JP3720489B2 - Method for producing iron-based alloy for fine crystal permanent magnet - Google Patents
Method for producing iron-based alloy for fine crystal permanent magnet Download PDFInfo
- Publication number
- JP3720489B2 JP3720489B2 JP27720396A JP27720396A JP3720489B2 JP 3720489 B2 JP3720489 B2 JP 3720489B2 JP 27720396 A JP27720396 A JP 27720396A JP 27720396 A JP27720396 A JP 27720396A JP 3720489 B2 JP3720489 B2 JP 3720489B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- roll
- fine crystal
- quenching
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 61
- 229910045601 alloy Inorganic materials 0.000 title claims description 33
- 239000000956 alloy Substances 0.000 title claims description 33
- 239000013078 crystal Substances 0.000 title claims description 31
- 229910052742 iron Inorganic materials 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000010791 quenching Methods 0.000 claims description 35
- 230000000171 quenching effect Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 22
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000002425 crystallisation Methods 0.000 claims description 10
- 230000008025 crystallization Effects 0.000 claims description 10
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 8
- 229910052735 hafnium Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052715 tantalum Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052779 Neodymium Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000009776 industrial production Methods 0.000 description 6
- 230000004907 flux Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 229910000758 Br alloy Inorganic materials 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000007578 melt-quenching technique Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、Fe3B型化合物並びにNd2Fe14B型結晶構造を有する化合物相が共存する微細結晶型の等方性磁石の母材となる永久磁石用鉄基合金に係り、従来、超急冷ロールを用いた液体超急冷法ではロール周速度を15m/秒以上とする超急冷条件でしかアモルファス組織が得られ難いPr、Ndの1種または2種が1〜6at%のFe-B-R組成において、少量の特定添加元素を加えた組成からなる合金溶湯を、安定した工業生産が可能なロール周速度で液体急冷法により急冷し、実質90%以上のアモルファス組織を得る、アモルファス生成能に優れた微細結晶永久磁石用鉄基合金の製造方法に関する。
【0002】
【従来の技術】
各種モーター、アクチュエーター、磁気センサー用磁気回路並びにマグネットロールやスピーカー用などに適用可能な永久磁石として、10kG以上の残留磁束密度Brを有し、平均結晶粒径が1nm〜50nmであるFe3B型化合物並びにNd2Fe14B型結晶構造を有する化合物相が共存する微細結晶型の等方性永久磁石が開発されている。
【0003】
かかる微細結晶型永久磁石は、特定組成のFe−B−R合金溶湯を液体超急冷法により、90%以上のアモルファス組織となした後、結晶化が開始する温度付近から600℃〜700℃の処理温度までの昇温速度が10℃/分〜50℃/分になる結晶化熱処理を施すことにより作製されている。
【0004】
90%以上のアモルファス組織からなるFe−B−R合金を得るためには、急冷ロール例えば、単ロールを用いた液体超急冷法において、ロール周速度が15m/秒を越える時にのみ達成できる105℃/秒以上の合金溶湯急冷速度が必要であり、かかる急冷速度を満足する合金溶湯の超急冷条件は極狭く、工業生産上実用的とは言い難いものであった。
【0005】
【発明が解決しようとする課題】
105℃/秒以上の合金溶湯急冷速度を得るために、上述の単ロールを用いた液体超急冷法において、ロール周速度が15m/秒を越えると、ロールの回転による雰囲気ガスの巻き込みが大きくなり、合金溶湯とロール面の間に巻き込んだガスにて急冷速度がばらつくのみならず、ロール上で溶湯が跳ね飛ばされて安定的に急冷薄帯を作製することができない。
【0006】
また、合金溶湯の急冷に際して生じる溶湯によるロール表面の損傷は、ロール周速度と比例して増大するため、15m/秒を越えるロール周速度の急冷処理を長時間継続した場合、ロール表面の損傷により急冷条件が一定しないという問題がある。
【0007】
さらに、105℃/秒以上の合金溶湯急冷速度を得るためには、ロール面の単位面積当たりの合金溶湯の急冷量を700gr/秒以下にする必要が有り、処理量を増大するには液体急冷装置の大型化を余儀なくされ、製造コストを上昇させることになる。
【0008】
この発明は、Fe3B型化合物並びにNd2Fe14B型結晶構造を有する化合物相が共存する微細結晶型の等方性磁石の母材となる90%以上のアモルファス組織からなる永久磁石用鉄基合金の製造方法において、液体急冷法の急冷条件が厳しく工業生産上実用的でないことに鑑み、急冷ロールを用いた液体急冷法におけるロール周速度を工業生産上安定的に急冷薄帯を作製することができる10m/秒以下にして、90%以上のアモルファス組織からなるかかる永久磁石用鉄基合金を得ることが可能な微細結晶永久磁石用鉄基合金の製造方法の提供を目的としている。
【0009】
【課題を解決するための手段】
発明者らは、10kG以上の残留磁束密度Brを有する微細結晶型の等方性磁石の母材となる永久磁石用鉄基合金の製造に際し、液体急冷法における急冷条件を緩和して安定した工業生産が可能な方法を目的に、ロール周速度を10m/秒以下にして、90%以上のアモルファス組織からなる微細結晶合金を得る方法について、種々検討した結果、Pr、Ndの1種または2種が1〜6at%のFe−B−R組成において、Zr、Nb、Mo、Hf、Ta、Wの1種または2種以上の少量の特定添加元素を加えた組成となすことにより、安定した工業生産が可能な10m/秒以下のロール周速度で合金溶湯を液体急冷法により急冷して、90%以上のアモルファス組織を得ることができ、アモルファス生成能に優れた微細結晶永久磁石用鉄基合金が得られることを知見し、この発明を完成した。
【0010】
すなわち、この発明は、組成式をT100-x-y-zBxRyMz(但し、TはFeまたはFeの一部をCo、NiまたはCrの1種もしくは2種以上にて置換、RはPr、Ndの1種または2種、MはZr、Nb、Mo、Hf、Ta、Wの1種または2種以上)と表し、組成範囲を限定する記号x、y、zが下記値を満足し、90%以上アモルファス組織を有し、結晶化熱処理することにより、Fe 3 B 型化合物並びに Nd 2 Fe 14 B 型結晶構造を有する化合物相が共存する微細結晶永久磁石になる微細結晶永久磁石用鉄基合金である。
15≦x≦30at%
1≦y≦6at%
1≦z≦5at%
【0011】
また、この発明は、組成式をT100-x-y-zBxRyMz(但し、TはFeまたはFeの一部をCo、NiまたはCrの1種もしくは2種以上にて置換、RはPr、Ndの1種または2種、MはZr、Nb、Mo、Hf、Ta、Wの1種または2種以上)と表し、組成範囲を限定する記号x、y、zが上記値を満足する合金溶湯を、急冷ロールを用いた液体急冷法により、ロール周速度を2m/秒〜10m/秒にして急冷することにより、90%以上アモルファス組織を有する急冷薄帯となし、該急冷薄帯を600℃〜700℃で結晶化熱処理することにより、Fe 3 B 型化合物並びに Nd 2 Fe 14 B 型結晶構造を有する化合物相が共存する微細結晶永久磁石を得る微細結晶永久磁石用鉄基合金の製造方法である。
【0012】
【発明の実施の形態】
組成の限定理由
希土類元素Rは、Pr、Ndの1種または2種とし、Rが1at%未満ではNd2Fe14B型結晶構造を有する化合物相が結晶化熱処理時に析出せず、2kOe以上のiHcが得られない、また6at%を越えると10kG以上の残留磁束密度Brが得られないため、1at%〜6at%の範囲とする。好ましくは、2at%〜5at%が良い。
【0013】
Bは、15at%未満では超急冷法を用いても90%以上のアモルファス組織を得ることができず、熱処理を施しても1kOe未満のiHcしか得られず、また30at%を越えると減磁曲線の角型性が著しく低下し10kG以上のBrが得られないため、15at%〜30at%の範囲とする。好ましくは、15at%〜20at%が良い。
【0014】
Zr、Nb、Mo、Hf、Ta、Wの1種または2種以上は、本系合金のアモルファス生成能の向上に大きく貢献し、90%以上のアモルファス組織を得るのに急冷ロールを用いた液体急冷法においてロール周速度を2m/秒〜10m/秒に低速化することができるが、含有量が1at%未満ではかかる効果を得ることができず、5at%を越えると結晶化熱処理温度が準安定相であるNd2Fe14B型化合物相の分解温度以上となってiHcが得られないため、1at%〜5at%の範囲とする。好ましくは、1at%〜2at%が良い。
【0015】
上述の元素の含有残余をFeで占め、また、Feの一部をCo、およびNiで置換することにより減滋曲線の角形性が改善され、最大エネルギー積(BH)max、および耐熱性の向上が得られ、また、Crで置換することによりiHcの大きな向上が得られる。
【0016】
製造条件の限定理由
この発明における液体急冷法とは、急冷ロールによる液体急冷法及び合金鋳造法であるストリップキャスト法を含むものである。上述の特定組成の合金溶湯を液体急冷法で、好ましくは減圧不活性ガス雰囲気中にて、ロール周速度を2m/秒〜10m/秒にして、合金溶湯冷却速度102℃/秒〜105℃/秒を実現することにより、好適な急冷組織と安定した品質の急冷薄帯を生成でき、90%以上のアモルファス組織を得ることができる。
【0017】
急冷ロールにCu製ロールを用いた場合、ロール周速度が2m/s未満では、実質的に90%以上のアモルファス組織を得ることができず、ロール周速度が10m/秒を越えると、回転ロールによる雰囲気ガスの巻き込みが大きく、回転ロールと合金溶湯の間に雰囲気ガスが入り込み、急冷条件の均一性が失われ、また、ロール上で溶湯が跳ね飛ばされて安定的に急冷薄帯を作製することができないため、ロール周速度を2m/s〜10m/sに限定する。さらに好ましいロール周速度は3m/s〜10m/sである。
【0018】
磁石化方法
上述のごとく、特定組成の合金溶湯を液体急冷法で、実質的に90%以上のアモルファス組織からなる金属組織となし、その後、結晶化が開始する温度付近から600℃〜700℃の処理温度までの昇温速度が10℃/分〜50℃/分になる結晶化熱処理を施すことにより、Fe 3 B型化合物並びにNd 2 Fe 14 B型結晶構造を有する化合物相が同一粉末中に共存し、各構成相の平均結晶粒径が1nm〜50nmであり、固有保磁力iHc≧2kOe、残留磁束密度Br≧10kGの磁気特性を有する微細結晶永久磁石を得ることができる。
【0019】
【実施例】
実施例1
表1のNo.1〜No.6の組成となるように、純度99.5%以上のFe、Zr、Nb、Mo、Hf、Ta、W、Ni、Co、Cr、B、Nd、Prの金属を用い、総量が30gとなるように秤量し、底部に直径0.8mmのオリフィスを有する石英るつぼ内に投入し、圧力56cmHgに保持したAr雰囲気中で高周波加熱により溶解し、溶解温度を1300℃にした後、湯面をArガスにより加圧して室温にて、表1に示すロール周速度にて回転するCu製急冷単ロールの外周面に0.7mmの高さから溶湯を噴出させて幅2mm〜3mm、厚み70μm〜180μmの急冷合金薄帯を作製した。
【0020】
得られた急冷薄帯は、Cu−Kαの特性X線による調査の結果、実質的に組織の90%以上がアモルファスであることを確認した。又、構成相は、Fe3B相、Nd2Fe14B相が混在する多相組織であり、Zr、Nb、Mo、Hf、Ta、W、Ni、Co、Crはこれらの各相でFeの一部と置換されている。各相の平均結晶粒径はいずれも30nm以下であった。
【0021】
この急冷薄帯をArガス中で、580℃〜600℃以上を20℃/分の昇温速度で昇温加熱し、表1に示す熱処理温度に7分間保持し、その後、室温まで冷却して、薄帯を取り出し、幅2mm〜3mm、厚み20μm〜40μm、長さ3mm〜5mmの試料を作製し、VSMを用いて磁気特性を測定した結果を表2に示す。
【0022】
比較例
実施例1と同様条件で、表1のNo.7〜No.9の組成となるように純度99.5%のFe、B、Rを用いて急冷合金薄帯を作製した。試料のCu−Kαの特性X線による調査の結果、得られたNo.7の急冷薄帯は、α−Feを主相としFe3B相とNd2Fe14B相が混在する金属組織であり、No.8とNo.9の急冷薄帯は、α−Fe相とアモルファスの混在組織であった。
【0023】
No.7〜No.9の急冷薄帯を、実施例1と同条件で熱処理した後、VSMを用いて磁気特性を測定した。測定結果を表2に示す。なお、熱処理後の金属組織はいずれの試料もα−Feを主相としFe3B相とNd2Fe14B相が混在する金属組織であり、その平均結晶粒径は100nm程度と、実施例のNo.1〜No.6に比べて粗大であった。
【0024】
【表1】
【0025】
【表2】
【0026】
【発明の効果】
実施例に明らかなように、この発明による90%以上のアモルファス組織からなる微細結晶永久磁石用鉄基合金は、結晶化が開始する温度付近から600℃〜700℃の処理温度までの昇温速度が10℃/分〜50℃/分になる結晶化熱処理を施すことにより、軟磁性を有するFe3B型化合物並びNd2Fe14B型結晶構造を有する硬磁性化合物相が同一粉末中に共存し、各構成相の平均結晶粒径が1nm〜50nmであり、固有保磁力iHc≧2kOe、残留磁束密度Br≧10kGの磁気特性を有する微細結晶永久磁石を得ることができる。
【0027】
すなわち、この発明は、Pr、Ndの1種または2種が1〜6at%のFe−B−R組成において、Zr、Nb、Mo、Hf、Ta、Wの1種または2種以上の少量の特定添加元素を加えた組成となすことにより、安定した工業生産が可能な10m/秒以下のロール周速度で合金溶湯を液体急冷法により急冷して、90%以上のアモルファス組織を得ることができ、Fe3B型化合物並びにNd2Fe14B型結晶構造を有する化合物相が共存する微細結晶型の等方性磁石の母材となるアモルファス生成能に優れた永久磁石用鉄基合金を、安定した工業生産で量産でき、安価に提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron-based alloy for permanent magnets that serves as a base material for a fine crystal type isotropic magnet in which an Fe 3 B type compound and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist. Fe-BR composition in which one or two of Pr and Nd are 1 to 6 at%, which is difficult to obtain amorphous structure only in the superquenching condition where the roll peripheral speed is 15 m / sec or more in the liquid superquenching method using a quenching roll In this case, a molten alloy consisting of a composition with a small amount of a specific additive element is rapidly cooled by a liquid quenching method at a roll peripheral speed capable of stable industrial production, and an amorphous structure of substantially 90% or more is obtained. methods for the preparation of fine crystal iron-based alloy for permanent magnets.
[0002]
[Prior art]
A permanent magnet applicable to various motors, actuators, magnetic circuits for magnetic sensors, magnet rolls and speakers, etc. Fe 3 B type having a residual magnetic flux density Br of 10 kG or more and an average crystal grain size of 1 nm to 50 nm A fine crystal type isotropic permanent magnet in which a compound and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist has been developed.
[0003]
Such a fine crystal type permanent magnet has a specific composition of Fe—BR alloy melt formed into an amorphous structure of 90% or more by a liquid ultra-quenching method, and then has a temperature of 600 ° C. to 700 ° C. from around the temperature at which crystallization starts. It is fabricated by performing a crystallization heat treatment at a temperature rising rate up to the processing temperature of 10 ° C./min to 50 ° C./min.
[0004]
To obtain a Fe-B-R alloy consisting of 90% of amorphous structure can chill roll for example, in a liquid rapid quenching method using a single roll, 105 can only be achieved when the roll peripheral speed exceeds 15 m / sec An alloy melt quenching rate of at least ° C./second is required, and the ultra-quenching conditions of the alloy melt satisfying such a quenching rate are extremely narrow, and are not practical for industrial production.
[0005]
[Problems to be solved by the invention]
In the above-described liquid superquenching method using a single roll in order to obtain a molten alloy quenching speed of 10 5 ° C / second or more, if the roll peripheral speed exceeds 15 m / second, entrainment of atmospheric gas due to roll rotation is large. Thus, not only the rapid cooling rate varies depending on the gas entrained between the molten alloy and the roll surface, but also the molten metal is splashed on the roll, so that a rapidly quenched ribbon cannot be produced.
[0006]
In addition, since the roll surface damage caused by the molten metal that occurs during the rapid cooling of the molten alloy increases in proportion to the roll peripheral speed, if the rapid cooling treatment at a roll peripheral speed exceeding 15 m / second is continued for a long time, the roll surface is damaged. There is a problem that the rapid cooling conditions are not constant.
[0007]
Furthermore, in order to obtain a molten alloy quenching rate of 10 5 ° C / second or more, it is necessary to set the rapid quenching amount of the molten alloy per unit area of the roll surface to 700 gr / second or less. The size of the rapid cooling device is inevitably increased, and the manufacturing cost is increased.
[0008]
The present invention relates to iron for permanent magnets comprising 90% or more amorphous structure as a base material of a fine crystal type isotropic magnet in which an Fe 3 B type compound and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist. In view of the fact that the quenching conditions of the liquid quenching method are severe and impractical for industrial production in the manufacturing method of the base alloy, the roll peripheral speed in the liquid quenching method using a quenching roll is stably produced for industrial production. in the 10 m / sec or less capable, and aims to provide a method for producing a 90% or more amorphous structure can be obtained according permanent magnet iron-based alloy consisting of iron-based alloy for the fine crystalline permanent magnets.
[0009]
[Means for Solving the Problems]
The inventors have developed a stable industry by relaxing the quenching conditions in the liquid quenching method in the production of an iron-based alloy for permanent magnets that is a base material for a microcrystalline isotropic magnet having a residual magnetic flux density Br of 10 kG or more. As a result of various studies on methods for obtaining a fine crystal alloy having an amorphous structure of 90% or more with a roll peripheral speed of 10 m / sec or less for the purpose of enabling production, one or two kinds of Pr and Nd were obtained. 1 to 6 at% Fe-B-R composition, and by adding a small amount of one or more specific additive elements of Zr, Nb, Mo, Hf, Ta, W, a stable industry An iron base for fine crystal permanent magnets that can produce 90% or more amorphous structure by quenching the molten alloy with a liquid quenching method at a roll peripheral speed of 10 m / sec or less, which can be produced, and has excellent amorphous forming ability. The knowledge that the money can be obtained, and have completed the present invention.
[0010]
That is, according to the present invention, the composition formula is T 100-xyz B x R y M z (where T is Fe or a part of Fe is substituted with one or more of Co, Ni or Cr, R is Pr , Nd 1 or 2 types, M is Zr, Nb, Mo, Hf, Ta, W or more), and the symbols x, y, and z that limit the composition range satisfy the following values: The iron for fine crystal permanent magnets that has an amorphous structure of 90% or more and becomes a fine crystal permanent magnet in which a compound phase having an Fe 3 B type compound and an Nd 2 Fe 14 B type crystal structure coexists by heat treatment for crystallization It is a base alloy.
15 ≦ x ≦ 30at%
1 ≦ y ≦ 6at%
1 ≦ z ≦ 5at%
[0011]
In the present invention, the composition formula is T 100-xyz B x R y M z (where T is Fe or a part of Fe is substituted with one or more of Co, Ni or Cr, R is Pr , Nd 1 or 2 and M is Zr, Nb, Mo, Hf, Ta, W or more), and the symbols x, y, and z that limit the composition range satisfy the above values the molten alloy by a liquid quenching method using a chill roll, by quenching with a roll peripheral speed 2m / sec through 10m / sec, quenched ribbon and without that have a 90% amorphous structure, the quench ribbon Of an iron-based alloy for a fine crystal permanent magnet to obtain a fine crystal permanent magnet in which a Fe 3 B type compound and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist by crystallization heat treatment at 600 ° C. to 700 ° C. It is a manufacturing method.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Reasons for limiting composition Rare earth element R is one or two of Pr and Nd. When R is less than 1 at%, a compound phase having an Nd 2 Fe 14 B type crystal structure does not precipitate during the crystallization heat treatment, and it is 2 kOe or more. If iHc cannot be obtained, and if it exceeds 6 at%, a residual magnetic flux density Br of 10 kG or more cannot be obtained, the range is set to 1 at% to 6 at%. Preferably, 2 at% to 5 at% is good.
[0013]
When B is less than 15 at%, an amorphous structure of 90% or more cannot be obtained even if the ultra-quenching method is used, iHc less than 1 kOe can be obtained even when heat treatment is performed, and when it exceeds 30 at%, the demagnetization curve is obtained. Since the squareness of the material is remarkably lowered and Br of 10 kG or more cannot be obtained, the range is set to 15 at% to 30 at%. Preferably, 15 at% to 20 at% is good.
[0014]
One or more of Zr, Nb, Mo, Hf, Ta, and W greatly contribute to the improvement of the amorphous forming ability of this alloy, and a liquid using a quench roll to obtain an amorphous structure of 90% or more. In the rapid cooling method, the roll peripheral speed can be reduced to 2 m / sec to 10 m / sec. However, if the content is less than 1 at%, such an effect cannot be obtained. Since iHc cannot be obtained because the temperature is higher than the decomposition temperature of the Nd 2 Fe 14 B type compound phase which is a stable phase, the range is set to 1 at% to 5 at%. Preferably, 1 at% to 2 at% is good.
[0015]
The residual content of the above elements is occupied by Fe, and by replacing a part of Fe with Co and Ni, the squareness of the depletion curve is improved, and the maximum energy product (BH) max and heat resistance are improved. In addition, a significant improvement in iHc can be obtained by substituting with Cr.
[0016]
Reasons for limiting the production conditions The liquid quenching method in the present invention includes a liquid quenching method using a quenching roll and a strip casting method which is an alloy casting method. The molten alloy having the above-mentioned specific composition is subjected to a liquid quenching method, preferably in a reduced-pressure inert gas atmosphere, the roll peripheral speed is set to 2 m / sec to 10 m / sec, and the molten alloy cooling rate is 10 2 ° C / sec to 10 5. By realizing ℃ / sec, a suitable quenched structure and a quenched ribbon with stable quality can be generated, and an amorphous structure of 90% or more can be obtained.
[0017]
When a roll made of Cu is used as the quenching roll, if the roll peripheral speed is less than 2 m / s, an amorphous structure of substantially 90% or more cannot be obtained. If the roll peripheral speed exceeds 10 m / second, the rotating roll The atmosphere gas is entrained by the atmosphere, the atmosphere gas enters between the rotating roll and the molten alloy, and the uniformity of the quenching condition is lost. Also, the molten metal is splashed on the roll to stably produce a quenching ribbon. Therefore, the roll peripheral speed is limited to 2 m / s to 10 m / s. A more preferable roll peripheral speed is 3 m / s to 10 m / s.
[0018]
Magnetization method As described above, a molten alloy having a specific composition is made into a metal structure consisting essentially of an amorphous structure of 90% or more by a liquid quenching method, and then from about 600 ° C. to 700 ° C. from around the temperature at which crystallization starts. By performing a crystallization heat treatment at a heating rate of 10 ° C./min to 50 ° C./min up to the processing temperature, the Fe 3 B type compound and the compound phase having the Nd 2 Fe 14 B type crystal structure are contained in the same powder. It is possible to obtain a microcrystalline permanent magnet which coexists, has an average crystal grain size of each constituent phase of 1 nm to 50 nm, has intrinsic coercive force iHc ≧ 2 kOe, and residual magnetic flux density Br ≧ 10 kG.
[0019]
【Example】
Example 1
No. in Table 1 1-No. 6 using a metal of Fe, Zr, Nb, Mo, Hf, Ta, W, Ni, Co, Cr, B, Nd, Pr with a purity of 99.5% or more, so that the total amount becomes 30 g. Weighed in such a manner that it was put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, melted by high-frequency heating in an Ar atmosphere maintained at a pressure of 56 cmHg, and the melting temperature was 1300 ° C. The molten metal is jetted from the height of 0.7 mm onto the outer peripheral surface of the Cu quenching single roll rotating at the roll peripheral speed shown in Table 1 under pressure with gas, and the width is 2 mm to 3 mm, the thickness is 70 μm to 180 μm. A quenched alloy ribbon was prepared.
[0020]
As a result of the investigation by the characteristic X-ray of Cu—Kα, it was confirmed that the obtained quenched ribbon was substantially 90% or more of the structure amorphous. The constituent phase is a multiphase structure in which Fe 3 B phase and Nd 2 Fe 14 B phase are mixed, and Zr, Nb, Mo, Hf, Ta, W, Ni, Co, and Cr are Fe in each of these phases. Has been replaced with a part of The average crystal grain size of each phase was 30 nm or less.
[0021]
The quenched ribbon is heated in Ar gas at a temperature rising rate of 580 ° C. to 600 ° C. or higher at a rate of 20 ° C./min, held at the heat treatment temperature shown in Table 1 for 7 minutes, and then cooled to room temperature. Table 2 shows the results of taking out the ribbon, preparing samples having a width of 2 mm to 3 mm, a thickness of 20 μm to 40 μm, and a length of 3 mm to 5 mm, and measuring the magnetic properties using VSM.
[0022]
Comparative Example No. 1 in Table 1 under the same conditions as in Example 1. 7-No. A quenched alloy ribbon was prepared using Fe, B, and R having a purity of 99.5% so that the composition of 9 was obtained. As a result of the investigation by the characteristic X-ray of Cu-Kα of the sample, the obtained No. 7 is a metal structure in which α-Fe is the main phase and Fe 3 B phase and Nd 2 Fe 14 B phase are mixed. 8 and no. The quenched ribbon of 9 was a mixed structure of α-Fe phase and amorphous.
[0023]
No. 7-No. After heat-treating the 9 quenched ribbons under the same conditions as in Example 1, the magnetic properties were measured using VSM. The measurement results are shown in Table 2. Note that the metal structure after heat treatment is a metal structure in which α-Fe is the main phase and Fe 3 B phase and Nd 2 Fe 14 B phase are mixed in each sample, and the average crystal grain size is about 100 nm. No. 1-No. Compared to 6, it was coarse.
[0024]
[Table 1]
[0025]
[Table 2]
[0026]
【The invention's effect】
As apparent from the examples, the iron-based alloy for fine crystal permanent magnets having an amorphous structure of 90% or more according to the present invention has a rate of temperature increase from around the temperature at which crystallization starts to a processing temperature of 600 ° C. to 700 ° C. There by performing crystallization heat treatment to be 10 ° C. / min to 50 ° C. / min, Fe 3 B type compound parallel beauty N d 2 Fe 14 B type hard magnetic compound phase identical powder having a crystal structure having a soft magnetic Thus, it is possible to obtain a fine crystal permanent magnet having an average crystal grain size of 1 nm to 50 nm in each constituent phase and having magnetic characteristics of an intrinsic coercive force iHc ≧ 2 kOe and a residual magnetic flux density Br ≧ 10 kG.
[0027]
That is, the present invention provides a small amount of one or more of Zr, Nb, Mo, Hf, Ta, and W in an Fe—B—R composition in which one or two of Pr and Nd are 1 to 6 at%. 90% or more amorphous structure can be obtained by rapidly cooling the molten alloy by the liquid quenching method at a roll peripheral speed of 10 m / sec or less capable of stable industrial production. , Fe 3 B type compound and Nd 2 Fe 14 B type crystalline structure coexisting fine crystal type isotropic magnet base material for permanent magnet with excellent amorphous forming ability Can be mass-produced through industrial production and provided at low cost.
Claims (1)
15≦x≦30at%
1≦y≦6at%
1≦z≦5at%The composition formula is T 100-xyz B x R y M z (where T is Fe or a part of Fe is substituted with one or two of Co, Ni or Cr, R is one or two of Pr and Nd) Species, M represents Zr, Nb, Mo, Hf, Ta, W or more) and represents a molten alloy in which the symbols x, y, z that limit the composition range satisfy the following values: the liquid quenching method using a roll peripheral speed by quenching in the 2m / sec through 10m / sec, quenched ribbon and without that have a 90% amorphous structure, the the quench ribbon at 600 ° C. to 700 ° C. A method for producing an iron-based alloy for a fine crystal permanent magnet, which obtains a fine crystal permanent magnet in which a Fe 3 B type compound and a compound phase having an Nd 2 Fe 14 B type crystal structure coexist by crystallization heat treatment.
15 ≦ x ≦ 30at%
1 ≦ y ≦ 6at%
1 ≦ z ≦ 5at%
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27720396A JP3720489B2 (en) | 1996-09-26 | 1996-09-26 | Method for producing iron-based alloy for fine crystal permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27720396A JP3720489B2 (en) | 1996-09-26 | 1996-09-26 | Method for producing iron-based alloy for fine crystal permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10102215A JPH10102215A (en) | 1998-04-21 |
JP3720489B2 true JP3720489B2 (en) | 2005-11-30 |
Family
ID=17580252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27720396A Expired - Lifetime JP3720489B2 (en) | 1996-09-26 | 1996-09-26 | Method for producing iron-based alloy for fine crystal permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3720489B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4529198B2 (en) * | 1999-03-19 | 2010-08-25 | 日立金属株式会社 | Iron-based permanent magnet containing a small amount of rare earth metal and method for producing the same |
JP3365625B2 (en) * | 1999-09-16 | 2003-01-14 | 住友特殊金属株式会社 | Nanocomposite magnet powder and method for producing magnet |
JP2002057016A (en) * | 2000-05-30 | 2002-02-22 | Seiko Epson Corp | Method of manufacturing magnet material, thin belt-like magnet material, powdery magnet material, and bonded magnet |
JP4670179B2 (en) * | 2001-05-18 | 2011-04-13 | 日立金属株式会社 | Permanent magnet having a plurality of ferromagnetic phases and method for producing the same |
WO2003001541A1 (en) * | 2001-06-22 | 2003-01-03 | Sumitomo Special Metals Co., Ltd. | Rare earth magnet and method for production thereof |
CN106024244A (en) * | 2016-07-21 | 2016-10-12 | 江西理工大学 | High-heat-stability nanocrystal rare-earth permanent-magnet material and preparation method thereof |
-
1996
- 1996-09-26 JP JP27720396A patent/JP3720489B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10102215A (en) | 1998-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1158545B1 (en) | Permanent magnet including multiple ferromagnetic phases and method for producing the magnet | |
EP2513917B1 (en) | Rare earth magnet and manufacturing method therefor | |
JP2009013498A (en) | Method for producing iron-based rare earth nano-composite magnet powder | |
US6386269B1 (en) | Method of manufacturing thin plate magnet having microcrystalline structure | |
JP2713404B2 (en) | Magnetic material for permanent magnet comprising iron, boron and rare earth metal and method for producing the same | |
US6329894B1 (en) | Thin plate magnet having microcrystalline structure | |
US20020003006A1 (en) | Alloy for high-performance rare earth permanent magnet and manufacturing method thereof | |
JP4687662B2 (en) | Iron-based rare earth alloy magnet | |
JP2010182827A (en) | Production method of high-coercive force magnet | |
JP3720489B2 (en) | Method for producing iron-based alloy for fine crystal permanent magnet | |
JP3801456B2 (en) | Iron-based rare earth permanent magnet alloy and method for producing the same | |
JPH10265915A (en) | Production of microcruystalline permanent magnet alloy and permanent magnet powder | |
JP2001355050A (en) | R-t-b-c based rare earth magnet powder and bond magnet | |
JP3594084B2 (en) | Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet | |
JPH118109A (en) | Rare earth permanent magnet material and its manufacture | |
JP2008078614A (en) | Manufacturing method for isotropic iron-base rare-earth alloy magnet | |
JP3264664B1 (en) | Permanent magnet having a plurality of ferromagnetic phases and manufacturing method thereof | |
Saito | The origin of the coercivity in Co-Zr system alloys | |
JPH07263210A (en) | Permanent magnet, alloy powder for permanent magnet and their production | |
JP3777225B2 (en) | Isotropic permanent magnet powder having high magnetic flux density and method for producing the same | |
Miyoshi et al. | Effects of Nb addition on structural and magnetic properties of Fe-B/Nd/sub 2/Fe/sub 14/B-based nanocomposite magnets | |
JP3299887B2 (en) | Hard magnetic material | |
JP3763774B2 (en) | Quenched alloy for iron-based rare earth alloy magnet and method for producing iron-based rare earth alloy magnet | |
JP4670179B2 (en) | Permanent magnet having a plurality of ferromagnetic phases and method for producing the same | |
JPH06231917A (en) | Permanent magnet of rare earth-transition metal base and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050908 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080916 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080916 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090916 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100916 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110916 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120916 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130916 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |