JP3721229B2 - Surface acoustic wave filter - Google Patents
Surface acoustic wave filter Download PDFInfo
- Publication number
- JP3721229B2 JP3721229B2 JP17293496A JP17293496A JP3721229B2 JP 3721229 B2 JP3721229 B2 JP 3721229B2 JP 17293496 A JP17293496 A JP 17293496A JP 17293496 A JP17293496 A JP 17293496A JP 3721229 B2 JP3721229 B2 JP 3721229B2
- Authority
- JP
- Japan
- Prior art keywords
- idt
- surface acoustic
- saw
- acoustic wave
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【0001】
【発明の属する分野】
本発明は弾性表面波フィルタに関し、特に、複数個の弾性表面波共振子を直列腕と並列腕とに配置した梯子型弾性表面波フィルタに関する。
【0002】
【従来の技術】
従来より携帯用通信機等には小型化に適した弾性表面波フィルタ(以下、SAWフィルタと云う)がRF及びIFフィルタとして使用されてきたが、近年の搬送周波数の高周波化に伴い、携帯電話等のRFフィルタ用として中心周波数が700〜2000MHz、通過帯域幅が20〜60MHzのSAWフィルタ実現の要望が高まっている。
無線機等に広く利用されてきた455kHzセラミックフィルタの回路構成である梯子型回路にならい、セラミック共振子を弾性表面波共振子(以下、SAW共振子と云う)に置き換えたタイプの梯子型SAWフィルタが、数年前より提案され実用化されている。該フィルタはQの高いSAW共振子のみで構成する共振子型フィルタであるため、低損失が得られること、通過域の急峻なカットオフ特性が得られること等の特徴を備えている。
【0003】
図5はこのような梯子型SAWフィルタの構成を示す構成図であって、2端子対回路の直列腕にSAW共振子11を、並列腕にSAW共振子12または13を梯子状に接続したものである。梯子型フィルタは、他の例えば、ヤーマン回路の様にトランス等を用いず、Qの高い共振子のみで多段接続のフィルタ回路を構成することができるため低損失であり、更に、同一圧電基板上に複数のSAW共振子を形成して梯子型SAWフィルタを構成すれば、小型化、量産性等に適しているという特徴を有する。図6は梯子型SAWフィルタに用いる各SAW共振子の基本構成を示した図であって圧電基板1の主面にIDT14とその両側に反射器15a、15bを形成した一般的なものであり、反射器間に振動エネルギーが閉じ込められる現象を利用するものである。ここで、WはIDTの交叉指幅であり、IDTの対数N、電極膜厚H等と共にSAW共振子の特性を左右する重要なファクターである。
【0004】
このような従来の梯子型SAWフィルタの濾波特性例は、例えば、36゜YカットX伝搬リチウムタンタレートを圧電基板とし、SAW共振子数は7素子とし、入出力端の並列腕にはIDT対数N=40、電極指交叉指幅W=28λ(λは該IDTが励起する弾性表面波の波長である。)、他の並列腕にはIDT対数N=80、電極指交叉指幅W=28λ、直列腕にIDT対数N=80、電極指交叉指幅W=10λのSAW共振子をそれぞれ配置すると、その濾波特性は図7のようになる。
【0005】
ところが図7から明らかなようにカットオフ特性は急峻さを欠き、減衰傾度も十分ではなく、フィルタの挿入損失が2.5dBと大きいという欠点がある。この原因は設計する際に一般的に使われている簡便な影像パラメータ法を用いて梯子型フィルタを構成したためであるを推測される。そこで、より良好な特性が期待できる動作パラメータ法を駆使すると共に種々パラメータを変更しながらシミュレーションを行ったところ、梯子型フィルタを構成するSAW共振子として容量比の異なるものを用いて、これを適宜直列腕、並列腕に配列することが必要となることが判明した。所望のフィルタ特性により異なるが、動作パラメータ法を用いた設計では、梯子型回路に用いるSAW共振子の容量比の最小値のものと最大値のものとの比率を概略2程度までの範囲で自由に選定することが必要となる。
【0006】
【発明が解決しようとする課題】
しかしながら、図6に示すような一般的なSAW共振子にあっては、各SAW共振子の容量比はほぼ同一であり、製造によるバラツキを考慮してもその差異は10%未満である。容量比を決定する最も重要な因子は圧電基板であり、同一基板上に容量比の異なるSAW共振子を構成することは困難である。他の決定因子としてはIDTの対数N、IDTの交叉指幅比W/λ、電極膜厚比H/λ及びIDT形状等があるもののこれらパラメータを変化させれば、容量比をある程度変化させることは可能であるが、自由に設定することは極めて困難であった。
【0007】
例えば、図5に示すように一枚の圧電基板上に複数のSAW共振子を同時に形成するのではなく、個別のSAW共振子を用いて梯子型SAWフィルタを構成する場合には、個別の容量を前記SAW共振子に並列接続して、見かけ上の容量比を可変することは容易であり、この手段は通常の水晶フィルタ等を梯子型で構成する場合には一般的に用いられてきた。また、この手段を一枚の圧電基板に複数のSAW共振子を形成するものに適用しようとしても、小型化と量産性が特徴であるSAWフィルタでは、個別容量を追加する余地もなく、たとえ追加が可能であるとしても小型化上問題となることは明らかである。
【0008】
本発明は上記課題を解決するためになされたものであって、SAW共振子の容量比を自由に設定できるSAW共振子を実現することであり、これを用いて梯子型SAWフィルタの濾波特性を改善し、良好なSAWフィルタを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明に係る弾性表面波フィルタの請求項1記載の発明は、圧電基板上に所定のパターンの複数の弾性表面波共振子を梯子型回路の直列腕と並列腕のそれぞれに配置した帯域通過フィルタ回路において、前記弾性表面波共振子の少なくとも一つがIDTの電極指部を伝搬方向に沿って複数部分に分割されており、且つ、前記分割電極指部間の間隔を波長の0.55〜0.85倍としたことを特徴とする弾性表面波フィルタである。請求項2記載の発明は、前記圧電基板が36゜±3゜または41゜±1゜YカットX伝搬リチウムタンタレートであることを特徴とする請求項1記載の弾性表面波フィルタである。
【0010】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1は本発明に係る梯子型SAWフィルタを構成するSAW共振子の構成の一実施例を示す図であって、例えば、36゜YカットX伝搬リチウムタンタレート基板の主面上に、弾性表面波の伝搬方向に沿って対数がN対のIDT2を配置し、該IDTを間隔Dを設けて電極指部3と4とに2分割すると共に、IDT2の両側に反射器5aと5bとを配置するように構成したSAW共振子である。ここでIDT電極指部3と4の電極指ピッチはほぼ等しく、該電極指部3と4の間隔Dは、利用する弾性表面波の波長λの0.55〜0.85倍とする。また、IDTと反射器との間隔は励起される弾性表面波の半波長分とする。
【0011】
このSAW共振子の電極指部3と4との間に設けた間隔Dの距離を変更すると、図2に示すようにSAW共振子の容量比がこれに応じて変化する。ここで、横軸はIDT2により励起される弾性表面波の波長λで間隔Dを基準化したD/λであり、縦軸は容量比倍率(容量比倍率とは前記IDT電極指間の間隔Dがλ/2の時、即ち、従来の電極指配置における容量比と間隔Dを形成した時の容量比との比をいう)を表している。この図から明らかなように基準化間隔D/λ即ち、間隔Dを変えることによって、該SAW共振子の容量比を大幅に変化させることが可能となり、動作パラメータによる梯子型フィルタで必要な種々の容量比を実現することが出来る。
前述のように、図6のSAW共振子を梯子型回路に用いた場合、SAW共振子の容量比の最小値のものと最大値のものとの差異は10%未満(容量比倍率で1.1未満)であったために特性劣化を引き起こしたものと考えられる。従って、容量比倍率は少なくとも1.1以上は必要であり、また、動作パラメータ法を用いた設計では容量比倍率を2程度までの範囲で選定する必要がある。このような範囲に容量比倍率を選定するには、図2より間隔Dを波長の0.55〜0.85倍に設定すれば良いことが分かる。
【0012】
図3は本発明を適用した弾性表面波フィルタの特性例を示す図である。即ち、図7に示した従来の梯子型SAWフィルタの各SAW共振子について適切な容量比を求め、これを実現すべく本発明に基づいて各SAW共振子のIDTを所定の間隔をもって分割構成した梯子型SAWフィルタの特性を示す図である。なお圧電基板は36゜YカットX伝搬リチウムタンタレート基板であり、梯子型回路のSAW共振子数は7素子とし、入出力端の並列腕にはIDT対数N=40、電極指交叉幅W=28λ、他の並列腕にはIDT対数N=80、電極指交叉幅W=28λ、 直列腕にIDT対数N=80、電極指交叉幅W=10λのSAW共振子をそれぞれ配置した。図3に示す如く中心周波数は836.5MHzで、図7に示した従来例に比べると明らかなように通過帯域のカットオフ特性は急峻であり、減衰傾度も改善され、しかも、阻止域減衰量を十分に確保し且つ、挿入損失が(2dB以下に)低減されたものであることが理解できよう。
【0013】
図4は本発明の他の実施例を示すSAW共振子の電極指構成例の図であって、この例では36゜YカットX伝搬リチウムタンタレート基板1の主面上に、弾性表面波の伝搬方向に沿ってIDT対数がN対のIDT6を配置し、該IDT6の電極指部のみをIDT電極指部7、8および9に分割すると共に、IDT6の両側に反射器10aと10bを配置するように構成したSAW共振子である。ここでIDT電極指部7と8の間隔、IDT電極指部8と9の間隔を同じくDとし、該間隔Dを前記IDTが励起する波長λの0.55〜0.85倍とすることによって、図1の本発明に係るSAW共振子と同様な効果即ち、間隔DによりSAW共振子の容量比を大幅に可変することができる。
なお、以上SAW共振子の構成としてIDTを2分割および3分割した例について説明したが、図示した以外の箇所に間隙を設けても、同等の効果が得られ、また分割数は更に多くてももよい。また、IDT分割の位置と、数と幅を適宜選択して組み合わせれば任意の容量比を実現することができる。
【0014】
また、本発明を36゜YカットX伝搬リチウムタンタレートを基板とし、中心周波数836.5MHzの携帯電話用RFフィルタを例として説明したが、本発明はこれのみに限定されるものではなく、適当な基板、電極材料、電極膜厚、IDT対数、交差幅、反射器本数とすることにより同様な構成で梯子型SAWフィルタが実現することは明白であり、中心周波数も弾性表面波が励振可能な範囲であればよい。また、IDT電極指ピッチと反射器電極指ピッチ比率の補正、IDTと反射器電極の間隔補正およびIDT電極への重み付けと云ったSAW共振子に於いて周知の技術を適用して特性の改善を図ることも可能である。
【0015】
更に、本発明に係るSAW共振子を用いることにより各種のフィルタ、例えばチェビシェフフィルタ、振幅平坦フィルタ(ButterworthあるいはWagner特性)や遅延平坦特性フィルタへも適用できることは言うまでもない。梯子型SAWフィルタの構成例として図5に両端が並列腕共振子で構成される場合について示したが、両端が直列腕共振子および並列腕共振子の任意の組み合わせで終わる構成が可能なことは自明である。
【0016】
【発明の効果】
本発明は以上説明した如く構成するものであるから、SAW共振子の容量比をマスクパターンによって任意の値に設定することができ、設計手法として動作パラメータ法が採用できるため、通過帯域特性と阻止域特性のバランスの良好な梯子型SAWフィルタを実現することが出来る。その結果、イメージパラメータ法による特性に比較して、通過帯域のカットオフ特性は急峻であり、減衰傾度は改良され、阻止域減衰量は増大し、且つ挿入損失も低減することが出来、特に梯子型SAWフィルタの特性改善をする上で著しい効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係る一実施例で、梯子型SAWフィルタの構成要素に用いられる共振子のIDT構成を示す模式図である。
【図2】SAW共振子のIDT電極指部間距離と容量比倍率の関係を示す図である。
【図3】本発明になるSAW共振子を用いて構成した梯子型SAWフィルタの濾波特性を示す図である。
【図4】本発明に係る他の実施例で、SAW共振子に適用したIDT電極指部の構成を示す模式図である。
【図5】従来から用いられている梯子型SAWフィルタの構成を示す図である。
【図6】従来構成のSAW共振子のIDT及び反射器の構成を示す図である。
【図7】従来構成の梯子型SAWフィルタの濾波特性を示す図である。
【符号の説明】
1 圧電基板
2、6 IDT
3、4、7、8、9 IDT電極指部
5a、5b、10a、10b 反射器
D IDT電極指部間の間隔[0001]
[Field of the Invention]
The present invention relates to a surface acoustic wave filter, and more particularly to a ladder-type surface acoustic wave filter in which a plurality of surface acoustic wave resonators are arranged in a series arm and a parallel arm.
[0002]
[Prior art]
Conventionally, surface acoustic wave filters (hereinafter referred to as SAW filters) suitable for miniaturization have been used as RF and IF filters in portable communication devices and the like, but with the recent increase in carrier frequency, cellular phones There is an increasing demand for realizing a SAW filter having a center frequency of 700 to 2000 MHz and a passband width of 20 to 60 MHz.
A ladder-type SAW filter of a type in which a ceramic resonator is replaced with a surface acoustic wave resonator (hereinafter referred to as a SAW resonator) in accordance with a ladder-type circuit that is a circuit configuration of a 455 kHz ceramic filter that has been widely used in radio equipment and the like. However, it has been proposed and put into practical use several years ago. Since the filter is a resonator type filter composed of only a SAW resonator having a high Q, it has characteristics such as low loss and a steep cut-off characteristic in the pass band.
[0003]
FIG. 5 is a block diagram showing the configuration of such a ladder-type SAW filter, in which a SAW resonator 11 is connected to a series arm of a two-terminal pair circuit, and a
[0004]
Examples of the filtering characteristics of such a conventional ladder-type SAW filter include, for example, 36 ° Y-cut X-propagating lithium tantalate as a piezoelectric substrate, seven SAW resonators, and an IDT logarithm on the parallel arm at the input / output terminals. N = 40, electrode finger cross finger width W = 28λ (λ is the wavelength of the surface acoustic wave excited by the IDT), IDT logarithm N = 80 for other parallel arms, electrode finger cross finger width W = 28λ When SAW resonators having IDT logarithm N = 80 and electrode finger crossing finger width W = 10λ are arranged on the series arm, the filtering characteristics are as shown in FIG.
[0005]
However, as apparent from FIG. 7, the cutoff characteristics lack steepness, the attenuation gradient is not sufficient, and the filter insertion loss is as large as 2.5 dB. The reason for this is presumed to be that the ladder type filter is constructed using a simple image parameter method generally used in designing. Therefore, a simulation was performed while making full use of the operating parameter method that can be expected to provide better characteristics and changing various parameters. As a result, the SAW resonators constituting the ladder-type filter having different capacitance ratios were appropriately used. It was found that it was necessary to arrange in series arms and parallel arms. Depending on the desired filter characteristics, in the design using the operation parameter method, the ratio of the minimum value and the maximum value of the capacitance ratio of the SAW resonator used in the ladder-type circuit can be freely set within a range of approximately 2 It is necessary to select
[0006]
[Problems to be solved by the invention]
However, in a general SAW resonator as shown in FIG. 6, the capacity ratio of each SAW resonator is substantially the same, and the difference is less than 10% even when manufacturing variations are taken into account. The most important factor for determining the capacitance ratio is the piezoelectric substrate, and it is difficult to construct SAW resonators having different capacitance ratios on the same substrate. Other determinants include IDT logarithm N, IDT crossing finger width ratio W / λ, electrode film thickness ratio H / λ, and IDT shape, but changing these parameters will change the capacitance ratio to some extent. However, it was extremely difficult to set freely.
[0007]
For example, when a plurality of SAW resonators are not simultaneously formed on one piezoelectric substrate as shown in FIG. 5 and a ladder-type SAW filter is configured using individual SAW resonators, individual capacitors are used. It is easy to change the apparent capacity ratio by connecting the SAW resonator in parallel to the SAW resonator, and this means has been generally used in the case where an ordinary crystal filter or the like is configured in a ladder type. Also, even if this means is applied to one that forms a plurality of SAW resonators on a single piezoelectric substrate, the SAW filter, which is characterized by miniaturization and mass productivity, has no room to add individual capacitors, even if it is added. Even if it is possible, it is clear that there is a problem in miniaturization.
[0008]
The present invention has been made to solve the above-described problem, and is to realize a SAW resonator in which the capacitance ratio of the SAW resonator can be freely set. By using this, the filtering characteristics of the ladder-type SAW filter can be improved. The object is to improve and provide a good SAW filter.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a surface acoustic wave filter according to a first aspect of the present invention is characterized in that a plurality of surface acoustic wave resonators of a predetermined pattern are arranged on a piezoelectric substrate with a series arm and a parallel arm of a ladder circuit. In each bandpass filter circuit, at least one of the surface acoustic wave resonators is obtained by dividing an electrode finger portion of the IDT into a plurality of portions along a propagation direction, and an interval between the divided electrode finger portions is set. A surface acoustic wave filter having a wavelength of 0.55 to 0.85 times . The surface acoustic wave filter according to
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1 is a diagram showing an embodiment of the configuration of a SAW resonator constituting a ladder-type SAW filter according to the present invention. For example, an elastic surface is formed on the main surface of a 36 ° Y-cut X-propagating lithium tantalate substrate. An
[0011]
When the distance D provided between the
As described above, when the SAW resonator of FIG. 6 is used in a ladder circuit, the difference between the minimum value and the maximum value of the capacitance ratio of the SAW resonator is less than 10% (capacity ratio magnification is 1. It is considered that the characteristic deterioration was caused. Accordingly, the capacitance ratio magnification must be at least 1.1 or more, and the design using the operation parameter method needs to select the capacitance ratio magnification within a range up to about 2. In order to select the capacitance ratio magnification in such a range, it can be seen from FIG. 2 that the interval D should be set to 0.55 to 0.85 times the wavelength.
[0012]
FIG. 3 is a diagram showing a characteristic example of a surface acoustic wave filter to which the present invention is applied. That is, an appropriate capacity ratio is obtained for each SAW resonator of the conventional ladder-type SAW filter shown in FIG. 7, and the IDT of each SAW resonator is divided at a predetermined interval according to the present invention to realize this. It is a figure which shows the characteristic of a ladder type SAW filter. The piezoelectric substrate is a 36 ° Y-cut X-propagation lithium tantalate substrate, the ladder type circuit has 7 SAW resonators, the parallel arms at the input and output ends have IDT logarithm N = 40, and electrode finger crossing width W = SAW resonators having 28λ, IDT logarithm N = 80 and electrode finger crossing width W = 28λ on the other parallel arms, and IDT logarithm N = 80 and electrode finger crossing width W = 10λ on the serial arms, respectively. As shown in FIG. 3, the center frequency is 836.5 MHz, and as is clear from the conventional example shown in FIG. 7, the cutoff characteristic of the pass band is steep, the attenuation gradient is improved, and the stopband attenuation amount is also obtained. It can be understood that the insertion loss is sufficiently ensured and the insertion loss is reduced (to 2 dB or less).
[0013]
FIG. 4 is a diagram of an electrode finger configuration example of a SAW resonator according to another embodiment of the present invention. In this example, a surface acoustic wave wave is formed on the main surface of the 36 ° Y-cut X-propagating
Although the example in which the IDT is divided into two and three as the configuration of the SAW resonator has been described above, the same effect can be obtained even if a gap is provided in a place other than the illustrated one, and the number of divisions can be further increased. Also good. In addition, an arbitrary capacity ratio can be realized by appropriately selecting and combining the IDT division position, number, and width.
[0014]
Further, although the present invention has been described by taking as an example a mobile phone RF filter having a center frequency of 836.5 MHz using 36 ° Y-cut X-propagation lithium tantalate as a substrate, the present invention is not limited to this, and is suitable. It is clear that a ladder-type SAW filter can be realized with the same configuration by setting the appropriate substrate, electrode material, electrode film thickness, IDT logarithm, cross width, and number of reflectors, and surface acoustic waves can be excited at the center frequency. Any range is acceptable. In addition, by improving the characteristics by applying well-known techniques in SAW resonators such as correction of the IDT electrode finger pitch and reflector electrode finger pitch ratio, correction of the distance between the IDT and reflector electrodes, and weighting of the IDT electrodes. It is also possible to plan.
[0015]
Furthermore, it goes without saying that the SAW resonator according to the present invention can be applied to various filters, for example, a Chebyshev filter, an amplitude flat filter (Butterworth or Wagner characteristic), and a delay flat characteristic filter. As a configuration example of the ladder-type SAW filter, FIG. 5 shows a case where both ends are constituted by parallel arm resonators, but it is possible that a configuration in which both ends end with an arbitrary combination of a series arm resonator and a parallel arm resonator is possible. It is self-explanatory.
[0016]
【The invention's effect】
Since the present invention is configured as described above, the capacitance ratio of the SAW resonator can be set to an arbitrary value by a mask pattern, and the operation parameter method can be adopted as a design method. A ladder-type SAW filter with a good balance of band characteristics can be realized. As a result, compared with the characteristics by the image parameter method, the cutoff characteristic of the pass band is steep, the attenuation gradient is improved, the stop band attenuation is increased, and the insertion loss can be reduced. A remarkable effect is exhibited in improving the characteristics of the type SAW filter.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an IDT configuration of a resonator used as a constituent element of a ladder-type SAW filter in an embodiment according to the present invention.
FIG. 2 is a diagram showing a relationship between a distance between IDT electrode finger portions of a SAW resonator and a capacitance ratio magnification.
FIG. 3 is a diagram showing the filtering characteristics of a ladder-type SAW filter configured using the SAW resonator according to the present invention.
FIG. 4 is a schematic diagram showing a configuration of an IDT electrode finger portion applied to a SAW resonator in another embodiment according to the present invention.
FIG. 5 is a diagram showing a configuration of a ladder-type SAW filter used conventionally.
FIG. 6 is a diagram illustrating a configuration of an IDT and a reflector of a SAW resonator having a conventional configuration.
FIG. 7 is a diagram illustrating a filtering characteristic of a ladder-type SAW filter having a conventional configuration.
[Explanation of symbols]
1
3, 4, 7, 8, 9
Claims (2)
前記弾性表面波共振子の少なくとも一つがIDTの電極指部を伝搬方向に沿って複数部分に分割されており、且つ、前記分割電極指部間の間隔を波長の0.55〜0.85倍としたことを特徴とする弾性表面波フィルタ。 In a bandpass filter circuit in which a plurality of surface acoustic wave resonators having a predetermined pattern are arranged on each of a serial arm and a parallel arm of a ladder circuit on a piezoelectric substrate,
At least one of the surface acoustic wave resonators is obtained by dividing the electrode finger portion of the IDT into a plurality of portions along the propagation direction, and the interval between the divided electrode finger portions is 0.55 to 0.85 times the wavelength. A surface acoustic wave filter characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17293496A JP3721229B2 (en) | 1996-06-12 | 1996-06-12 | Surface acoustic wave filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17293496A JP3721229B2 (en) | 1996-06-12 | 1996-06-12 | Surface acoustic wave filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09331233A JPH09331233A (en) | 1997-12-22 |
JP3721229B2 true JP3721229B2 (en) | 2005-11-30 |
Family
ID=15951067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17293496A Expired - Fee Related JP3721229B2 (en) | 1996-06-12 | 1996-06-12 | Surface acoustic wave filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3721229B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3419339B2 (en) | 1999-03-11 | 2003-06-23 | 株式会社村田製作所 | Surface acoustic wave filters, duplexers, communication equipment |
JP6825822B2 (en) * | 2016-05-11 | 2021-02-03 | 京セラ株式会社 | Capacitive element, elastic wave element and elastic wave module |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541787Y2 (en) * | 1973-12-28 | 1979-01-26 | ||
JPS53112046A (en) * | 1977-03-11 | 1978-09-30 | Murata Manufacturing Co | Elastic surface wave filter |
JPS553281A (en) * | 1978-06-22 | 1980-01-11 | Matsushita Electric Ind Co Ltd | Elastic surface wave filter |
JPS5765917A (en) * | 1980-10-11 | 1982-04-21 | Murata Mfg Co Ltd | Surface acoustic wave device |
JPS58205320A (en) * | 1982-05-25 | 1983-11-30 | Toyo Commun Equip Co Ltd | Electrode construction of surface acoustic wave resonator |
JPS61157112A (en) * | 1984-12-28 | 1986-07-16 | Toshiba Corp | Surface acoustic wave resonator |
JPH0429245A (en) * | 1990-05-25 | 1992-01-31 | Matsushita Electric Ind Co Ltd | Electrophotographic sensitive body |
JPH04132409A (en) * | 1990-09-25 | 1992-05-06 | Hitachi Ltd | Surface acoustic wave resonator |
JPH04150607A (en) * | 1990-10-15 | 1992-05-25 | Toyo Commun Equip Co Ltd | Leaky saw resonator |
JPH0522074A (en) * | 1991-07-11 | 1993-01-29 | Hitachi Ltd | Surface acoustic wave resonator, surface acoustic wave resonator composite filter and radio transmitter/ receiver |
JP3390537B2 (en) * | 1994-08-22 | 2003-03-24 | 富士通株式会社 | Surface acoustic wave filter |
JPH08204501A (en) * | 1994-11-22 | 1996-08-09 | Tdk Corp | Surface acoustic wave filter |
-
1996
- 1996-06-12 JP JP17293496A patent/JP3721229B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09331233A (en) | 1997-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0177907B1 (en) | Surface acoustic wave filter | |
JP3449352B2 (en) | Surface acoustic wave filter | |
KR100817849B1 (en) | Elastic surface wave resonator and elastic surface wave filter using the same | |
US5844453A (en) | Surface acoustic wave filter utilizing a transducer having interdigital electrodes and continuously adjacent electrodes | |
JPH06260876A (en) | Surface acoustic wave filter | |
JPH11340783A (en) | Surface acoustic wave filter | |
JP4687462B2 (en) | SAW filter | |
JPH11312951A (en) | Surface acoustic wave filter | |
JP3246906B2 (en) | Branching filter | |
WO2005013481A1 (en) | Surface acoustic wave filter | |
JP3721229B2 (en) | Surface acoustic wave filter | |
US6037700A (en) | Surface acoustic wave device | |
JP3915322B2 (en) | Surface acoustic wave filter | |
JPH10135780A (en) | Structure of double mode saw filter | |
JP3402015B2 (en) | Surface acoustic wave filter | |
JP4138093B2 (en) | Vertically coupled double mode SAW filter | |
JP2001156586A (en) | Ladder type surface acoustic wave filter | |
JP3290165B2 (en) | Ladder type surface acoustic wave filter | |
JP2002111444A (en) | Coupled surface acoustic wave filter | |
JP3327433B2 (en) | Surface acoustic wave filter | |
JP2004048283A (en) | Longitudinally coupled surface acoustic wave filter | |
JP2003174350A (en) | Cascaded surface acoustic wave filter | |
JP4004042B2 (en) | Duplexer | |
JP3784146B2 (en) | Surface acoustic wave filter | |
JP2002359541A (en) | Resonator-type surface acoustic wave filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050912 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080916 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |