JP3721530B2 - Textile treatment composition - Google Patents
Textile treatment composition Download PDFInfo
- Publication number
- JP3721530B2 JP3721530B2 JP36293097A JP36293097A JP3721530B2 JP 3721530 B2 JP3721530 B2 JP 3721530B2 JP 36293097 A JP36293097 A JP 36293097A JP 36293097 A JP36293097 A JP 36293097A JP 3721530 B2 JP3721530 B2 JP 3721530B2
- Authority
- JP
- Japan
- Prior art keywords
- bleaching
- fiber
- agent composition
- pulp
- fiber treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims description 106
- 239000004753 textile Substances 0.000 title 1
- 239000000835 fiber Substances 0.000 claims description 112
- 239000003795 chemical substances by application Substances 0.000 claims description 68
- 238000004061 bleaching Methods 0.000 claims description 46
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 28
- 238000009991 scouring Methods 0.000 claims description 26
- 235000000346 sugar Nutrition 0.000 claims description 22
- 239000002738 chelating agent Substances 0.000 claims description 18
- 238000004043 dyeing Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 11
- 150000001413 amino acids Chemical class 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 6
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 238000004076 pulp bleaching Methods 0.000 claims description 3
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 description 39
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 35
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 229910052742 iron Inorganic materials 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 229920000742 Cotton Polymers 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000004744 fabric Substances 0.000 description 9
- -1 iron ions Chemical class 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000004115 Sodium Silicate Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 7
- 229910052911 sodium silicate Inorganic materials 0.000 description 7
- 239000002023 wood Substances 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 229920001131 Pulp (paper) Polymers 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 239000013522 chelant Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 239000010802 sludge Substances 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 239000007844 bleaching agent Substances 0.000 description 5
- 230000000873 masking effect Effects 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 150000002978 peroxides Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000009897 hydrogen peroxide bleaching Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000176 sodium gluconate Substances 0.000 description 4
- 229940005574 sodium gluconate Drugs 0.000 description 4
- 235000012207 sodium gluconate Nutrition 0.000 description 4
- 159000000000 sodium salts Chemical class 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910000000 metal hydroxide Inorganic materials 0.000 description 3
- 150000004692 metal hydroxides Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- MPJQXAIKMSKXBI-UHFFFAOYSA-N 2,7,9,14-tetraoxa-1,8-diazabicyclo[6.6.2]hexadecane-3,6,10,13-tetrone Chemical compound C1CN2OC(=O)CCC(=O)ON1OC(=O)CCC(=O)O2 MPJQXAIKMSKXBI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229940071087 ethylenediamine disuccinate Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052914 metal silicate Inorganic materials 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000004537 pulping Methods 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- HCPXIWNLCUDLNR-UHFFFAOYSA-J tetrasodium butanedioate ethane-1,2-diamine Chemical compound [Na+].[Na+].[Na+].[Na+].NCCN.[O-]C(=O)CCC([O-])=O.[O-]C(=O)CCC([O-])=O HCPXIWNLCUDLNR-UHFFFAOYSA-J 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- DCCWEYXHEXDZQW-BYPYZUCNSA-N (2s)-2-[bis(carboxymethyl)amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)N(CC(O)=O)CC(O)=O DCCWEYXHEXDZQW-BYPYZUCNSA-N 0.000 description 1
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- UWRBFYBQPCJRRL-UHFFFAOYSA-N 3-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)CCN(CC(O)=O)CC(O)=O UWRBFYBQPCJRRL-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DSLZVSRJTYRBFB-LLEIAEIESA-N D-glucaric acid Chemical compound OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O DSLZVSRJTYRBFB-LLEIAEIESA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 231100000209 biodegradability test Toxicity 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009954 braiding Methods 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000013055 pulp slurry Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- XFLNVMPCPRLYBE-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate;tetrahydrate Chemical compound O.O.O.O.[Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O XFLNVMPCPRLYBE-UHFFFAOYSA-J 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Landscapes
- Coloring (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Paper (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、広いpH領域において高いキレート能力を有し、生分解性に優れた繊維処理剤組成物に関する。特にpH11以上の領域における鉄イオンのマスキング能が高く、排水に含まれて流出しても簡単な生物処理により除去ができ、環境に影響を与えない生分解性を有する繊維処理剤組成物であり、パルプ製造あるいは天然繊維などの精練、漂白、染色処理などにおいて有効な繊維処理剤組成物に関する。
特にパルプの製造工程における金属水酸化物の沈殿防止、過酸化水素漂白における過酸化水素の異常分解の防止、鉄イオンによる着色の防止や、天然繊維の精練、漂白、染色などにおける白色度の向上、染色むらの発生の防止などに有効な繊維処理剤組成物に関する。
【0002】
【従来の技術】
従来パルプは一般に天然の木材を、チップ化工程、パルプ化工程、精練工程、漂白工程などを経てパルプを製造している。
製造法、目的などによりメカニカルパルプ、ケミカルパルプ(サルファイトパルプ、クラフトパルプなど)、セミケミカルパルプ、人絹パルプなどの多くの種類があるが、生産のほとんどを占めるケミカルパルプ、セミケミカルパルプ、人絹パルプなどのパルプ類は木材中の繊維を化学的に開繊し、木材中に含まれているリグニン、鉄やその他の金属を含む着色成分、その他の繊維結合物を除去し、単繊維にしたものであり、一般的に白度の高いものが要求されているためほとんどの場合漂白が行われている。
木材中に含まれるリグニンや有機系の多くの不純物はそのほとんどがアルカリ性において水溶性になるため、パルプ製造工程においては製造工程をアルカリサイドで行うことが多い。
【0003】
しかしながら木材中には、アルカリ性にすると水酸化物などの化合物となり、沈降しやすくなるアルカリ土類金属イオン、鉄、マンガン、銅などの金属イオンが含まれており、アルカリ性になると沈殿する。これら沈殿物はパルプスラリーに混入してパルプの白度を低下させたり、あるいは装置類の壁に付着しあるいは装置底部に沈降してスケールとなる原因となっている。
一方、漂白においては、従来塩素系漂白剤を使用して行うことが主流であったが、繊維を損傷する傾向が強いこと、最近は発ガン性のダイオキシンの発生の危険が大きいなどといわれ、このような危険がないとされる過酸化物系漂白剤の使用が多くなってきている。中でも安価であり、分解すると酸素と水になり、環境に対する汚染のないところから過酸化水素による漂白工程の使用が多く行われている。
なお木材中に微量ではあるが含まれる鉄、マンガン、銅などは、過酸化水素の分解触媒としてその機能は極めて強力なものであるのでこれらが系内に存在すると、漂白剤として使用された過酸化水素の一部はパルプの漂白に関与せずに分解されてしまい、漂白効率を低下させる問題も知られている。
この過酸化水素による漂白は、アルカリ性でなければ漂白能力が発揮できない問題もあり、上記スケールの発生防止を含めてその対策を必要とされてきた。
【0004】
この対策として、パルプ類の過酸化水素漂白には、過酸化水素分解能を有する金属イオンの封鎖と水酸化物析出防止を目的として、珪酸ソーダ、縮合りん酸塩、有機キレート剤が一般的に使用されてきた。(Gard,A.J.,TAPPI,Vol.44,162A:1961年10月)
このうち珪酸ソーダは、木材に含まれていた金属イオンと反応し、金属珪酸塩となるが、金属の珪酸塩が水に難溶性のものが多くてスケールトラブルの原因になる。
りん酸系安定剤の使用例もあるが[(KPの酸素漂白技術動向.、岩崎誠、紙パ技協誌、第38巻、12、6(1984年12月)]、排水のりん濃度を高めるので規制によりその使用が制限される。
このため有機キレート剤として、EDTA−Na(エチレンジアミン四酢酸−四ナトリウム)、DTPA−Na(ジエチレントリアミン五酢酸−五ナトリウム)などのアルカリ金属塩の使用が提案(特公昭47−16841号、特公昭53−44563号、特公昭59−17240号など)されているが、パルプの過酸化水素漂白に好適とされる高アルカリ側ではキレート能力が低下すること、排水の活性汚泥処理への悪影響やこれらキレート剤が生分解性がないので環境への流出の影響が懸念されていることなどの問題を有している。
【0005】
また繊維類の精練、漂白、染色処理においても同様な問題がある。天然繊維においては上記と同様であり、合成繊維においても原料及び合成の過程において種々の金属に汚染され、微量であってもそれらを含有することが避けられない。また紡績、編組、織布の過程でもこれら金属の汚染が避けられない。この他、金属系の不純物は装置、添加薬品、使用水などからも混入する。
特に近年、排水処理規制が厳しくなるにつれて、プロセス水のリサイクルが一般的になり、リサイクルの程度が高くなるにつれてプロセス水中の金属濃度が高くなる傾向にある。これらの金属分は、精練工程では不溶性の金属石けんを生成して洗浄効果を低下させたり、漂白工程では漂白剤の過酸化水素の異常分解を起こし、白度の低下や繊維強度の低下の原因になったり、また後工程の染色工程では色むらの原因にもなったりする。
一般に繊維類の洗浄工程では、付着している脂肪、油脂、その他の有機物の除去のためにアルカリ領域での処理が行われるので、金属イオンが存在する時は金属水酸化物などのスケール対策を必要とする。
【0006】
従来は、これら汚染金属の除去及びマスキングのためキレート剤としてEDTA−Na、DTPA−Na、ニトリロ三酢酸(NTA)が使用されてきた。(上野影平:「EDTA−コンプセキサンの化学」p137:南江堂 1977年4月15日発行)
これらのキレート剤は上述のようにpH11以上では鉄イオン(これらの繊維の汚染金属としては最も多く、白度低下の原因及び過酸化物分解触媒能力が高い。)を十分にマスクすることができなかった。NTAは生分解性があるとされているが、発ガン性物質の懸念があり、安全性の面で問題があり、このようにこれまで高アルカリ側においてもキレート能力が高く、環境に対して安全な繊維処理剤はなかった。
【0007】
【発明が解決しようとする課題】
本発明はパルプや繊維などの処理剤として、工程中においてのスケールの発生防止、アルカリサイドにおける処理において強力なキレート能力、漂白剤として使用する過酸化物、特に過酸化水素、の異常分解を防止して効率的な漂白、活性汚泥処理により、生物処理で分解して環境への流出防止ができる繊維処理剤組成物の開発を目的とする。
【0008】
【課題を解決するための手段】
本発明は、 (1)
(a)一般式(1)
、Xは水素原子、メチル基あるいは−A−Bであり、Aは一般式Cn H2nで示される2価の基であり、nは0ないし2の整数を示し、BはCOOM基または水酸基であり、Mは各々独立に水素原子、アルカリ金属、アンモニウムまたは有機アンモニウムであり、mは0ないし3の整数である。]で示されるアミノ酸−N,N−二酢酸(塩)および/または一般式(2)
、Mは各々独立に水素原子、アルカリ金属、アンモニウムまたは有機アンモニウムであり、Dは水素原子あるいは水酸基である。) で示されるエチレンジアミンジコハク酸(塩)類から選ばれるアミノ酸型キレート剤、及び(b)還元糖および/または糖カルボン酸
を主成分として含有する繊維処理剤組成物、
(2) アミノ酸型キレート剤を5〜50重量%、還元糖および/または糖カルボン酸を5〜40重量%含有する上記(1)記載の繊維処理剤組成物、
【0009】
(3) 過酸化水素を用いるパルプの漂白において、漂白工程またはそれ以前の工程において上記(1)記載の繊維処理剤組成物を精練漂白助剤組成物として使用することからなるパルプの製造方法、
(4) パルプの漂白工程において、絶乾パルプに対し上記(1)記載の繊維処理剤組成物を0.01〜5重量%用いることからなる上記(3)記載のパルプの製造方法、及び
(5) 繊維の精練・漂白工程または染色工程のいずれかにおいて、上記(1)記載の繊維処理剤組成物を使用する繊維処理方法、
を開発することにより本発明の課題を解決した。
【0010】
【発明の実施の形態】
アミノ酸型キレート剤のアルカリ塩類は、pH8の弱アルカリ性〜pH13のような強アルカリ性でも鉄に対するキレート能力があり、還元糖または糖カルボン酸はpH11以上で鉄に対するキレート能力があることから、両者を併用することにより広いpH領域で鉄に対するキレート能力を持ち、かつ生分解性を有する優れた繊維処理剤組成物を得ることを見いだした。またこの繊維処理剤組成物は、同時にパルプの製造工程あるいは繊維の精練、漂白、染色工程におけるスケールの問題も同時に解決するものであり、更に漂白工程に使用する漂白剤の過酸化物の異常分解を防止し、漂白効率を高め、製品白度を向上する能力も有することを見いだした。
【0011】
本発明で用いるアミノ酸型キレート剤の塩類は、一般式(1)および/または(2)で表される化合物の少なくとも1種以上を用いるものである。本発明において使用する一般式(1)で示されるアミノ酸−N,N−二酢酸(塩)は公知の方法(ドイツ特許公開公報DE4211713 A1)により製造することができる。また一般式(2)のエチレンジアミンジコハク酸塩も同様に公知の方法で製造できる。アミノ酸型キレート剤塩類としては一般的にはナトリウム塩あるいはカリウム塩であり、好ましくはナトリウム塩である。これら化合物はいずれも生分解性の物質である。
この化合物としては、例えばα−あるいはβ−アラニン−N,N−二酢酸塩、アスパラギン酸−N,N−二酢酸塩、グルタミン酸−N,N−二酢酸塩(GLDA−4Na)、セリン−N,N−二酢酸塩、エチレンジアミンジコハク酸塩などが該当する。
アミノ酸部位としては光学異性体の存在するものは、D−体、L−体、D、L−体のいずれの光学異性体も用いることができるが、生分解性の見地からL−体が好ましい。
繊維処理剤組成物に配合する比率は、使用する工程、パルプまたは繊維に含有される金属の種類と量によって異なるが、該組成物に対し、5〜50重量%、好ましくは10〜40重量%である。この配合量が50重量%を超える場合は液の粘度が高くなり、通常の使用が困難になる。一方5重量%未満においては金属のマスキング能力が低くなる。
【0012】
本発明に使用する還元糖としては、精製品から混合物まで種々のものがあるが、D−ソルビトールが好ましい。
また本発明で使用される糖カルボン酸としては、還元糖が酸化された糖カルボン酸もしくは糖ジカルボン酸[例えばグルコン酸、グルカル酸(糖酸)など]またはこれらのアルカリ金属塩、アンモニウム塩、有機アミン塩が含まれる。通常はナトリウム塩を用いる。これらの糖カルボン酸としては精製品から混合物まで種々のものがあるがそのいずれでも良い。
本発明の繊維処理剤組成物に対して還元糖及び糖カルボン酸は単独であってもあるいは混合物であっても使用することが可能である。グルコン酸ソーダの場合、30重量%以上配合する時は常温では溶解が困難となる。還元糖の場合には更に濃度を上げても溶解することができるが、多量使用すると溶液粘度が増加するので相対的にアミノ酸型キレート剤の配合量を少なくする必要があり、鉄イオンのマスキング効果は増加するが、他の金属への効果が減少することになる。
【0013】
本発明の繊維処理剤組成物はアミノ酸型キレート剤と還元糖および/または糖カルボン酸のみから構成したものであってもスケール発生防止、キレート能力(鉄のマスキング効果)、過酸化物の異常分解防止性などの効果は十分であり、パルプ、繊維などの製品の白度、染色の際の色むら防止などは向上するが、工程によっては珪酸ソーダなどのビルダーや界面活性剤、浸透剤、消泡剤、などを含めた組成物(別に添加することも可能。)として使用することもできる。
以下実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。
【0014】
【実施例】
(実施例1)
グルタミン酸−N,N−二酢酸四ナトリウム塩を30重量部とグルコン酸ソーダ10重量部を混合した繊維処理剤組成物を調製し、該組成物の40重量%水溶液とした。
繊維処理剤組成物としての必要機能である金属溶解能力を比較するために、アルカリ性での鉄キレート価(Fe C.V.:組成物1gで溶解することができる鉄のmg重量)、カルシウムキレート価(Ca C.V.:組成物1gで溶解できるカルシウムのmg重量)を測定した。
結果を表1〜2に示す。
【0015】
(実施例2)
グルタミン酸−N,N−二酢酸四ナトリウム塩を30重量部とD−ソルビトールを10重量部を混合した繊維処理剤組成物を調製し、該組成物の40重量%水溶液とした。
繊維処理剤組成物としての必要機能である金属溶解能力を比較するために、実施例1と同じくアルカリ性での鉄キレート価及びカルシウムキレート価を測定した。
結果を表1〜2に示す。
【0016】
(比較例1)
EDTA−4Naを40重量%溶解した水溶液を調製した。実施例1と同様に鉄、カルシウムのキレート価を測定した。結果を表1〜2に示す。
(比較例2)
DTPA−5Na(ジエチレンテトラミンペンタ酢酸5ナトリウム塩)を40重量%の水溶液を調製した。比較例1と同様に鉄、カルシウムのキレート価を測定した。結果を表1〜2に示す。
この結果、本発明の繊維処理剤組成物の鉄キレート価は広いpH領域で高いこと、特に強いアルカリ領域においても強いキレート効果を有することが明らかになった。
【0017】
【表1】
鉄のC.V.
【0018】
【表2】
カルシウムのC.V.
【0019】
(実施例3)
生分解性を測定するため、実施例1及び2、比較例1及び2の繊維処理剤組成物をCOD500ppmとなるように水で希釈し、化学工場の活性汚泥廃水処理施設から採取した活性汚泥を殖種源とし、小型曝気型活性汚泥装置で生分解性テストを行った。7日後の処理廃水中のCODを測定すると本発明の繊維処理剤組成物の場合は実施例1の繊維処理剤組成物においては50ppm、実施例2の繊維処理剤組成物においては25ppmまで分解処理できたのに対して、比較例の繊維処理剤組成物ではいずれも500ppm前後と変化はなかった。
【0020】
【表3】
【0021】
(実施例4)
漂白前砕木パルプ(GP)スラリーに、48%のNaOHでpHを調整した実施例1の繊維処理剤組成物を添加して洗浄を行い、脱水、乾燥後のパルプ中の金属含有量を測定した。表4に示すように本発明の繊維処理剤組成物はpHの高い領域においても金属除去効果が低下しないことがわかる。
[洗浄条件]
GP重量(絶乾重量) 10.0g/L
添加量 0.1g/L
処理温度 60℃
処理時間 60分
【0022】
(実施例5)
実施例4と同様の試験を実施例2の繊維処理剤組成物を使用して行った。結果を表4に示す。
(実施例6)
エチレンジアミンジコハク酸4ナトリウム塩を30重量部とグルコン酸ソーダ10重量部からなる組成物を40重量%の濃度に溶解した水溶液を用い、実施例4と同様に実施した。
【0023】
(比較例3)
実施例4において、繊維処理剤組成物を添加しないほかはすべて実施例4と同様に洗浄、脱水、乾燥を行った。結果を表4に示す。
(比較例4)
実施例4において、繊維処理剤組成物を比較例1の繊維処理剤組成物を用いて実施したほかはすべて実施例4と同様に洗浄、脱水、乾燥を行った。結果を表4に示す。
(比較例5)
実施例4において、繊維処理剤組成物を比較例2の繊維処理剤組成物を用いて実施したほかはすべて実施例4と同様に洗浄、脱水、乾燥を行った。結果を表4に示す。
【0024】
【表4】
洗浄後のGP中の金属含有量
【0025】
(実施例7)
実施例1の繊維処理剤組成物を、NaOH(48%)でpHを調整しながら精練助剤として未晒木綿織布の精練を行い、精練後の木綿中の金属含有量を測定した。
[精練条件]
非イオン界面活性剤 0.5g/L
精練助剤 5.0g/L
浴比 1/10
温度 100℃
時間 60分
【0026】
(実施例8)
精練助剤として、実施例2の繊維処理剤組成物を使用した以外はすべて実施例7と同様に行った。結果を表5に示す。
(実施例9)
エチレンジアミンジコハク酸4ナトリウム塩を30重量部とグルコン酸ソーダ10重量部からなる組成物を40重量%の濃度に溶解した水溶液を用い、実施例7と同様に実施した。結果を表5に示す。
【0027】
(比較例6)
実施例7において、繊維処理剤組成物(精練助剤)を使用しないほかはすべて実施例7と同様に処理を行った。結果を表5に示す。
(比較例7)
比較例1のキレート剤を精練助剤として用いたほかは、実施例7と同様に処理を行った。結果を表5に示す。
(比較例8)
比較例2のキレート剤を精練助剤として用いたほかは、実施例7と同様に処理を行った。結果を表5に示す。
【0028】
【表5】
精練後の木綿織布中の金属含有量(ppm)
【0029】
(実施例10)
模擬白水に、実施例1の繊維処理剤組成物(0.15g/L)と過酸化水素(初期濃度:1.0g/L)を添加して、NaOH(48%)で初期pHを調整し、60℃での過酸化水素濃度の半減時間を測定した。結果を表6に示す。
[実験条件]
CaCO3 微粉末 1.0g/L
3号珪酸ソーダ 1.0g/L
Fe:1.0ppm、Mn:1.0ppm、Cu:0.2ppm
(実施例11)
実施例10において、実施例1の繊維処理剤組成物に代え、実施例2の繊維処理剤組成物を同量用いたほかは同様にして測定を行った。結果を表6に示す。
(実施例12)
実施例10において、実施例1の繊維処理剤組成物に代え、実施例6の繊維処理剤組成物(エチレンジアミンジコハク酸−4ナトリウム塩含有物)を同量用いたほかは同様にして測定を行った。結果を表6に示す。
【0030】
(比較例9)
実施例10において、繊維処理剤組成物をまったく使用しないほかは実施例10と同様な処理を行った。結果を表6に示す。
(比較例10)
比較例1のキレート剤を実施例1の繊維処理剤組成物に代えて用いたほかは実施例10と同様に処理を行った。結果を表6に示す。
(比較例11)
比較例2のキレート剤を実施例1の繊維処理剤組成物に代えて用いたほかは実施例10と同様に処理を行った。結果を表6に示す。
【0031】
【表6】
過酸化水素濃度の半減時間(Hr)
【0032】
(実施例13)
実施例7の精練処理木綿布を水洗処理後、実施例1の繊維処理剤組成物を0.5g/Lの濃度で漂白助剤として用い、温度90℃、時間120分の条件で過酸化水素漂白(35%過酸化水素 20.0g/L:NaOHでpHを11.0に調整)をして仕上がり木綿布の白色度を測定した。結果を表7に示す。この結果から見て、本発明の繊維処理剤組成物は広いpH領域において精練効果が高いことが明らかである。
[漂白条件]
3号珪酸ソーダ 10.0g/L
浴比 1/20
(実施例14)
実施例13において、実施例1の繊維処理剤組成物に代えて、実施例2の繊維処理剤組成物を、また実施例8の精練処理木綿布を使用した以外は同じ条件で精練を行い、仕上がり木綿の白色度を測定した。結果を表7に示す。
(実施例15)
実施例13において、実施例1の繊維処理剤組成物に代えて、実施例2の繊維処理剤組成物を、また実施例9の精練処理木綿布を使用した以外は同じ条件で精練を行い、仕上がり木綿の白色度を測定した。結果を表7に示す。
【0033】
(比較例11)
実施例13と同様な試験を、繊維処理剤組成物を使用せずに比較例6の精練処理木綿布を用い、それ以外は同一の条件で行った。結果を表7に示す。
(比較例12)
実施例13において、実施例1の繊維処理剤組成物に代えて、比較例2の繊維処理剤組成物を、また比較例7の精練処理木綿布を使用した以外は同じ条件で精練を行い、仕上がり木綿の白色度を測定した。結果を表7に示す。
(比較例13)
実施例13において、実施例1の繊維処理剤組成物に代えて、比較例2の繊維処理剤組成物を、また比較例8の精練処理木綿布を使用した以外は同じ条件で精練を行い、仕上がり木綿の白色度を測定した。結果を表7に示す。
【0034】
【表7】
【0035】
(実施例16)
針葉樹GPのスラリー(濃度:絶乾パルプ重量 10.0g/L)を、48%のNaOHでpHを調整して実施例1の繊維処理剤組成物を0.05g/L、温度60℃、時間60分で洗浄し、このスラリーをブフナーロートで吸引ろ過し、脱水パルプを調製した。
この脱水パルプをNaOHでpHを調整し、温度60℃、時間180分(pH11の時)及び40分(pH12の時)で、下記の条件で漂白した。結果を表8に示す。
[漂白条件]
GP濃度(絶乾重量) 100g/L
3号珪酸ソーダ 5g/L
繊維処理剤組成物(実施例1) 0.5g/L
過酸化水素 5.0g/L
(実施例17)
実施例16において、実施例1で用いた繊維処理剤組成物に代えて、実施例2の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表8に示す。
(実施例18)
実施例16において、実施例1で用いた繊維処理剤組成物に代えて、実施例6の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表8に示す。
【0036】
(比較例14)
実施例16において、繊維処理剤組成物を用いないほかは、実施例16と同一の条件で漂白を行った。結果を表8に示す。
(比較例15)
実施例16において、実施例1で用いた繊維処理剤組成物に代えて、比較例1の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表8に示す。
(比較例16)
実施例16において、実施例1で用いた繊維処理剤組成物に代えて、比較例2の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表8に示す。
【0037】
【表8】
【0038】
(実施例19)
実施例1記載の繊維処理剤組成物を漂白助剤として、浴のpHをNaOH(48%)で調整し、浴比1/30、温度100℃、時間120分で未晒木綿織布を過酸化水素(35%:30g/L)で一浴精練漂白を行い、仕上がり木綿布の白色度を測定した。漂白条件は下記のとおり。結果を表9に示す。
[漂白条件]
3号珪酸ソーダ 20g/L
非イオン界面活性剤 0.1g/L
(実施例20)
実施例19において、実施例1で用いた繊維処理剤組成物に代えて、実施例2の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表9に示す。
【0039】
(実施例21)
実施例19において、実施例1で用いた繊維処理剤組成物に代えて、実施例6の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表9に示す。
【0040】
(比較例17)
実施例19において、繊維処理剤組成物を用いないほかは実施例19と同一の条件で漂白を行った。結果を表9に示す。
(比較例18)
実施例19において、実施例1で用いた繊維処理剤組成物に代えて、比較例1の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表9に示す。
(比較例19)
実施例19において、実施例1で用いた繊維処理剤組成物に代えて、比較例2の繊維処理剤組成物を用いたほかは同一の条件で漂白を行った。結果を表9に示す。
【0041】
【表9】
【0042】
【発明の効果】
本発明の繊維処理剤組成物は、広いpH領域において高いキレート能力を有し、生分解性に優れた繊維処理剤組成物である。特に従来のキレート剤がキレート能力を失う強いアルカリ領域においても鉄イオンのマスキング能が高い能力を有している。このためパルプの製造におけるチップ化、パルプ化、精選、漂白などの各工程、あるいは繊維類の精練、漂白、染色処理などの各工程において、系内に共存する金属によるスケールの発生、漂白工程における過酸化水素の異常分解、染色における色むらの発生の原因となる各種金属のマスキング能力に優れており、これらの問題を一挙に解決できた繊維処理剤組成物である。
近年の工業用水の供給量の減少、排水規制などによるプロセス水の循環使用度が増えるにつれ、循環プロセス水中の不純物、特に金属イオンの増加などの問題も本発明の繊維処理剤組成物により解決できる。
特に本発明の繊維処理剤組成物の特徴としては、従来の繊維処理剤組成物が生分解性がなく、環境への流出が避けられなかったのに対し、本発明の繊維処理剤組成物は簡単な生物処理、例えば活性汚泥処理により除去ができ、環境に影響を与えない生分解性を有する繊維処理剤組成物である。
本発明の繊維処理剤組成物は、パルプの製造工程における金属水酸化物の沈殿防止、過酸化水素漂白における過酸化水素の異常分解の防止、鉄イオンによる着色の防止や、繊維の精練、漂白、染色などにおける白色度の向上、染色むらの発生の防止などに有効な繊維処理剤組成物である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber treatment composition having a high chelating ability in a wide pH range and excellent biodegradability. Particularly, it is a fiber treatment agent composition having high biodegradability that has high masking ability of iron ions in a pH region of 11 or more, can be removed by simple biological treatment even if it is contained in drainage, and does not affect the environment. The present invention relates to a fiber treatment composition effective in scouring, bleaching, and dyeing of pulp production or natural fibers.
In particular, prevention of precipitation of metal hydroxides in the pulp manufacturing process, prevention of abnormal decomposition of hydrogen peroxide in hydrogen peroxide bleaching, prevention of coloring by iron ions, and improvement of whiteness in scouring, bleaching, and dyeing of natural fibers The present invention also relates to a fiber treatment composition effective for preventing the occurrence of uneven dyeing.
[0002]
[Prior art]
Conventional pulp is generally produced from natural wood through a chipping process, a pulping process, a scouring process, a bleaching process, and the like.
There are many types such as mechanical pulp, chemical pulp (sulfite pulp, kraft pulp, etc.), semi-chemical pulp, human silk pulp, etc. depending on the production method and purpose, but chemical pulp, semi-chemical pulp, Pulp such as silk pulp chemically opens the fibers in the wood, removes lignin, colored components containing iron and other metals, and other fiber binders in the wood, and turns them into single fibers. In most cases, bleaching is performed because a high whiteness is required.
Since most of lignin and many organic impurities contained in wood are alkaline and become water-soluble, in the pulp production process, the production process is often performed on the alkali side.
[0003]
However, wood contains a compound such as a hydroxide when it is made alkaline, and contains metal ions such as alkaline earth metal ions, iron, manganese, copper, etc. that easily precipitate, and precipitates when it becomes alkaline. These precipitates are mixed into the pulp slurry to reduce the whiteness of the pulp, or adhere to the walls of the apparatus or settle to the bottom of the apparatus to cause scale.
On the other hand, in bleaching, it has been the mainstream in the past to use chlorine bleach, but it is said that there is a strong tendency to damage the fiber, and recently there is a large risk of carcinogenic dioxin generation, The use of peroxide bleaches that are considered to be free from such dangers is increasing. Among them, the bleaching process using hydrogen peroxide is often used because it is inexpensive and decomposes into oxygen and water, and does not contaminate the environment.
In addition, iron, manganese, copper, etc., which are contained in a small amount in wood, have a very powerful function as a hydrogen peroxide decomposition catalyst. There is also a known problem that a part of hydrogen oxide is decomposed without being involved in pulp bleaching and lowers the bleaching efficiency.
This bleaching with hydrogen peroxide has a problem that the bleaching ability cannot be exerted unless it is alkaline, and countermeasures including prevention of the generation of the scale have been required.
[0004]
As a countermeasure against this, hydrogen peroxide bleaching of pulp generally uses sodium silicate, condensed phosphate, and organic chelating agents for the purpose of sequestering metal ions with hydrogen peroxide resolution and preventing hydroxide precipitation. It has been. (Gard, AJ, TAPPI, Vol. 44, 162A: October 1961)
Of these, sodium silicate reacts with metal ions contained in the wood to form a metal silicate, but many metal silicates are sparingly soluble in water, causing scale trouble.
There are also examples of using phosphate stabilizers [(KP's oxygen bleaching technology trend, Makoto Iwasaki, Koshipa Gikyo, Vol. 38, 12, 6 (December 1984)]. The use is restricted by regulation.
Therefore, the use of alkali metal salts such as EDTA-Na (ethylenediaminetetraacetic acid-tetrasodium) and DTPA-Na (diethylenetriaminepentaacetic acid-pentasodium) as organic chelating agents has been proposed (Japanese Patent Publication No. 47-16841, Japanese Patent Publication No. 53). -45633, Japanese Examined Patent Publication No. 59-17240, etc., but the chelating ability is reduced on the high alkali side, which is suitable for hydrogen peroxide bleaching of pulp, and the adverse effect on the activated sludge treatment of wastewater and these chelates. Since the agent is not biodegradable, there are problems such as concerns about the impact of spills on the environment.
[0005]
There are similar problems in fiber scouring, bleaching and dyeing. Natural fibers are the same as described above, and synthetic fibers are contaminated with various metals in the raw material and synthesis process, and it is inevitable to contain them even in trace amounts. In addition, contamination of these metals is unavoidable even in the process of spinning, braiding and weaving. In addition, metallic impurities are mixed from equipment, additive chemicals, water used, and the like.
In particular, in recent years, as wastewater treatment regulations become stricter, process water recycling becomes common, and as the degree of recycling increases, the metal concentration in the process water tends to increase. These metal components generate insoluble metal soap in the scouring process and reduce the cleaning effect, and in the bleaching process, the hydrogen peroxide in the bleaching agent is abnormally decomposed, causing a decrease in whiteness and fiber strength. In addition, in the subsequent dyeing process, color unevenness may be caused.
Generally, in the fiber washing process, treatment in the alkaline region is performed to remove attached fats, oils and fats, and other organic substances. Therefore, when metal ions are present, measures for scaling such as metal hydroxides are taken. I need.
[0006]
Conventionally, EDTA-Na, DTPA-Na, and nitrilotriacetic acid (NTA) have been used as chelating agents to remove and mask these contaminating metals. (Keihei Ueno: "EDTA-Chemistry of Compsexan" p137: Naneido, issued April 15, 1977)
As described above, these chelating agents can sufficiently mask iron ions (the most contaminating metal of these fibers, the cause of whiteness reduction and the ability to decompose peroxides) at pH 11 or higher. There wasn't. Although NTA is said to be biodegradable, there are concerns about carcinogenic substances and there are problems in terms of safety. There was no safe fiber treatment.
[0007]
[Problems to be solved by the invention]
The present invention is a treatment agent for pulp and fiber, prevents the generation of scale in the process, has a strong chelating ability in the treatment on the alkali side, and prevents the abnormal decomposition of peroxide used as a bleaching agent, especially hydrogen peroxide. The purpose is to develop a fiber treatment composition that can be decomposed by biological treatment and prevented from flowing into the environment by efficient bleaching and activated sludge treatment.
[0008]
[Means for Solving the Problems]
The present invention provides (1)
(A) General formula (1)
, X is a hydrogen atom, a methyl group or an -A-B, A is a divalent group represented by the general formula C n H 2n, n represents an integer of 0 to 2, B is COOM group or a hydroxyl group And M is each independently a hydrogen atom, alkali metal, ammonium or organic ammonium, and m is an integer of 0 to 3. Amino acid-N, N-diacetic acid (salt) and / or general formula (2)
, M are each independently a hydrogen atom, alkali metal, ammonium or organic ammonium, and D is a hydrogen atom or a hydroxyl group. An amino acid type chelating agent selected from ethylenediamine disuccinic acid (salts) represented by the following formula: and (b) a fiber treatment composition containing a reducing sugar and / or sugar carboxylic acid as a main component,
(2) The fiber treatment agent composition according to the above (1), comprising 5 to 50% by weight of an amino acid type chelating agent and 5 to 40% by weight of reducing sugar and / or sugar carboxylic acid,
[0009]
(3) In the bleaching of pulp using hydrogen peroxide, a method for producing a pulp comprising using the fiber treatment agent composition described in (1) above as a scouring bleaching assistant composition in the bleaching step or in the previous step,
(4) In the pulp bleaching step, the method for producing a pulp according to (3) above, comprising using 0.01 to 5% by weight of the fiber treatment agent composition according to (1) above with respect to absolutely dry pulp; 5) A fiber treatment method using the fiber treatment agent composition according to the above (1) in either the fiber scouring / bleaching step or the dyeing step,
The problem of the present invention was solved by developing
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Alkali salts of amino acid type chelating agents have chelating ability against iron even in strong alkalinity such as pH 8 to pH 13 and reducing sugars or sugar carboxylic acids have chelating ability against iron at pH 11 or higher. By doing so, it has been found that an excellent fiber treatment agent composition having a chelating ability for iron in a wide pH range and having biodegradability can be obtained. This fiber treatment composition also solves the scale problem in the pulp manufacturing process or fiber scouring, bleaching and dyeing processes at the same time, and further abnormal decomposition of the peroxide of the bleach used in the bleaching process. It has also been found to have the ability to prevent bleaching, increase bleaching efficiency, and improve product whiteness.
[0011]
The salt of the amino acid chelating agent used in the present invention uses at least one compound represented by the general formula (1) and / or (2). The amino acid-N, N-diacetic acid (salt) represented by the general formula (1) used in the present invention can be produced by a known method (German Patent Publication DE 4211713 A1). Similarly, the ethylenediamine disuccinate of the general formula (2) can be produced by a known method. The amino acid chelating agent salts are generally sodium salts or potassium salts, preferably sodium salts. These compounds are all biodegradable substances.
Examples of this compound include α- or β-alanine-N, N-diacetate, aspartic acid-N, N-diacetate, glutamic acid-N, N-diacetate (GLDA-4Na), and serine-N. N-diacetate, ethylenediamine disuccinate and the like.
As the amino acid moiety, any of optical isomers including D-isomer, L-isomer, D, and L-isomer can be used, but L-isomer is preferable from the viewpoint of biodegradability. .
Although the ratio mix | blended with a fiber treating agent composition changes with kinds and quantity of the metal contained in the process used, a pulp, or a fiber, it is 5 to 50 weight% with respect to this composition, Preferably it is 10 to 40 weight% It is. When this compounding quantity exceeds 50 weight%, the viscosity of a liquid will become high and normal use will become difficult. On the other hand, if it is less than 5% by weight, the metal masking ability is low.
[0012]
There are various reducing sugars used in the present invention, from purified products to mixtures, with D-sorbitol being preferred.
Examples of the sugar carboxylic acid used in the present invention include sugar carboxylic acid or sugar dicarboxylic acid [for example, gluconic acid, glucaric acid (sugar acid), etc.] obtained by oxidizing a reducing sugar, or an alkali metal salt, ammonium salt or organic salt thereof. Amine salts are included. The sodium salt is usually used. These sugar carboxylic acids include various products from purified products to mixtures, any of which may be used.
The reducing sugar and sugar carboxylic acid can be used alone or in a mixture with the fiber treatment composition of the present invention. In the case of sodium gluconate, when 30% by weight or more is blended, it becomes difficult to dissolve at room temperature. In the case of reducing sugar, it can be dissolved even if the concentration is increased further, but if it is used in a large amount, the viscosity of the solution increases, so it is necessary to relatively reduce the amount of amino acid type chelating agent, and iron ion masking effect Will increase, but the effect on other metals will decrease.
[0013]
Even if the fiber treatment agent composition of the present invention comprises only an amino acid type chelating agent and a reducing sugar and / or sugar carboxylic acid, scale generation prevention, chelating ability (iron masking effect), abnormal decomposition of peroxides Effects such as prevention properties are sufficient, and whiteness of products such as pulp and fibers, and prevention of uneven coloration during dyeing are improved, but depending on the process, builders such as sodium silicate, surfactants, penetrants, It can also be used as a composition containing a foaming agent, etc. (can be added separately).
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0014]
【Example】
(Example 1)
A fiber treating agent composition in which 30 parts by weight of glutamic acid-N, N-diacetic acid tetrasodium salt and 10 parts by weight of sodium gluconate were mixed was prepared to obtain a 40% by weight aqueous solution of the composition.
In order to compare the metal dissolving ability which is a necessary function as a fiber treating agent composition, the iron chelate value in an alkaline state (Fe CV: mg weight of iron that can be dissolved in 1 g of the composition), calcium chelate The value (Ca CV: mg weight of calcium that can be dissolved in 1 g of the composition) was measured.
The results are shown in Tables 1-2.
[0015]
(Example 2)
A fiber treating agent composition was prepared by mixing 30 parts by weight of glutamic acid-N, N-diacetic acid tetrasodium salt and 10 parts by weight of D-sorbitol, and a 40% by weight aqueous solution of the composition was prepared.
In order to compare the metal-dissolving ability, which is a necessary function as a fiber treating agent composition, the iron chelate value and calcium chelate value were measured in the same manner as in Example 1.
The results are shown in Tables 1-2.
[0016]
(Comparative Example 1)
An aqueous solution in which 40% by weight of EDTA-4Na was dissolved was prepared. In the same manner as in Example 1, chelate values of iron and calcium were measured. The results are shown in Tables 1-2.
(Comparative Example 2)
A 40 wt% aqueous solution of DTPA-5Na (diethylenetetraminepentaacetic acid pentasodium salt) was prepared. In the same manner as in Comparative Example 1, the chelate values of iron and calcium were measured. The results are shown in Tables 1-2.
As a result, it was revealed that the iron chelate value of the fiber treatment composition of the present invention is high in a wide pH range, and has a strong chelate effect even in a particularly strong alkali range.
[0017]
[Table 1]
Iron C.I. V.
[0018]
[Table 2]
C. of calcium V.
[0019]
(Example 3)
In order to measure biodegradability, the fiber treatment agent compositions of Examples 1 and 2 and Comparative Examples 1 and 2 were diluted with water to a COD of 500 ppm, and the activated sludge collected from the activated sludge wastewater treatment facility of the chemical factory was used. A biodegradability test was conducted using a small aerated activated sludge system as a breeding source. When the COD in the treated wastewater after 7 days was measured, the fiber treatment composition of the present invention was decomposed to 50 ppm in the fiber treatment composition of Example 1 and to 25 ppm in the fiber treatment composition of Example 2. In contrast, the fiber treatment composition of the comparative example was not changed to around 500 ppm.
[0020]
[Table 3]
[0021]
(Example 4)
The fiber treatment agent composition of Example 1 whose pH was adjusted with 48% NaOH was added to the pre-bleached ground wood pulp (GP) slurry for washing, and the metal content in the pulp after dehydration and drying was measured. . As shown in Table 4, it can be seen that the fiber treatment agent composition of the present invention does not lower the metal removal effect even in a high pH region.
[Cleaning conditions]
GP weight (absolute dry weight) 10.0 g / L
Addition amount 0.1g / L
Processing temperature 60 ℃
Processing time 60 minutes 【0022】
(Example 5)
The same test as in Example 4 was performed using the fiber treatment composition of Example 2. The results are shown in Table 4.
(Example 6)
It carried out like Example 4 using the aqueous solution which melt | dissolved the composition which consists of 30 weight part of ethylenediamine disuccinic acid tetrasodium salt and 10 weight part of sodium gluconate in the density | concentration of 40 weight%.
[0023]
(Comparative Example 3)
In Example 4, washing, dehydration and drying were performed in the same manner as in Example 4 except that the fiber treating agent composition was not added. The results are shown in Table 4.
(Comparative Example 4)
In Example 4, washing, dehydration, and drying were performed in the same manner as in Example 4 except that the fiber treatment agent composition was implemented using the fiber treatment agent composition of Comparative Example 1. The results are shown in Table 4.
(Comparative Example 5)
In Example 4, washing, dehydration and drying were performed in the same manner as in Example 4 except that the fiber treating agent composition was used using the fiber treating agent composition of Comparative Example 2. The results are shown in Table 4.
[0024]
[Table 4]
Metal content in GP after washing
[0025]
(Example 7)
The fiber treatment composition of Example 1 was subjected to scouring unbleached cotton woven fabric as a scouring aid while adjusting the pH with NaOH (48%), and the metal content in the scoured cotton was measured.
[Scouring conditions]
Nonionic surfactant 0.5g / L
Scouring aid 5.0 g / L
Bath ratio 1/10
Temperature 100 ° C
Time 60 minutes 【0026】
(Example 8)
The same procedure as in Example 7 was performed except that the fiber treatment agent composition of Example 2 was used as a scouring aid. The results are shown in Table 5.
Example 9
It implemented like Example 7 using the aqueous solution which melt | dissolved the composition which consists of 30 weight part of ethylenediamine disuccinic acid tetrasodium salt and 10 weight part of sodium gluconate in the density | concentration of 40 weight%. The results are shown in Table 5.
[0027]
(Comparative Example 6)
In Example 7, the treatment was performed in the same manner as in Example 7 except that the fiber treatment composition (scouring aid) was not used. The results are shown in Table 5.
(Comparative Example 7)
The treatment was performed in the same manner as in Example 7 except that the chelating agent of Comparative Example 1 was used as a scouring aid. The results are shown in Table 5.
(Comparative Example 8)
The treatment was performed in the same manner as in Example 7 except that the chelating agent of Comparative Example 2 was used as a scouring aid. The results are shown in Table 5.
[0028]
[Table 5]
Metal content (ppm) in cotton fabric after scouring
[0029]
(Example 10)
To the simulated white water, the fiber treatment agent composition of Example 1 (0.15 g / L) and hydrogen peroxide (initial concentration: 1.0 g / L) were added, and the initial pH was adjusted with NaOH (48%). The half time of the hydrogen peroxide concentration at 60 ° C. was measured. The results are shown in Table 6.
[Experimental conditions]
CaCO 3 fine powder 1.0g / L
No.3 sodium silicate 1.0g / L
Fe: 1.0 ppm, Mn: 1.0 ppm, Cu: 0.2 ppm
(Example 11)
In Example 10, the measurement was performed in the same manner except that the same amount of the fiber treatment agent composition of Example 2 was used instead of the fiber treatment agent composition of Example 1. The results are shown in Table 6.
(Example 12)
In Example 10, in place of the fiber treating agent composition of Example 1, the same amount of the fiber treating agent composition (containing ethylenediamine disuccinic acid-4 sodium salt) of Example 6 was used. went. The results are shown in Table 6.
[0030]
(Comparative Example 9)
In Example 10, the same treatment as in Example 10 was performed except that the fiber treating agent composition was not used at all. The results are shown in Table 6.
(Comparative Example 10)
The treatment was performed in the same manner as in Example 10 except that the chelating agent of Comparative Example 1 was used instead of the fiber treatment agent composition of Example 1. The results are shown in Table 6.
(Comparative Example 11)
The treatment was performed in the same manner as in Example 10 except that the chelating agent of Comparative Example 2 was used instead of the fiber treatment agent composition of Example 1. The results are shown in Table 6.
[0031]
[Table 6]
Half time of hydrogen peroxide concentration (Hr)
[0032]
(Example 13)
After the scoured cotton fabric of Example 7 was washed with water, the fiber treatment composition of Example 1 was used as a bleaching aid at a concentration of 0.5 g / L, and hydrogen peroxide was used at a temperature of 90 ° C. for 120 minutes. Bleaching (35% hydrogen peroxide 20.0 g / L: pH adjusted to 11.0 with NaOH) and the whiteness of the finished cotton cloth was measured. The results are shown in Table 7. From this result, it is clear that the fiber treatment agent composition of the present invention has a high scouring effect in a wide pH range.
[Bleaching conditions]
No.3 sodium silicate 10.0g / L
Bath ratio 1/20
(Example 14)
In Example 13, instead of the fiber treatment agent composition of Example 1, the fiber treatment agent composition of Example 2 was scoured under the same conditions except that the scouring treated cotton fabric of Example 8 was used, The whiteness of the finished cotton was measured. The results are shown in Table 7.
(Example 15)
In Example 13, instead of the fiber treating agent composition of Example 1, the fiber treating agent composition of Example 2 was scoured under the same conditions except that the scouring treated cotton fabric of Example 9 was used. The whiteness of the finished cotton was measured. The results are shown in Table 7.
[0033]
(Comparative Example 11)
The same test as in Example 13 was performed under the same conditions except that the scoured cotton fabric of Comparative Example 6 was used without using the fiber treatment composition. The results are shown in Table 7.
(Comparative Example 12)
In Example 13, instead of the fiber treating agent composition of Example 1, the fiber treating agent composition of Comparative Example 2 was scoured under the same conditions except that the scouring treated cotton fabric of Comparative Example 7 was used, The whiteness of the finished cotton was measured. The results are shown in Table 7.
(Comparative Example 13)
In Example 13, instead of the fiber treatment agent composition of Example 1, the fiber treatment agent composition of Comparative Example 2 was scoured under the same conditions except that the scouring treated cotton fabric of Comparative Example 8 was used, The whiteness of the finished cotton was measured. The results are shown in Table 7.
[0034]
[Table 7]
[0035]
(Example 16)
A slurry of coniferous GP (concentration: absolute dry pulp weight 10.0 g / L) was adjusted with 48% NaOH to adjust the pH of the fiber treatment composition of Example 1 to 0.05 g / L, temperature 60 ° C., time The slurry was washed for 60 minutes, and the slurry was suction filtered with a Buchner funnel to prepare dehydrated pulp.
The pH of this dehydrated pulp was adjusted with NaOH, and bleached at a temperature of 60 ° C. for a time of 180 minutes (at pH 11) and 40 minutes (at pH 12) under the following conditions. The results are shown in Table 8.
[Bleaching conditions]
GP concentration (absolute dry weight) 100g / L
No.3 sodium silicate 5g / L
Fiber treatment composition (Example 1) 0.5 g / L
Hydrogen peroxide 5.0g / L
(Example 17)
In Example 16, bleaching was performed under the same conditions except that the fiber treatment agent composition of Example 2 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 8.
(Example 18)
In Example 16, bleaching was performed under the same conditions except that the fiber treatment agent composition of Example 6 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 8.
[0036]
(Comparative Example 14)
In Example 16, bleaching was performed under the same conditions as in Example 16 except that the fiber treatment composition was not used. The results are shown in Table 8.
(Comparative Example 15)
In Example 16, bleaching was performed under the same conditions except that the fiber treatment agent composition of Comparative Example 1 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 8.
(Comparative Example 16)
In Example 16, bleaching was performed under the same conditions except that the fiber treatment agent composition of Comparative Example 2 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 8.
[0037]
[Table 8]
[0038]
(Example 19)
Using the fiber treatment composition described in Example 1 as a bleaching assistant, the pH of the bath was adjusted with NaOH (48%), and the unbleached cotton woven fabric was passed over at a bath ratio of 1/30, a temperature of 100 ° C., and a time of 120 minutes. One bath scouring bleaching was performed with hydrogen oxide (35%: 30 g / L), and the whiteness of the finished cotton cloth was measured. The bleaching conditions are as follows. The results are shown in Table 9.
[Bleaching conditions]
No.3 sodium silicate 20g / L
Nonionic surfactant 0.1g / L
(Example 20)
In Example 19, bleaching was performed under the same conditions except that the fiber treatment agent composition of Example 2 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 9.
[0039]
(Example 21)
In Example 19, bleaching was performed under the same conditions except that the fiber treatment agent composition of Example 6 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 9.
[0040]
(Comparative Example 17)
In Example 19, bleaching was performed under the same conditions as in Example 19 except that the fiber treating agent composition was not used. The results are shown in Table 9.
(Comparative Example 18)
In Example 19, bleaching was performed under the same conditions except that the fiber treatment agent composition of Comparative Example 1 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 9.
(Comparative Example 19)
In Example 19, bleaching was performed under the same conditions except that the fiber treatment agent composition of Comparative Example 2 was used instead of the fiber treatment agent composition used in Example 1. The results are shown in Table 9.
[0041]
[Table 9]
[0042]
【The invention's effect】
The fiber treatment agent composition of the present invention is a fiber treatment agent composition having high chelating ability in a wide pH range and excellent biodegradability. In particular, even in a strong alkali region where the conventional chelating agent loses its chelating ability, it has a high ability to mask iron ions. For this reason, in each process such as chipping, pulping, selection, and bleaching in pulp production, or in each process such as fiber scouring, bleaching, and dyeing, generation of scale due to metal coexisting in the system, in the bleaching process This fiber treatment composition is excellent in masking ability of various metals that cause abnormal decomposition of hydrogen peroxide and color unevenness in dyeing, and can solve these problems all at once.
With the recent decrease in industrial water supply and increased circulation of process water due to regulations on drainage, problems such as increased impurities in the circulating process water, especially metal ions, can be solved by the fiber treatment composition of the present invention. .
In particular, the fiber treatment agent composition of the present invention is characterized by the fact that the conventional fiber treatment agent composition is not biodegradable and unavoidable to flow out to the environment, whereas the fiber treatment agent composition of the present invention is It is a fiber treatment agent composition that can be removed by simple biological treatment such as activated sludge treatment and has biodegradability without affecting the environment.
The fiber treatment composition of the present invention is used to prevent precipitation of metal hydroxides in pulp production processes, to prevent abnormal decomposition of hydrogen peroxide in hydrogen peroxide bleaching, to prevent coloring by iron ions, and to scour and bleach fibers. It is a fiber treatment composition effective for improving whiteness in dyeing and the like, and preventing the occurrence of uneven dyeing.
Claims (5)
[式中、Xは水素原子、メチル基あるいは−A−Bであり、Aは一般式Cn H2nで示される2価の基であり、nは0ないし2の整数を示し、BはCOOM基または水酸基であり、Mは各々独立に水素原子、アルカリ金属、アンモニウムまたは有機アンモニウムであり、mは0ないし3の整数である。]
で示されるアミノ酸−N,N−二酢酸(塩)および/または一般式(2)
(式中、Mは各々独立に水素原子、アルカリ金属、アンモニウムまたは有機アンモニウムであり、Dは水素原子あるいは水酸基である。)
で示されるエチレンジアミンジコハク酸(塩)類から選ばれるアミノ酸型キレート剤、及び(b)還元糖および/または糖カルボン酸
を主成分として含有する繊維処理剤組成物。(A) General formula (1)
[Wherein, X is a hydrogen atom, a methyl group or -AB, A is a divalent group represented by the general formula C n H 2n , n is an integer of 0 to 2, and B is COOM A group or a hydroxyl group, each M is independently a hydrogen atom, an alkali metal, ammonium or organic ammonium, and m is an integer of 0 to 3. ]
Amino acid-N, N-diacetic acid (salt) and / or general formula (2)
(In the formula, each M is independently a hydrogen atom, alkali metal, ammonium or organic ammonium, and D is a hydrogen atom or a hydroxyl group.)
An amino acid chelating agent selected from ethylenediamine disuccinic acid (salts) represented by formula (1) and (b) a fiber treating agent composition containing a reducing sugar and / or sugar carboxylic acid as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36293097A JP3721530B2 (en) | 1997-12-12 | 1997-12-12 | Textile treatment composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36293097A JP3721530B2 (en) | 1997-12-12 | 1997-12-12 | Textile treatment composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11181690A JPH11181690A (en) | 1999-07-06 |
JP3721530B2 true JP3721530B2 (en) | 2005-11-30 |
Family
ID=18478090
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36293097A Expired - Lifetime JP3721530B2 (en) | 1997-12-12 | 1997-12-12 | Textile treatment composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3721530B2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007009365A (en) * | 2005-06-30 | 2007-01-18 | Bikku Kk | Desizing/scouring/bleaching one-bath type treatment agent and chemical agent for making up the same |
KR101410624B1 (en) | 2005-07-26 | 2014-06-20 | 크나우프 인설레이션 게엠베하 | Binders and materials made therewith |
WO2008091256A1 (en) | 2007-01-25 | 2008-07-31 | Knauf Insulation Gmbh | Binders and materials made therewith |
HRP20241081T3 (en) | 2007-01-25 | 2024-11-08 | Knauf Insulation | Mineral fibre board |
BRPI0721232B1 (en) | 2007-01-25 | 2023-01-24 | Knauf Insulation Limited | COMPOSITE WOOD PLATE |
WO2008127936A2 (en) | 2007-04-13 | 2008-10-23 | Knauf Insulation Gmbh | Composite maillard-resole binders |
GB0715100D0 (en) | 2007-08-03 | 2007-09-12 | Knauf Insulation Ltd | Binders |
GB0721587D0 (en) * | 2007-11-02 | 2007-12-12 | Innospec Ltd | Process for bleaching pulp |
JP2010031066A (en) * | 2008-07-02 | 2010-02-12 | Umeda Jimusho:Kk | Feather powder, method for producing the same, soil improving material, and plant husbandry soil including the same |
WO2011015946A2 (en) | 2009-08-07 | 2011-02-10 | Knauf Insulation | Molasses binder |
EP2566904B1 (en) | 2010-05-07 | 2021-07-14 | Knauf Insulation | Carbohydrate polyamine binders and materials made therewith |
KR101835899B1 (en) | 2010-05-07 | 2018-03-07 | 크나우프 인설레이션, 인크. | Carbohydrate binders and materials made therewith |
WO2011154368A1 (en) | 2010-06-07 | 2011-12-15 | Knauf Insulation | Fiber products having temperature control additives |
WO2012152731A1 (en) | 2011-05-07 | 2012-11-15 | Knauf Insulation | Liquid high solids binder composition |
GB201206193D0 (en) | 2012-04-05 | 2012-05-23 | Knauf Insulation Ltd | Binders and associated products |
GB201214734D0 (en) | 2012-08-17 | 2012-10-03 | Knauf Insulation Ltd | Wood board and process for its production |
EP3102587B1 (en) | 2014-02-07 | 2018-07-04 | Knauf Insulation, LLC | Uncured articles with improved shelf-life |
GB201408909D0 (en) | 2014-05-20 | 2014-07-02 | Knauf Insulation Ltd | Binders |
GB201517867D0 (en) | 2015-10-09 | 2015-11-25 | Knauf Insulation Ltd | Wood particle boards |
GB201610063D0 (en) | 2016-06-09 | 2016-07-27 | Knauf Insulation Ltd | Binders |
GB201701569D0 (en) | 2017-01-31 | 2017-03-15 | Knauf Insulation Ltd | Improved binder compositions and uses thereof |
BR112019025349B1 (en) | 2017-06-27 | 2023-10-17 | Ecolab Usa Inc | METHOD FOR TREATING WASHING CLOTHES, AND WASHING CLOTHING ADDITIVE COMPOSITION |
CN107663688A (en) * | 2017-08-30 | 2018-02-06 | 孚日集团股份有限公司 | A kind of hollow-out fabric and its manufacturing process |
GB201804908D0 (en) | 2018-03-27 | 2018-05-09 | Knauf Insulation Ltd | Binder compositions and uses thereof |
GB201804907D0 (en) | 2018-03-27 | 2018-05-09 | Knauf Insulation Ltd | Composite products |
-
1997
- 1997-12-12 JP JP36293097A patent/JP3721530B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH11181690A (en) | 1999-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3721530B2 (en) | Textile treatment composition | |
US3740187A (en) | Processes for bleaching textiles | |
CN101589191B (en) | Bleaching of substrates | |
EP0882151B1 (en) | Process for the treatment of chemical pulp | |
US4880566A (en) | Silicate-and magnesium-free stabilizer mixtures | |
EP0210952A1 (en) | Aqueous, alkaline, silicate-containing composition for the bleaching of cellulosic fibres in the presence of percompounds | |
JPH08507932A (en) | How to bleach cellulose | |
EP0842321B1 (en) | Method of stabilizing peroxide-containing alkaline bleach liquors for bleaching cellulose and other fibrous materials | |
EP0882152B1 (en) | Process for bleaching of a high yield pulp | |
US5510055A (en) | Bleaching regulator compositions and bleaching processes using them | |
RU2143021C1 (en) | Aqueous liquid bleaching composition | |
JPH05302289A (en) | Bleaching agent composition and method for bleaching | |
US6056787A (en) | Process for the pretreatment of fibers | |
US4959075A (en) | Silicate- and magnesium-free stabilizer hydrogen peroxide mixtures for bleaching processes | |
US5066306A (en) | Process for removing permanganate stains from articles | |
DE3737890A1 (en) | METHOD FOR PRE-TREATING TEXTILE MATERIALS | |
JPH08507332A (en) | Method for delignification of chemical pulp for papermaking | |
JPS64502B2 (en) | ||
JP3081128B2 (en) | How to remove yellow spots from yellowing diapers | |
JPS61231096A (en) | Stabilizer of hydrogen peroxide bleaching bath | |
JP4304392B2 (en) | Non-wood pulp bleaching method | |
US2379458A (en) | Laundry finishing composition | |
JP2533104B2 (en) | Oxidative bleaching method of groundwood pulp | |
JPH0321699A (en) | Detergency improver | |
JPH0491270A (en) | Treatment of cellulose-based fiber material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050901 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |