JP3841178B2 - Alkenylbenzene derivative and method for producing the same - Google Patents
Alkenylbenzene derivative and method for producing the same Download PDFInfo
- Publication number
- JP3841178B2 JP3841178B2 JP09109596A JP9109596A JP3841178B2 JP 3841178 B2 JP3841178 B2 JP 3841178B2 JP 09109596 A JP09109596 A JP 09109596A JP 9109596 A JP9109596 A JP 9109596A JP 3841178 B2 JP3841178 B2 JP 3841178B2
- Authority
- JP
- Japan
- Prior art keywords
- general formula
- compound
- liquid crystal
- formula
- benzene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 66
- 238000000034 method Methods 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 10
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 229910052740 iodine Inorganic materials 0.000 claims description 9
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 239000000376 reactant Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000011630 iodine Substances 0.000 claims description 4
- 229910052801 chlorine Chemical group 0.000 claims description 2
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 125000001979 organolithium group Chemical group 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 1
- 229910052744 lithium Inorganic materials 0.000 claims 1
- 239000004973 liquid crystal related substance Substances 0.000 description 37
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 21
- 239000002904 solvent Substances 0.000 description 19
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- 230000004044 response Effects 0.000 description 12
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 12
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000543 intermediate Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- JRXXLCKWQFKACW-UHFFFAOYSA-N biphenylacetylene Chemical group C1=CC=CC=C1C#CC1=CC=CC=C1 JRXXLCKWQFKACW-UHFFFAOYSA-N 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- QDNBBDYPPSSRTB-UHFFFAOYSA-N 1-bromo-4-but-3-enylbenzene Chemical compound BrC1=CC=C(CCC=C)C=C1 QDNBBDYPPSSRTB-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- RLCYPQAHMJQTOT-UHFFFAOYSA-N 1-but-3-enyl-4-[2-(4-methylphenyl)ethynyl]benzene Chemical compound C1=CC(C)=CC=C1C#CC1=CC=C(CCC=C)C=C1 RLCYPQAHMJQTOT-UHFFFAOYSA-N 0.000 description 4
- JWRIYBUYKLJQKD-UHFFFAOYSA-N 1-but-3-enyl-4-ethynylbenzene Chemical compound C=CCCC1=CC=C(C#C)C=C1 JWRIYBUYKLJQKD-UHFFFAOYSA-N 0.000 description 4
- MWQXRSRXLABZRY-UHFFFAOYSA-N 1-but-3-enyl-4-iodobenzene Chemical compound IC1=CC=C(CCC=C)C=C1 MWQXRSRXLABZRY-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical class [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 150000001555 benzenes Chemical class 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000010898 silica gel chromatography Methods 0.000 description 3
- KBULDWNZTOYMAQ-UHFFFAOYSA-N 1-but-3-enyl-4-(4-but-3-enylphenyl)benzene Chemical group C1=CC(CCC=C)=CC=C1C1=CC=C(CCC=C)C=C1 KBULDWNZTOYMAQ-UHFFFAOYSA-N 0.000 description 2
- IEVCPYZEUADOOM-UHFFFAOYSA-N 1-chloro-4-hex-5-enylbenzene Chemical compound ClC1=CC=C(CCCCC=C)C=C1 IEVCPYZEUADOOM-UHFFFAOYSA-N 0.000 description 2
- VZAWCLCJGSBATP-UHFFFAOYSA-N 1-cycloundecyl-1,2-diazacycloundecane Chemical compound C1CCCCCCCCCC1N1NCCCCCCCCC1 VZAWCLCJGSBATP-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- CEBKHWWANWSNTI-UHFFFAOYSA-N 2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#C CEBKHWWANWSNTI-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- YLRBJYMANQKEAW-UHFFFAOYSA-N 1-bromo-4-(bromomethyl)benzene Chemical compound BrCC1=CC=C(Br)C=C1 YLRBJYMANQKEAW-UHFFFAOYSA-N 0.000 description 1
- JNBGILPIUDUWFH-UHFFFAOYSA-N 1-ethynyl-4-hex-5-enylbenzene Chemical compound C=CCCCCC1=CC=C(C#C)C=C1 JNBGILPIUDUWFH-UHFFFAOYSA-N 0.000 description 1
- YWZJWLHFVMXLJF-UHFFFAOYSA-N 1-ethynyl-4-pent-3-enylbenzene Chemical compound CC=CCCC1=CC=C(C#C)C=C1 YWZJWLHFVMXLJF-UHFFFAOYSA-N 0.000 description 1
- PSMNPIINUBPVRS-UHFFFAOYSA-N 1-ethynyl-4-pent-4-enylbenzene Chemical compound C=CCCCC1=CC=C(C#C)C=C1 PSMNPIINUBPVRS-UHFFFAOYSA-N 0.000 description 1
- HPKFWMCRKAWOJO-UHFFFAOYSA-N 1-hex-5-enyl-4-iodobenzene Chemical compound IC1=CC=C(CCCCC=C)C=C1 HPKFWMCRKAWOJO-UHFFFAOYSA-N 0.000 description 1
- UDHAWRUAECEBHC-UHFFFAOYSA-N 1-iodo-4-methylbenzene Chemical compound CC1=CC=C(I)C=C1 UDHAWRUAECEBHC-UHFFFAOYSA-N 0.000 description 1
- HGJIOJROCJOSPH-UHFFFAOYSA-N 1-iodo-4-pent-3-enylbenzene Chemical compound CC=CCCC1=CC=C(I)C=C1 HGJIOJROCJOSPH-UHFFFAOYSA-N 0.000 description 1
- PBPIBDXRPVAEDO-UHFFFAOYSA-N 1-iodo-4-pent-4-enylbenzene Chemical compound IC1=CC=C(CCCC=C)C=C1 PBPIBDXRPVAEDO-UHFFFAOYSA-N 0.000 description 1
- FUPXYICBZMASCM-UHFFFAOYSA-N 2-methyl-4-phenylbut-3-yn-2-ol Chemical class CC(C)(O)C#CC1=CC=CC=C1 FUPXYICBZMASCM-UHFFFAOYSA-N 0.000 description 1
- 125000004975 3-butenyl group Chemical group C(CC=C)* 0.000 description 1
- FUWRRSLYBDBXAN-UHFFFAOYSA-N 4-(4-but-3-enylphenyl)-2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#CC1=CC=C(CCC=C)C=C1 FUWRRSLYBDBXAN-UHFFFAOYSA-N 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BWMAEGHZJBTIKD-UHFFFAOYSA-N ClC1=CC=C(C=C1)CCCC=C.ClC1=CC=C(C=C1)CCC=CC.ClC1=CC=C(C=C1)CCC=C.BrC1=CC=C(C=C1)CCCCC=C.BrC1=CC=C(C=C1)CCCC=C.BrC1=CC=C(C=C1)CCC=CC Chemical compound ClC1=CC=C(C=C1)CCCC=C.ClC1=CC=C(C=C1)CCC=CC.ClC1=CC=C(C=C1)CCC=C.BrC1=CC=C(C=C1)CCCCC=C.BrC1=CC=C(C=C1)CCCC=C.BrC1=CC=C(C=C1)CCC=CC BWMAEGHZJBTIKD-UHFFFAOYSA-N 0.000 description 1
- 239000004988 Nematic liquid crystal Substances 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000003905 agrochemical Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- CYSFUFRXDOAOMP-UHFFFAOYSA-M magnesium;prop-1-ene;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C=C CYSFUFRXDOAOMP-UHFFFAOYSA-M 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/40—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
- C07C15/42—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
- C07C15/48—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon triple bond
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Crystal Substances (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は有機電子材料や医農薬、特に電気光学的液晶表示用ネマチック液晶材料の製造中間体として有用なアルケニルベンゼン誘導体及びその製造方法に関する。
【0002】
【従来の技術】
液晶表示素子は、時計、電卓をはじめとして、各種測定機器、自動車用パネル、ワードプロセッサー、電子手帳、プリンター、コンピューター、テレビ等に用いられるようになっている。液晶表示方式としては、その代表的なものにTN(捩れネマチック)型、STN(超捩れネマチック)型、DS(動的光散乱)型、GH(ゲスト・ホスト)型あるいはFLC(強誘電性液晶)等があり、また駆動方式としても従来のスタティック駆動からマルチプレックス駆動が一般的になり、さらに単純マトリックス方式、最近ではアクティブマトリックス方式が実用化されている。これらの表示方式や駆動方式に応じて、液晶材料としても種々の特性が要求されており、非常に多くの液晶化合物が用いられている。
【0003】
液晶化合物は、構造的には分子中央のコア部分と両側の側鎖部分に分けることができるが、この側鎖としては通常アルキル基が最もよく用いられている。最近、側鎖としてこのアルキル基に換えて、アルケニル基を有する液晶材料も用いられるようになってきており、粘性の低下や温度範囲の拡大あるいは屈折率異方性の増大等に効果があることが確認されている。
【0004】
ところで、この液晶表示において、特に高速応答性が重視される場合には液晶材料としては(i)低粘性であること、に加えて(ii)屈折率異方性(Δn)が大きいことが要求される。これは応答の高速化には素子のセル厚(d)を小さくすることが効果的であるが、素子の着色を防止するためには屈折率異方性とセル厚の積(Δn・d)が一定の値をとる必要があるからである。このような条件を比較的満足する液晶化合物としては一般式(IV)
【0005】
【化4】
【0006】
(式中、Ra及びRbはアルキル基又はアルコキシル基を表わす。)のトラン(ジフェニルアセチレン)誘導体が知られており、こうした目的に現在最もよく用いられている。
【0007】
しかしながら、液晶材料の高速応答性に対してはさらに高いレベルが要求されるようになってきており、側鎖がアルキル基である一般式(IV)の化合物でも不充分な状況となってきている。従って、この特性をさらに改善できる化合物として、側鎖にアルケニル基を有するトラン誘導体が期待されているわけであるが、このトラン誘導体において側鎖にアルケニル基を導入することは決して容易ではなく、そうした具体的化合物はこれまで知られていないのが実情である。
【0008】
この一般式(IV)のトラン誘導体は通常、一般式(V)のフェニルアセチレン誘導体と一般式(VI)のハロゲン化ベンゼン誘導体を、パラジウム系触媒存在下に反応させることにより製造する。
【0009】
【化5】
【0010】
(式中、Yは臭素又はヨウ素のハロゲン原子を表わすが、反応性の高さから、ヨウ素原子がよく用いられる。Ra及びRbは上記におけると同じ意味を表わす。)トラン誘導体の製造方法としてはこの他にも(i)スチルベン誘導体に臭素付加した後、塩基で脱臭化水素する方法、(ii)Fritsch-Butterberg-Wiechell(FBW)転移反応を用いる方法等が知られているが、これらの方法は側鎖がアルケニル基の場合には側鎖の二重結合も反応してしまうので適用することができない。従って、側鎖にアルケニル基を有するトラン誘導体を製造するためには、4位にエチニル基あるいはヨウ素原子を有するようなアルケニルベンゼン誘導体が必要である。このような4位に置換基を有するアルケニルベンゼン誘導体としては、置換基が臭素原子である化合物、例えば4−ブロモ−1−(3−ブテニル)ベンゼンが報告(Quelett, Compt. Rend., 186, p765)されている。しかしながら、4位の置換基が、エチニル基あるいはヨウ素原子であるようなアルケニルベンゼン誘導体はこれまで知られておらず、アルケニルトラン誘導体もその製造が困難であった。
【0011】
また、これらのアルケニルベンゼン誘導体は2官能性のベンゼン誘導体であり、液晶化合物の製造中間体としてのみならず、他の有機電子材料さらには医薬、農薬の製造中間体として種々の用途が考えられる有用な化合物である。
【0012】
従って、4位にエチニル基あるいはヨウ素原子を置換基として有するアルケニルベンゼン誘導体が求められていた。
【0013】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、上記の目的に応じるため、4位にエチニル基あるいはヨウ素原子を置換基として有するアルケニルベンゼン誘導体及びその製造方法を提供するものであり、これを用いることによりアルケニルトラン誘導体等の電気光学特性に優れた新規液晶化合物の製造を可能とすることである。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するために、一般式(I)
【0015】
【化6】
【0016】
(式中、Rは水素原子又は炭素原子数1〜5のアルキル基を表わし、mは0〜4の整数を表わす。)で表わされる4−エチニル−1−アルケニルベンゼンを提供する。
【0017】
上式において、Rは水素原子又はメチル基が好ましく、水素原子がさらに好ましい。また、Rがアルキル基である場合、二重結合はトランス配置が好ましい。mは0〜2が好ましく、0が特に好ましい。
【0018】
従って、本発明の一般式(I)の化合物としては、以下の式(Ia)〜(Id)
【0019】
【化7】
【0020】
の化合物が好ましく、特に式(Ia)の4−エチニル−1−(3−ブテニル)ベンゼンが最も好ましい。
この一般式(I)の4−エチニル−1−アルケニルベンゼンは以下のようにして製造することができる。
【0021】
一般式(II)
【0022】
【化8】
【0023】
(式中、R及びmは一般式(I)におけると同じ意味を表わす。)で表わされる4−ヨード−1−アルケニルベンゼンを、触媒存在下に2−メチル−3−ブチン−2−オールと反応させることにより、一般式(VII)
【0024】
【化9】
【0025】
(式中、R及びmは一般式(I)におけると同じ意味を表わす。)の4−フェニル−2−メチル−3−ブチン−2−オール誘導体を得る。反応は触媒存在下に行われるが、触媒としては塩化パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)等のパラジウム(II)系触媒、あるいはテトラキス(トリフェニルホスフィン)パラジウム(0)等のパラジウム(0)系触媒が好ましい。さらにヨウ化銅(I)等の銅(I)塩を共存させることが好ましい。反応は溶媒中で行われ、溶媒としてはジメチルホルムアミド(DMF)等のいわゆる非プロトン性極性溶媒、テトラヒドロフラン(THF)等のエーテル系溶媒、トルエン等の炭化水素系溶媒あるいはこれらの混合溶媒を用いることができるが、DMFが好ましい。また、トリエチルアミン等のアミン系溶媒を共存させることが好ましい。反応は0℃から溶媒の還流温度までの広い温度範囲で可能であるが、室温から約80℃程度の範囲内が好ましい。
【0026】
この一般式(VII)の化合物を塩基存在下に加熱することにより、一般式(I)の化合物を得ることができる。塩基としてはアルカリ金属の水酸化物や炭酸塩及び水素化物あるいはジアザビシクロウンデカン(DBU)等の有機塩基を用いることができるが、通常は水酸化ナトリウム、水酸化カリウム等が好ましい。反応は無溶媒あるいは溶媒存在下に行われるが、通常無溶媒で行うか、アルコール系溶媒中で行うことが好ましい。
【0027】
斯くして、一般式(I)の4−エチニル−1−アルケニルベンゼンを製造することができるが、本発明はこの一般式(I)の化合物の製造方法をも提供するものである。
【0028】
さらに、ここで用いた一般式(II)の4−ヨード−1−アルケニルベンゼンも新規な化合物であり、本発明は一般式(II)の化合物及びその製造方法をも提供する。
【0029】
一般式(II)の4−ヨード−1−アルケニルベンゼンは、対応する一般式(III)
【0030】
【化10】
【0031】
(式中、R及びmは一般式(I)におけると同じ意味を表わす。Xは臭素原子あるいは塩素原子を表わすが、臭素原子が好ましい。)の臭化物あるいは塩化物を金属マグネシウムと反応させてグリニヤール反応剤とするか、有機リチウム反応剤とし、これをヨウ素と反応させることにより得ることができる。ここで金属としてはマグネシウムを用いることがより好ましい。反応はTHF等のエーテル系溶媒を必要に応じヘキサンやトルエン等の炭化水素系溶媒と混合して用いることができるが、THFが好ましい。ヨウ素との反応は室温あるいは冷却下に行われるが−20℃〜25℃が好ましい。
【0032】
従って、一般式(II)の化合物としては、以下の式(IIa)〜(IId)
【0033】
【化11】
【0034】
の化合物が好ましく、特に一般式(II)において、Rが水素原子であり、mが0である式(IIa)の4−ヨード−1−(3−ブテニル)ベンゼンが最も好ましい。
【0035】
斯くして得られた一般式(I)及び一般式(II)の化合物は、アルケニルトラン誘導体をはじめとする各種液晶化合物の合成中間体として好適に使用することができる。
【0036】
例えば、本発明の一般式(I)の化合物をパラジウム系触媒、銅(I)触媒及びアミン系溶媒の存在下に、前述の一般式(V)のフェニルアセチレン誘導体と反応させることにより、一般式(A)
【0037】
【化12】
【0038】
(式中、R、m及びRaは前述の意味を表わす。)で表わされるアルケニルトラン誘導体を製造することができる。あるいはこの一般式(A)の化合物は、本発明の一般式(II)の化合物と、前述の一般式(VI)の化合物からも同様にして製造することができる。この一般式(A)の化合物は、本発明者らが初めて合成することに成功し報告した化合物であり、対応するアルキルトラン誘導体と比較して、粘性が低く、屈折率異方性が大きくかつ液晶相温度範囲が広いという特徴を有する。従って、前述の高速応答性が必要とされる液晶組成物の構成成分として極めて適したものである。
【0039】
本発明の化合物は、一般式(A)のようなアルケニルトラン誘導体以外の液晶化合物の製造中間体としても有用である。例えば、前述の一般式(VI)のハロゲン化ベンゼンから調製されたグリニヤール反応剤を、パラジウム系あるいはニッケル系触媒の存在下に、本発明の一般式(II)の化合物と反応させることにより、一般式(B)
【0040】
【化13】
【0041】
(式中、R、m及びRbは前述の意味を表わす。)で表わされるアルケニルビフェニル誘導体を製造することができる。この一般式(B)の化合物は、一般式(A)の化合物と比較するとやや屈折率異方性が小さいが同様に粘性が低く、高速応答性液晶組成物の調製上やはり有用な化合物である。
【0042】
以上のように、本発明の一般式(I)及び一般式(II)の化合物を用いることにより種々の有用な液晶化合物を製造することができることがわかる。
【0043】
【実施例】
以下に本発明の実施例を示し、本発明を更に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
【0044】
化合物の構造は、核磁気共鳴スペクトル(NMR)、質量スペクトル(MS)及び赤外吸収スペクトル(IR)により確認した。また、組成物における「%」は「重量%」を表わす。
(参考例) 4−ブロモ−1−(3−ブテニル)ベンゼンの合成
【0045】
【化14】
【0046】
臭化4−ブロモベンジル374gをTHF1600mlに溶解し、5℃で攪拌した。これに塩化アリル及びマグネシウムから調製した塩化アリルマグネシウム(2MTHF溶液)785mlを1時間で滴下した。さらに5℃で1時間攪拌後室温まで放冷し、稀塩酸を加え反応を終了させた。ヘキサン800mlで抽出し、有機層は水、次いで飽和食塩水で洗滌した。無水硫酸ナトリウムで脱水乾燥後、減圧下に溶媒を溜去して表記の4−ブロモ−1−(3−ブテニル)ベンゼン310gを得た。(収率98%)
この化合物のガスクロマトグラフィーによる純度は99%以上であり、これ以上精製することなしに、応用例に示したの液晶化合物の合成にそのまま使用することが可能であった。
【0047】
同様にして以下の化合物を得る。
4−ブロモ−1−(3−ペンテニル)ベンゼン
4−ブロモ−1−(4−ペンテニル)ベンゼン
4−ブロモ−1−(5−ヘキセニル)ベンゼン
4−クロロ−1−(3−ブテニル)ベンゼン
4−クロロ−1−(3−ペンテニル)ベンゼン
4−クロロ−1−(4−ペンテニル)ベンゼン
4−クロロ−1−(5−ヘキセニル)ベンゼン
(実施例1) 4−ヨード−1−(3−ブテニル)ベンゼン(式(IIa)の化合物)の合成
【0048】
【化15】
【0049】
マグネシウム16.4gを乾燥したTHF20ml中に懸濁させ、これに参考例で得た4−ブロモ−1−(3−ブテニル)ベンゼン150gのTHF600ml溶液を、溶媒が穏やかに還流を続ける速度で滴下した。滴下終了後、2時間撹拌し、室温まで放冷した。ヨウ素162gをTHF480mlに溶解し10℃で1時間で滴下した。滴下終了後、1時間撹拌した後、水、次いで亜硫酸水素ナトリウム水溶液を加え、トルエンで抽出した。有機層を水、次いで飽和食塩水で洗滌し無水硫酸ナトリウムで乾燥した。溶媒を溜去して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)を用いて精製して、一般式(II)で表わされる4−ヨード−1−(3−ブテニル)ベンゼン171gを得た。
NMR:δ=2.2−2.8(m,4H),4.9−5.1(m,1H),5.3−5.9(m,2H),6.9(d,2H,J=8.1Hz),7.6(d,2H,J=8.1Hz)
MS:m/e=258(M+)
参考例で得た化合物を用いて同様にして以下の化合物を得る。
【0050】
4−ヨード−1−(3−ペンテニル)ベンゼン(式(IIb)の化合物)
4−ヨード−1−(4−ペンテニル)ベンゼン(式(IIc)の化合物)
4−ヨード−1−(5−ヘキセニル)ベンゼン(式(IId)の化合物)
(実施例2) 4−エチニル−1−(3−ブテニル)ベンゼン(式(Ia)の化合物)の合成
【0051】
【化16】
【0052】
実施例1で得た4−ヨード−1−(3−ブテニル)ベンゼン86.4g、ジクロロビス(トリフェニルホスフィン)パラジウム(II)2.35g及びヨウ化銅(I)637mgをDMF120ml及びトリエチルアミン90mlに溶解した。これに30℃以下で2−メチル−3−ブチン−2−オール42.2gのDMF60ml溶液を滴下し、さらに室温で2時間撹拌した。
【0053】
稀塩酸及びトルエンを加え、水層はトルエンで抽出して有機層をあわせ、水、次いで飽和食塩水で洗滌した。無水硫酸水素ナトリウムで脱水乾燥後、減圧下に溶媒を溜去して、4−[4−(3−ブテニル)フェニル]−2−メチル−3−ブチン−2−オールの粗生成物73.7gを得た。
【0054】
この全量に水酸化ナトリウム670mgを加え、生成するアセトンを溜去しながら、80℃で2時間撹拌した。減圧下に蒸留(165℃/15mmHg)して一般式(I)で表わされる4−エチニル−1−(3−ブテニル)ベンゼン39.3gを得た。
NMR:δ=2.1−2.7(m,4H),3.0(s,1H),4.9−5.1(m,2H),5.5−6.0(m,1H),7.1(d,2H,J=8.4Hz),7.4(d,2H,J=8.4Hz)
MS:m/e=156(M+)
同様にして以下の化合物を得る。
【0055】
4−エチニル−1−(3−ペンテニル)ベンゼン(式(Ib)の化合物)
4−エチニル−1−(4−ペンテニル)ベンゼン(式(Ic)の化合物)
4−エチニル−1−(5−ヘキセニル)ベンゼン(式(Id)の化合物)
(応用例) 液晶化合物の合成及び液晶組成物の調製及びその電気光学的特性(a) 1−[4−(3−ブテニル)フェニル]−2−(4−メチルフェニル)エチンの合成
【0056】
【化17】
【0057】
4−メチル−1−ヨードベンゼン41.6g、ジクロロビストリフェニルホスフィンパラジウム(II)2.2g及びヨウ化銅(I)360mgをDMF200ml及びトリエチルアミン45mlに溶解した。これに実施例2で得た4−エチニル−1−(3−ブテニル)ベンゼン31.3gのDMF60ml溶液を30℃以下で3時間で滴下し、さらに室温で1時間攪拌させた。水及び10%塩酸を加え、水層を分離後、トルエンで抽出し、有機層をあわせ、10%塩酸、水、次いで飽和食塩水で洗滌した。無水硫酸ナトリウムで脱水乾燥させた後、溶媒を溜去して1−[4−(3−ブテニル)フェニル]−2−(4−メチルフェニル)エチンの粗結晶53.7gを得た。これをシリカゲルカラムクロマトグラフィー(ヘキサン)を用いて精製し、さらにエタノールから再結晶させて精製物35.4gを得た。この化合物は室温では結晶でその融点は40℃であった。
(b) 液晶組成物の調製(1)
現在汎用されているアクティブマトリックス駆動用として好適なホスト液晶(H)
【0058】
【化18】
【0059】
は以下の物性及び電気光学的特性は通りである。
ネマチック相上限温度(TN-I): 116.7℃
粘度(20℃): 19.8cp
応答時間(τr=τd): 21.5m秒
屈折率異方性(Δn): 0.090
ここで、粘度は20℃における測定値、応答時間は厚さ4.5μmのTNセルに封入した場合に、立ち上がり時間(τr)と立ち下がり時間(τd)が等しくなる電圧印加時の測定値である。
【0060】
このホスト液晶(H)70重量%及び上記(a)で得た1−[4−(3−ブテニル)フェニル]−2−(4−メチルフェニル)エチン
【0061】
【化19】
【0062】
30重量%からなる液晶組成物(M−1)を調製した。この物性値及び電気光学的特性は以下の通りであった。
ネマチック相上限温度(TN-I): 86.0℃
粘度(20℃): 15.0cp
応答時間(τr=τd): 9.5m秒
屈折率異方性(Δn): 0.146
このようにその粘度は約3/4まで低減され、応答時間も半分以下と大幅に改善されていることがわかる。また屈折率異方性も約1.5倍に増大した。この1−[4−(3−ブテニル)フェニル]−2−(4−メチルフェニル)エチンは単独では結晶であり液晶性を示さないが、その添加によるTN-Iの低下は比較的小さいこともわかる。
(c) 4,4’−ジ(3−ブテニル)ビフェニルの合成
【0063】
【化20】
【0064】
マグネシウム2.1gを乾燥させたTHF5ml中に懸濁させた。これに参考例で得た4−ブロモ−1−(3−ブテニル)ベンゼン18.0gのTHF70ml溶液を溶媒が穏やかに還流する速度で滴下した。撹拌しながら室温まで放冷して得られたグリニヤール反応剤を、実施例1で得た4−ヨード−1−(3−ブテニル)ベンゼン20g及びテトラキス(トリフェニルホスフィン)パラジウム(0)0.9gのTHF60ml溶液に室温で滴下した。2時間撹拌した後、水を加え、ヘキサンで抽出し、水、次いで飽和食塩水で洗滌し、無水硫酸ナトリウムで脱水乾燥させた。溶媒を溜去して得られた粗生成物21.3gをシリカゲルカラムクロマトグラフィーを用いて精製し、さらにエタノールから低温で再結晶させて、表記化合物13.8gを得た。
【0065】
この化合物はその融点は20℃以下であり、室温でスメクチック相を示し、71℃以上で等方性液体相となった。
(d) 液晶組成物の調製(1)
このホスト液晶(H)70重量%及び上記(c)で得た4,4’−ジ(3−ブテニル)ビフェニル
【0066】
【化21】
【0067】
30重量%からなる液晶組成物(M−1)を調製した。この(M−1)の物性値は以下の通りであった。
ネマチック相上限温度(TN-I): 76.4℃
粘度(20℃): 13.1cp
応答時間(τr=τd): 12.0m秒
屈折率異方性(Δn): 0.113
このように、本発明の一般式(I)の化合物は、ネマチック相上限温度(TN-I)は降下しているけれども、その粘度は大幅に低下し、応答時間も改善されていることがわかる。また、屈折率異方性も25%も大きくすることができた。従って、一般式(I)の化合物は低粘性高速応答性液晶組成物の構成成分として非常に有用であることがわかる。
【0068】
以上のように、本発明の製造法により得られる4−ヨード−1−アルケニルベンゼン及び4−エチニル−1−アルケニルベンゼンを中間体として製造される液晶化合物は低粘性で、屈折率異方性が大きく、高速応答性に優れた液晶組成物を調製する上において、極めて有用であることがわかる。
【0069】
【発明の効果】
本発明により提供される4−置換−1−アルケニルベンゼンを中間体として用いることにより、アルケニルベンゼン誘導体である各種液晶化合物を工業的にも容易に製造することができる。これらの液晶化合物は、その減粘効果及び応答性の改善効果に優れるため、これらを含有する液晶組成物は実用的液晶として特に高速応答を必要とする液晶表示用として極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkenylbenzene derivative useful as an intermediate for producing organic electronic materials and medical pesticides, particularly nematic liquid crystal materials for electro-optic liquid crystal displays, and a method for producing the same.
[0002]
[Prior art]
Liquid crystal display elements are used in various measuring instruments, automobile panels, word processors, electronic notebooks, printers, computers, televisions, etc., including watches and calculators. Typical liquid crystal display methods include TN (twisted nematic), STN (super twisted nematic), DS (dynamic light scattering), GH (guest / host), or FLC (ferroelectric liquid crystal). In addition, as a driving method, a multiplex drive is generally used instead of a conventional static drive, and a simple matrix method and recently an active matrix method have been put into practical use. Various characteristics are required as a liquid crystal material according to these display methods and driving methods, and a large number of liquid crystal compounds are used.
[0003]
The liquid crystal compound can be structurally divided into a core portion at the center of the molecule and side chain portions on both sides, and an alkyl group is most commonly used as this side chain. Recently, in place of this alkyl group as a side chain, a liquid crystal material having an alkenyl group has also been used, which is effective in reducing the viscosity, expanding the temperature range or increasing the refractive index anisotropy. Has been confirmed.
[0004]
By the way, in this liquid crystal display, particularly when high-speed response is important, the liquid crystal material is required to have (i) low viscosity and (ii) large refractive index anisotropy (Δn). Is done. Although it is effective to reduce the cell thickness (d) of the element to increase the response speed, the product of the refractive index anisotropy and the cell thickness (Δn · d) can be used to prevent the element from being colored. This is because it is necessary to take a certain value. As a liquid crystal compound relatively satisfying such conditions, the general formula (IV)
[0005]
[Formula 4]
[0006]
A trans (diphenylacetylene) derivative of (wherein R a and R b represent an alkyl group or an alkoxyl group) is known and is most often used for such purposes.
[0007]
However, a higher level is required for the high-speed response of the liquid crystal material, and even a compound of the general formula (IV) whose side chain is an alkyl group has become insufficient. . Therefore, as a compound that can further improve this property, a tolan derivative having an alkenyl group in the side chain is expected. However, it is not easy to introduce an alkenyl group in the side chain in this tolan derivative, and The actual situation is that no specific compound has been known so far.
[0008]
This tolan derivative of general formula (IV) is usually produced by reacting a phenylacetylene derivative of general formula (V) with a halogenated benzene derivative of general formula (VI) in the presence of a palladium-based catalyst.
[0009]
[Chemical formula 5]
[0010]
(In the formula, Y represents a halogen atom of bromine or iodine, but iodine atom is often used because of its high reactivity. Ra and Rb have the same meaning as described above.) In addition, (i) a method of adding bromine to a stilbene derivative and then dehydrobromating with a base, (ii) a method using a Fritsch-Butterberg-Wiechell (FBW) transfer reaction, etc. are known. This method cannot be applied when the side chain is an alkenyl group, because the double bond of the side chain also reacts. Therefore, in order to produce a tolan derivative having an alkenyl group in the side chain, an alkenylbenzene derivative having an ethynyl group or an iodine atom at the 4-position is necessary. As such an alkenylbenzene derivative having a substituent at the 4-position, a compound in which the substituent is a bromine atom, for example, 4-bromo-1- (3-butenyl) benzene has been reported (Quelett, Compt. Rend., 186, p765). However, an alkenylbenzene derivative in which the substituent at the 4-position is an ethynyl group or an iodine atom has not been known so far, and an alkenyltolane derivative has also been difficult to produce.
[0011]
In addition, these alkenylbenzene derivatives are bifunctional benzene derivatives and are useful not only as production intermediates for liquid crystal compounds, but also as various organic electronic materials, as well as production intermediates for pharmaceuticals and agricultural chemicals. Compound.
[0012]
Therefore, an alkenylbenzene derivative having an ethynyl group or iodine atom as a substituent at the 4-position has been demanded.
[0013]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide an alkenylbenzene derivative having an ethynyl group or an iodine atom as a substituent at the 4-position and a method for producing the same in order to meet the above-mentioned purpose. It is possible to produce a novel liquid crystal compound having excellent electro-optical properties such as a tolan derivative.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a compound represented by the general formula (I)
[0015]
[Chemical 6]
[0016]
(Wherein R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, m represents an integer of 0 to 4), and 4-ethynyl-1-alkenylbenzene is provided.
[0017]
In the above formula, R is preferably a hydrogen atom or a methyl group, more preferably a hydrogen atom. When R is an alkyl group, the double bond is preferably in the trans configuration. m is preferably 0 to 2, and 0 is particularly preferable.
[0018]
Accordingly, the compounds of the general formula (I) of the present invention include the following formulas (Ia) to (Id):
[0019]
[Chemical 7]
[0020]
In particular 4-ethynyl-1- (3-butenyl) benzene of the formula (Ia) is most preferred.
The 4-ethynyl-1-alkenylbenzene of the general formula (I) can be produced as follows.
[0021]
Formula (II)
[0022]
[Chemical 8]
[0023]
(Wherein R and m have the same meaning as in formula (I)) and 4-iodo-1-alkenylbenzene represented by 2-methyl-3-butyn-2-ol in the presence of a catalyst. By reacting, general formula (VII)
[0024]
[Chemical 9]
[0025]
(Wherein R and m have the same meaning as in general formula (I)), thereby obtaining a 4-phenyl-2-methyl-3-butyn-2-ol derivative. The reaction is carried out in the presence of a catalyst. As the catalyst, palladium (II) catalyst such as palladium chloride (II), dichlorobis (triphenylphosphine) palladium (II), tetrakis (triphenylphosphine) palladium (0), etc. Of these, palladium (0) -based catalysts are preferred. Further, it is preferable to coexist a copper (I) salt such as copper (I) iodide. The reaction is carried out in a solvent, and a so-called aprotic polar solvent such as dimethylformamide (DMF), an ether solvent such as tetrahydrofuran (THF), a hydrocarbon solvent such as toluene, or a mixed solvent thereof is used. However, DMF is preferred. Moreover, it is preferable to coexist an amine solvent such as triethylamine. The reaction can be carried out over a wide temperature range from 0 ° C. to the reflux temperature of the solvent, but is preferably within the range of room temperature to about 80 ° C.
[0026]
The compound of the general formula (I) can be obtained by heating the compound of the general formula (VII) in the presence of a base. As the base, alkali metal hydroxides, carbonates and hydrides, or organic bases such as diazabicycloundecane (DBU) can be used, but sodium hydroxide, potassium hydroxide and the like are usually preferred. The reaction is carried out in the absence of a solvent or in the presence of a solvent, but it is usually preferably carried out without a solvent or in an alcohol solvent.
[0027]
Thus, although 4-ethynyl-1-alkenylbenzene of the general formula (I) can be produced, the present invention also provides a process for producing the compound of the general formula (I).
[0028]
Furthermore, 4-iodo-1-alkenylbenzene of the general formula (II) used here is also a novel compound, and the present invention also provides a compound of the general formula (II) and a production method thereof.
[0029]
The 4-iodo-1-alkenylbenzene of the general formula (II) has a corresponding general formula (III)
[0030]
[Chemical Formula 10]
[0031]
(Wherein R and m have the same meanings as in general formula (I). X represents a bromine atom or a chlorine atom, but a bromine atom is preferred), and bromide or chloride is reacted with magnesium metal to form Grignard. It can be obtained by reacting with iodine as an reactant or an organolithium reactant. Here, it is more preferable to use magnesium as the metal. In the reaction, an ether solvent such as THF can be mixed with a hydrocarbon solvent such as hexane or toluene, if necessary, but THF is preferred. The reaction with iodine is carried out at room temperature or under cooling, but is preferably -20 ° C to 25 ° C.
[0032]
Accordingly, the compounds of the general formula (II) include the following formulas (IIa) to (IId)
[0033]
Embedded image
[0034]
Particularly preferred is 4-iodo-1- (3-butenyl) benzene of the formula (IIa) in which R is a hydrogen atom and m is 0 in the general formula (II).
[0035]
The compounds of general formula (I) and general formula (II) thus obtained can be suitably used as synthetic intermediates for various liquid crystal compounds including alkenyltolane derivatives.
[0036]
For example, by reacting the compound of the general formula (I) of the present invention with the above-mentioned phenylacetylene derivative of the general formula (V) in the presence of a palladium catalyst, a copper (I) catalyst and an amine solvent, the general formula (A)
[0037]
Embedded image
[0038]
(Wherein R, m and R a have the above-mentioned meanings) can be produced. Alternatively, the compound of the general formula (A) can be produced in the same manner from the compound of the general formula (II) of the present invention and the compound of the general formula (VI). This compound of the general formula (A) is a compound that the present inventors have successfully synthesized for the first time, and has a low viscosity, a large refractive index anisotropy, and a corresponding alkyltolane derivative. The liquid crystal phase temperature range is wide. Therefore, it is extremely suitable as a component of the liquid crystal composition that requires the above-described high-speed response.
[0039]
The compound of the present invention is also useful as an intermediate for producing a liquid crystal compound other than an alkenyltolane derivative represented by the general formula (A). For example, by reacting a Grignard reactant prepared from the halogenated benzene of the above general formula (VI) with the compound of the general formula (II) of the present invention in the presence of a palladium-based or nickel-based catalyst, Formula (B)
[0040]
Embedded image
[0041]
(Wherein R, m and R b have the above-mentioned meanings) can be produced. The compound of the general formula (B) has a slightly lower refractive index anisotropy than the compound of the general formula (A), but is similarly low in viscosity, and is also a useful compound in the preparation of a fast-responsive liquid crystal composition. .
[0042]
As described above, it can be seen that various useful liquid crystal compounds can be produced by using the compounds of the general formulas (I) and (II) of the present invention.
[0043]
【Example】
The following examples further illustrate the present invention. However, the present invention is not limited to these examples.
[0044]
The structure of the compound was confirmed by nuclear magnetic resonance spectrum (NMR), mass spectrum (MS) and infrared absorption spectrum (IR). Further, “%” in the composition represents “% by weight”.
(Reference Example) Synthesis of 4-bromo-1- (3-butenyl) benzene
Embedded image
[0046]
374 g of 4-bromobenzyl bromide was dissolved in 1600 ml of THF and stirred at 5 ° C. To this, 785 ml of allylmagnesium chloride (2M THF solution) prepared from allyl chloride and magnesium was added dropwise over 1 hour. The mixture was further stirred at 5 ° C. for 1 hour, allowed to cool to room temperature, and diluted hydrochloric acid was added to terminate the reaction. Extraction was performed with 800 ml of hexane, and the organic layer was washed with water and then with saturated saline. After dehydrating and drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 310 g of the title 4-bromo-1- (3-butenyl) benzene. (Yield 98%)
The purity of this compound by gas chromatography was 99% or more, and it could be used as it was for the synthesis of the liquid crystal compounds shown in the application examples without further purification.
[0047]
Similarly, the following compound is obtained.
4-Bromo-1- (3-pentenyl) benzene 4-bromo-1- (4-pentenyl) benzene 4-bromo-1- (5-hexenyl) benzene 4-chloro-1- (3-butenyl) benzene 4- Chloro-1- (3-pentenyl) benzene 4-chloro-1- (4-pentenyl) benzene 4-chloro-1- (5-hexenyl) benzene (Example 1) 4-iodo-1- (3-butenyl) Synthesis of benzene (compound of formula (IIa))
Embedded image
[0049]
16.4 g of magnesium was suspended in 20 ml of dry THF, and a solution of 150 g of 4-bromo-1- (3-butenyl) benzene obtained in Reference Example in 600 ml of THF was added dropwise at such a rate that the solvent kept refluxing gently. . After completion of dropping, the mixture was stirred for 2 hours and allowed to cool to room temperature. 162 g of iodine was dissolved in 480 ml of THF and added dropwise at 10 ° C. over 1 hour. After completion of the dropwise addition, the mixture was stirred for 1 hour, water and then an aqueous sodium hydrogen sulfite solution were added, and the mixture was extracted with toluene. The organic layer was washed with water and then with saturated brine and dried over anhydrous sodium sulfate. The crude product obtained by distilling off the solvent was purified using silica gel column chromatography (hexane) to obtain 171 g of 4-iodo-1- (3-butenyl) benzene represented by the general formula (II). It was.
NMR: δ = 2.2-2.8 (m, 4H), 4.9-5.1 (m, 1H), 5.3-5.9 (m, 2H), 6.9 (d, 2H) , J = 8.1 Hz), 7.6 (d, 2H, J = 8.1 Hz)
MS: m / e = 258 (M + )
The following compounds are obtained in the same manner using the compounds obtained in Reference Examples.
[0050]
4-Iodo-1- (3-pentenyl) benzene (compound of formula (IIb))
4-Iodo-1- (4-pentenyl) benzene (compound of formula (IIc))
4-Iodo-1- (5-hexenyl) benzene (compound of formula (IId))
Example 2 Synthesis of 4-ethynyl-1- (3-butenyl) benzene (Compound of Formula (Ia))
Embedded image
[0052]
86.4 g of 4-iodo-1- (3-butenyl) benzene obtained in Example 1, 2.35 g of dichlorobis (triphenylphosphine) palladium (II) and 637 mg of copper (I) iodide were dissolved in 120 ml of DMF and 90 ml of triethylamine. did. A solution of 42.2 g of 2-methyl-3-butyn-2-ol in 60 ml of DMF was added dropwise thereto at 30 ° C. or lower, and the mixture was further stirred at room temperature for 2 hours.
[0053]
Dilute hydrochloric acid and toluene were added, the aqueous layer was extracted with toluene, the organic layers were combined, washed with water and then with saturated saline. After dehydration and drying with anhydrous sodium hydrogensulfate, the solvent was distilled off under reduced pressure to obtain 73.7 g of a crude product of 4- [4- (3-butenyl) phenyl] -2-methyl-3-butyn-2-ol. Got.
[0054]
To this total amount, 670 mg of sodium hydroxide was added and stirred at 80 ° C. for 2 hours while distilling off the produced acetone. Distillation was performed under reduced pressure (165 ° C./15 mmHg) to obtain 39.3 g of 4-ethynyl-1- (3-butenyl) benzene represented by the general formula (I).
NMR: δ = 2.1-2.7 (m, 4H), 3.0 (s, 1H), 4.9-5.1 (m, 2H), 5.5-6.0 (m, 1H) ), 7.1 (d, 2H, J = 8.4 Hz), 7.4 (d, 2H, J = 8.4 Hz)
MS: m / e = 156 (M + )
Similarly, the following compound is obtained.
[0055]
4-Ethynyl-1- (3-pentenyl) benzene (compound of formula (Ib))
4-ethynyl-1- (4-pentenyl) benzene (compound of formula (Ic))
4-Ethynyl-1- (5-hexenyl) benzene (compound of formula (Id))
(Application Example) Synthesis of liquid crystal compound, preparation of liquid crystal composition and electro-optical properties thereof (a) Synthesis of 1- [4- (3-butenyl) phenyl] -2- (4-methylphenyl) ethyne
Embedded image
[0057]
41.6 g of 4-methyl-1-iodobenzene, 2.2 g of dichlorobistriphenylphosphine palladium (II) and 360 mg of copper (I) were dissolved in 200 ml of DMF and 45 ml of triethylamine. To this, a solution of 31.3 g of 4-ethynyl-1- (3-butenyl) benzene obtained in Example 2 in 60 ml of DMF was added dropwise at 30 ° C. or less over 3 hours, and further stirred at room temperature for 1 hour. Water and 10% hydrochloric acid were added, and the aqueous layer was separated and extracted with toluene. The organic layers were combined and washed with 10% hydrochloric acid, water and then saturated brine. After dehydrating and drying over anhydrous sodium sulfate, the solvent was distilled off to obtain 53.7 g of 1- [4- (3-butenyl) phenyl] -2- (4-methylphenyl) ethyne crude crystals. This was purified using silica gel column chromatography (hexane), and further recrystallized from ethanol to obtain 35.4 g of a purified product. This compound was crystalline at room temperature and had a melting point of 40 ° C.
(B) Preparation of liquid crystal composition (1)
Host liquid crystal (H) suitable for active matrix drive that is currently widely used
[0058]
Embedded image
[0059]
The following physical properties and electro-optical properties are as follows.
Nematic phase upper limit temperature (T NI ): 116.7 ° C.
Viscosity (20 ° C.): 19.8 cp
Response time (τr = τd): 21.5 ms Refractive index anisotropy (Δn): 0.090
Here, the viscosity is a measured value at 20 ° C., and the response time is a measured value when a voltage is applied so that the rise time (τr) and the fall time (τd) are equal when sealed in a TN cell having a thickness of 4.5 μm. is there.
[0060]
70% by weight of the host liquid crystal (H) and 1- [4- (3-butenyl) phenyl] -2- (4-methylphenyl) ethyne obtained in the above (a)
Embedded image
[0062]
A liquid crystal composition (M-1) consisting of 30% by weight was prepared. The physical property values and electro-optical characteristics were as follows.
Nematic phase upper limit temperature (T NI) : 86.0 ° C
Viscosity (20 ° C.): 15.0 cp
Response time (τr = τd): 9.5 ms Refractive index anisotropy (Δn): 0.146
Thus, it can be seen that the viscosity is reduced to about 3/4 and the response time is greatly improved to less than half. The refractive index anisotropy also increased by about 1.5 times. This 1- [4- (3-butenyl) phenyl] -2- (4-methylphenyl) ethyne is crystalline by itself and does not exhibit liquid crystallinity, but it can also be seen that the decrease in TNI due to its addition is relatively small. .
(C) Synthesis of 4,4′-di (3-butenyl) biphenyl
Embedded image
[0064]
2.1 g of magnesium was suspended in 5 ml of dried THF. To this was added dropwise a solution of 4-bromo-1- (3-butenyl) benzene 18.0 g obtained in Reference Example in 70 ml of THF at a rate at which the solvent gently refluxed. The Grignard reactant obtained by cooling to room temperature with stirring was obtained by using 20 g of 4-iodo-1- (3-butenyl) benzene obtained in Example 1 and 0.9 g of tetrakis (triphenylphosphine) palladium (0). The solution was added dropwise to a 60 ml THF solution at room temperature. After stirring for 2 hours, water was added, the mixture was extracted with hexane, washed with water and then with saturated saline, and dried over anhydrous sodium sulfate. The crude product (21.3 g) obtained by distilling off the solvent was purified using silica gel column chromatography and further recrystallized from ethanol at a low temperature to obtain 13.8 g of the title compound.
[0065]
This compound had a melting point of 20 ° C. or lower, exhibited a smectic phase at room temperature, and became an isotropic liquid phase at 71 ° C. or higher.
(D) Preparation of liquid crystal composition (1)
70% by weight of the host liquid crystal (H) and 4,4′-di (3-butenyl) biphenyl obtained in the above (c)
Embedded image
[0067]
A liquid crystal composition (M-1) consisting of 30% by weight was prepared. The physical property values of (M-1) were as follows.
Nematic phase upper limit temperature (T NI ): 76.4 ° C
Viscosity (20 ° C.): 13.1 cp
Response time (τr = τd): 12.0 ms Refractive index anisotropy (Δn): 0.113
Thus, it can be seen that the compound of general formula (I) of the present invention has a lower nematic phase upper limit temperature (T NI ), but its viscosity is greatly reduced and the response time is also improved. Further, the refractive index anisotropy could be increased by 25%. Therefore, it can be seen that the compound of the general formula (I) is very useful as a component of the low-viscosity high-speed liquid crystal composition.
[0068]
As described above, the liquid crystal compound produced using 4-iodo-1-alkenylbenzene and 4-ethynyl-1-alkenylbenzene obtained by the production method of the present invention as intermediates has low viscosity and refractive index anisotropy. It can be seen that it is extremely useful in preparing a large liquid crystal composition excellent in high-speed response.
[0069]
【The invention's effect】
By using the 4-substituted-1-alkenylbenzene provided by the present invention as an intermediate, various liquid crystal compounds that are alkenylbenzene derivatives can be easily produced industrially. Since these liquid crystal compounds are excellent in the effect of reducing the viscosity and improving the responsiveness, the liquid crystal composition containing them is very useful as a practical liquid crystal, particularly for a liquid crystal display requiring a high-speed response.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09109596A JP3841178B2 (en) | 1996-04-12 | 1996-04-12 | Alkenylbenzene derivative and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09109596A JP3841178B2 (en) | 1996-04-12 | 1996-04-12 | Alkenylbenzene derivative and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09278684A JPH09278684A (en) | 1997-10-28 |
JP3841178B2 true JP3841178B2 (en) | 2006-11-01 |
Family
ID=14016968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09109596A Expired - Lifetime JP3841178B2 (en) | 1996-04-12 | 1996-04-12 | Alkenylbenzene derivative and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3841178B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5481812B2 (en) | 2007-09-13 | 2014-04-23 | Jnc株式会社 | Liquid crystal composition and liquid crystal display element |
CN101555192B (en) * | 2009-05-19 | 2013-06-05 | 烟台显华化工科技有限公司 | Paraalkenyl bromobenzene, paraalkenyl iodobenzene or paraalkenyl chlorobenzene, synthetic method and applications thereof |
WO2011030708A1 (en) * | 2009-09-14 | 2011-03-17 | チッソ株式会社 | Liquid crystal composition and liquid crystal display element |
-
1996
- 1996-04-12 JP JP09109596A patent/JP3841178B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09278684A (en) | 1997-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3780547B2 (en) | Bicyclohexane derivative | |
JP3783246B2 (en) | p-terphenyl derivatives | |
JP3841178B2 (en) | Alkenylbenzene derivative and method for producing the same | |
JP4193005B2 (en) | New alkenylbiphenyl derivatives | |
JP3981844B2 (en) | New alkenyltolane derivatives | |
JP3783248B2 (en) | 4- (2-Cyclohexyl) propyl-p-terphenyl derivative | |
JPH03127748A (en) | Dicylohexylethylene derivative | |
JP3783247B2 (en) | 1,2-dicyclohexylpropane derivative | |
JP4314656B2 (en) | Dialkenyl compounds | |
JP3944611B2 (en) | Dialkenyl biphenyl derivatives | |
JP4193075B2 (en) | Alkenyl terphenyl derivatives | |
JPH1143450A (en) | New alkenyl biphenyl derivatives | |
JP3632772B2 (en) | 4-alkenyloxy-3,5-difluorobenzene derivatives | |
JP3632778B2 (en) | (2-Cyclohexyl) propylbenzene derivative | |
JP3865084B2 (en) | Dialkenyltolane derivatives | |
JP4045474B2 (en) | Fluoroterphenyl derivatives | |
JP4193077B2 (en) | 1,3-phenylene derivatives | |
JP4437284B2 (en) | Liquid crystal composition containing alkenylbiphenyl derivative | |
JP3716436B2 (en) | 5-substituted alkylbenzene derivatives | |
JP4315298B2 (en) | Alkenyltolane derivatives | |
JP4239242B2 (en) | Phenylnaphthalene derivative | |
JP4547904B2 (en) | Liquid crystal composition, display element and liquid crystalline compound containing trifluoronaphthalene derivative. | |
JP2646262B2 (en) | Difluoroalkylcyclohexylbenzonitrile derivative | |
JP3937185B2 (en) | 2-fluorobiphenyl derivatives | |
JP3642345B2 (en) | (Fluoroalkenyl) benzene derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060720 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060802 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110818 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110818 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120818 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130818 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |