされたものであって、請求項1記載の発明の製造方法は、
炭素 (C) : 0.02〜0.04 wt.%、
珪素 (Si) : 0.05 wt.% 以下、
マンガン (Mn) : 0.5〜0.9 wt.%、
燐 (P) : 0.03〜0.09 wt.%、
硫黄 (S) : 0.01 wt.% 以下、
銅 (Cu) : 0.2〜0.7 wt.%、
ニッケル (Ni) : 0.1〜0.4 wt.%、
Sol.Al : 0.01〜0.05 wt.%、および、
残部:鉄および不可避的不純物
からなる鋼を、Ar3〜(Ar3+40℃)の範囲内の仕上げ温度で、且つ、仕上げ温度〜(仕上げ温度+50℃)の範囲内の温度で60%以上の圧下率により熱間圧延し、次いで直ちに、120℃/秒以上の冷却速度で620℃以下の温度まで冷却し、次いで、420〜520℃の範囲内の温度で巻取ることに特徴を有するものである。
【0012】
【発明の実施の形態】
次に、この発明の製造方法において、鋼の成分組成を上述のように限定した理由を説明する。
(1)炭素(C)
図1は、引張り強さが41kgf/mm2級の鋼板における溶接部の疲労寿命と最大腐食深さ比に及ぼすC含有量の影響について示したグラフである。図1から明らかなように、41kgf/mm2級の鋼板において、C含有量が0.02wt.%未満では、溶接による熱影響部の組織が粗大化し、アーク溶接部の止端部に亀裂が発生するため、疲労寿命が著しく低下する。一方、C含有量が0.04wt.%を超えると、第2相がパーライトとなり、耐食性は低下し、疲労寿命は飽和する。従って、炭素(C)含有量は、0.02〜0.04wt.%の範囲内に限定すべきである。
(2)珪素(Si)
Si含有量が0.05wt.%を超えると、赤スケールが発生する。また、41kgf/mm2級鋼板では、強度向上のためにSiを0.05wt.%を超えて添加する必要はない。従って、珪素(Si)含有量は、0.05wt.%以下に限定すべきである。
(3)マンガン(Mn)
Mnは、溶接部の疲労寿命に影響を及ぼす元素であり、その含有量が0.5wt.%未満では、溶接部の疲労寿命が低下する。一方、Mn含有量が0.9wt.%を超えると、延性が低下し、加工性を悪くする。従って、マンガン(Mn)含有量は、0.5 〜0.9wt.%の範囲内に限定すべきである。
(4)燐(P)
Pは、本発明の41kgf/mm2 級鋼板において、耐食性の向上、特に、孔食に対する腐食速度を著しく低下させる作用を有している。本発明のC含有量が0.02〜0.04wt.%のレベルの鋼板において上記のような作用を発揮させるためには、P含有量が0.03wt.%以上である必要がある。しかし、P含有量が0.09wt.%を超えると、Pが粒界に偏析し、2次加工性および溶接部の疲労寿命を低下させる。従って、燐(P)含有量は、0.03〜0.09wt.%の範囲内に限定すべきである。
(5)硫黄(S)
SとMnが化合して生成される硫化物(MnS)は、腐食環境において、鋼板に腐食を発生させる起点となり、耐食性を低下させる。更に、この硫化物(MnS)は、加工性、特に、伸びフランジ性を低下させるため、極力低減させることが望ましい。また、S含有量を減らすための製鋼での経済性と、41kgf/mm2級鋼板の強度との関係を考慮して、硫黄(S)含有量は、0.01wt.%以下に限定する。
(6)銅(Cu)
Cuは、Pと複合して添加することにより、鋼板の耐食性を飛躍的に向上させる。しかし、優れた耐食性を得るためには、0.2wt.%以上の含有量が必要である。しかし、Cu含有量が0.7wt.%を超えると、耐食性が飽和する。従って、銅(Cu)含有量は、0.2〜0.7wt.%の範囲内に限定すべきである。
(7)ニッケル(Ni)
Niは、Cuの含有量が高いときに発生する赤熱きずを防止する作用を有する。赤熱防止に有効なNiの必要量は、Cu含有量の2分の1以上であるため、0.1wt.%以上の含有量が必要である。しかし、Ni含有量が0.4wt.%を超えると、この効果が飽和し、且つ、経済性が悪くなる。従って、ニッケル(Ni)含有量は、0.1〜0.4wt.%の範囲内に限定すべきである。
(8)Sol.Al
Alは脱酸元素として、鋼中の介在物を減少させる作用を有している。Al含有量が0.05wt.%を超えると、脱酸効果が飽和する。一方、Al含有量が0.01wt.%未満では、熱延鋼板の延性を確保できない。従って、Sol.Al含有量は、0.01〜0.05wt.%の範囲内に限定すべきである。
【0013】
次に、この発明の熱間圧延条件を上述のように限定した理由を説明する。
(1)熱間仕上げ圧延条件
Ar3〜(Ar3+40 ℃) の範囲内の仕上げ温度で、且つ、仕上げ温度〜( 仕上げ温度+50℃)の範囲内の温度で60%以上の大圧下率により熱間圧延することにより、鋼板の組織を、微細なオーステナイト相から、微細なフェライト相を主体とし、粒界での第2相がベイナイトと一部炭化物とからなる、細粒組織とすることができる。熱間圧延仕上げ温度がAr3 点以下では、圧延時にフェライトが加工され、延性が劣化する。
【0014】
図2は、溶接部の疲労寿命に及ぼす仕上げ温度〜(仕上げ温度+50℃)の範囲内の温度での圧下率の影響を示すグラフである。図2から明らかなように、鋼板の疲労寿命は、圧下率60%以上の条件で優れた疲労寿命を示す。従って、上記圧下率は60%以上とするべきである。
【0015】
上記以外の条件、即ち、上記範囲外の温度や60%未満の圧下率による熱間圧延条件では、フェライト粒が粗大になり、粒界の元素濃化によりパーライトが発生し易くなったり、偏析が大きくなり、熱延鋼板の2次加工脆化や溶接部が亀裂起点となって耐疲労特性の劣化が生ずる。
【0016】
従って、熱間仕上げ圧延は、Ar3 〜(Ar3+40℃) の範囲内の温度を熱間圧延仕上げ温度とし、且つ、仕上げ温度〜( 仕上げ温度+50℃) の範囲内の温度で60%以上の圧下率により熱間圧延を行うことが必要条件である。
(2)仕上げ圧延終了後の急冷条件
上述した条件で熱間仕上げ圧延を終了した後、直ちに、120℃/秒以上の冷却速度で620℃以下の温度まで冷却することにより、微細なフェライト相と、粒界での第2相がベイナイトと一部炭化物とからなる細粒組織が、最適制御される。
【0017】
図3は、溶接部の疲労寿命に及ぼす仕上げ圧延後の冷却速度の影響を示すグラフである。図3から明らかなように、溶接部の疲労寿命は、冷却速度が120℃/秒以上のときに、優れた結果を示す。しかし、冷却速度が120℃/秒未満では、フェライト粒は成長によって粗大化するため、疲労寿命が低下する。
【0018】
急冷終了温度が620℃を超えると、フェライト粒が粗大化するとともに、第2相にパーライトが生成し始め、耐疲労寿命を劣化させる。下限温度は、その後の巻取り温度制御のために、実質的には570℃程度となる。
【0019】
従って、仕上げ圧延終了後の急冷は、冷却速度を120℃/秒以上、急冷終了温度を620℃以下の温度で行うことが必要条件である。
(3)巻取り温度
420〜520℃の範囲内の温度で巻取ることにより、微細なフェライト相およびベイナイトと一部炭化物からなる第2相の細粒組織が、溶接部止端部において最適制御される。
【0020】
巻取り温度が520℃を超えると、Pの偏析が生じ、420℃未満では、加工性が劣化し、亀裂が発生し易くなる。
従って、巻取り温度は、420〜520℃の範囲内に限定する。
【0021】
上述したように、本発明によれば、鋼中に所定量のC、Mnおよびその他の元素の含有量を最適化した鋼を、Ar3 変態点以上の限定された仕上げ温度範囲で、且つ、仕上げ温度以上の限定された温度範囲で大きな圧化率で熱間圧延することにより、鋼板は、微細なオーステナイト相から微細なフェライト相に変化し、粒界での第2相がベイナイトと一部炭化物とからなる、細粒組織になる。その後の工程で、前記細粒組織を破壊しないよう、仕上げ圧延終了後の急冷条件および巻取り温度等を限定することにより、アーク溶接部の耐疲労特性と耐食性に優れた鋼板を製造することができる。
【0022】
【実施例】
次に、この発明の方法を、実施例によって、比較例と対比しながら詳細に説明する。
〔実施例1〕
表1に示す本発明の範囲内の成分組成を有する鋼A 〜E (以下、本発明鋼という)と本発明の範囲外の成分組成を有する鋼F 〜M (以下、比較鋼という)とを溶製した。表1に各々の鋼のAr3 変態点を併せて示す。
【0023】
本発明鋼A〜Eおよび比較鋼F〜Mからなるスラブを、表2に示す本発明の範囲内の熱延条件、冷却条件および巻取り条件によって熱間圧延し、板厚2.0mmの本発明熱延鋼板からなる供試体(以下、本発明供試体という)No.1〜6、および、比較用熱延鋼板からなる供試体(以下、比較用供試体という)No.7〜14を調製した。
【0024】
得られた本発明供試体および比較用供試体に対し、断面組織観察、引張り試験、アーク溶接後の疲労試験および塩水噴霧腐食試験を施し、その組織、降伏強度(YP)、引張り強度(TS)、伸び(El)、溶接部疲労寿命および最大腐食深さ比を調べた。その調査結果を総合判定結果と共に、表2に示す。
【0025】
なお、耐食性試験の評価は、塩水噴霧試験後のNo.Gの鋼の腐食深さ値を100として最大深さと規定し、他の鋼の最大深さに対する比を、最大腐食深さ比として表した。
【0026】
判定は、El≧37%、溶接部疲労寿命≧12万回および最大腐食深さ比≦95%の3条件が全て満足しているものを特性十分(記号○)、そうでないものを特性不十分(記号×)として示した。
【0027】
【表1】

Figure 0003843507
【0028】
【表2】
Figure 0003843507
【0029】
表1、表2から明らかなように、本発明の範囲内の成分組成を有し、本発明の範囲内の条件で熱間圧延された本発明供試体No.1〜6は、引張り特性、溶接部疲労特性、最大腐食深さ比の3条件を満足しており、本発明の目的とする38〜45kgf/mm2 の引張り強度を有し、アーク溶接部の耐疲労特性および耐食性に優れていた。 これに対して、本発明の範囲外の成分組成を有する比較鋼F〜Mを使用した比較用供試体No.7〜14は、本発明の範囲内の条件で熱間圧延しても、上述した特性の3条件を満足しなかった。
【0030】
即ち、比較用供試体No.7(鋼F)は、C量が本発明の範囲を外れて低いため(表1)、組織がフェライト単相となり(表2)溶接部の疲労強度が低下した。比較用供試体No.8(鋼G)はC量が本発明の範囲を超えて高く、比較用供試体No.12(鋼K)はP量が本発明の範囲を外れて低く、比較用供試体No.14(鋼M)はCu量が本発明の範囲を外れて低いため、何れも耐食性に劣っていた。また、比較用供試体No.9(鋼H)はSi量が本発明の範囲を超えて高く、パーライトが生成したため、溶接部の疲労寿命が不足していた。比較用供試体No.10(鋼I)はMn量が本発明の範囲を外れて低く、比較用供試体No.11(鋼J)はMn量が本発明の範囲を超えて高いため、何れも最適なフェライト+ベイナイト組織にならず、溶接部の疲労寿命が不足していた。比較用供試体No.13(鋼L)はP量が本発明の範囲を超えて高く、溶接部の疲労強度が低かった。
〔実施例2〕
本発明の範囲内の成分組成を有する本発明鋼A〜Cからなるスラブを、表3に示す本発明の範囲外の熱延条件、冷却条件および巻取り条件によって熱間圧延し、板厚2.0mmの熱延鋼板からなる比較用供試体No.15〜20を調製した。
【0031】
得られた比較用供試体に対し、断面組織観察、引張り試験、アーク溶接後の疲労試験および塩水噴霧腐食試験を施し、その組織、降伏強度(YP)、引張り強度(TS)、伸び(El)、溶接部疲労寿命および最大腐食深さ比を調べた。その調査結果を総合判定結果と共に、表3に示す。
【0032】
なお、耐食性試験の評価は、実施例1と同様に、塩水噴霧試験後のNo.Gの鋼の腐食深さ値を100として最大深さと規定し、他の鋼の最大深さに対する比を、最大腐食深さ比として表した。
【0033】
判定は、El≧37%、溶接部疲労寿命≧12万回および最大腐食深さ比≦95%の3条件が全て満足しているものを特性十分(記号○)、そうでないものを特性不十分(記号×)として示した。
【0034】
【表3】
Figure 0003843507
【0035】
表3から明らかなように、本発明の範囲内の成分組成を有する本発明鋼A 〜C を使用しても、本発明の範囲外の条件で熱間圧延した場合は、溶接部の疲労寿命が何れも12万回未満となり、耐疲労特性に劣るため、上述した特性の3条件を満足しなかった。
【0036】
ここで、比較用供試体No.15 は熱延仕上げ温度(FT)が本発明の範囲を超えて高く、また、比較用供試体No.16 は仕上げ温度〜(仕上げ温度+50 ℃) での圧下率が本発明の範囲を外れて低いため、何れにおいても、オーステナイトの微細化が不十分となり、熱間圧延後に生成するフェライトが適正に微細化されない。このため、フェライト+パーライト組織になり、疲労寿命が低下した。
【0037】
比較用供試体No.17 は熱間仕上圧延直後の冷却速度( 1次冷却速度)が本発明の範囲を外れて遅いため、また、比較用供試体No.18は1次冷却終了温度が本発明の範囲を超えて高いため、何れにおいても、微細なフェライトが得られず、フェライト+パーライト組織となり、疲労寿命が低下した。
【0038】
比較用供試体No.19は巻取り温度が本発明の範囲を超えて高いために、フェライト+パーライト組織になり、疲労寿命が低下した。
比較用供試体No.20は巻取り温度が本発明の範囲を外れて低いため、伸びの低下にともない疲労寿命が低下した。
【0039】
【発明の効果】
以上説明したように、本発明によれば、アーク溶接部の耐疲労特性と耐食性に優れた熱延鋼板を製造し、提供することができる。
【0040】
本発明の方法により製造した鋼板は、自動車の足廻り部品のように、アーク溶接が存在する部品用の素材として有用であり、自動車の長寿命化、安全性の向上に大きく貢献できる。
【図面の簡単な説明】
【図1】引張り強さが41kgf/mm2 級の鋼板における溶接部の疲労寿命と最大腐食深さ比に及ぼすC含有量の影響について示したグラフである。
【図2】溶接部の疲労寿命に及ぼす仕上げ温度〜(仕上げ温度+50℃)の範囲内の温度での圧下率の影響を示すグラフである。
【図3】溶接部の疲労寿命に及ぼす仕上げ圧延後の冷却速度の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot-rolled steel sheet, more specifically, 38 to 45 kgf / mm 2 (hereinafter referred to as 41 kgf / mm) excellent in fatigue resistance and corrosion resistance of arc welded parts, which are used as materials for automobile parts. The present invention relates to a method for producing a hot-rolled steel sheet having a tensile strength of ( second grade steel sheet).
[0002]
[Prior art]
In recent years, in the automobile industry, improvement of environmental problems caused by automobiles and collision safety of automobiles have been cited as important research and development issues. As a countermeasure, in order to reduce fuel consumption, There is a need for weight reduction.
[0003]
In order to reduce the weight of the vehicle body, it is necessary to increase the strength of the steel plate for automobiles and reduce the thickness thereof. As a material characteristic of such a thin high-strength steel sheet for automobiles, workability is good, and corrosion resistance such as perforation resistance as an undercarriage part of an automobile, and improvement of fatigue resistance characteristics of a welded part are required (hereinafter referred to as the following) Is called a required issue).
[0004]
As a general solution to the above requirement, a plating process is performed to improve the corrosion resistance of the steel sheet. However, the plating treatment has a problem that the workability of the steel plate is lowered and blow holes are generated in the welded portion, so that the fatigue resistance of the welded portion is also deteriorated.
[0005]
Therefore, it has been proposed to impart corrosion resistance to the steel sheet itself in order to give the steel sheet corrosion resistance while maintaining workability and weldability. According to this method, even when the plating process is performed, the plating thickness can be reduced to solve the problem of deterioration of workability and deterioration of fatigue resistance. As such a steel plate, for example, Japanese Patent Application Laid-Open No. 7-70637 discloses a corrosion-resistant steel plate excellent in fatigue resistance characteristics of an arc welded portion (hereinafter referred to as Prior Art 1). Japanese Patent Publication No. 1-29859 discloses phosphorus-containing high weld corrosion resistant steel (hereinafter referred to as Prior Art 2). Furthermore, Japanese Patent Application Laid-Open No. 7-3383 discloses a corrosion-resistant steel sheet with improved punchability (hereinafter referred to as Prior Art 3).
[0006]
[Problems to be solved by the invention]
However, the prior arts 1, 2 and 3 described above have the following problems. That is, Prior Art 1 relates to a high-strength steel sheet having a Si content of 0.6 to 1.6 wt.%, An Mn content of 0.5 to 1.5 wt.%, And a tensile strength in the range of 55 to 80 kgf / mm 2 . However, since it does not relate to a steel sheet with a tensile strength of 41 kgf / mm 2 used as an undercarriage part of an automobile, the above-mentioned required problem cannot be solved.
[0007]
Prior art 2 is a thick plate material with a Si content of 0.17wt.% And a plate thickness of 25mm, which is different from the thin steel plate for automobiles with a tensile strength of 41kgf / mm 2 class. Can not. Further, this steel sheet has the disadvantages that red scale is easily generated, the surface properties are inferior, and the press formability is inferior.
[0008]
In Prior Art 3, since the rolling conditions and cooling conditions of the hot-rolled steel sheet are normal general conditions and do not improve the fatigue resistance, the above-mentioned required problems cannot be solved.
Accordingly, an object of the present invention is to provide an arc welded part which is important in terms of automobile safety in a 41 kgf / mm2 class steel plate used for materials for automobile parts, for example, suspension parts such as automobile lower arms. An object of the present invention is to provide a method for producing a hot-rolled steel sheet having excellent fatigue resistance and corrosion resistance.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to achieve the above-described object. As a result, it has been found that by optimizing the composition of steel, hot rolling conditions, cooling conditions, and winding conditions, both corrosion resistance and fatigue resistance can be imparted to the steel sheet in a well-balanced manner.
[0010]
That is, while adding a predetermined amount of Cu and P to the steel, the corrosion resistance of the steel sheet is improved by limiting the content of C and Mn to the optimum range, and finishing with a finishing temperature and a large reduction rate in the hot rolling process By rolling, quenching immediately after that, and the optimum coiling temperature, the structure of the steel sheet is made into bainite with fine ferrite and second phase. It has been found that it is possible to achieve an organization that is difficult to generate.
[0011]
This invention was made based on the above knowledge, and the manufacturing method of the invention according to claim 1
Carbon (C): 0.02-0.04 wt.%,
Silicon (Si): 0.05 wt.% Or less,
Manganese (Mn): 0.5-0.9 wt.%,
Phosphorus (P): 0.03-0.09 wt.%,
Sulfur (S): 0.01 wt.% Or less,
Copper (Cu): 0.2-0.7 wt.%,
Nickel (Ni): 0.1-0.4 wt.%,
Sol.Al: 0.01-0.05 wt.%, And
The rest: iron and inevitable impurities
A steel made of a steel at a finishing temperature within the range of Ar 3 to (Ar 3 + 40 ° C) and at a temperature within the range of the finishing temperature to (finishing temperature + 50 ° C) with a reduction ratio of 60% or more. It is characterized in that it is rolled and then immediately cooled to a temperature of 620 ° C. or lower at a cooling rate of 120 ° C./second or higher and then wound at a temperature in the range of 420 to 520 ° C.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the component composition of steel is limited as described above in the manufacturing method of the present invention will be described.
(1) Carbon (C)
FIG. 1 is a graph showing the influence of the C content on the fatigue life and maximum corrosion depth ratio of a weld in a steel sheet having a tensile strength of 41 kgf / mm 2 . As is clear from FIG. 1, in a 41 kgf / mm 2 grade steel sheet, when the C content is less than 0.02 wt.%, The structure of the heat affected zone due to welding becomes coarse and cracks occur at the toe of the arc weld zone. Therefore, the fatigue life is significantly reduced. On the other hand, if the C content exceeds 0.04 wt.%, The second phase becomes pearlite, the corrosion resistance decreases, and the fatigue life is saturated. Therefore, the carbon (C) content should be limited to the range of 0.02 to 0.04 wt.%.
(2) Silicon (Si)
When the Si content exceeds 0.05 wt.%, A red scale is generated. In addition, in the 41 kgf / mm 2 grade steel plate, it is not necessary to add more than 0.05 wt. Therefore, the silicon (Si) content should be limited to 0.05 wt.% Or less.
(3) Manganese (Mn)
Mn is an element that affects the fatigue life of the weld. If the content is less than 0.5 wt.%, The fatigue life of the weld decreases. On the other hand, if the Mn content exceeds 0.9 wt.%, The ductility decreases and the workability deteriorates. Therefore, the manganese (Mn) content should be limited to the range of 0.5 to 0.9 wt.%.
(4) Phosphorus (P)
In the 41 kgf / mm 2 grade steel sheet of the present invention, P has the effect of improving the corrosion resistance, in particular, significantly reducing the corrosion rate against pitting corrosion. In order for the steel plate having a C content of 0.02 to 0.04 wt.% According to the present invention to exhibit the above-described effects, the P content needs to be 0.03 wt.% Or more. However, if the P content exceeds 0.09 wt.%, P segregates at the grain boundaries, and the secondary workability and the fatigue life of the weld are reduced. Accordingly, the phosphorus (P) content should be limited to the range of 0.03 to 0.09 wt.%.
(5) Sulfur (S)
Sulfide (MnS) produced by combining S and Mn becomes a starting point for causing corrosion in a steel sheet in a corrosive environment, and lowers corrosion resistance. Furthermore, it is desirable to reduce this sulfide (MnS) as much as possible in order to reduce workability, particularly stretch flangeability. Further, considering the relationship between the economy in steelmaking for reducing the S content and the strength of the 41 kgf / mm 2 grade steel sheet, the sulfur (S) content is limited to 0.01 wt.% Or less.
(6) Copper (Cu)
When Cu is added in combination with P, it dramatically improves the corrosion resistance of the steel sheet. However, in order to obtain excellent corrosion resistance, a content of 0.2 wt.% Or more is necessary. However, when the Cu content exceeds 0.7 wt.%, The corrosion resistance is saturated. Therefore, the copper (Cu) content should be limited to the range of 0.2 to 0.7 wt.
(7) Nickel (Ni)
Ni has the effect of preventing red hot flaws that occur when the Cu content is high. Since the necessary amount of Ni effective for preventing red heat is more than half of the Cu content, a content of 0.1 wt.% Or more is necessary. However, when the Ni content exceeds 0.4 wt.%, This effect is saturated and the economic efficiency is deteriorated. Therefore, the nickel (Ni) content should be limited to the range of 0.1 to 0.4 wt.%.
(8) Sol.Al
Al is a deoxidizing element and has the effect of reducing inclusions in the steel. When the Al content exceeds 0.05 wt.%, The deoxidation effect is saturated. On the other hand, if the Al content is less than 0.01 wt.%, The ductility of the hot-rolled steel sheet cannot be ensured. Therefore, the content of Sol.Al should be limited to the range of 0.01 to 0.05 wt.%.
[0013]
Next, the reason why the hot rolling conditions of the present invention are limited as described above will be described.
(1) Hot finish rolling conditions
By hot rolling at a finishing temperature within the range of Ar 3 to (Ar 3 + 40 ° C) and at a temperature within the range of the finishing temperature to (finishing temperature + 50 ° C) with a large rolling reduction of 60% or more. The structure of the steel sheet can be made from a fine austenite phase to a fine grain structure mainly composed of a fine ferrite phase, and the second phase at the grain boundary is composed of bainite and partly carbides. When the hot rolling finishing temperature is 3 points or less, ferrite is processed during rolling and ductility deteriorates.
[0014]
FIG. 2 is a graph showing the influence of the rolling reduction at a temperature within the range of the finishing temperature to (finishing temperature + 50 ° C.) on the fatigue life of the weld. As is apparent from FIG. 2, the fatigue life of the steel sheet is excellent under the conditions where the rolling reduction is 60% or more. Therefore, the rolling reduction should be 60% or more.
[0015]
Under conditions other than the above, i.e., hot rolling conditions with a temperature outside the above range or a reduction rate of less than 60%, the ferrite grains become coarse, and pearlite is easily generated due to element concentration at the grain boundaries, or segregation occurs. It becomes large, and the secondary work embrittlement of the hot-rolled steel sheet and the welded part become crack starting points, resulting in deterioration of fatigue resistance.
[0016]
Therefore, in hot finish rolling, the temperature in the range of Ar 3 to (Ar 3 + 40 ° C) is set as the hot rolling finish temperature, and the temperature in the range of the finish temperature to (finishing temperature + 50 ° C) is 60 ° C. It is a necessary condition to perform hot rolling with a rolling reduction of at least%.
(2) Rapid cooling conditions after finish rolling After finishing hot finish rolling under the conditions described above, immediately after cooling to a temperature of 620 ° C or less at a cooling rate of 120 ° C / second or more, The fine grain structure in which the second phase at the grain boundary is composed of bainite and a part of carbide is optimally controlled.
[0017]
FIG. 3 is a graph showing the effect of the cooling rate after finish rolling on the fatigue life of the weld. As is apparent from FIG. 3, the fatigue life of the welded portion shows excellent results when the cooling rate is 120 ° C./second or more. However, if the cooling rate is less than 120 ° C./second, the ferrite grains become coarse due to growth, and the fatigue life is reduced.
[0018]
When the quenching end temperature exceeds 620 ° C., the ferrite grains become coarse and pearlite starts to form in the second phase, thereby deteriorating the fatigue life. The lower limit temperature is substantially about 570 ° C. for the subsequent coiling temperature control.
[0019]
Therefore, rapid cooling after finish rolling is a necessary condition that the cooling rate is 120 ° C./second or more and the rapid cooling end temperature is 620 ° C. or less.
(3) Winding temperature
By winding at a temperature in the range of 420 to 520 ° C., the fine ferrite phase and the fine structure of the second phase composed of bainite and a part of carbide are optimally controlled at the weld toe.
[0020]
When the winding temperature exceeds 520 ° C., segregation of P occurs. When the winding temperature is lower than 420 ° C., the workability deteriorates and cracks tend to occur.
Therefore, the coiling temperature is limited to the range of 420 to 520 ° C.
[0021]
As described above, according to the present invention, a steel in which the content of a predetermined amount of C, Mn, and other elements in the steel is optimized, in a limited finishing temperature range above the Ar 3 transformation point, and By hot rolling at a large pressing rate in a limited temperature range above the finishing temperature, the steel sheet changes from a fine austenite phase to a fine ferrite phase, and the second phase at the grain boundary is partly different from bainite. A fine-grained structure consisting of carbides. It is possible to produce a steel sheet having excellent fatigue resistance and corrosion resistance of the arc welded part by limiting the quenching condition and the coiling temperature after finishing rolling so as not to destroy the fine grain structure in the subsequent process. it can.
[0022]
【Example】
Next, the method of the present invention will be described in detail with reference to comparative examples.
[Example 1]
Steels A to E (hereinafter referred to as the present invention steel) having a component composition within the range of the present invention shown in Table 1 and steels F to M (hereinafter referred to as a comparative steel) having a component composition outside the range of the present invention are included. Melted. Table 1 also shows the Ar 3 transformation point of each steel.
[0023]
A slab composed of steels A to E according to the invention and comparative steels F to M is hot-rolled according to the hot rolling conditions, cooling conditions and winding conditions within the scope of the invention shown in Table 2, and the present invention has a thickness of 2.0 mm. Specimens made of hot-rolled steel sheets (hereinafter referred to as the present invention specimens) No. 1 to 6 and specimens made of comparative hot-rolled steel sheets (hereinafter referred to as comparative specimens) No. 7 to 14 were prepared. .
[0024]
The obtained specimen of the present invention and comparative specimen were subjected to cross-sectional structure observation, tensile test, fatigue test after arc welding and salt spray corrosion test, and the structure, yield strength (YP), tensile strength (TS) Elongation (El), weld fatigue life and maximum corrosion depth ratio were investigated. The survey results are shown in Table 2 together with the overall judgment results.
[0025]
The evaluation of the corrosion resistance test is defined as the maximum depth with the corrosion depth value of No. G steel after the salt spray test as 100, and the ratio to the maximum depth of other steels is expressed as the maximum corrosion depth ratio. did.
[0026]
Judgment is that the characteristics satisfying all three conditions of El ≥ 37%, weld fatigue life ≥ 120,000 cycles and maximum corrosion depth ratio ≤ 95% are sufficient (symbol ○), otherwise the characteristics are insufficient It is shown as (symbol ×).
[0027]
[Table 1]
Figure 0003843507
[0028]
[Table 2]
Figure 0003843507
[0029]
As is apparent from Tables 1 and 2, the specimens Nos. 1 to 6 of the present invention having a component composition within the scope of the present invention and hot-rolled under the conditions within the scope of the present invention have tensile properties, It satisfies the three conditions of weld zone fatigue characteristics and maximum corrosion depth ratio, has the tensile strength of 38 to 45 kgf / mm 2 , which is the object of the present invention, and has excellent fatigue resistance and corrosion resistance of arc welds. It was. On the other hand, comparative specimens Nos. 7 to 14 using comparative steels F to M having a component composition outside the scope of the present invention are the above-mentioned even if hot-rolled under the conditions within the scope of the present invention. The three conditions of the characteristics obtained were not satisfied.
[0030]
That is, in the comparative specimen No. 7 (steel F), the amount of C is low outside the scope of the present invention (Table 1), so that the structure becomes a ferrite single phase (Table 2) and the fatigue strength of the welded portion is reduced. . The comparative specimen No. 8 (steel G) has a high C amount exceeding the range of the present invention, and the comparative specimen No. 12 (steel K) has a low P amount outside the range of the present invention. Specimen No. 14 (steel M) was inferior in corrosion resistance because the amount of Cu was low outside the scope of the present invention. Further, the comparative specimen No. 9 (steel H) had a high Si content exceeding the range of the present invention, and pearlite was generated, so that the fatigue life of the welded portion was insufficient. The comparative specimen No. 10 (steel I) has a low Mn content outside the scope of the present invention, and the comparative specimen No. 11 (steel J) has a high Mn content beyond the scope of the present invention. However, the optimum ferrite + bainite structure was not obtained, and the fatigue life of the welded portion was insufficient. The comparative specimen No. 13 (steel L) had a high P content exceeding the range of the present invention and a low fatigue strength at the weld.
[Example 2]
A slab comprising the inventive steels A to C having a component composition within the scope of the present invention is hot-rolled according to hot rolling conditions, cooling conditions, and winding conditions outside the scope of the present invention shown in Table 3, and a sheet thickness of 2.0 Comparative specimens No. 15 to 20 made of mm hot-rolled steel sheets were prepared.
[0031]
The comparative specimen obtained was subjected to cross-sectional structure observation, tensile test, fatigue test after arc welding and salt spray corrosion test, and its structure, yield strength (YP), tensile strength (TS), elongation (El) The fatigue life of the weld and the maximum corrosion depth ratio were investigated. The survey results are shown in Table 3 together with the overall judgment results.
[0032]
In addition, the evaluation of the corrosion resistance test is defined as the maximum depth with the corrosion depth value of No. G steel after the salt spray test as 100 as in Example 1, and the ratio to the maximum depth of other steels is defined as Expressed as the maximum corrosion depth ratio.
[0033]
Judgment is that the characteristics satisfying all three conditions of El ≥ 37%, weld fatigue life ≥ 120,000 cycles and maximum corrosion depth ratio ≤ 95% are sufficient (symbol ○), otherwise the characteristics are insufficient It is shown as (symbol ×).
[0034]
[Table 3]
Figure 0003843507
[0035]
As is apparent from Table 3, even when the steels A to C having the composition within the range of the present invention are used, when they are hot-rolled under conditions outside the range of the present invention, the fatigue life of the welded portion However, since the fatigue resistance was less than 120,000 times, the three conditions of the above-described characteristics were not satisfied.
[0036]
Here, the comparative specimen No. 15 has a high hot rolling finishing temperature (FT) exceeding the range of the present invention, and the comparative specimen No. 16 has a finishing temperature of ~ (finishing temperature + 50 ° C.). Since the rolling reduction is low outside the scope of the present invention, in any case, the austenite is not sufficiently refined, and the ferrite generated after hot rolling is not appropriately refined. For this reason, it became a ferrite + pearlite structure, and the fatigue life decreased.
[0037]
Comparative specimen No. 17 has a slow cooling rate immediately after hot finish rolling (primary cooling speed) outside the range of the present invention, and comparative specimen No. 18 has a primary cooling end temperature. Since it is higher than the scope of the invention, in any case, fine ferrite cannot be obtained, resulting in a ferrite + pearlite structure, and the fatigue life is reduced.
[0038]
The comparative specimen No. 19 had a coiling temperature higher than the range of the present invention, and thus became a ferrite + pearlite structure, and the fatigue life was reduced.
Since the test specimen No. 20 for comparison had a low coiling temperature outside the range of the present invention, the fatigue life decreased as the elongation decreased.
[0039]
【The invention's effect】
As described above, according to the present invention, a hot-rolled steel sheet having excellent fatigue resistance and corrosion resistance of an arc welded part can be manufactured and provided.
[0040]
The steel sheet produced by the method of the present invention is useful as a material for parts having arc welding, such as automobile undercarriage parts, and can greatly contribute to the extension of the life of the automobile and the improvement of safety.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of C content on the fatigue life and maximum corrosion depth ratio of a weld in a steel sheet having a tensile strength of 41 kgf / mm 2 grade.
FIG. 2 is a graph showing the influence of rolling reduction at a temperature within the range of finishing temperature to (finishing temperature + 50 ° C.) on the fatigue life of the welded portion.
FIG. 3 is a graph showing the influence of the cooling rate after finish rolling on the fatigue life of the weld.

Claims (1)

炭素 (C) : 0.02〜0.04 wt.%
珪素 (Si) : 0.05 wt.% 以下、
マンガン (Mn) : 0.5〜0.9 wt.%、
燐 (P) : 0.03〜0.09 wt.%、
硫黄 (S) : 0.01 wt.% 以下、
銅 (Cu) : 0.2〜0.7 wt.%、
ニッケル (Ni) : 0.1〜0.4 wt.%、
Sol.Al : 0.01〜0.05 wt.%、および、
残部:鉄および不可避的不純物
からなる鋼を、Ar3〜(Ar3+40℃)の範囲内の仕上げ温度で、且つ、仕上げ温度〜(仕上げ温度+50℃)の範囲内の温度で60%以上の圧下率により熱間圧延し、次いで直ちに、120℃/秒以上の冷却速度で620℃以下の温度まで冷却し、次いで、420〜520℃の範囲内の温度で巻取ることを特徴とする、アーク溶接部の耐疲労特性および耐食性に優れた熱延鋼板の製造方法。
Carbon (C): 0.02 to 0.04 wt.%
Silicon (Si): 0.05 wt.% Or less,
Manganese (Mn): 0.5-0.9 wt.%,
Phosphorus (P): 0.03-0.09 wt.%,
Sulfur (S): 0.01 wt.% Or less,
Copper (Cu): 0.2-0.7 wt.%,
Nickel (Ni): 0.1-0.4 wt.%,
Sol.Al: 0.01-0.05 wt.%, And
The rest: iron and inevitable impurities
A steel made of a steel at a finishing temperature within the range of Ar 3 to (Ar 3 + 40 ° C) and at a temperature within the range of the finishing temperature to (finishing temperature + 50 ° C) with a reduction ratio of 60% or more. Fatigue resistance of arc welds, characterized by rolling and then immediately cooling to a temperature of 620 ° C. or lower at a cooling rate of 120 ° C./second or higher and then winding at a temperature in the range of 420-520 ° C. A method for producing a hot-rolled steel sheet having excellent properties and corrosion resistance.
JP28851196A 1996-10-30 1996-10-30 Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds Expired - Fee Related JP3843507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28851196A JP3843507B2 (en) 1996-10-30 1996-10-30 Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28851196A JP3843507B2 (en) 1996-10-30 1996-10-30 Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds

Publications (2)

Publication Number Publication Date
JPH10130736A JPH10130736A (en) 1998-05-19
JP3843507B2 true JP3843507B2 (en) 2006-11-08

Family

ID=17731183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28851196A Expired - Fee Related JP3843507B2 (en) 1996-10-30 1996-10-30 Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds

Country Status (1)

Country Link
JP (1) JP3843507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012864A1 (en) * 1999-08-10 2001-02-22 Nkk Corporation Method of producing cold rolled steel sheet

Also Published As

Publication number Publication date
JPH10130736A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
US8052807B2 (en) Steel sheet excellent in workability
JP4470701B2 (en) High-strength thin steel sheet with excellent workability and surface properties and method for producing the same
JP5088631B2 (en) Machine-structured steel pipe with excellent fatigue characteristics and bending formability and its manufacturing method
EP1354973A1 (en) High-strength steel sheet and high-strength pipe excellent in deformability and method for producing the same
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
CN110088346B (en) Steel material for welded steel pipe having excellent longitudinal uniform elongation, method for producing same, and steel pipe using same
JP4661306B2 (en) Manufacturing method of ultra-high strength hot-rolled steel sheet
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
KR101467049B1 (en) Steel sheet for line pipe and method of manufacturing the same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
CN112912532B (en) High-strength steel material having excellent sulfide stress corrosion cracking resistance and method for producing same
JPS626730B2 (en)
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JPH1112657A (en) Manufacture of ti added hot rolled high tensile steel plate having excellent formability
JP4580403B2 (en) Hot-dip hot-dip steel sheet for deep drawing and method for producing the same
JP4580402B2 (en) Hot-dip hot-dip steel sheet for press working and manufacturing method thereof
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP3843507B2 (en) Manufacturing method of hot-rolled steel sheet with excellent fatigue resistance and corrosion resistance of arc welds
JP3468168B2 (en) High-strength steel sheet with excellent economy and toughness
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JP2718550B2 (en) Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties
JP2001192773A (en) Steel for line pipe
JP4580334B2 (en) Deep drawing high strength steel plate and hot dipped steel plate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees