[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3726087B2 - Aluminum alloy forged material for transport machine structural material and method for producing the same - Google Patents

Aluminum alloy forged material for transport machine structural material and method for producing the same Download PDF

Info

Publication number
JP3726087B2
JP3726087B2 JP2003114495A JP2003114495A JP3726087B2 JP 3726087 B2 JP3726087 B2 JP 3726087B2 JP 2003114495 A JP2003114495 A JP 2003114495A JP 2003114495 A JP2003114495 A JP 2003114495A JP 3726087 B2 JP3726087 B2 JP 3726087B2
Authority
JP
Japan
Prior art keywords
forging
crystal grains
aluminum alloy
flash
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003114495A
Other languages
Japanese (ja)
Other versions
JP2004315938A (en
Inventor
学 中井
典史 細田
佳也 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003114495A priority Critical patent/JP3726087B2/en
Publication of JP2004315938A publication Critical patent/JP2004315938A/en
Application granted granted Critical
Publication of JP3726087B2 publication Critical patent/JP3726087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度、高靱性であって、耐応力腐食割れ性などの耐食性にも優れた輸送機構造材用Al-Mg-Si系アルミニウム合金鍛造材およびその製造方法 (以下、アルミニウムを単にAlとも言う) に関するものである。
【0002】
図1 を用いて、本発明鍛造材で言うフラッシュ部と製品部とを定義する。図1 はAl合金鍛造材1 の断面図を示す。この内、フラッシュ部とは、Al合金鍛造材本体である製品部2 と、フラッシュと称される型鍛造バリ3 との境界部近傍における、型割り面4 に対し垂直方向の切断部5aの部位の意味である。
【0003】
【従来の技術】
周知の通り、車両、船舶、航空機、自動二輪あるいは自動車などの輸送機の構造材乃至部品用、特にアッパーアーム、ロアーアームなどの足回り部品として、AA乃至JIS の規格で言う6000系(Al-Mg-Si 系) などのAl合金鍛造材が使用されている。6000系Al合金鍛造材は、高強度で高靱性で耐食性にも比較的優れている。また、6000系Al合金自体も、合金元素量が少なく、スクラップを再び6000系Al合金溶解原料として再利用しやすい点で、リサイクル性にも優れている。
【0004】
これら6000系Al合金鍛造材は、Al合金鋳造材を均質化熱処理後、メカニカル鍛造、油圧鍛造などの熱間鍛造(型鍛造)を行い、その後、溶体化および焼き入れ処理と人工時効硬化処理との所謂調質処理が施されて製造される。なお、鍛造用の素材には、前記鋳造材の他に、鋳造材を一旦押出した押出材が用いられることもある。
【0005】
近年、これら輸送機の構造材においても、より薄肉化させた上での高強度化や高靱性化が求められている。このため、Al合金鋳造材やAl合金鍛造材のミクロ組織を改善することが種々行われている。例えば、6000系Al合金鋳造材の晶析出物 (晶出物や析出物) の平均粒径を8 μm 以下と小さくし、かつデンドライト二次アーム間隔(DAS) を40μm 以下と細かくして、Al合金鍛造材をより高強度で高靱性化することが提案されている(特許文献1、2参照) 。
【0006】
【特許文献1】
特開平07-145440 号公報
【特許文献2】
特開平06-256880 号公報
【0007】
また、6000系Al合金鍛造材の結晶粒内や粒界の晶出物や晶析出物の平均粒径や平均間隔などを制御することで、Al合金鍛造材をより高強度で高靱性化することも提案されている。これらの制御は、粒界腐食や応力腐食割れなどに対しても高耐食性化できる。そして、これらの晶出物や晶析出物の制御に合わせて、Mn、Zr、Crなどの結晶粒微細化効果を有する遷移元素を添加して、結晶粒を微細化乃至亜結晶粒化させ、破壊靱性や疲労特性を向上させることもこれらの提案の中で記載されている(特許文献3、4、5参照) 。
【0008】
【特許文献3】
特開2000-144296 号公報
【特許文献4】
特開2001-107168 号公報
【特許文献5】
特開2002-294382 号公報
【0009】
しかし、これら6000系Al合金鍛造材には、上記鍛造および溶体化処理工程において、加工組織が再結晶して粗大結晶粒が発生する傾向がある。これら粗大結晶粒が発生した場合、上記ミクロ組織を制御しても、高強度化や高靱性化が果たせず、また、耐食性も低下する。しかも、これらの各特許文献では、鍛造における加工温度が450 ℃未満と比較的低く、このような低温の熱間鍛造では、目標としている結晶粒を微細化乃至亜結晶粒化させることが実際には困難である。
【0010】
一方、前記加工組織が再結晶化した粗大結晶粒の発生を抑制するため、Mn、Zr、Crなどの結晶粒微細化効果を有する遷移元素を添加した上で、450 〜570 ℃の比較的高温の温度で熱間鍛造を開始することが知られている(特許文献6、7参照) 。
【0011】
【特許文献6】
特開平5-247574号公報
【特許文献7】
特開2002-348630 号公報
【0012】
【発明が解決しようとする課題】
一般的に型鍛造で製作された輸送機構造材用のAl合金鍛造材には、輸送機構造材となる製品部に加えて、通常は型鍛造の際のバリとなるフラッシュ部を所定長さでそのまま有する鍛造材が多い。即ち、大部分のフラッシュ部はバリとして切断されるものの、所定長さのフラッシュ部が残留されて製品部についたまま、輸送機構造材とされる場合が多い。
【0013】
このようなフラッシュ部を有する鍛造材の場合、前記特許文献6 、7などのように、鍛造開始温度を450 〜570 ℃の比較的高温としても、複数回の鍛造工程が再加熱無しあるいは再加熱有りなどで行われる熱間鍛造では、鍛造終了時の鍛造材温度が比較的低温となることも大いにあり得る。そして、このように鍛造終了時の鍛造材温度が比較的低温となった場合、特に、フラッシュ部において、加工組織が再結晶した粗大結晶粒が発生する可能性がある。
【0014】
また、通常、再加熱無しで複数回行われるメカニカルプレスを用いた熱間鍛造などにおいては、部位によって熱間鍛造時の加工率が大きく異なる。このため、製品部とフラッシュ部とが必然的に存在する前記足回り部品などの型鍛造品において、この製品部とフラッシュ部とでは、熱間鍛造時の加工率が大きく異なる。即ち、製品厚みが大きい製品部では加工率が小さくなり、一方、製品部に比して厚みが著しく薄いフラッシュ部では加工率が大きくなる。このような場合、前記熱間鍛造開始温度や鍛造終了温度を450 〜570 ℃の比較的高温としても、加工歪みをより加えられたフラッシュ部では、溶体化処理工程において、特に、加工組織が再結晶して粗大結晶粒が発生しやすい。
【0015】
この問題は、本発明者らが先に提案した特願2002-188050 号においても生じうる。即ち、この発明では、Mg:0.6〜1.8%、Si:0.4〜1.8%を含み、更に、Mn:0.01 〜0.6%、Cr:0.1〜0.2%およびZr:0.1〜0.2%の一種または二種以上を含み、残部Alおよび不可避的不純物からなるアルミニウム合金鍛造材であって、人工時効処理後のアルミニウム合金鍛造材の、0.2%耐力が300MPa以上およびシャルピー衝撃値が10J/cm2 以上であり、更に、製品とフラッシュとの切断面の組織における、型割り面に垂直な方向の結晶粒径であって、この結晶粒径の内の最大のものが400 μm 以下とすることを特徴としている。しかし、この発明でも、好ましい熱間鍛造開始温度は、実施例ともに、350 〜 450℃の比較的低い温度であり、複数回の鍛造工程が再加熱無しで行われる熱間鍛造の場合には、鍛造終了時の鍛造材の温度が比較的低温となることも大いにあり得る。この結果、前記フラッシュ部において、加工組織が再結晶した粗大結晶粒が発生する可能性をなお有している。
【0016】
このフラッシュ部に粗大結晶粒が発生した場合、鍛造品全体としての高強度化や高靱性化が果たせず、また、耐食性も低下する。特に、耐食性の低下は重大であって、このフラッシュ部が、輸送機構造材として、鋼などのAl合金よりも貴な他の金属部材と接合されて用いられ、また更に、引張応力が付加されて使用される場合には、粒界腐食や、更には応力腐食割れを非常に生じやすい使用環境となる。この種輸送機構造材の機械的な破壊ならびに腐食に起因する破壊は、まず、このような部位で発生すると言ってよく、フラッシュ部の粗大結晶粒発生は、このような問題につながってしまう。
【0017】
この点、前記した通り、これまでの6000系Al合金鍛造材の組織において、粗大結晶粒の発生を抑制し、結晶粒を微細化させる指向方向だけでは、鍛造材を再現性良く、高強度化、高靱性化および高耐食性化させることには限界があったのが実情である。
【0018】
この様な事情に鑑み、本発明の目的は、製品部とフラッシュ部とが形成された輸送機構造材用Al-Mg-Si系アルミニウム合金鍛造材において、高強度化、高靱性化および高耐食性化させた鍛造材およびこの鍛造材を再現性良く製造できる製造方法を提供しようとするものである。
【0019】
【課題を解決するための手段】
この目的を達成するために、本発明輸送機構造材用アルミニウム合金鍛造材の要旨は、製品部とフラッシュ部とが形成されたAl-Mg-Si系アルミニウム合金鍛造材であって、Mg:0.6〜1.8%、Si:0.4〜1.8%を含み、更に、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の一種または二種以上を含み、残部Alおよび不可避的不純物からなり、前記製品部組織中の亜結晶粒の平均面積率割合を70% 以上とするとともに、前記フラッシュ部組織中の亜結晶粒の平均面積率割合を40% 以上とし、前記製品部の0.2%耐力を350MPa以上およびシャルピー衝撃値を15J/cm2 以上としたことである。
【0020】
また、本発明輸送機構造材用アルミニウム合金鍛造材の製造方法の要旨は、上記アルミニウム合金鍛造材の製造方法であって、Mg:0.6〜1.8%、Si:0.4〜1.8%を含み、更に、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の一種または二種以上を含み、残部Alおよび不可避的不純物からなり、平均結晶粒径を100 μm 以下としたAl-Mg-Si系アルミニウム合金鋳造材を、均質化熱処理後に、製品部とフラッシュ部とが形成された鍛造材に熱間鍛造するに際し、加工温度を450 ℃以上とし、製品部の歪み量を60% 以上とし、熱間鍛造後、更に溶体化および焼き入れ処理と人工時効硬化処理することである。
【0021】
なお、本発明で、熱間鍛造の加工温度、均質化熱処理、鍛造後の調質処理等で規定する温度は、全て鋳造材や鍛造材製品部の外表面の温度である。
【0022】
本発明者らは、製品部とフラッシュ部との組織の結晶粒の微細化もさることながら、製品部とフラッシュ部との組織中の亜結晶粒の割合が、鍛造材の高強度化、高靱性化および高耐食性化に大きく影響 (寄与) することを知見した。即ち、鍛造材にとって共に重要な保安部位である、製品部とフラッシュ部との組織中の亜結晶粒の割合を高く作り込めば、製品部だけではなく、フラッシュ部も含めた鍛造材全体の高強度化、高靱性化および高耐食性化が再現性良く実現できる。
【0023】
本発明において、製品部組織およびフラッシュ部組織中の亜結晶粒の平均面積率割合を多く作り込めば、フラッシュ部を含めて、鍛造材の製品部の0.2%耐力を350MPa以上およびシャルピー衝撃値を15J/cm2 以上とでき、耐応力腐食割れ性も向上できる。この結果、本発明鍛造材を、鉄ブッシュのような鉄鋼材料部材と直接接合したような場合でも、耐応力腐食割れ性が向上する。即ち、本発明における製品部組織およびフラッシュ部組織中の亜結晶粒化は、製品部を含めた鍛造材全体の高強度化、高靱性化および高耐食性化の品質の保証、再現性の保証となるものである。
【0024】
これに対して、前記した高温鍛造により、製品部組織の平均結晶粒径を幾ら微細化させても、亜結晶粒の平均面積率割合が少なければ、製品部とフラッシュ部とを含めた鍛造材全体の高強度化と高靱性化、更には高耐食性化とを、再現性良く実現できない。また、前記した高温鍛造により、製品部組織を亜結晶粒化させても、フラッシュ部の方も併せて亜結晶粒化できる保障は必ずしも無い。前記した高温鍛造により、製品部組織を亜結晶粒化させる条件では、むしろ、後述する通り、フラッシュ部の方は亜結晶粒化しにくくなる。
【0025】
製品部とフラッシュ部とを含めたミクロ組織中の亜結晶粒化 (結晶粒内への微細亜結晶粒形成) を促進して、できるだけ均一な亜結晶粒主体の組織とするためには、前記した高温鍛造においても、鍛造温度条件だけではなく、複数の各鍛造回数 (工程) での加工率や加工歪みを考慮する必要がある。この加工率や加工歪みは、特に製品部などの、鋳造組織の残留による強度や靱性の低下を防止し、形状精度を確保するとともに、結晶粒内への微細亜結晶粒形成のためには、できるだけ高くする必要がある。この加工率や加工歪み量が小さ過ぎる場合、前記高温での熱間鍛造を施しても、製品部とフラッシュ部とのミクロ組織を各々亜結晶粒主体、亜結晶粒割合が大きい組織とすることができない。また、溶体化処理工程において、加工組織が再結晶して粗大結晶粒が発生しやすい。
【0026】
例えば、熱間鍛造の種類においても、メカニカルプレスによる鍛造よりも、油圧プレスによる鍛造などの方が、一回当たりの鍛造の加工歪みを鍛造素材に均一に加えやすい。したがって、ミクロ組織中の亜結晶粒の割合 (平均面積率割合) を高くしやすい。
【0027】
このため、製品部とフラッシュ部とを含めた組織中の亜結晶粒化を促進し、できるだけ均一な亜結晶粒主体の組織とするためには、後述する通り、種々の鍛造方法ごとに、その鍛造回数や、複数の各鍛造回数 (工程) での鍛造温度と、製品部とフラッシュ部との加工率や加工歪みなど、各部位の鍛造条件を考慮して鍛造する必要がある。
【0028】
【発明の実施の形態】
前記図1 で説明した通り、本発明で言うフラッシュ部とは、Al合金鍛造材本体である製品部2 とフラッシュ3 との境界部近傍における、型割り面4 に対し垂直なST方向の切断面およびその近傍の切断部5aの部位である。例えば、輸送機構造材としての自動車の足回り部品など、このフラッシュ部である切断部5aが、ブッシュ近傍に位置することとなる。足回り部品などにおいて、ブッシュのアウタカラーを挿入すると、アウタカラー周囲のAl合金鍛造材には引張応力が発生する。このアウタカラーには鉄製とアルミニウム合金製とがある。アウタカラーが鉄製の場合、Al合金鍛造材と鉄製アウタカラーとは異材接合となり、腐食環境下では電食を生じ易くなる。また、切断部5aおびその近傍は、ブッシュのアウタカラーの挿入により、鍛流線を引き剥がす方向に引張応力が発生し、この点からも、Al合金鍛造材と鉄製アウタカラーとの異材接合では、腐食環境下で電食を生じ易くなる。したがって、このフラッシュ部は、特に耐応力腐食割れが発生しやすい部位である。
【0029】
図2 に示すように、前記足回り部品などのAl合金鍛造材1 は、通常、金型鍛造における上型7 と下型8 の金型によって、両金型の境界にできる境界面 (分割する面) である型割り面4(パーティングラインとも言う) と、上型7 と下型8 の金型との隙間から余分なAl合金を鍛造中に排出する空間であるガッタ9 と、フラッシュランドと称される一定の隙間10を設けて鍛造される。このようにして鍛造されたAl合金鍛造材1 には、上記ガッタ9 内に、必然的に、フラッシュと称されるバリ3 が生じる。このフラッシュ3 は、鍛造後、トリムライン (フラッシュ切断線)5において、製品部2 と分離切断されるが、フラッシュ3 の一部 (例えば根元部分) は残留するように切断される。このため、例えば、前記足回り部品などでは、製品部2 と、型割り面4 方向に一定長さを有するフラッシュ部5aとが一体に存在する鍛造材製品として用いられる。
【0030】
一方、図1 に示すように、Al合金鍛造材1 の製品部2 の各メタルフロー (鍛流線)6は、メタルフロー6 同士の間隔が狭くなって、そのままフラッシュ3 内に流入している。このような製品部2 とフラッシュ部5aとでは、熱間鍛造時の加工率が大きく異なる。この点、通常はフラッシュ部5aの方の加工率が80% 以上と大きくなる。このため、複数回行われる熱間鍛造においては、加工率が高いフラッシュ部5aでは、最終回次の熱間鍛造の終了温度が、特に360 ℃未満の比較的低温となると、加工歪みをより加えられたフラッシュ部5aは、溶体化処理工程において、特に、加工組織が再結晶して粗大結晶粒が発生しやすくなる。
【0031】
このフラッシュ部5aやその近傍の部分に、結晶粒粗大化が生じた場合、前記したように、ミクロ組織や結晶粒を制御しても、高強度化や高靱性化が果たせない。このため、フラッシュ部5aやその近傍が構造材としての使用中に、外表面となったり、前記ST方向に引張応力が付加される場合には、厳しい腐食環境との相乗効果で、この部分に応力腐食割れが発生する可能性が高くなる。
【0032】
本発明における亜結晶粒は、後述する図3 の発明例に図示するように、結晶粒内に数多く形成される。この亜結晶粒は、通常の微細な結晶粒が100 μm 以下の50〜80μm 程度の平均粒径を有するのに対し、平均粒径が1 〜10μm と超微細である。このため、製品部2とフラッシュ部5aとの組織中の亜結晶粒の割合 (結晶粒内に形成される亜結晶粒数) である平均面積率割合を多くした場合、平均結晶粒径の微細化よりも、鍛造材の高強度化、高靱性化および高耐食性化が顕著に、また再現性良く実現できる。ただ、重要なことは、鍛造材の結晶粒を100 μm 以下の平均結晶粒径に微細化しても、結晶粒内に亜結晶粒が形成されるとは限らない。結晶粒が粗大化した場合には結晶粒内に亜結晶粒は形成されないが、後述する製造条件によっては、鍛造材の結晶粒が100 μm 以下の平均結晶粒径に微細化しても、結晶粒内に亜結晶粒が形成されない場合もある。
【0033】
本発明において、ミクロ組織における亜結晶粒の割合を高くする、言い換えると、結晶粒内に微細な亜結晶粒を多数形成させれば、鍛造材の強度、耐力、靱性、耐耐応力腐食割れ性などを再現性良く向上できる。より具体的には、製品部2 組織中の亜結晶粒の平均面積率割合を70% 以上とするとともに、前記フラッシュ部5a組織中の亜結晶粒の平均面積率割合を40% 以上とすれば、前記製品部の0.2%耐力を350MPa以上およびシャルピー衝撃値を15J/cm2 以上、好ましくは20J/cm2 以上と高くできる。また、製品部2 を含めて、フラッシュ部5aの耐応力腐食割れ性も向上できる。
【0034】
このため、前記ブッシュなどの他の鉄鋼部材などとの接合や、引張応力が付加されて使用されるような、応力腐食割れの腐食環境が厳しい使用環境であっても、特にフラッシュ部5aの耐応力腐食割れ性を向上できる。言い換えると、本発明鍛造材の輸送機構造材への使用に際し、耐応力腐食割れ性を考慮した、アルミブッシュなどの使用や、鉄ブッシュの使用に際した特別なシールなどの手段は不要となる。
【0035】
また、好ましくは、製品部2 組織中の亜結晶粒の平均面積率割合を90% 以上とするとともに、前記フラッシュ部5a組織中の亜結晶粒の平均面積率割合を50% 以上とすれば、鍛造材製品部2の0.2%耐力を350MPa以上およびシャルピー衝撃値を20J/cm2 以上に高めることができる。また、製品部2 を含めて、フラッシュ部5aの耐応力腐食割れ性も更に向上できる。
【0036】
一方、製品部2 組織中の亜結晶粒の平均面積率割合が70% 未満か、フラッシュ部5a組織中の亜結晶粒の平均面積率割合が40% 未満のいずれか、のようにミクロ組織中の亜結晶粒の割合が低ければ、鍛造材製品部2の平均結晶粒径を50〜80μm に微細化させても、鍛造材製品部2の0.2%耐力を350MPa以上およびシャルピー衝撃値を15J/cm2 以上と再現性良く実現できない。また、輸送機構造材としての使用中にフラッシュ部5aに引張応力が付加される場合には、前記した鉄鋼部材との接合による電食などとの相乗効果で、応力腐食割れが発生する可能性が高くなる。
【0037】
なお、ミクロ組織中の亜結晶粒の割合 (平均面積率割合) を高くする製品部位は、必ずしも製品部位全てでなくても良い。亜結晶粒の割合を高くする製品部位は、必要に応じて、また、前記輸送機の構造材乃至部品などの鍛造材の用途に応じて適宜決定乃至選択される。例えば、アッパーアーム、ロアーアームなどの足回り部品では、高強度化、高靱性化および高耐食性化が必要な部位は、端部リング状の他の車体部材との接合部である前記フラッシュ部および製品部である。
【0038】
この亜結晶粒の平均面積率割合(%) の測定方法を説明する。亜結晶粒の面積率割合とは、前記製品部2 やフラッシュ部5aの組織観察における、視野面積に対する亜結晶粒の占める合計面積の割合である。より具体的には、先ず、試料の組織観察面を機械研磨にて、鏡面状態まで仕上げる。そして、更に組織観察面を、10℃の2%苛性ソーダ水溶液中に20分浸漬した後、200 倍の光学顕微鏡によって観察し、ミクロ組織写真を撮影する。亜結晶粒の平均面積率割合(%) は、このミクロ組織写真より上記要領で算出する。後述する図3 の発明例の組織写真の通り、結晶粒と結晶粒内の亜結晶との区別は上記倍率の光学顕微鏡で明確に判別でき、1 視野当たりの亜結晶粒の面積率割合も算出できる。
【0039】
この際、製品部2 やフラッシュ部5aの部位によるバラツキを考慮するため、製品部2 とフラッシュ部5aとの各々より、各5 個試料を採取し、各試料毎に5 視野を観察し、各視野毎の亜結晶粒の面積率割合を算出する。そして、製品部2 とフラッシュ部5aとの各々、合計25視野の各亜結晶粒の面積率割合の平均値を、亜結晶粒の平均面積率割合(%) とする。なお、鋳造材や鍛造材の平均結晶粒径も上記測定方法、条件で測定できる。
【0040】
次に、本発明Al合金鍛造材乃至鍛造材用の素材における、化学成分組成について説明する。本発明鍛造材のAl合金化学成分組成は、自動車、船舶などの輸送機材や構造材あるいは部品用として、高強度、高靱性および耐応力腐食割れ性などの高い耐食性乃至耐久性を保証する必要がある。
【0041】
したがって、本発明に係るAl合金鋳造材、あるいは鍛造材の化学成分組成は、Al-Mg-Si系のJIS 6000系Al合金の成分規格 (JIS 6101、6111、6003、6151、6061、6N01、6063など) に相当するものとして、基本的にはMg:0.6〜1.6%、Si:0.4〜1.8%を含み、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の一種または二種以上を含む。なお、各元素量における% 表示はすべて質量% の意味である。
【0042】
しかし、JIS 6000系Al合金の各成分規格通りにならずとも、前記本発明の諸特性を阻害しない範囲で、更なる特性の向上や他の特性を付加するための、他の元素を適宜含むなどの成分組成の変更は適宜許容される。また、溶解原料スクラップなどから必然的に混入される不純物も、本発明鍛造材の品質を阻害しない範囲で許容される。
【0043】
次に、本発明Al合金鍛造材の各元素の含有量について、臨界的意義や好ましい範囲について説明する。
【0044】
Mg:0.6〜1.8%。
Mgは人工時効処理により、Siとともにβ'相ならびにβ 相として析出し、最終製品使用時の高強度 (耐力) を付与するために必須の元素である。Mgの0.6%未満の含有では、人工時効処理時の時効硬化量が低下する。一方、1.8%を越えて含有されると、強度 (耐力) が高くなりすぎ、鍛造性を阻害する。また、溶体化処理後の焼き入れ途中に多量のMg2 Siや単体Siが析出しやすく、却って、強度、靱性、耐食性などを低下させる。したがって、Mgの含有量は0.6 〜1.8%の範囲とする。
【0045】
Si:0.4〜1.8%。
SiもMgとともに、人工時効処理により、β'相ならびにβ 相として析出して、最終製品使用時の高強度 (耐力) を付与するために必須の元素である。Siの0.4%未満の含有では人工時効処理で十分な強度が得られない。一方、1.8%を越えて含有されると、鋳造時および溶体化処理後の焼き入れ途中で、粗大な単体Si粒子が晶出および析出して、耐食性と靱性を低下させる。また、過剰Siが多くなって、高耐食性と高靱性、高疲労特性を得ることができない。更に伸びが低くなるなど、加工性も阻害する。したがって、Siの含有量は0.4 〜1.8%の範囲とする。
【0046】
Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の一種または二種以上。
これらの元素は均質化熱処理時およびその後の熱間鍛造時に、Fe、Mn、Cr、Zr、Si、Alなどがその含有量に応じて選択的に結合したAl-Mn 系、Al-Cr 系、Al-Zr 系金属間化合物であり、(Fe 、Mn、Cr)3SiAl12、Al3Zr 、(AlSi)3Zr に代表される分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、結晶粒の粗大化を防止するとともに、製品部やフラッシュ部を微細な亜結晶粒主体の組織とすることができる。また、Mn、Cr、Zrは、各々固溶による強度およびヤング率の増大も見込める。
【0047】
Mn、Cr、Zrの含有量が少なすぎると、これらの効果が期待できず、一方、これらの元素の過剰な含有は溶解、鋳造時に粗大な金属間化合物や晶出物を生成しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。このため、これらの元素は各々、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の範囲で一種または二種以上含有させる。但し、Zrの場合、Tiを含む場合などに鋳造の条件によっては、却って鋳塊の結晶粒微細化を阻害する要因ともなる可能性もあるので、このような場合にはZrを使用せず、Zrの含有量を極力抑制する。
【0048】
以下に記載する元素は基本的に不純物であるが、各々の含有効果もあり、以下に各々記載する含有量まで許容される。
Cu:0.50%以下。Cuは不純物であり、Al合金鍛造材の組織の応力腐食割れや粒界腐食の感受性を著しく高め、Al合金鍛造材の耐食性や耐久性を低下させる。したがって、本発明では、この観点からCu含有量をできるだけ少なく規制する。しかし、一方で、Cuは固溶強化にて強度の向上に寄与する他、時効処理に際して、最終製品の時効硬化を著しく促進する効果も有する。また、Cu含有量を少なくすると、高純度地金を使用する必要があり、鋳造コストがかかる問題もある。したがって、Cuは0.50% 以下の含有まで許容する。
【0049】
Fe:0.40%以下。Al合金に不純物として含まれるFeは、本発明で問題とする粗大な晶出物を生成する。これらの晶出物は、前記した通り、破壊靱性および疲労特性などを劣化させる。したがって、Feの含有量は0.40% 以下、より好ましくは0.35% 以下のできるだけ少ない含有量に規制することが好ましい。
【0050】
水素:0.25 ml/100g Al以下。水素(H2)は不純物であり、特に、鍛造材の加工度が小さくなる場合、水素に起因する気泡が鍛造等加工で圧着せず、破壊の起点となるため、靱性や疲労特性を著しく低下させる。そして、高強度化した輸送機の構造材などにおいては、特に水素による影響が大きい。したがって、 Al 100g当たりの水素濃度は0.25ml以下の、できるだけ少ない含有量とすることが好ましい。
【0051】
Ti:0.1% 以下。Tiは不純物であるが、鋳塊の結晶粒を微細化し、鍛造材組織を微細な亜結晶粒とする効果がある。しかし、Tiを0.1%を越えて含有すると、粗大な晶析出物を形成し、前記加工性を低下させる。したがって、Tiの含有量は0.1%以下の含有まで許容する。
【0052】
B:300ppm以下。B は不純物であるが、Tiと同様、鋳塊の結晶粒を微細化し、押出、圧延、鍛造時の加工性を向上させる効果もある。しかし、300ppmを越えて含有されると、やはり粗大な晶析出物を形成し、前記加工性を低下させる。したがって、B は300ppm以下の含有まで許容する。
【0053】
Zn:1.0% 以下。Znは人工時効時において、MgZn2 を微細かつ高密度に析出させ高い強度を実現させる。また、固溶したZnは粒内の電位を下げ、腐食形態を粒界からではなく、全面的な腐食として、粒界腐食や応力腐食割れを結果として軽減する効果が期待できる。しかし、1.0%を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znは1.0%以下の含有量まで許容する。
【0054】
Be:100ppm 以下。Beは空気中におけるAl溶湯の再酸化を防止する。しかし、100ppmを越えて含有されると、材料硬度が増大し、前記加工性を低下させる。したがって、Beは100ppm以下の含有量まで許容する。
【0055】
V:0.15% 以下。V は、Mn、Cr、Zrなどと同様に、均質化熱処理時およびその後の熱間鍛造時に、分散粒子 (分散相) を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な亜結晶粒を得ることができる。しかし、0.15% を越える過剰な含有は、溶解、鋳造時に粗大なAl-Fe-Si-V系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり、靱性や疲労特性を低下させる原因となる。したがって、V の含有は0.15% 以下まで許容する。
【0056】
次に、本発明におけるAl合金鍛造材の好ましい製造方法について述べる。本発明におけるAl合金鍛造材の製造工程自体は、前記した鍛造条件を除き、常法により製造が可能である。例えば、前記Al合金成分範囲内に溶解調整されたAl合金溶湯を鋳造する場合には、例えば、連続鋳造圧延法、半連続鋳造法(DC鋳造法)、ホットトップ鋳造法等の通常の溶解鋳造法を適宜選択して鋳造する。
【0057】
ここで、Al合金鋳塊 (鋳造材) の平均結晶粒径を100 μm 以下として、鍛造材の製品部やフラッシュ部の亜結晶粒化を促進さるためには、Al合金溶湯を、10℃/sec以上の冷却速度で鋳造して鋳塊とすることが好ましい。また、Al合金鍛造材に残留する鋳造組織を無くし、晶出物を破壊および微細化し、強度と靱性ならびに疲労特性をより向上させるために、Al合金鋳塊を均質化熱処理後、押出や圧延加工した後に、前記鍛造を行っても良い。
【0058】
次いで、このAl合金鋳塊 (鋳造材) の均質化熱処理温度は400 〜 570℃の温度範囲とすることが好ましい。均質化熱処理温度が570 ℃を越えて高過ぎると、バーニング等が生じ、鍛造割れの原因となる。また、鍛造製品での靱性、疲労特性などの機械的な特性を低下させる。また、Mn、Cr、Zrなどの分散粒子が粗大化して、フラッシュ部の亜結晶粒化を促進する分散粒子自体の数も不足する。一方、均質化熱処理温度が400 ℃未満と低過ぎると、粗大な晶出物が残存し、鍛造製品を高強度化、高靱性化することが難しくなる。
【0059】
この均質化熱処理の後に、メカニカル鍛造や油圧鍛造等により熱間鍛造して、輸送機構造材の最終製品形状 (ニアネットシェイプ) のAl合金鍛造材に成形する。この際、製品部やフラッシュ部の組織中の亜結晶粒の平均面積率割合を前記した通り高くし、できるだけ均一な亜結晶粒主体の組織とするためには、製品部やフラッシュ部の熱間鍛造加工温度、即ち、熱間鍛造開始温度と終了温度とを450 ℃以上の比較的高い温度とする。例えば、熱間鍛造開始温度が450 ℃未満であれば、特に再加熱無しで複数回行われる熱間鍛造において、最終回次の製品部の熱間鍛造の終了温度を450 ℃以上のより高温に保証することが困難となり、製品部やフラッシュ部などの鍛造材組織中の亜結晶粒の平均面積率割合を高くすることができない。また、熱間鍛造加工自体も困難となる。一方、熱間鍛造開始温度が570 ℃を越えた場合、摩擦熱により局部融解して鍛造加工割れを生じやすくなる。そして、分散粒子が粗大化し、亜結晶粒の割合を高くできなくなる。更に、実質的な加工量が少なくなりすぎ、結晶粒が亜結晶粒化しにくくなる。したがって、熱間鍛造開始温度と終了温度との加工温度は450 ℃以上とし、好ましくは450 〜570 ℃の温度範囲とする。
【0060】
前記した通り、製品部とフラッシュ部とが必然的に存在する前記足回り部品などの型鍛造品において、製品厚みが大きい製品部では加工率が小さくなり、一方、製品部に比して厚みが著しく薄いフラッシュ部では加工率が大きくなる。このような場合、前記熱間鍛造の加工温度を450 ℃以上に高温としても、加工歪みをより加えられたフラッシュ部では、溶体化処理工程において、特に、加工組織が再結晶して粗大結晶粒が発生しやすく、亜結晶粒にはなりにくい。
【0061】
このため、製品部やフラッシュ部の亜結晶粒化を促進し、均一な亜結晶粒主体の組織とするためには、前記した高温鍛造を前提とし、フラッシュ部の加工率や加工歪みなどを小さく、製品部のそれを大きくする必要がある。但し、製品部も含めて、加工率や加工歪みは、鋳造組織の残留による強度や靱性の低下を防止し、形状精度が出せる分は少なくとも確保する。これは、複数の各鍛造回数 (工程) であっても、一回の鍛造であっても同様である。この点、製品部の鍛造における歪み量の合計を60〜90%程度とすることが、フラッシュ部の亜結晶粒化にとっても好ましい。一回の鍛造の場合は、鍛造における歪み量をこの量とし、複数の各鍛造回数の場合には、合計の歪み量をこの量とする。
【0062】
熱間鍛造の種類においても、一回当たりの鍛造の加工歪みを鍛造素材に均一に加えやすく、加工率や加工歪みを制御しやすい、油圧プレスによる鍛造を選択する方が好ましい。油圧プレスでは、メカニカルプレスよりも、より小さい加工率や加工歪みで、鋳造組織を加工組織とでき、形状精度も出せるので、フラッシュ部を含めて均一な亜結晶粒主体の組織としやすい。
【0063】
また、メカニカルプレスによる鍛造でも、鍛造素材にできるだけ均一に加工歪みを加えることが好ましい。ただ、メカニカルプレスによる鍛造では、鍛造製品形状によっては、均一に加工歪みを加えることには限界がある。したがって、このような場合には、油圧プレスによる鍛造を選択するか、鍛造形状の設計変更を行なう必要がある。
【0064】
これらの鍛造後、輸送機構造部材としての必要な強度および靱性、耐食性を得るためのT6 (溶体化処理後、最大強さを得る人工時効硬化処理) 、T7 (溶体化処理後、最大強さを得る人工時効硬化処理条件を超えて過剰時効硬化処理) 、T8 (溶体化処理後、冷間加工を行い、更に最大強さを得る人工時効硬化処理) 等の調質処理を適宜行う。なお、本発明鍛造材は、これら調質処理の前後に、また、輸送機構造材として取り付けられるまでに、輸送機構造材として必要な、機械加工や表面処理などが適宜施されても良い。
【0065】
前記溶体化処理後の焼き入れ処理の冷却は水冷が好ましい。焼き入れ処理時の冷却速度が低くなると、粒界上にMg2Si 、Si等が析出し、人工時効後の製品において、粒界破壊が生じ易くなり、靱性ならびに疲労特性を低くする。また、冷却途中に、粒内にも、安定相Mg2Si 、Siが形成され、人工時効時に析出するβ' 相、β''相の析出量が減るため、強度が低下する。一方、冷却速度が高くなると、焼入歪み量が多くなり、焼入後に、矯正工程が新たに必要となったり、矯正工程の工数が増す。また残留応力も高くなり、製品の寸法、形状精度が低下する。したがって、製品製造工程を短縮し、低コスト化するためには、焼入歪みが緩和される50〜85℃の温湯焼入が好ましい。ここで、温湯焼入温度が50℃未満では焼入歪みが大きくなり、85℃を越えると冷却速度が低くなりすぎ、靱性ならびに疲労特性、強度が低くなる。
【0066】
また、前記T7調質材では粒界上に析出するβ 相の割合が高くなる。このβ 相は腐食環境下で溶出しにくく、粒界腐食感受性を低くし、耐応力腐食割れ性を高める。一方、前記T6材で多く析出するβ'相は腐食環境下で溶出しやすく、粒界腐食感受性を高くし、耐応力腐食割れ性を低める。したがって、Al合金鍛造材を前記T7材とすることで、耐力は若干低くなるものの、他の調質処理に比して、耐食性はより高くなる。
【0067】
なお、前記した、均質化熱処理、溶体化処理には空気炉、誘導加熱炉、硝石炉などが適宜用いられる。更に、人工時効硬化処理には空気炉、誘導加熱炉、オイルバスなどが適宜用いられる。
【0068】
【実施例】
次に、本発明の実施例を説明する。表1 に示す合金番号1 〜7 の化学成分組成のAl合金鋳塊 (Al合金鋳造材、いずれも直径φ82mmの鋳造棒) を、半連続鋳造法により、20℃/ sec の冷却速度により鋳造した。この表1 に示す合金番号1 〜4 は本発明範囲内の化学成分組成の発明例で、合金番号5 はSi含有量が低めに外れた比較例、合金番号6 はMn、Cr、Zrをいずれも含まない比較例である。また、上記鋳塊 (鋳造材) の平均結晶粒径 (μm)も表1 に示す。なお、合金番号1 〜6 の100gのAl中のH2 濃度は全て0.10〜0.15mlであった。
【0069】
そして、この鋳塊の外表面を厚さ3mm 面削して、長さ500mm に切断後、表2 に示すように、500 ℃ (昇温時間は1 〜4 時間) で4 時間均質化熱処理後、熱間鍛造条件、即ち、開始温度、最終終了温度、製品部の加工率( 歪み量)などを種々変えて、メカニカルプレスおよび油圧プレスのいずれかを用いて、図1に示したような略角形鍛造材に鍛造した (加工率を変化させたために鍛造材の大きさ、径などは各々異なる) 。
【0070】
この際、表2 にM で示すメカニカルプレスを用いた鍛造条件は、前記図2 に示した上下金型を用い、フラッシュランドの隙間1.5 〜3mm で、再加熱なしに3 回鍛造した。また、表2 にO で示す油圧プレスを用いた鍛造は、上下金型を用い、1 回で鍛造した。鍛造材の加工率は、鍛造材製品部における合計の歪み量(%) で表2 に示す。
【0071】
これらの鍛造後、溶体化および焼き入れ処理、人工時効硬化処理して、試験用鍛造材を作製した。溶体化処理は、空気炉を用いて、昇温時間を1 〜2 時間として540 ℃で5 時間行い、溶体化処理した後60℃の温水に焼入れを行い、その後30分以内に180 ℃×5 時間の人工時効硬化処理を行った。
【0072】
なお、表2 の熱間鍛造の歪み量(%)Cは、鍛造材製品部における平均結晶粒間隔A と鋳塊の平均セル層サイズB とを用い、C=[(B-A)/B] ×100%の式により算出した。鋳塊の平均セル層サイズB は鋳塊の面削前において、鋳込み方向に対する垂直面で、鋳塊外表面から中心部までを4 等分し、この鋳塊外表面から中心部への計5 箇所での平均値を用いた。この際、歪み量が小さく、明瞭なフローラインを形成しない場合には、鍛造した材料に残存する鋳塊セル層の大きさ( 最小長方向) E を用いて、D=[(B-E)/B] ×100%の式により算出した。
【0073】
これら各鍛造材の特性を表3 に示す。なお、表2 、3 のAl合金番号は表1 のAl合金番号と対応している。この鍛造材の特性の内、フラッシュ部と製品部における結晶粒の平均粒径と亜結晶粒の平均面積割合とは前記した要領で測定した。この内、フラッシュ部と製品部亜結晶粒の平均面積割合が高い発明例6 と、亜結晶粒の平均面積割合が低い比較例9 との、製品部におけるミクロ組織を図3 、4 に図面代用写真で各々示す。
【0074】
また、各鍛造材の製品部より、各々引張試験片A (L方向) とシャルピー試験片B (LT 方向) を任意の箇所から各5 個づつ採取し、引張強度(MPa) 、0.2%耐力(MPa) 、伸び(%) 、シャルピー衝撃値、等を各々測定し、各平均値を求めた。これらの機械的な特性の測定用試験片は微小なフラッシュ部からは採取しにくいため、フラッシュ部の特性もこの製品部の特性で代用する。
【0075】
更に、応力腐食割れ試験は、フラッシュ部と周辺部とを採取し、C リング状の試験片に加工して行った。応力腐食割れ試験条件は、前記 Cリング試験片をASTM G47の交互浸漬法の規定に準じて行った。但し、試験条件は、更に、鍛造材がフラッシュ部に対しST方向に引張応力が付加されて使用されることを模擬して、C リング試験片のST方向に、前記機械的特性の試験片のL 方向の耐力の75% の応力を負荷した状態とした。この状態で、C リング試験片の塩水への浸漬と引き上げを繰り返して90日間行い、試験片の応力腐食割れ発生の有無を確認した。これらの結果を、応力腐食割れが発生している場合を×、応力腐食割れではないが、応力腐食割れに至る可能性の高い粒界腐食が発生している場合を△、応力腐食割れや粒界腐食が発生していない場合 (表面的な全面腐食が発生している場合を含む) を○として、表3 に示す。
【0076】
図3 の発明例6 と、図4 の比較例9 との製品部のミクロ組織を比較すれば分かる通り、発明例6 は平均粒径が約250 μm 程度の等軸状の再結晶粒である。そして、この結晶粒内に平均粒径が約3 μm 程度の微細な亜結晶粒が多数形成されている。これに対して、図4 の比較例9 は平均粒径が約1000μm 程度の粗大粒である。そして、この結晶粒内には殆ど微細な亜結晶粒が形成されておらず、図の右側の中央部に僅か10% 程度の面積率割合で形成されているのみである。
【0077】
表3 から明らかな通り、これら製品部の亜結晶粒の平均面積率割合を80% 以上とした発明例鍛造材は、0.2%耐力が350MPa以上およびシャルピー衝撃値が15J/cm2 以上である。また、発明例鍛造材は、フラッシュ部の亜結晶粒の平均面積率割合が40% 以上であり、耐応力腐食割れ性にも優れている。また、亜結晶粒の平均面積率割合を90% 以上とした発明例2 の鍛造材は、0.2%耐力が350MPa以上であるとともに、シャルピー衝撃値が40J/cm2 と20J/cm2 以上である。ここで、特に、発明例1 と 2、6 と7 、11と12との各比較において、油圧プレスによる鍛造などの方が、同様の合金組成と鍛造条件では、メカニカルプレスによる鍛造よりも、フラッシュ部組織中の亜結晶粒の平均面積率割合が高くなっている。
【0078】
これに対し、熱間鍛造の開始温度や最終終了温度が低過ぎる比較例4 、5 、9 、10、14、15などの鍛造材は、本発明範囲内の組成のAl合金を用いても、製品部やフラッシュ部組織中の亜結晶粒の平均面積率割合が低い。この結果、強度、耐力、靱性、耐応力腐食割れ性などが発明例に比して著しく劣る。
【0079】
また、本発明範囲内の組成のAl合金を用い、熱間鍛造の開始温度や最終終了温度が高い高温鍛造を施していても、製品部の加工率が低い比較例3 、8 、13は、製品部やフラッシュ部組織中の亜結晶粒の平均面積率割合が低く、強度、靱性、耐応力腐食割れ性などが、特に同じAl合金の発明例に比して著しく劣る。更に、Si含有量が0.36% と下限未満であり低過ぎるAl合金5 を用いた比較例17、18は、熱間鍛造の開始温度や最終終了温度が高い高温鍛造を施し、製品部やフラッシュ部組織中の亜結晶粒面積率割合を高めても、強度、耐力などが著しく劣る。更に、遷移元素を含まないAl合金6 を用いた比較例19、20は、表1 の鋳造材や表3 の鍛造材の各結晶粒が著しく粗大化しており、結晶粒内に亜結晶粒も形成されていない。このため、強度、耐力などが著しく劣る。
【0080】
そして、特にこれら比較例3 、8 、13では、製品部の平均結晶粒径が41〜58μm と、発明例と同程度に細かいにもかかわらず、亜結晶粒の平均面積率割合が70% 未満と低い。したがって、これらの結果から、結晶粒の粗大化によって亜結晶粒ができないだけではなく、前記した通り、結晶粒径が細かくても、結晶粒内に亜結晶粒が形成されるとは限らないことが分かる。そして、以上の結果から本発明亜結晶粒の面積率規定の臨界的な意義が分かる。
【0081】
【表1】

Figure 0003726087
【0082】
【表2】
Figure 0003726087
【0083】
【表3】
Figure 0003726087
【0084】
【発明の効果】
本発明によれば、高強度化、高靱性化および高耐食性化させた輸送機構造材用アルミニウム合金鍛造材およびその製造方法を提供することができる。したがって、Al-Mg-Si系アルミニウム合金鍛造材の輸送機用への用途の拡大を図ることができる点で、多大な工業的な価値を有するものである。
【図面の簡単な説明】
【図1】 Al合金鍛造材を示す一部断面斜視図である。
【図2】本発明Al合金鍛造用金型を示す断面図である。
【図3】本発明鍛造材製品部のミクロ組織を示す図面代用写真である。
【図4】比較例鍛造材製品部のミクロ組織を示す図面代用写真である。
【符号の説明】
1: Al合金鍛造材、2:製品部、3:フラッシュ、4:型割り面、
5: フラッシュ切断線、6:メタルフロー、7:上型、8:下型、
9: ガッタ、10: フラッシュスタンド、[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an Al-Mg-Si based aluminum alloy forged material for transport aircraft structural materials having high strength and high toughness, and excellent corrosion resistance such as stress corrosion cracking resistance, and a method for producing the same (hereinafter simply referred to as aluminum). (Al).
[0002]
Using FIG. 1, the flash part and the product part in the forging material of the present invention are defined. FIG. 1 shows a cross-sectional view of the Al alloy forging material 1. Of these, the flash part is the part of the cut part 5a perpendicular to the die splitting surface 4 in the vicinity of the boundary between the product part 2 which is the Al alloy forging body and the die forging burr 3 called flash. Is the meaning.
[0003]
[Prior art]
As is well known, 6000 series (Al-Mg) in the AA to JIS standards for structural materials and parts of transportation equipment such as vehicles, ships, aircraft, motorcycles and automobiles, especially as suspension parts such as upper arms and lower arms. Al alloy forging such as -Si) is used. The 6000 series Al alloy forging material has high strength, high toughness, and relatively excellent corrosion resistance. The 6000 series Al alloy itself is also excellent in recyclability in that the amount of alloying elements is small and scrap can be reused again as a 6000 series Al alloy melting raw material.
[0004]
These 6000 series Al alloy forgings are homogenized heat treatment of Al alloy castings, followed by hot forging (die forging) such as mechanical forging and hydraulic forging, followed by solution treatment and quenching treatment and artificial age hardening treatment. The so-called tempering treatment is performed. In addition to the cast material, an extruded material once extruded from the cast material may be used as the forging material.
[0005]
In recent years, structural materials for these transport aircraft are also required to have higher strength and higher toughness after being made thinner. For this reason, various attempts have been made to improve the microstructure of Al alloy castings and Al alloy forgings. For example, the average particle size of crystal precipitates (crystals and precipitates) of a 6000 series Al alloy cast material is reduced to 8 μm or less, and the dendrite secondary arm interval (DAS) is reduced to 40 μm or less. It has been proposed to increase the strength and toughness of alloy forgings (see Patent Documents 1 and 2).
[0006]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 07-145440
[Patent Document 2]
Japanese Unexamined Patent Publication No. 06-256880
[0007]
In addition, by controlling the average grain size and average interval of crystallized and crystallized precipitates in crystal grains and grain boundaries of 6000 series Al alloy forgings, Al alloy forgings are made stronger and tougher. It has also been proposed. These controls can increase the corrosion resistance against intergranular corrosion and stress corrosion cracking. And in accordance with the control of these crystallized products and crystal precipitates, transition elements having a crystal grain refinement effect such as Mn, Zr, Cr, etc. are added, and the crystal grains are refined or sub-crystallized, Improvement of fracture toughness and fatigue characteristics is also described in these proposals (see Patent Documents 3, 4, and 5).
[0008]
[Patent Document 3]
JP 2000-144296 A
[Patent Document 4]
JP 2001-107168
[Patent Document 5]
JP 2002-294382 A
[0009]
However, these 6000 series Al alloy forgings tend to generate coarse crystal grains due to recrystallization of the processed structure in the forging and solution treatment processes. When these coarse crystal grains are generated, even if the microstructure is controlled, the strength and toughness cannot be increased, and the corrosion resistance also decreases. Moreover, in each of these patent documents, the processing temperature in forging is relatively low at less than 450 ° C., and in such low temperature hot forging, the target crystal grains are actually made finer or subcrystalline. It is difficult.
[0010]
On the other hand, in order to suppress the generation of coarse crystal grains recrystallized from the processed structure, a transition element having a crystal grain refining effect such as Mn, Zr, and Cr is added, and a relatively high temperature of 450 to 570 ° C. It is known to start hot forging at a temperature of (see Patent Documents 6 and 7).
[0011]
[Patent Document 6]
Japanese Patent Laid-Open No. 5-27574
[Patent Document 7]
Japanese Patent Laid-Open No. 2002-348630
[0012]
[Problems to be solved by the invention]
In general, aluminum alloy forgings for transport aircraft structural materials manufactured by die forging have a predetermined length of flash portions that normally serve as burrs during die forging, in addition to product portions that serve as transport aircraft structural materials. There are many forgings that can be used as is. That is, most of the flash part is cut as a burr, but the flash part of a predetermined length remains and remains on the product part in many cases to form a transporter structural material.
[0013]
In the case of a forging material having such a flash part, even if the forging start temperature is set to a relatively high temperature of 450 to 570 ° C. as in Patent Documents 6 and 7, the forging process is not reheated or reheated several times. In hot forging performed with or without the forging, the forging temperature at the end of forging can be relatively low. And when the forging material temperature at the time of completion | finish of forging becomes comparatively low in this way, the coarse crystal grain which the process structure recrystallized may generate | occur | produce especially in a flash part.
[0014]
Further, in hot forging using a mechanical press that is usually performed a plurality of times without reheating, the processing rate during hot forging varies greatly depending on the site. For this reason, in the die forging product such as the undercarriage part in which the product part and the flash part necessarily exist, the processing rate at the time of hot forging is greatly different between the product part and the flash part. That is, the processing rate is small in the product portion where the product thickness is large, while the processing rate is large in the flash portion where the thickness is significantly thinner than the product portion. In such a case, even if the hot forging start temperature or the forging end temperature is set to a relatively high temperature of 450 to 570 ° C., in the solution treatment process, particularly in the solution treatment process, the work structure is regenerated. Crystals tend to generate coarse crystal grains.
[0015]
This problem can also occur in Japanese Patent Application No. 2002-188050 previously proposed by the present inventors. That is, in the present invention, Mg: 0.6-1.8%, Si: 0.4-1.8%, Mn: 0.01-0.6%, Cr: 0.1-0.2% and Zr: 0.1-0.2%, one or more Aluminum alloy forging material consisting of the balance Al and unavoidable impurities, and 0.2% proof stress of 300MPa and Charpy impact value of 10J / cm of aluminum alloy forging material after artificial aging treatment2Furthermore, the crystal grain size in the direction perpendicular to the parting plane in the structure of the cut surface between the product and the flash, and the largest of these crystal grain sizes should be 400 μm or less. It is a feature. However, also in this invention, the preferred hot forging start temperature is a relatively low temperature of 350 to 450 ° C. in both the examples, and in the case of hot forging in which a plurality of forging processes are performed without reheating, The temperature of the forging material at the end of forging can be relatively low. As a result, in the flash portion, there is still a possibility of generating coarse crystal grains whose crystallized structure is recrystallized.
[0016]
When coarse crystal grains are generated in the flash portion, the strength and toughness of the forged product as a whole cannot be achieved, and the corrosion resistance also decreases. In particular, the deterioration of corrosion resistance is serious, and this flash part is used as a transporting machine structural material by being joined with other metal members that are noble than an Al alloy such as steel, and further, tensile stress is added. When used in such a manner, it becomes an environment in which intergranular corrosion or even stress corrosion cracking is very likely to occur. It can be said that the mechanical breakdown of this kind of transport aircraft structural material and the breakdown due to corrosion first occur at such a site, and the generation of coarse crystal grains in the flash portion leads to such a problem.
[0017]
In this respect, as described above, in the structure of 6000 series Al alloy forgings so far, the generation of coarse crystal grains is suppressed, and the forgings have high reproducibility and high strength only in the orientation direction in which the crystal grains are refined. In fact, there is a limit to achieving high toughness and high corrosion resistance.
[0018]
In view of such circumstances, the object of the present invention is to provide high strength, high toughness and high corrosion resistance in an Al-Mg-Si based aluminum alloy forged material for transporter structural materials in which a product part and a flash part are formed. An object of the present invention is to provide a forged material and a production method capable of producing the forged material with good reproducibility.
[0019]
[Means for Solving the Problems]
In order to achieve this object, the gist of the aluminum alloy forged material for transporter structural material of the present invention is an Al-Mg-Si based aluminum alloy forged material in which a product part and a flash part are formed, and Mg: 0.6 -1.8%, Si: 0.4-1.8%, Mn: 0.01-0.9%, Cr: 0.01-0.25% and Zr: 0.01-0.20%, or the balance Al and inevitable impurities The average area ratio of the subcrystal grains in the product part structure is 70% or more, the average area ratio of the subcrystal grains in the flash part structure is 40% or more, 0.2% of the product part % Yield of 350 MPa or more and Charpy impact value of 15 J / cm2That is all.
[0020]
Further, the gist of the method for producing an aluminum alloy forged material for transporter structural material of the present invention is the method for producing the aluminum alloy forged material described above, including Mg: 0.6 to 1.8%, Si: 0.4 to 1.8%, Al- containing Mn: 0.01-0.9%, Cr: 0.01-0.25% and Zr: 0.01-0.20%, or the balance of Al and unavoidable impurities, with an average crystal grain size of 100 μm or less When hot-forging Mg-Si-based aluminum alloy cast material into a forging material in which the product part and flash part are formed after homogenization heat treatment, the processing temperature is set to 450 ° C or more, and the distortion amount of the product part is 60%. As described above, after hot forging, further solution treatment and quenching treatment and artificial age hardening treatment are performed.
[0021]
In the present invention, the temperatures defined by the hot forging processing temperature, the homogenization heat treatment, the tempering treatment after forging, etc. are all temperatures of the outer surface of the cast material or the forged product part.
[0022]
In addition to the refinement of the crystal grains in the structure of the product part and the flash part, the present inventors have found that the ratio of the sub-crystal grains in the structure of the product part and the flash part is increased in the strength of the forging. It was found that it greatly affects (contributes) to toughness and high corrosion resistance. In other words, if the ratio of sub-crystal grains in the structure of the product part and the flash part, which is an important safety part for the forging material, is made high, not only the product part but also the entire forging material including the flash part is high. Strength, high toughness and high corrosion resistance can be achieved with good reproducibility.
[0023]
In the present invention, if the ratio of the average area ratio of the sub-crystal grains in the product structure and the flash structure is increased, the 0.2% proof stress of the forged product part including the flash part is 350 MPa or more and the Charpy impact value is increased. 15J / cm2The stress corrosion cracking resistance can be improved. As a result, even when the forged material of the present invention is directly joined to a steel material member such as an iron bush, the stress corrosion cracking resistance is improved. That is, the subgraining in the product part structure and flash part structure in the present invention is to guarantee the quality of high strength, toughness and high corrosion resistance of the forged material including the product part, and to guarantee reproducibility. It will be.
[0024]
On the other hand, if the average area ratio of the sub-crystal grains is small even if the average crystal grain size of the product part structure is refined by the above-described high-temperature forging, the forging material including the product part and the flash part It is impossible to achieve high strength and toughness as a whole, and high corrosion resistance with good reproducibility. Further, even if the product part structure is subcrystallized by the above-mentioned high-temperature forging, there is no guarantee that the flash part can be subcrystallized together. On the condition that the structure of the product part is subcrystallized by the high-temperature forging described above, rather, the flash part is less likely to be subcrystalline as described later.
[0025]
In order to promote subcrystallization within the microstructure including the product part and flash part (formation of fine subgrains in the crystal grains) and to make the microstructure mainly composed of subcrystal grains as much as possible, Even in the high temperature forging, it is necessary to consider not only the forging temperature conditions but also the processing rate and processing distortion in each of a plurality of forging times (processes). This processing rate and processing strain prevent the strength and toughness due to residual cast structure, especially in the product part, to ensure the shape accuracy, and to form fine sub-crystal grains in the crystal grains. It needs to be as high as possible. When the processing rate and the amount of processing strain are too small, the microstructure of the product part and the flash part should be mainly composed of sub-crystal grains and a large ratio of sub-crystal grains, even when hot forging is performed at the high temperature. I can't. In the solution treatment process, the processed structure is recrystallized and coarse crystal grains are likely to be generated.
[0026]
For example, also in the type of hot forging, forging by a hydraulic press, forging by a forging by a hydraulic press is more easily applied to a forging material uniformly than forging by a mechanical press. Therefore, it is easy to increase the ratio of the sub-crystal grains in the microstructure (average area ratio).
[0027]
For this reason, in order to promote subcrystallization in the structure including the product part and the flash part, and to make the structure mainly composed of subgrains as uniform as possible, as described later, for each of various forging methods, It is necessary to forge in consideration of the forging conditions of each part, such as the number of forgings, the forging temperature at each of a plurality of forging times (processes), the processing rate of the product part and the flash part, and the processing distortion.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
As described above with reference to FIG. 1, the flash part referred to in the present invention is a cut surface in the ST direction perpendicular to the parting surface 4 in the vicinity of the boundary between the product part 2 and the flash 3, which is an Al alloy forging body. And a portion of the cut portion 5a in the vicinity thereof. For example, the cutting part 5a that is the flash part, such as an undercarriage part of an automobile as a transporting machine structural material, is located in the vicinity of the bush. When an outer collar of a bush is inserted in an undercarriage part or the like, tensile stress is generated in the Al alloy forging material around the outer collar. The outer collar is made of iron or aluminum alloy. When the outer collar is made of iron, the Al alloy forged material and the iron outer collar are bonded to different materials, and galvanic corrosion is likely to occur in a corrosive environment. In addition, in the vicinity of the cut part 5a and in the vicinity thereof, tensile stress is generated in the direction of peeling the forging line due to the insertion of the outer collar of the bush. From this point also, in the dissimilar material joining of Al alloy forged material and iron outer collar Electrolytic corrosion is likely to occur in a corrosive environment. Therefore, this flash part is a part where stress corrosion cracking is particularly likely to occur.
[0029]
As shown in FIG. 2, the Al alloy forging material 1 such as the undercarriage part is usually a boundary surface (divided into the boundary between the two dies by the upper die 7 and the lower die 8 in the die forging. A split surface 4 (also called a parting line) and a gap 9 between the upper mold 7 and the lower mold 8, and a space for discharging excess Al alloy during forging. Forging is performed with a certain gap 10 referred to as In the forged Al alloy material 1 thus forged, burrs 3 called flash are inevitably generated in the gutta 9. After the forging, the flash 3 is separated and cut from the product part 2 in a trim line (flash cutting line) 5, but a part (for example, a root part) of the flash 3 is cut so as to remain. For this reason, for example, the undercarriage part is used as a forged product in which the product part 2 and the flash part 5a having a certain length in the direction of the parting surface 4 are present integrally.
[0030]
On the other hand, as shown in FIG. 1, each metal flow (forging line) 6 of the product part 2 of the Al alloy forging material 1 flows into the flash 3 as it is because the interval between the metal flows 6 is narrowed. . Such a product part 2 and the flash part 5a have greatly different processing rates during hot forging. In this respect, the processing rate of the flash part 5a is usually as high as 80% or more. For this reason, in the hot forging performed multiple times, in the flash part 5a having a high processing rate, when the end temperature of the final hot forging is relatively low, particularly less than 360 ° C, processing strain is further added. In the solution treatment process, the flash portion 5a thus obtained is particularly likely to generate coarse crystal grains due to recrystallization of the processed structure.
[0031]
When crystal grain coarsening occurs in the flash portion 5a or in the vicinity thereof, as described above, high strength and high toughness cannot be achieved even if the microstructure and crystal grains are controlled. For this reason, when the flash part 5a or its vicinity becomes an outer surface during use as a structural material or when tensile stress is applied in the ST direction, this part is affected by a synergistic effect with a severe corrosive environment. The possibility of stress corrosion cracking increases.
[0032]
Many sub-crystal grains in the present invention are formed in the crystal grains as illustrated in the invention example of FIG. 3 described later. These sub-crystal grains have an average grain size of about 1 to 10 μm, whereas normal fine grains have an average grain size of about 50 to 80 μm of 100 μm or less. For this reason, when the average area ratio, which is the ratio of the number of sub-crystal grains in the structure of the product part 2 and the flash part 5a (number of sub-crystal grains formed in the crystal grains), is increased, the average crystal grain size becomes fine. It is possible to achieve higher strength, higher toughness, and higher corrosion resistance of the forged material more remarkably and with better reproducibility. However, what is important is that even if the crystal grains of the forged material are refined to an average crystal grain size of 100 μm or less, sub-crystal grains are not always formed in the crystal grains. When the crystal grains become coarse, sub-crystal grains are not formed in the crystal grains, but depending on the manufacturing conditions described later, the crystal grains may be reduced even if the crystal grains of the forged material are refined to an average crystal grain size of 100 μm or less. In some cases, subcrystalline grains are not formed.
[0033]
In the present invention, if the ratio of sub-crystal grains in the microstructure is increased, in other words, if a large number of fine sub-crystal grains are formed in the crystal grains, the strength, proof strength, toughness, stress corrosion cracking resistance of the forged material Etc. can be improved with good reproducibility. More specifically, the average area ratio of the sub-crystal grains in the structure of the product part 2 is set to 70% or more, and the average area ratio of the sub-crystal grains in the structure of the flash part 5a is set to 40% or more. , 0.2% proof stress of the product part is 350MPa or more and Charpy impact value is 15J / cm2Or more, preferably 20 J / cm2More than that. In addition, the stress corrosion cracking resistance of the flash part 5a including the product part 2 can be improved.
[0034]
For this reason, even in environments where the corrosive environment of stress corrosion cracking is used, such as joining with other steel members such as the bushing or when tensile stress is applied, it is particularly resistant to the flash part 5a. Stress corrosion cracking can be improved. In other words, when the forged material of the present invention is used for a transport machine structural material, means such as an aluminum bush or a special seal when using an iron bush considering stress corrosion cracking resistance is not required.
[0035]
Preferably, the average area ratio of the subcrystal grains in the structure of the product part 2 is 90% or more, and the average area ratio of the subcrystal grains in the flash part 5a structure is 50% or more, Forging product part 2 0.2% proof stress 350MPa or more and Charpy impact value 20J / cm2More than that. Further, the stress corrosion cracking resistance of the flash part 5a including the product part 2 can be further improved.
[0036]
On the other hand, the average area ratio of the sub-crystal grains in the structure of the product part 2 is less than 70%, or the average area ratio of the sub-crystal grains in the structure of the flash part 5a is less than 40%. If the ratio of the sub-crystal grains is low, the 0.2% proof stress of the forged product part 2 is 350 MPa or more and the Charpy impact value is 15 J / E even if the average grain size of the forged product part 2 is reduced to 50 to 80 μm. cm2The above cannot be realized with good reproducibility. In addition, if tensile stress is applied to the flash part 5a during use as a structural material for transport equipment, there is a possibility that stress corrosion cracking may occur due to a synergistic effect with electrolytic corrosion caused by joining with the steel member described above. Becomes higher.
[0037]
It should be noted that the product site where the ratio of the sub-crystal grains in the microstructure (average area ratio) is not necessarily all. The product part for increasing the ratio of the sub-crystal grains is appropriately determined or selected according to the necessity and according to the use of the forging material such as the structural material or part of the transport aircraft. For example, in the undercarriage parts such as the upper arm and the lower arm, the parts that require high strength, high toughness, and high corrosion resistance are the flash part and the product that are joint parts with other body members of the end ring shape. Part.
[0038]
A method for measuring the average area ratio (%) of the sub-crystal grains will be described. The area ratio of the sub-crystal grains is the ratio of the total area occupied by the sub-crystal grains to the visual field area in the structure observation of the product part 2 and the flash part 5a. More specifically, first, the structure observation surface of the sample is finished to a mirror state by mechanical polishing. Further, the structure observation surface is immersed in a 2% sodium hydroxide aqueous solution at 10 ° C. for 20 minutes, and then observed with a 200 × optical microscope to take a microstructural photograph. The average area ratio (%) of the subgrains is calculated from the microstructure picture as described above. As shown in the structure photograph of the invention example of FIG. 3 to be described later, the distinction between the crystal grains and the subcrystals in the crystal grains can be clearly discriminated with the optical microscope of the above magnification, and the area ratio of the subcrystal grains per field of view is also calculated. it can.
[0039]
At this time, in order to take into account variations due to the parts of the product part 2 and the flash part 5a, five samples are collected from each of the product part 2 and the flash part 5a, and five visual fields are observed for each sample. Calculate the area ratio of the sub-crystal grains for each field of view. Then, the average value of the area ratio of each sub-crystal grain in each of the product part 2 and the flash part 5a in a total of 25 fields is defined as the average area ratio (%) of the sub-crystal grain. In addition, the average crystal grain size of the cast material and the forged material can also be measured by the above measurement method and conditions.
[0040]
Next, the chemical component composition in the Al alloy forging material or the forging material of the present invention will be described. The Al alloy chemical composition of the forged material of the present invention needs to ensure high corrosion resistance and durability such as high strength, high toughness and stress corrosion cracking resistance for transportation equipment, structural materials and parts such as automobiles and ships. is there.
[0041]
Therefore, the chemical composition of the Al alloy cast material or forging material according to the present invention is the component standard of the JIS 6000 series Al alloy of the Al-Mg-Si series (JIS 6101, 6111, 6003, 6151, 6061, 6N01, 6063). Etc.) Basically, Mg: 0.6 to 1.6%, Si: 0.4 to 1.8%, Mn: 0.01 to 0.9%, Cr: 0.01 to 0.25% and Zr: 0.01 to 0.20% Or two or more. In addition,% display in the amount of each element means the mass%.
[0042]
However, even if it does not comply with each component standard of JIS 6000 series Al alloy, it contains other elements as appropriate in order to further improve the characteristics and add other characteristics within the range not impairing the various characteristics of the present invention. Changes in the component composition such as are appropriately allowed. Impurities that are inevitably mixed from the melted raw material scrap and the like are allowed within a range that does not impair the quality of the forged material of the present invention.
[0043]
Next, critical contents and preferable ranges of the content of each element of the Al alloy forging material of the present invention will be described.
[0044]
  Mg: 0.6-1.8%.
  Mg precipitates as β 'phase and β phase with Si by artificial aging treatment, and is an essential element for imparting high strength (yield strength) when the final product is used. If the Mg content is less than 0.6%, the age-hardening amount during the artificial aging treatment decreases. On the other hand, if the content exceeds 1.8%, the strength (yield strength) becomes too high and the forgeability is impaired. In addition, a large amount of Mg during the quenching after solution treatment2Si and simple substance Si are likely to precipitate, and on the other hand, strength, toughness, corrosion resistance, etc. are reduced. Therefore, the Mg content is in the range of 0.6 to 1.8%.
[0045]
  Si: 0.4-1.8%.
  Si, together with Mg, is an essential element for precipitating as β 'phase and β phase by artificial aging treatment and imparting high strength (yield strength) when using the final product. If the Si content is less than 0.4%, sufficient strength cannot be obtained by artificial aging treatment. On the other hand, if the content exceeds 1.8%, coarse single Si particles crystallize and precipitate during casting and during quenching after solution treatment, thereby reducing corrosion resistance and toughness. Moreover, excessive Si increases, and high corrosion resistance, high toughness, and high fatigue characteristics cannot be obtained. Furthermore, workability is also hindered, for example, elongation becomes low. Therefore, the Si content is in the range of 0.4 to 1.8%.
[0046]
  One or more of Mn: 0.01 to 0.9%, Cr: 0.01 to 0.25% and Zr: 0.01 to 0.20%.
These elements are Al-Mn, Al-Cr, in which Fe, Mn, Cr, Zr, Si, Al, etc. are selectively bonded according to their contents during homogenization heat treatment and subsequent hot forging. Al-Zr intermetallic compound (Fe, Mn, Cr)ThreeSiAl12, AlThreeZr, (AlSi)ThreeDispersed particles (dispersed phase) represented by Zr are generated. Since these dispersed particles have the effect of hindering the grain boundary movement after recrystallization, the coarsening of the crystal grains can be prevented, and the product portion and the flash portion can be made to have a fine subcrystal grain-based structure. Mn, Cr and Zr can also be expected to increase strength and Young's modulus due to solid solution.
[0047]
  If the content of Mn, Cr, and Zr is too small, these effects cannot be expected. On the other hand, excessive inclusion of these elements tends to generate coarse intermetallic compounds and crystallized products during melting and casting, causing destruction. It becomes the starting point of the cause and causes to lower toughness and fatigue characteristics. For this reason, these elements are contained in the range of Mn: 0.01 to 0.9%, Cr: 0.01 to 0.25% and Zr: 0.01 to 0.20%, respectively. However, in the case of Zr, depending on the casting conditions, such as when containing Ti, it may also be a factor that hinders crystal grain refinement of the ingot, so in such a case, Zr is not used, Minimize the Zr content.
[0048]
The elements described below are basically impurities, but there are also effects of each content, and the contents described below are allowed.
  Cu: 0.50% or less. Cu is an impurity and significantly increases the sensitivity of stress corrosion cracking and intergranular corrosion of the structure of the Al alloy forging, and lowers the corrosion resistance and durability of the Al alloy forging. Accordingly, in the present invention, the Cu content is restricted as much as possible from this viewpoint. However, on the other hand, Cu contributes to improvement in strength by solid solution strengthening, and also has an effect of remarkably accelerating age hardening of the final product during aging treatment. In addition, if the Cu content is reduced, it is necessary to use a high-purity metal, and there is a problem that the casting cost is high. Therefore, Cu is allowed up to 0.50% or less.
[0049]
  Fe: 0.40% or less. Fe contained as an impurity in the Al alloy generates a coarse crystallized product which is a problem in the present invention. These crystallized materials deteriorate the fracture toughness and fatigue characteristics as described above. Therefore, it is preferable to regulate the Fe content to the lowest possible content of 0.40% or less, more preferably 0.35% or less.
[0050]
Hydrogen: 0.25 ml / 100g Al or less. Hydrogen (H2) Is an impurity. In particular, when the degree of processing of the forging material is small, bubbles caused by hydrogen do not press-bond in processing such as forging, and become the starting point of fracture, so that the toughness and fatigue characteristics are significantly reduced. And in the structural material etc. of the transport aircraft which strengthened, the influence by hydrogen is especially large. Therefore, it is preferable that the hydrogen concentration per 100 g of Al is as low as possible with a content of 0.25 ml or less.
[0051]
  Ti: 0.1% or less. Although Ti is an impurity, it has the effect of refining the crystal grains of the ingot to make the forged material structure fine subcrystal grains. However, when Ti exceeds 0.1%, coarse crystal precipitates are formed, and the workability is lowered. Therefore, the Ti content is allowed to be 0.1% or less.
[0052]
  B: 300 ppm or less. B is an impurity, but like Ti, it has the effect of refining the crystal grains of the ingot and improving the workability during extrusion, rolling and forging. However, if the content exceeds 300 ppm, coarse crystal precipitates are formed, and the workability is lowered. Therefore, B is allowed to contain up to 300ppm.
[0053]
  Zn: 1.0% or less. Zn is MgZn during artificial aging.2Is deposited finely and densely to achieve high strength. In addition, Zn in solid solution lowers the potential in the grain, and the corrosion form is not from the grain boundary, but as an overall corrosion, and the effect of reducing the grain boundary corrosion and stress corrosion cracking can be expected. However, if the content exceeds 1.0%, the corrosion resistance is remarkably lowered. Therefore, Zn is allowed up to a content of 1.0% or less.
[0054]
  Be: 100ppm or less. Be prevents reoxidation of molten Al in the air. However, if the content exceeds 100 ppm, the material hardness increases and the workability decreases. Therefore, Be is allowed up to a content of 100 ppm or less.
[0055]
  V: 0.15% or less. V, like Mn, Cr, Zr, etc., produces dispersed particles (dispersed phase) during the homogenization heat treatment and the subsequent hot forging. Since these dispersed particles have an effect of hindering the grain boundary movement after recrystallization, fine subcrystal grains can be obtained. However, an excessive content exceeding 0.15% tends to generate coarse Al-Fe-Si-V intermetallic compounds and crystal precipitates during melting and casting, which becomes the starting point of fracture and reduces toughness and fatigue properties. Cause. Therefore, the V content is allowed to be 0.15% or less.
[0056]
Next, the preferable manufacturing method of the Al alloy forging material in this invention is described. The manufacturing process itself of the Al alloy forged material in the present invention can be manufactured by a conventional method except for the forging conditions described above. For example, when casting an Al alloy melt that has been adjusted to be dissolved within the Al alloy component range, for example, a normal melt casting such as a continuous casting rolling method, a semi-continuous casting method (DC casting method), a hot top casting method, etc. The method is appropriately selected and cast.
[0057]
Here, in order to reduce the average crystal grain size of the Al alloy ingot (casting material) to 100 μm or less and promote sub-graining in the product part and the flash part of the forging material, the Al alloy molten metal is added at 10 ° C / It is preferable to cast into an ingot by cooling at a cooling rate of sec or more. Also, in order to eliminate the cast structure remaining in the Al alloy forging, destroy and refine the crystallized material, and improve the strength, toughness and fatigue characteristics, the Al alloy ingot is extruded and rolled after homogenization heat treatment. After that, the forging may be performed.
[0058]
Next, the homogenization heat treatment temperature of the Al alloy ingot (cast material) is preferably in the temperature range of 400 to 570 ° C. If the homogenization heat treatment temperature exceeds 570 ° C. and is too high, burning or the like occurs, causing forging cracks. In addition, mechanical properties such as toughness and fatigue properties in forged products are reduced. Further, the number of dispersed particles per se that promotes the sub-graining of the flash portion is insufficient due to the coarsening of the dispersed particles such as Mn, Cr, Zr and the like. On the other hand, if the homogenization heat treatment temperature is too low at less than 400 ° C., coarse crystallized substances remain, making it difficult to increase the strength and toughness of the forged product.
[0059]
After this homogenization heat treatment, it is hot-forged by mechanical forging, hydraulic forging, etc., and formed into an Al alloy forging material of the final product shape (near net shape) of the transport machine structural material. At this time, in order to increase the average area ratio of the sub-crystal grains in the structure of the product part and the flash part as described above, and to make the structure mainly composed of the sub-crystal grains as uniform as possible, The forging temperature, that is, the hot forging start temperature and end temperature is set to a relatively high temperature of 450 ° C. or higher. For example, if the hot forging start temperature is less than 450 ° C, especially in the hot forging that is performed multiple times without reheating, the final forging temperature of the final product part is set to a higher temperature of 450 ° C or higher. It becomes difficult to guarantee, and the average area ratio of the sub-crystal grains in the forging structure such as the product part and the flash part cannot be increased. Also, hot forging itself becomes difficult. On the other hand, when the hot forging start temperature exceeds 570 ° C., it is liable to be locally melted by frictional heat and cause forging cracks. Then, the dispersed particles become coarse, and the ratio of sub-crystal grains cannot be increased. Furthermore, the substantial amount of processing becomes too small, and the crystal grains are difficult to sub-grain. Therefore, the processing temperature between the hot forging start temperature and the end temperature is 450 ° C. or higher, preferably 450 to 570 ° C.
[0060]
As described above, in the die forging product such as the undercarriage part in which the product part and the flash part are inevitably present, the processing rate is small in the product part having a large product thickness, while the thickness is smaller than that in the product part. In a remarkably thin flash part, a processing rate becomes large. In such a case, even if the hot forging processing temperature is increased to 450 ° C. or higher, in the flash portion to which processing strain is further applied, particularly in the solution treatment process, the work structure is recrystallized, resulting in coarse crystal grains. Is likely to occur and is difficult to form sub-crystal grains.
[0061]
For this reason, in order to promote subcrystallization in the product part and flash part, and to make the structure mainly composed of uniform subcrystal grains, the high-temperature forging described above is premised, and the processing rate and processing distortion of the flash part are reduced. It is necessary to enlarge it in the product department. However, including the product portion, the processing rate and processing strain prevent the deterioration of strength and toughness due to the remaining cast structure, and at least ensure that the shape accuracy can be obtained. This is the same for a plurality of forging times (processes) or forging once. In this respect, the total amount of distortion in the forging of the product part is preferably about 60 to 90% for the subgraining of the flash part. In the case of one forging, the amount of strain in forging is this amount, and in the case of a plurality of forgings, the total amount of strain is this amount.
[0062]
Also in the type of hot forging, it is preferable to select forging by a hydraulic press, in which it is easy to uniformly apply the forging process strain per time to the forging material and to easily control the processing rate and the processing distortion. With a hydraulic press, the cast structure can be made into a processed structure with a lower processing rate and distortion than a mechanical press, and the shape accuracy can be increased.
[0063]
In addition, even forging by a mechanical press, it is preferable to apply a working strain to the forging material as uniformly as possible. However, in forging by a mechanical press, depending on the shape of the forged product, there is a limit to uniformly applying processing strain. Therefore, in such a case, it is necessary to select forging by a hydraulic press or to change the forging shape design.
[0064]
After these forgings, T6 (artificial age hardening treatment to obtain the maximum strength after solution treatment), T7 (maximum strength after solution treatment) to obtain the necessary strength, toughness and corrosion resistance as a transport structural member Tempering treatment such as excess age-hardening treatment conditions to obtain (A) and T8 (artificial age-curing treatment to obtain maximum strength after cold working after solution treatment) is appropriately performed. The forged material of the present invention may be appropriately subjected to machining, surface treatment, and the like necessary as a transport aircraft structural material before and after these tempering treatments and before being attached as a transport aircraft structural material.
[0065]
The cooling of the quenching treatment after the solution treatment is preferably water cooling. If the cooling rate during the quenching process is low, Mg will appear on the grain boundaries.2Si, Si, etc. are precipitated, and in the product after artificial aging, intergranular fracture is likely to occur, and toughness and fatigue properties are lowered. In addition, during the cooling, also in the grains, stable phase Mg2Si and Si are formed and precipitated during artificial aging'Phase, β''Since the amount of phase precipitation decreases, the strength decreases. On the other hand, when the cooling rate increases, the amount of quenching distortion increases, and after quenching, a new straightening process is required, or the number of steps in the straightening process increases. In addition, the residual stress increases and the product size and shape accuracy decrease. Therefore, in order to shorten the product manufacturing process and reduce the cost, hot water quenching at 50 to 85 ° C. in which quenching distortion is alleviated is preferable. Here, when the hot water quenching temperature is less than 50 ° C., the quenching strain increases, and when it exceeds 85 ° C., the cooling rate becomes too low, and the toughness, fatigue characteristics, and strength decrease.
[0066]
In the T7 tempered material, β precipitated on the grain boundary. The proportion of phases increases. This β The phase is difficult to elute under corrosive environment, lowers intergranular corrosion sensitivity, and increases stress corrosion cracking resistance. On the other hand, β that precipitates a lot in the T6 material'The phase is easy to elute in a corrosive environment, increases the intergranular corrosion sensitivity, and decreases the stress corrosion cracking resistance. Therefore, when the Al alloy forged material is the T7 material, the proof stress is slightly lowered, but the corrosion resistance is higher than that of other tempering treatments.
[0067]
In addition, an air furnace, an induction heating furnace, a nitrite furnace, etc. are used suitably for the above-mentioned homogenization heat treatment and solution treatment. Further, an air furnace, an induction heating furnace, an oil bath, or the like is appropriately used for the artificial age hardening treatment.
[0068]
【Example】
Next, examples of the present invention will be described. Al alloy ingots with the chemical composition of alloy numbers 1 to 7 shown in Table 1 (Al alloy cast material, both of which have a diameter of φ82mm) were cast by a semi-continuous casting method at a cooling rate of 20 ° C / sec. . Alloy numbers 1 to 4 shown in Table 1 are invention examples of chemical composition within the scope of the present invention, alloy number 5 is a comparative example in which the Si content deviates slightly, and alloy number 6 is any of Mn, Cr and Zr. It is a comparative example which does not contain. Table 1 also shows the average crystal grain size (μm) of the ingot (cast material). In addition, H in 100 g Al of alloy numbers 1 to 62All concentrations were 0.10-0.15 ml.
[0069]
Then, after chamfering the outer surface of this ingot 3mm in thickness and cutting it to a length of 500mm, as shown in Table 2, it was subjected to homogenization heat treatment at 500 ° C (heating time is 1 to 4 hours) for 4 hours. The hot forging conditions, i.e., the starting temperature, the final ending temperature, the processing rate (strain amount) of the product part, etc. were changed in various ways, using either a mechanical press or a hydraulic press, as shown in FIG. Forged into a square forged material (the size and diameter of the forged material are different because the processing rate was changed).
[0070]
At this time, the forging conditions using the mechanical press indicated by M in Table 2 were forged three times without reheating using the upper and lower molds shown in FIG. 2 with a flash land gap of 1.5 to 3 mm. Also, forging using a hydraulic press indicated by O in Table 2 was forged once using upper and lower molds. The processing rate of the forging material is shown in Table 2 in terms of the total strain amount (%) in the forging material product part.
[0071]
After these forgings, solution forging, quenching treatment, and artificial age hardening treatment were performed to produce test forgings. The solution treatment is performed at 540 ° C for 5 hours using an air furnace with a heating time of 1 to 2 hours. After solution treatment, quenching is performed in warm water at 60 ° C, and then within 180 minutes 180 ° C x 5 Artificial age hardening treatment of time was performed.
[0072]
The amount of strain (%) C in hot forging in Table 2 is calculated using the average crystal grain spacing A in the forged product part and the average cell layer size B in the ingot, and C = [(BA) / B] × Calculated with 100% formula. The average cell layer size B of the ingot is the surface perpendicular to the casting direction before chamfering of the ingot, and is divided into four equal parts from the outer surface of the ingot to the center. The average value at the location was used. At this time, if the amount of strain is small and a clear flow line is not formed, the size of the ingot cell layer remaining in the forged material (minimum length direction) E is used, and D = [(BE) / B ] X100% was calculated.
[0073]
Table 3 shows the characteristics of these forgings. The Al alloy numbers in Tables 2 and 3 correspond to the Al alloy numbers in Table 1. Among the characteristics of the forged material, the average grain size and the average area ratio of the sub-crystal grains in the flash part and the product part were measured as described above. Among these, the microstructure in the product part of Invention Example 6 where the average area ratio of the flash part and the product part sub-crystal grains is high and Comparative Example 9 where the average area ratio of the sub-crystal grains is low are shown in FIGS. Each photo is shown.
[0074]
In addition, from the product part of each forging material, each of 5 tensile test pieces A (L direction) and Charpy test piece B (LT direction) are sampled from arbitrary locations, and tensile strength (MPa), 0.2% proof stress ( MPa), elongation (%), Charpy impact value, etc. were measured, and each average value was determined. Since these test specimens for measuring mechanical characteristics are difficult to collect from a micro flash part, the characteristics of the flash part are substituted for the characteristics of the product part.
[0075]
Furthermore, the stress corrosion cracking test was performed by collecting the flash part and the peripheral part and processing them into C-ring-shaped test pieces. The stress corrosion cracking test conditions were performed in accordance with the ASTM G47 alternate dipping method for the C-ring test piece. However, the test conditions are that the forging material is used with a tensile stress applied to the flash part in the ST direction. A stress of 75% of the proof stress in the L direction was applied. In this state, the C-ring test piece was repeatedly dipped in salt water and pulled up for 90 days, and the presence or absence of occurrence of stress corrosion cracking in the test piece was confirmed. These results are shown as x when stress corrosion cracking occurs, △ when there is intergranular corrosion that is not stress corrosion cracking but is likely to lead to stress corrosion cracking, and Table 3 shows the cases where interfacial corrosion has not occurred (including the case where superficial general corrosion has occurred).
[0076]
As can be seen by comparing the microstructure of the product part of Invention Example 6 in FIG. 3 and Comparative Example 9 in FIG. 4, Invention Example 6 is equiaxed recrystallized grains having an average grain size of about 250 μm. . Many fine sub-crystal grains having an average grain size of about 3 μm are formed in the crystal grains. On the other hand, Comparative Example 9 in FIG. 4 is coarse particles having an average particle size of about 1000 μm. In addition, almost no fine subcrystal grains are formed in the crystal grains, and they are only formed at an area ratio of only about 10% in the central portion on the right side of the figure.
[0077]
As is apparent from Table 3, the forgings of the inventive examples in which the average area ratio of the sub-crystal grains in these product parts is 80% or more have a 0.2% proof stress of 350 MPa or more and a Charpy impact value of 15 J / cm.2That's it. Further, the forging material of the invention has an average area ratio of 40% or more of the sub-crystal grains in the flash part, and is excellent in stress corrosion cracking resistance. In addition, the forged material of Invention Example 2 in which the average area ratio of the subgrains is 90% or more has a 0.2% proof stress of 350 MPa or more and a Charpy impact value of 40 J / cm.2And 20J / cm2That's it. Here, in particular, in each comparison between Invention Examples 1 and 2, 6 and 7, 11 and 12, forging with a hydraulic press, etc., flashing was more effective than forging with a mechanical press under the same alloy composition and forging conditions. The average area ratio of the sub-crystal grains in the substructure is high.
[0078]
On the other hand, forging materials such as Comparative Examples 4, 5, 9, 10, 14, 15 in which the start temperature and final end temperature of hot forging are too low, even if an Al alloy having a composition within the scope of the present invention is used, The average area ratio of the sub-crystal grains in the product part and flash part structure is low. As a result, strength, proof stress, toughness, stress corrosion cracking resistance and the like are significantly inferior to those of the inventive examples.
[0079]
In addition, using an Al alloy having a composition within the scope of the present invention, even when high temperature forging with high start temperature and final end temperature of hot forging is performed, Comparative Examples 3, 8 and 13 with a low processing rate of the product part are: The average area ratio of the sub-crystal grains in the structure of the product part and the flash part is low, and the strength, toughness, stress corrosion cracking resistance, etc. are remarkably inferior compared with the invention example of the same Al alloy. Furthermore, Comparative Examples 17 and 18 using Al alloy 5 with an Si content of less than the lower limit of 0.36% were subjected to high-temperature forging with high hot forging start temperature and final end temperature, and the product part and flash part. Even if the ratio of the sub-crystal grain area ratio in the structure is increased, the strength, proof stress, etc. are remarkably inferior. Furthermore, in Comparative Examples 19 and 20 using Al alloy 6 containing no transition element, each crystal grain of the cast material in Table 1 and the forged material in Table 3 is remarkably coarse, and there are sub-crystal grains in the crystal grains. Not formed. For this reason, strength, proof stress, etc. are remarkably inferior.
[0080]
And especially in these Comparative Examples 3, 8, and 13, the average crystal grain size of the product part is 41 to 58 μm, which is as fine as the invention example, but the average area ratio of sub-crystal grains is less than 70%. And low. Therefore, from these results, not only can the sub-crystal grains not be formed by the coarsening of the crystal grains, but as described above, even if the crystal grain size is fine, the sub-crystal grains are not necessarily formed in the crystal grains. I understand. From the above results, the critical significance of defining the area ratio of the subgrains of the present invention can be understood.
[0081]
[Table 1]
Figure 0003726087
[0082]
[Table 2]
Figure 0003726087
[0083]
[Table 3]
Figure 0003726087
[0084]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy forging material for transport aircraft structural materials made high-strength, high toughness, and high corrosion resistance, and its manufacturing method can be provided. Therefore, it has a great industrial value in that the use of the forged Al—Mg—Si based aluminum alloy for transportation equipment can be expanded.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional perspective view showing an Al alloy forged material.
FIG. 2 is a cross-sectional view showing an Al alloy forging die according to the present invention.
FIG. 3 is a drawing-substituting photograph showing the microstructure of the forged product part of the present invention.
FIG. 4 is a drawing-substituting photograph showing the microstructure of the comparative forged product part.
[Explanation of symbols]
 1: Al alloy forging, 2: Product part, 3: Flash, 4: Split surface,
 5: Flash cutting line, 6: Metal flow, 7: Upper mold, 8: Lower mold,
 9: Gutta, 10: Flash stand,

Claims (5)

製品部とフラッシュ部とが形成されたAl-Mg-Si系アルミニウム合金鍛造材であって、Mg:0.6〜1.8%、Si:0.4〜1.8%を含み、更に、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の一種または二種以上を含み、残部Alおよび不可避的不純物からなり、前記製品部組織中の亜結晶粒の平均面積率割合を70% 以上とするとともに、前記フラッシュ部組織中の亜結晶粒の平均面積率割合を40% 以上とし、前記製品部の0.2%耐力を350MPa以上およびシャルピー衝撃値を15J/cm2 以上としたことを特徴とする輸送機構造材用アルミニウム合金鍛造材。Al-Mg-Si based aluminum alloy forging material formed with product part and flash part, including Mg: 0.6-1.8%, Si: 0.4-1.8%, and Mn: 0.01-0.9%, Cr : 0.01 to 0.25% and Zr: 0.01 to 0.20%, one or two or more of the remaining Al and inevitable impurities, the average area ratio of the sub-crystal grains in the product structure is 70% or more The average area ratio of the sub-crystal grains in the flash structure is 40% or more, the 0.2% proof stress of the product part is 350 MPa or more, and the Charpy impact value is 15 J / cm 2 or more. Aluminum alloy forgings for machine structural materials. 前記製品部組織中の亜結晶粒の平均面積率割合を90% 以上とするとともに、前記フラッシュ部組織中の亜結晶粒の平均面積率割合を60% 以上とし、製品部のシャルピー衝撃値を20J/cm2 以上とした請求項1に記載の輸送機構造材用アルミニウム合金鍛造材。The average area ratio of the sub-crystal grains in the product part structure is 90% or more, the average area ratio of the sub-crystal grains in the flash part structure is 60% or more, and the Charpy impact value of the product part is 20 J The aluminum alloy forging material for a transportation machine structural material according to claim 1, wherein the aluminum alloy forging material is / cm 2 or more. 前記輸送機構造材が自動車足回り部品である請求項1または2に記載の輸送機構造材用アルミニウム合金鍛造材。The aluminum alloy forged material for a transport aircraft structural material according to claim 1 or 2, wherein the transport aircraft structural material is an automobile undercarriage part. 前記アルミニウム合金鍛造材が鉄鋼材料と接合して用いられるものである請求項1乃至3のいずれか1項に記載の輸送機構造材用アルミニウム合金鍛造材。The aluminum alloy forging material for transport machine structural materials according to any one of claims 1 to 3, wherein the aluminum alloy forging material is used by being joined to a steel material. 請求項1乃至4のいずれか1項のアルミニウム合金鍛造材の製造方法であって、Mg:0.6〜1.8%、Si:0.4〜1.8%を含み、更に、Mn:0.01 〜0.9%、Cr:0.01 〜0.25% およびZr:0.01 〜0.20% の一種または二種以上を含み、残部Alおよび不可避的不純物からなり、平均結晶粒径を100 μm 以下としたAl-Mg-Si系アルミニウム合金鋳造材を、均質化熱処理後に、製品部とフラッシュ部とが形成された鍛造材に熱間鍛造するに際し、加工温度を450 ℃以上とし、製品部の歪み量を60% 以上とし、熱間鍛造後、更に溶体化および焼き入れ処理と人工時効硬化処理することを特徴とする輸送機構造材用アルミニウム合金鍛造材の製造方法。The method for producing an aluminum alloy forging according to any one of claims 1 to 4, comprising Mg: 0.6-1.8%, Si: 0.4-1.8%, Mn: 0.01-0.9%, Cr: 0.01 Al-Mg-Si based aluminum alloy casting material containing one or two or more of ~ 0.25% and Zr: 0.01 to 0.20%, the balance being Al and inevitable impurities, and having an average crystal grain size of 100 μm or less, When hot forging the forged material in which the product part and flash part are formed after the homogenization heat treatment, the processing temperature is set to 450 ° C or higher, the distortion amount of the product part is set to 60% or more, and after hot forging, the solution is further melted. A method for producing an aluminum alloy forged material for a structural material for a transporting machine, characterized by subjecting to hardening and quenching treatment and artificial age hardening treatment.
JP2003114495A 2003-04-18 2003-04-18 Aluminum alloy forged material for transport machine structural material and method for producing the same Expired - Fee Related JP3726087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114495A JP3726087B2 (en) 2003-04-18 2003-04-18 Aluminum alloy forged material for transport machine structural material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114495A JP3726087B2 (en) 2003-04-18 2003-04-18 Aluminum alloy forged material for transport machine structural material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004315938A JP2004315938A (en) 2004-11-11
JP3726087B2 true JP3726087B2 (en) 2005-12-14

Family

ID=33474071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114495A Expired - Fee Related JP3726087B2 (en) 2003-04-18 2003-04-18 Aluminum alloy forged material for transport machine structural material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3726087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106077387A (en) * 2016-06-27 2016-11-09 泰尔重工股份有限公司 A kind of forging method of LD steel cylinder blade

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274415A (en) * 2005-03-30 2006-10-12 Kobe Steel Ltd Aluminum alloy forging for high strength structural member
JP4801386B2 (en) * 2005-06-30 2011-10-26 昭和電工株式会社 Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP2007169699A (en) * 2005-12-21 2007-07-05 Toyota Motor Corp High strength and high toughness aluminum alloy forging material having excellent corrosion resistance, its production method and suspension component
JP5209892B2 (en) * 2007-03-29 2013-06-12 株式会社神戸製鋼所 Method of quenching aluminum alloy forging
JP2009041113A (en) * 2008-10-31 2009-02-26 Showa Denko Kk Automobile component
JP5275321B2 (en) * 2010-10-29 2013-08-28 昭和電工株式会社 Manufacturing method of plastic products made of aluminum alloy
CN102950236A (en) * 2011-08-18 2013-03-06 苏州有色金属研究院有限公司 Wrought aluminum alloy forging method
JP5863626B2 (en) 2012-02-02 2016-02-16 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5476452B2 (en) * 2012-11-27 2014-04-23 トヨタ自動車株式会社 High strength, high toughness aluminum alloy forging material with excellent corrosion resistance, its manufacturing method, and suspension parts
JP5532462B2 (en) * 2013-04-15 2014-06-25 昭和電工株式会社 Manufacturing method of plastic products made of aluminum alloy
JP5901738B2 (en) * 2014-03-27 2016-04-13 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP6521722B2 (en) * 2015-04-28 2019-05-29 株式会社神戸製鋼所 Aluminum alloy material for structural member and method of manufacturing the same
CN112553511B (en) * 2020-12-04 2021-12-07 中铝材料应用研究院有限公司 6082 aluminum alloy material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106077387A (en) * 2016-06-27 2016-11-09 泰尔重工股份有限公司 A kind of forging method of LD steel cylinder blade

Also Published As

Publication number Publication date
JP2004315938A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP5180496B2 (en) Aluminum alloy forging and method for producing the same
JP5110938B2 (en) Automotive undercarriage parts and manufacturing method thereof
JP5698695B2 (en) Aluminum alloy forgings for automobiles and manufacturing method thereof
TWI592498B (en) Aluminum alloy plastic processed products, manufacturing method thereof and automobile parts
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP3726087B2 (en) Aluminum alloy forged material for transport machine structural material and method for producing the same
WO2006083982A2 (en) Aluminum-zinc-magnesium-scandium alloys and methods of fabricating same
JP2000144296A (en) High-strength and high-toughness aluminum alloy forged material
EP1904659A1 (en) A wrought aluminum aa7000-series alloy product and method of producing said product
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP2004292937A (en) Aluminum alloy forging material for transport carrier structural material, and production method therefor
JP2020066752A (en) Al-Mg-Si-BASED ALUMINUM ALLOY EXTRUSION MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP4511156B2 (en) Aluminum alloy manufacturing method and aluminum alloy, rod-shaped material, sliding part, forged molded product and machined molded product manufactured thereby
JP3721020B2 (en) High strength, high toughness aluminum alloy forging with excellent corrosion resistance
JP4801386B2 (en) Aluminum alloy plastic processed product, manufacturing method thereof, automotive parts, aging furnace, and aluminum alloy plastic processed product manufacturing system
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP5308907B2 (en) Method for producing Al alloy forged product
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JP2006274415A (en) Aluminum alloy forging for high strength structural member
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050926

R150 Certificate of patent or registration of utility model

Ref document number: 3726087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees